2019-2020高考数学一模试题带答案

合集下载

2019-2020高考数学一模试题(附答案)

2019-2020高考数学一模试题(附答案)

2019-2020高考数学一模试题(附答案)一、选择题1.已知变量x 与y 正相关,且由观测数据算得样本平均数3x =, 3.5y =,则由该观测的数据算得的线性回归方程可能是( ) A .$0.4 2.3y x =+ B .$2 2.4y x =- C .$29.5y x =-+D .$0.3 4.4y x =-+2.设集合(){}2log 10M x x =-<,集合{}2N x x =≥-,则M N ⋃=( ) A .{}22x x -≤<B .{}2x x ≥-C .{}2x x <D .{}12x x ≤<3.如图所示的组合体,其结构特征是( )A .由两个圆锥组合成的B .由两个圆柱组合成的C .由一个棱锥和一个棱柱组合成的D .由一个圆锥和一个圆柱组合成的4.已知平面向量a r=(1,-3),b r=(4,-2),a b λ+rr与a r垂直,则λ是( ) A .2B .1C .-2D .-15.一个频率分布表(样本容量为30)不小心被损坏了一部分,只记得样本中数据在[)2060,上的频率为0.8,则估计样本在[)40,50、[)50,60内的数据个数共有( )A .14B .15C .16D .176.一动圆的圆心在抛物线28y x =上,且动圆恒与直线20x +=相切,则此动圆必过定点( ) A .(4,0)B .(2,0)C .(0,2)D .(0,0)7.已知a r 与b r均为单位向量,它们的夹角为60︒,那么3a b -r r 等于( )A 7B 10C 13D .48.命题:三角形的内角至多有一个是钝角,若用反证法证明,则下列假设正确的是( ) A .假设至少有一个钝角B .假设至少有两个钝角C .假设三角形的三个内角中没有一个钝角D .假设没有一个钝角或至少有两个钝角9.甲、乙、丙,丁四位同学一起去问老师询问成语竞赛的成绩。

老师说:你们四人中有两位优秀,两位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩,根据以上信息,则( ) A .乙、丁可以知道自己的成绩B .乙可以知道四人的成绩C.乙、丁可以知道对方的成绩D.丁可以知道四人的成绩10.若双曲线22221 x ya b-=的离心率为3,则其渐近线方程为()A.y=±2x B.y=2x±C.12y x=±D.22y x=±11.已知2tan()5αβ+=,1tan()44πβ-=,则tan()4πα+的值等于()A.1318B.322C.1322D.31812.在样本的频率分布直方图中,共有11个小长方形,若中间一个长方形的面积等于其他十个小长方形面积的和的,且样本容量是160,则中间一组的频数为()A.32 B.0.2 C.40 D.0.25二、填空题13.如图,正方体1111ABCD A B C D-的棱长为1,线段11B D上有两个动点,E F,且2EF=,现有如下四个结论:AC BE①⊥;//EF②平面ABCD;③三棱锥A BEF-的体积为定值;④异面直线,AE BF所成的角为定值,其中正确结论的序号是______.14.已知函数21,1()()1a x xf xx a x⎧-+≤=⎨->⎩,函数()2()g x f x=-,若函数()()y f x g x=-恰有4个不同的零点,则实数a的取值范围为______.15.若x,y满足约束条件x y102x y10x0--≤⎧⎪-+≥⎨⎪≥⎩,则xz y2=-+的最小值为______.16.在平行四边形ABCD中,3Aπ∠=,边AB,AD的长分别为2和1,若M,N分别是边BC,CD上的点,且满足CNCDBMBC=u u u u v u u u vu u u v u u u v,则AM AN⋅u u u u v u u u v的取值范围是_________.17.函数()lg12siny x=-的定义域是________.18.若x ,y 满足约束条件220100x y x y y --≤⎧⎪-+≥⎨⎪≤⎩,则32z x y =+的最大值为_____________.19.在ABC ∆中,若13AB =,3BC =,120C ∠=︒,则AC =_____. 20.已知正三棱锥P ABC -的底面边长为3,外接球的表面积为16π,则正三棱锥P ABC -的体积为________. 三、解答题21.已知数列{}n a 满足1112,22n n n a a a ++==+. (1)设2nn na b =,求数列{}n b 的通项公式; (2)求数列{}n a 的前n 项和n S ; (3)记()()211422nnn n n nn c a a +-++=,求数列{}n c 的前n 项和n T . 22.已知曲线C :(t 为参数), C :(为参数).(1)化C ,C 的方程为普通方程,并说明它们分别表示什么曲线; (2)若C 上的点P 对应的参数为,Q 为C 上的动点,求中点到直线(t 为参数)距离的最小值.23.在△ABC 中,a =7,b =8,cos B = –17. (Ⅰ)求∠A ; (Ⅱ)求AC 边上的高.24.已知圆O 1和圆O 2的极坐标方程分别为ρ=2,ρ2-2ρcos(θ-)=2.(1)把圆O 1和圆O 2的极坐标方程化为直角坐标方程. (2)求经过两圆交点的直线的极坐标方程.25.如图,已知三棱柱111ABC A B C -,平面11A AC C ⊥平面ABC ,90ABC ∠=︒,1130,,,BAC A A AC AC E F ∠=︒==分别是11,AC A B 的中点.(1)证明:EF BC ⊥;(2)求直线EF 与平面1A BC 所成角的余弦值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】试题分析:因为与正相关,排除选项C 、D ,又因为线性回归方程恒过样本点的中心,故排除选项B ;故选A .考点:线性回归直线.2.B解析:B 【解析】 【分析】求解出集合M ,根据并集的定义求得结果. 【详解】(){}{}{}2log 1001112M x x x x x x =-<=<-<=<<Q {}2M N x x ∴⋃=≥-本题正确选项:B 【点睛】本题考查集合运算中的并集运算,属于基础题.3.D解析:D 【解析】【分析】根据圆柱与圆锥的结构特征,即可判定,得到答案. 【详解】根据空间几何体的结构特征,可得该组合体上面是圆锥,下接一个同底的圆柱,故选D. 【点睛】本题主要考查了空间几何体的结构特征,其中解答熟记圆柱与圆锥的结构特征是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.4.D解析:D 【解析】 【详解】试题分析:()()(),34,24,32a b λλλλλ+=-+-=+--r r ,由a b λ+r r 与a r 垂直可知()()()·0433201a b a λλλλ+=∴+---=∴=-r r r考点:向量垂直与坐标运算5.B解析:B 【解析】 【分析】计算出样本在[)2060,的数据个数,再减去样本在[)20,40的数据个数即可得出结果. 【详解】由题意可知,样本在[)2060,的数据个数为300.824⨯=, 样本在[)20,40的数据个数为459+=,因此,样本在[)40,50、[)50,60内的数据个数为24915-=. 故选:B. 【点睛】本题考查利用频数分布表计算频数,要理解频数、样本容量与频率三者之间的关系,考查计算能力,属于基础题.6.B解析:B 【解析】 【分析】设圆和x 轴相交于M 点,根据圆的定义得到CA =CM =R ,因为x=-2,是抛物线的准线,结合抛物线的定义得到M 点为焦点. 【详解】圆心C 在抛物线上,设与直线20x +=相切的切点为A ,与x 轴交点为M ,由抛物线的定义可知,CA =CM =R ,直线20x +=为抛物线的准线,故根据抛物线的定义得到该圆必2,0.过抛物线的焦点()故选B【点睛】这个题目考查了抛物线的定义的应用以及圆的定义的应用,一般和抛物线有关的小题,很多时可以应用结论来处理的;平时练习时应多注意抛物线的结论的总结和应用.尤其和焦半径联系的题目,一般都和定义有关,实现点点距和点线距的转化.7.A解析:A【解析】本题主要考查的是向量的求模公式.由条件可知==,所以应选A.8.B解析:B【解析】用反证法证明数字命题时,应先假设要证的命题的否定成立,而要证命题“三角形的内角至多有一个钝角”的否定为“三角形的内角至少有两个钝角”,所以应假设三角形的内角至少有两个钝角,故选B.9.A解析:A【解析】【分析】根据甲的所说的话,可知乙、丙的成绩中一位优秀、一位良好,再结合简单的合情推理逐一分析可得出结果.【详解】因为甲、乙、丙、丁四位同学中有两位优秀、两位良好,又甲看了乙、丙的成绩且还不知道自己的成立,即可推出乙、丙的成绩中一位优秀、一位良好,又乙看了丙的成绩,则乙由丙的成绩可以推出自己的成绩,又甲、丁的成绩中一位优秀、一位良好,则丁由甲的成绩可以推出自己的成绩. 因此,乙、丁知道自己的成绩,故选:A. 【点睛】本题考查简单的合情推理,解题时要根据已知的情况逐一分析,必要时可采用分类讨论的思想进行推理,考查逻辑推理能力,属于中等题.10.B解析:B 【解析】双曲线的离心率为223a b a+=,渐进性方程为b y x a =±,计算得2b a =,故渐进性方程为2y x =±.【考点定位】本小题考查了离心率和渐近线等双曲线的性质.11.B解析:B 【解析】 【分析】由题可分析得到()tan +tan 44ππααββ⎡⎤⎛⎫⎛⎫=+-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,由差角公式,将值代入求解即可 【详解】 由题,()()()21tan tan 3454tan +tan 21442211tan tan 544παββππααββπαββ⎛⎫+---⎪⎡⎤⎛⎫⎛⎫⎝⎭=+--=== ⎪ ⎪⎢⎥⎛⎫⎝⎭⎝⎭⎣⎦+⨯++- ⎪⎝⎭,故选:B 【点睛】本题考查正切的差角公式的应用,考查已知三角函数值求三角函数值问题12.A解析:A 【解析】试题分析:据已知求出频率分布直方图的总面积;求出中间一组的频率;利用频率公式求出中间一组的频数.解:设间一个长方形的面积S 则其他十个小长方形面积的和为4S ,所以频率分布直方图的总面积为5S 所以中间一组的频率为所以中间一组的频数为160×0.2=32 故选A点评:本题考查频率分布直方图中各组的面积除以总面积等于各组的频率.注意频率分布直方图的纵坐标是.二、填空题13.【解析】【分析】对于①可由线面垂直证两线垂直;对于②可由线面平行的定义证明线面平行;对于③可证明棱锥的高与底面积都是定值得出体积为定值;对于④可由两个特殊位置说明两异面直线所成的角不是定值【详解】对 解析:①②③【解析】 【分析】对于①,可由线面垂直证两线垂直;对于②,可由线面平行的定义证明线面平行;对于③,可证明棱锥的高与底面积都是定值得出体积为定值;对于④,可由两个特殊位置说明两异面直线所成的角不是定值. 【详解】对于①,由1,AC BD AC BB ⊥⊥,可得AC ⊥面11DD BB ,故可得出AC BE ⊥,此命题正确;对于②,由正方体1111ABCD A B C D -的两个底面平行,EF 在平面1111D C B A 内,故EF 与平面ABCD 无公共点,故有//EF 平面ABCD ,此命题正确;对于③,EF 为定值,B 到EF 距离为定值,所以三角形BEF 的面积是定值,又因为A 点到面11DD BB 距离是定值,故可得三棱锥A BEF -的体积为定值,此命题正确; 对于④,由图知,当F 与1B 重合时,此时E 与上底面中心为O 重合,则两异面直线所成的角是1A AO ∠,当E 与1D 重合时,此时点F 与O 重合,则两异面直线所成的角是1OBC ∠,此二角不相等,故异面直线,AE BF 所成的角不为定值,此命题错误.综上知①②③正确,故答案为①②③ 【点睛】本题通过对多个命题真假的判断,综合考查线面平行的判断、线面垂直的判断与性质、棱锥的体积公式以及异面直线所成的角,属于难题.这种题型综合性较强,也是高考的命题热点,同学们往往因为某一处知识点掌握不好而导致“全盘皆输”,因此做这类题目更要细心、多读题,尽量挖掘出题目中的隐含条件,另外,要注意从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题.14.【解析】【分析】由函数把函数恰有个不同的零点转化为恰有4个实数根列出相应的条件即可求解【详解】由题意函数且函数恰有个不同的零点即恰有4个实数根当时由即解得或所以解得;当时由解得或所以解得综上可得:实 解析:(]2,3【解析】【分析】由函数()2()g x f x =-,把函数()()y f x g x =-恰有4个不同的零点,转化为()1f x =恰有4个实数根,列出相应的条件,即可求解. 【详解】由题意,函数()2()g x f x =-,且函数()()y f x g x =-恰有4个不同的零点, 即()1f x =恰有4个实数根,当1x ≤时,由11a x -+=,即110x a +=-≥,解得2=-x a 或x a =-,所以2112a a a a -≤⎧⎪-≤⎨⎪-≠-⎩,解得13a <?;当1x >时,由2()1x a -=,解得1x a =-或1x a =+,所以1111a a ->⎧⎨+>⎩,解得2a >,综上可得:实数a 的取值范围为(]2,3. 【点睛】本题主要考查了函数与方程的应用,其中解答中利用条件转化为()1f x =,绝对值的定义,以及二次函数的性质求解是解答的关键,着重考查了数形结合思想,以及推理与计算能力,属于中档试题.15.-1【解析】【分析】画出约束条件表示的平面区域由图形求出最优解再计算目标函数的最小值【详解】画出约束条件表示的平面区域如图所示由图形知当目标函数过点A 时取得最小值由解得代入计算所以的最小值为故答案为解析:-1 【解析】 【分析】画出约束条件表示的平面区域,由图形求出最优解,再计算目标函数1z x y 2=-+的最小值. 【详解】画出约束条件102100x y x y x --≤⎧⎪-+≥⎨⎪≥⎩表示的平面区域如图所示,由图形知,当目标函数1z x y 2=-+过点A 时取得最小值,由{x 0x y 10=--=,解得()A 0,1-,代入计算()z 011=+-=-,所以1z x y 2=-+的最小值为1-.故答案为1-. 【点睛】本题考查了线性规划的应用问题,也考查了数形结合的解题方法,是基础题.16.【解析】【分析】画出图形建立直角坐标系利用比例关系求出的坐标然后通过二次函数求出数量积的范围【详解】解:建立如图所示的直角坐标系则设则所以因为二次函数的对称轴为:所以时故答案为:【点睛】本题考查向量解析:[2]5, 【解析】 【分析】画出图形,建立直角坐标系,利用比例关系,求出M ,N 的坐标,然后通过二次函数求出数量积的范围. 【详解】解:建立如图所示的直角坐标系,则(2,0)B ,(0,0)A ,132D ⎛ ⎝⎭,设||||||||BM CN BC CD λ==u u u u r u u u ru u u r u u u r ,[]0,1λ∈,则(22M λ+3),5(22N λ-3, 所以(22AM AN λ=+u u u u r u u u r g 35)(22λ-g 22353542544λλλλλλ=-+-+=--+,因为[]0,1λ∈,二次函数的对称轴为:1λ=-,所以[]0,1λ∈时,[]2252,5λλ--+∈.故答案为:[2]5,【点睛】本题考查向量的综合应用,平面向量的坐标表示以及数量积的应用,二次函数的最值问题,考查计算能力,属于中档题.17.【解析】由题意可得函数满足即解得即函数的定义域为解析:513|22,66x k x k k Z ππππ⎧⎫+<<+∈⎨⎬⎩⎭【解析】由题意可得,函数lg(12sin )y x =-满足12sin 0x ->,即1sin 2x <, 解得51322,66k x k k Z ππππ+<<+∈, 即函数lg(12sin )y x =-的定义域为513{|22,}66x k x k k Z ππππ+<<+∈. 18.6【解析】【分析】首先根据题中所给的约束条件画出相应的可行域再将目标函数化成斜截式之后在图中画出直线在上下移动的过程中结合的几何意义可以发现直线过B 点时取得最大值联立方程组求得点B 的坐标代入目标函数解析:6 【解析】 【分析】首先根据题中所给的约束条件,画出相应的可行域,再将目标函数化成斜截式3122y x z =-+,之后在图中画出直线32y x =-,在上下移动的过程中,结合12z 的几何意义,可以发现直线3122y x z =-+过B 点时取得最大值,联立方程组,求得点B 的坐标代入目标函数解析式,求得最大值. 【详解】根据题中所给的约束条件,画出其对应的可行域,如图所示:由32z x y =+,可得3122y x z =-+, 画出直线32y x =-,将其上下移动, 结合2z的几何意义,可知当直线3122y x z =-+在y 轴截距最大时,z 取得最大值, 由220x y y --=⎧⎨=⎩,解得(2,0)B ,此时max 3206z =⨯+=,故答案为6.点睛:该题考查的是有关线性规划的问题,在求解的过程中,首先需要正确画出约束条件对应的可行域,之后根据目标函数的形式,判断z 的几何意义,之后画出一条直线,上下平移,判断哪个点是最优解,从而联立方程组,求得最优解的坐标,代入求值,要明确目标函数的形式大体上有三种:斜率型、截距型、距离型;根据不同的形式,应用相应的方法求解.19.1【解析】【分析】由题意利用余弦定理得到关于AC 的方程解方程即可确定AC 的值【详解】由余弦定理得解得或(舍去)【点睛】本题主要考查余弦定理解三角形的方法方程的数学思想等知识意在考查学生的转化能力和计解析:1 【解析】 【分析】由题意利用余弦定理得到关于AC 的方程,解方程即可确定AC 的值. 【详解】由余弦定理得21393AC AC =++,解得1AC =或4AC =-(舍去). 【点睛】本题主要考查余弦定理解三角形的方法,方程的数学思想等知识,意在考查学生的转化能力和计算求解能力.20.或【解析】【分析】做出简图找到球心根据勾股定理列式求解棱锥的高得到两种情况【详解】正三棱锥的外接球的表面积为根据公式得到根据题意画出图像设三棱锥的高为hP 点在底面的投影为H 点则底面三角形的外接圆半径解析:334或93【解析】 【分析】做出简图,找到球心,根据勾股定理列式求解棱锥的高,得到两种情况. 【详解】正三棱锥P ABC -的外接球的表面积为16π,根据公式得到21642,r r ππ=⇒= 根据题意画出图像,设三棱锥的高为h,P 点在底面的投影为H 点,则2,2,2OP r OA r OH h =====-,底面三角形的外接圆半径为AH ,根据正弦定理得到323sin 60= 3. 在三角形OAH 中根据勾股定理得到()223413h h -+=⇒=或 三棱锥的体积为:13ABC h S ⨯⨯V 代入数据得到131331333224⨯⨯⨯⨯⨯=或者1319333 3.3224⨯⨯⨯⨯⨯= 故答案为:334或34【点睛】这个题目考查了已知棱锥的外接球的半径,求解其中的一些量;涉及棱锥的外接球的球心的求法,一般外接球需要求球心和半径,首先应确定球心的位置,借助于外接球的性质,球心到各顶点距离相等,这样可先确定几何体中部分点组成的多边形的外接圆的圆心,过圆心且垂直于多边形所在平面的直线上任一点到多边形的顶点的距离相等,然后同样的方法找到另一个多边形的各顶点距离相等的直线(这两个多边形需有公共点),这样两条直线的交点,就是其外接球的球心,再根据半径,顶点到底面中心的距离,球心到底面中心的距离,构成勾股定理求解,有时也可利用补体法得到半径,例:三条侧棱两两垂直的三棱锥,可以补成长方体,它们是同一个外接球.三、解答题21.(1)n b n =(2)()1122n n S n +=-+(3)()()()114123312n n n n +++---+⋅ 【解析】 【分析】 【详解】(1)由1122n n n a a ++=+得11n n b b +=+,得n b n =;(2)易得2nn a n =g ,1223112222,212222,n n n n S n S n +=⨯+⨯++⨯=⨯+⨯++⨯L L错位相减得12111222222212nn n n n S n n ++--=+++-⨯=⨯-⨯-L所以其前n 项和()1122n n S n +=-+; (3)()()()()()()()()()()2221111422142121·2?12?12?12nnnnn n n n n nn nn nn n nc n n n n n n +++-++-++-++++===+++()()()()()()1111111111112?21?222?21?2nn n n nn n n n n n n n n ++++⎛⎫⎛⎫---⎛⎫ ⎪=+-+=-+- ⎪ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭, ()()()()()()2231212231111111*********?22?22?23?2?21?2n n n n n n T n n ++⎡⎤⎛⎫⎛⎫⎛⎫⎡⎤------⎛⎫⎛⎫⎛⎫⎢⎥ ⎪ ⎪ ⎪=-+-++-+-+-++-⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪+⎢⎥⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦⎝⎭⎝⎭⎝⎭⎣⎦L L ()()1112113621?2n nn n ++-⎛⎫=-+-- ⎪+⎝⎭或写成()()()11412331?2n n n n +++---+.点睛:用错位相减法求和应注意的问题(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“n S ”与“n qS ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“n n S qS -”的表达式;(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解. 22.(Ⅰ)为圆心是(,半径是1的圆.为中心是坐标原点,焦点在x 轴上,长半轴长是8,短半轴长是3的椭圆. (Ⅱ)【解析】 【分析】 【详解】 (1)为圆心是,半径是1的圆,为中心是坐标原点,焦点在轴,长半轴长是8,短半轴长是3的椭圆.(2)当时,,故 的普通方程为,到的距离所以当时,取得最小值.考点:圆的参数方程;点到直线的距离公式;直线的参数方程. 23.(1) ∠A =π3 (2) AC 边上的高为33 【解析】分析:(1)先根据平方关系求sin B ,再根据正弦定理求sin A ,即得A ∠;(2)根据三角形面积公式两种表示形式列方程11sin 22ab C hb =,再利用诱导公式以及两角和正弦公式求sin C ,解得AC 边上的高. 详解:解:(1)在△ABC 中,∵cos B =–17,∴B ∈(π2,π),∴sin B =2431cos B -=.由正弦定理得sin sin a b A B = ⇒ 7sin A =43,∴sin A =3.∵B ∈(π2,π),∴A ∈(0,π2),∴∠A =π3.(2)在△ABC 中,∵sin C =sin (A +B )=sin A cos B +sin B cos A =3114372⎛⎫⨯-+⨯⎪⎝⎭=33. 如图所示,在△ABC 中,∵sin C =h BC ,∴h =sin BC C ⋅=33337142⨯=,∴AC 边上的高为33.点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的. 24.(1) x 2+y 2-2x-2y-2=0 (2) ρsin(θ+)= 【解析】(1)∵ρ=2,∴ρ2=4,即x 2+y 2=4. ∵ρ2-2ρcos(θ-)=2,∴ρ2-2ρ (cosθcos +sinθsin )=2.∴x 2+y 2-2x-2y-2=0.(2)将两圆的直角坐标方程相减,得经过两圆交点的直线方程为x+y=1.化为极坐标方程为ρcosθ+ρsinθ=1,即ρsin(θ+)=. 25.(1)证明见解析;(2)35. 【解析】 【分析】(1)由题意首先证得线面垂直,然后利用线面垂直的定义即可证得线线垂直;(2)建立空间直角坐标系,分别求得直线的方向向量和平面的法向量,然后结合线面角的正弦值和同角三角函数基本关系可得线面角的余弦值. 【详解】(1)如图所示,连结11,A E B E ,等边1AAC △中,AE EC =,则1A E AC ⊥, 平面ABC ⊥平面11A ACC ,且平面ABC ∩平面11A ACC AC =, 由面面垂直的性质定理可得:1A E ⊥平面ABC ,故1A E BC ⊥,由三棱柱的性质可知11A B AB ∥,而AB BC ⊥,故11A B BC ⊥,且1111A B A E A =I , 由线面垂直的判定定理可得:BC ⊥平面11A B E , 结合EF ⊆平面11A B E ,故EF BC ⊥.(2)在底面ABC 内作EH ⊥AC ,以点E 为坐标原点,EH ,EC ,1EA 方向分别为x ,y ,z 轴正方向建立空间直角坐标系E xyz -.设1EH =,则3AE EC ==1123AA CA ==3,3BC AB ==, 据此可得:()()()1330,3,0,,,0,0,3,3,022A B A C ⎛⎫- ⎪ ⎪⎝⎭, 由11AB A B =u u u r u u u u r 可得点1B 的坐标为1333,322B ⎛⎫ ⎪⎝⎭, 利用中点坐标公式可得:333,344F ⎛⎫⎪⎝⎭,由于()0,0,0E , 故直线EF 的方向向量为:333,344EF ⎛⎫= ⎪⎝⎭u u u r 设平面1A BC 的法向量为(),,m x y z =u r,则:()()13333,,,,33022223333,,022m A B x y z x y z m BC x y z x y u u u v v u u u v v ⎧⎛⎫⋅=⋅-=+-=⎪ ⎪ ⎪⎪⎝⎭⎨⎛⎫⎪⋅=⋅-=-= ⎪⎪ ⎪⎝⎭⎩, 据此可得平面1A BC 的一个法向量为()3,1m =u r ,333,344EF ⎛⎫= ⎪⎝⎭u u u r 此时4cos ,53552EF m EF m EF m⋅===⨯⨯u u u r u ru u u r u r u u u r u r , 设直线EF 与平面1A BC 所成角为θ,则43sin cos ,,cos 55EF m θθ===u u u r u r .【点睛】本题考查了立体几何中的线线垂直的判定和线面角的求解问题,意在考查学生的空间想象能力和逻辑推理能力;解答本题关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,通过严密推理,同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解.。

2019-2020高考数学一模试卷(附答案)

2019-2020高考数学一模试卷(附答案)
解析:B
【解析】
【分析】
由条件根据函数 的图象变换规律,正弦函数的图象的对称性可得 , ,由此根据 求得 的值,得到函数解析式即可求最值.
【详解】
函数 的图象向右平移 个单位后,
得到函数 的图象,
再根据所得图象关于原点对称,可得 , ,
∵ ,∴ , ,
由题意 ,得 ,
∴ ,
∴函数 在区间 的最大值为 ,
故选B.
【点睛】
本题主要考查函数 的图象变换规律,正弦函数的图象的对称性,考查了正弦函数最值的求法,解题的关键是熟练掌握正弦函数的性质,能根据正弦函数的性质求最值,属于基础题.
二、填空题
13.【解析】【分析】【详解】由得由整数有且仅有123知解得
解析:
【解析】
【分析】
【详解】
由 得
由整数有且仅有1,2,3知 ,解得
7.C
解析:C
【解析】
【分析】
先求出展开式的通项,然后求出常数项的值
【详解】
展开式的通项公式为: ,化简得 ,令 ,即 ,故展开式中的常数项为 .
故选:C.
【点睛】
本题主要考查二项式定理、二项展开式的应用,熟练运用公式来解题是关键.
8.B
解析:B
【解析】
【分析】
本道题设 ,利用双曲线性质,计算x,结合余弦定理,计算离心率,即可.
4个月
总计
A
20
35
35
10
100
B
10
30
40
20
100
如果你是甲公司的负责人,你会选择采购哪款新型材料?
参考数据:
参考公式:回归直线方程 ,其中
【参考答案】***试卷处理标记,请不要删除

2019-2020高考数学一模试卷(附答案)

2019-2020高考数学一模试卷(附答案)
9.C
解析:C 【解析】 【分析】
当 x 0 时, y f (x) ax b x ax b (1 a)x b 最多一个零点;当 x 0 时,
y f (x) ax b 1 x3 1 (a 1)x2 ax ax b 1 x3 1 (a 1)x2 b ,利用导数研
34
81
35
84
36
77
37
81
38
76
39
85
40
89
用系统抽样法从 40 名用户中抽取容量为 10 的样本,且在第一分段里随机抽到的评分数据 为 92. (1)请你列出抽到的 10 个样本的评分数据;
(2)计算所抽到的 10 个样本的均值 x 和方差 s2 ;
(3)在(2)条件下,若用户的满意度评分在 x s, x s 之间,则满意度等级为“ A
32
32
y x2 (a 1)x ,
当 a 1 0 ,即 a 1时, y 0 , y f (x) ax b 在[0 , ) 上递增,
y f (x) ax b 最多一个零点.不合题意;
当 a 1 0 ,即 a 1时,令 y 0 得 x [a 1 , ) ,函数递增,令 y 0 得 x[0 , a 1) ,函数递减;函数最多有 2 个零点;
x2
的项为 C62x2
1 x2
C64
x4
则 1
1 x2
1
x6
展开式中
x2
的系数为 C62
C64
15 15
30
故选:C
【点睛】
本题考查了二项定理展开式的应用,指定项系数的求法,属于基础题.
3.A
解析:A
【解析】
【分析】
利用逐一验证的方法进行求解.

2019-2020数学高考一模试题及答案

2019-2020数学高考一模试题及答案

2019-2020数学高考一模试题及答案一、选择题1.设集合M={1,2,4,6,8},N={1,2,3,5,6,7},则M ⋂N 中元素的个数为( ) A .2B .3C .5D .72.已知sin cos 0θθ<,且cos cos θθ=,则角θ是( ) A .第一象限角B .第二象限角C .第三象限角D .第四象限角3.如图所示,程序据图(算法流程图)的输出结果为( )A .34B .16C .1112D .25244.已知平面向量a ,b 是非零向量,|a |=2,a ⊥(a +2b ),则向量b 在向量a 方向上的投影为( ) A .1 B .-1C .2D .-25.下列各组函数是同一函数的是( )①()32f x x =-与()2f x x x =-()3f x 2x y x 2x 与=-=-()f x x =与()2g x x =③()0f x x =与()01g x x=;④()221f x x x =--与()221g t t t =--. A .① ② B .① ③C .③ ④D .① ④6.两个实习生每人加工一个零件.加工为一等品的概率分别为23和34,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为A .12B .512C .14D .167.如图是一个正方体的平面展开图,则在正方体中直线AB 与CD 的位置关系为( )A .相交B .平行C .异面而且垂直D .异面但不垂直8.由a 2,2﹣a ,4组成一个集合A ,A 中含有3个元素,则实数a 的取值可以是( ) A .1B .﹣2C .6D .29.下列说法正确的是( ) A .22a b ac bc >⇒> B .22a b a b >⇒> C .33a b a b >⇒>D .22a b a b >⇒>10.已知,a b ∈R ,函数32,0()11(1),032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩,若函数()y f x ax b =--恰有三个零点,则( )A .1,0a b <-<B .1,0a b <->C .1,0a b >-<D .1,0a b >->11.若0,0ab >>,则“4a b +≤”是 “4ab ≤”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件12.某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组一次为[)[)[)20,40,40,60,60,80,[80,100].若低于60分的人数是15人,则该班的学生人数是( )A .45B .50C .55D .二、填空题13.若双曲线22221x y a b-=()0,0a b >>两个顶点三等分焦距,则该双曲线的渐近线方程是___________.14.设25a b m ==,且112a b+=,则m =______. 15.已知实数x ,y 满足24240x y x y y -≥⎧⎪+≤⎨⎪≤⎩,则32z x y =-的最小值是__________.16.设正数,a b 满足21a b +=,则11a b+的最小值为__________. 17.在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若1sin 3α=,则cos()αβ-=___________. 18.从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人,组成4人服务队,要求服务队中至少有1名女生,共有__________种不同的选法.(用数字作答) 19.等边三角形ABC 与正方形ABDE 有一公共边AB ,二面角C AB D --的余弦值为33,M N ,分别是AC BC ,的中点,则EM AN ,所成角的余弦值等于 . 20.在平面上,若两个正三角形的边长的比为1:2,则它们的面积比为1:4,类似地,在空间内,若两个正四面体的棱长的比为1:2,则它们的体积比为 ▲三、解答题21.如图,在四棱锥P ABCD -中,已知PC ⊥底面ABCD ,AB AD ⊥,//AB CD ,2AB =,1AD CD ==,E 是PB 上一点.(1)求证:平面EAC ⊥平面PBC ;(2)若E 是PB 的中点,且二面角P AC E --6,求直线PA 与平面EAC 所成角的正弦值.22.已知()f x 是二次函数,不等式()0f x <的解集是0,5,且()f x 在区间[]1,4-上的最大值是12.(1)求()f x 的解析式;(2)设函数()f x 在[],1x t t ∈+上的最小值为g t ,求g t 的表达式. 23.四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,3BAD π∠=,PAD ∆是等边三角形,F 为AD 的中点,PD BF ⊥.(1)求证:AD PB⊥;(2)若E在线段BC上,且14EC BC=,能否在棱PC上找到一点G,使平面DEG⊥平面ABCD?若存在,求四面体D CEG-的体积.24.如图,在边长为4的正方形ABCD中,点E,F分别是AB,BC的中点,点M在AD上,且14AM AD=,将AED,DCF分别沿DE,DF折叠,使A,C点重合于点P,如图所示2.()1试判断PB与平面MEF的位置关系,并给出证明;()2求二面角M EF D--的余弦值.25.2016年某市政府出台了“2020年创建全国文明城市简称创文”的具体规划,今日,作为“创文”项目之一的“市区公交站点的重新布局及建设”基本完成,市有关部门准备对项目进行调查,并根据调查结果决定是否验收,调查人员分别在市区的各公交站点随机抽取若干市民对该项目进行评分,并将结果绘制成如图所示的频率分布直方图,相关规则为:调查对象为本市市民,被调查者各自独立评分;采用百分制评分,内认定为满意,80分及以上认定为非常满意;市民对公交站点布局的满意率不低于即可进行验收;用样本的频率代替概率.求被调查者满意或非常满意该项目的频率;若从该市的全体市民中随机抽取3人,试估计恰有2人非常满意该项目的概率; 已知在评分低于60分的被调查者中,老年人占,现从评分低于60分的被调查者中按年龄分层抽取9人以便了解不满意的原因,并从中选取2人担任群众督察员,记为群众督查员中老年人的人数,求随机变量的分布列及其数学期望.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】试题分析:{1,2,6)M N ⋂=.故选B. 考点:集合的运算.2.D解析:D 【解析】 【分析】由cos cos θθ=以及绝对值的定义可得cos 0θ≥,再结合已知得sin 0,cos 0θθ<>,根据三角函数的符号法则可得. 【详解】由cos cos θθ=,可知cos 0θ≥,结合sin cos 0θθ<,得sin 0,cos 0θθ<>, 所以角θ是第四象限角, 故选:D 【点睛】本题考查了三角函数的符号法则,属于基础题.3.C解析:C 【解析】由算法流程图知s =0+12+14+16=1112.选C. 4.B解析:B 【解析】 【分析】先根据向量垂直得到a (a +2b ),=0,化简得到a b =﹣2,再根据投影的定义即可求出.∵平面向量a ,b 是非零向量,|a |=2,a ⊥(a +2b ), ∴a (a +2b ),=0, 即()2·20a a b += 即a b =﹣2∴向量b 在向量a 方向上的投影为·22a b a -==﹣1, 故选B . 【点睛】本题主要考查向量投影的定义及求解的方法,公式与定义两者要灵活运用.解答关键在于要求熟练应用公式.5.C解析:C 【解析】 【分析】定义域相同,对应关系一致的函数是同一函数,由此逐项判断即可. 【详解】①中()f x =的定义域为(),0∞-,()f x =(),0∞-,但()f x ==-与()f x =②中()f x x =与()g x =R ,但()g x x ==与()f x x =对应关系不一致,所以②不是同一函数; ③中()0f x x =与()01g x x =定义域都是{}|0x x ≠,且()01f x x ==,()011g x x==对应关系一致,所以③是同一函数;④中()221f x x x =--与()221g t t t =--定义域和对应关系都一致,所以④是同一函数.故选C 【点睛】本题主要考查同一函数的概念,只需定义域和对应关系都一致即可,属于基础题型.6.B解析:B 【解析】记两个零件中恰好有一个一等品的事件为A ,即仅第一个实习生加工一等品(A 1)与仅第二个实习生加工一等品(A 2)两种情况, 则P (A )=P (A 1)+P (A 2)=2 3×14+13×34=512故选B.解析:D 【解析】解:利用展开图可知,线段AB 与CD 是正方体中的相邻两个面的面对角线,仅仅异面,所成的角为600,因此选D8.C解析:C 【解析】试题分析:通过选项a 的值回代验证,判断集合中有3个元素即可. 解:当a=1时,由a 2=1,2﹣a=1,4组成一个集合A ,A 中含有2个元素, 当a=﹣2时,由a 2=4,2﹣a=4,4组成一个集合A ,A 中含有1个元素, 当a=6时,由a 2=36,2﹣a=﹣4,4组成一个集合A ,A 中含有3个元素, 当a=2时,由a 2=4,2﹣a=0,4组成一个集合A ,A 中含有2个元素, 故选C .点评:本题考查元素与集合的关系,基本知识的考查.9.C解析:C 【解析】 【分析】由不等式的性质,对各个选项逐一验证即可得,其中错误的可举反例. 【详解】选项A ,当c =0时,由a >b ,不能推出ac 2>bc 2,故错误; 选项B ,当a =﹣1,b =﹣2时,显然有a >b ,但a 2<b 2,故错误; 选项C ,当a >b 时,必有a 3>b 3,故正确;选项D ,当a =﹣2,b =﹣1时,显然有a 2>b 2,但却有a <b ,故错误. 故选:C . 【点睛】本题考查命题真假的判断,涉及不等式的性质,属基础题.10.C解析:C 【解析】 【分析】当0x <时,()(1)y f x ax b x ax b a x b =--=--=--最多一个零点;当0x 时,32321111()(1)(1)3232y f x ax b x a x ax ax b x a x b =--=-++--=-+-,利用导数研究函数的单调性,根据单调性画函数草图,根据草图可得. 【详解】当0x <时,()(1)0y f x ax b x ax b a x b =--=--=--=,得1bx a=-;()y f x ax b =--最多一个零点;当0x 时,32321111()(1)(1)3232y f x ax b x a x ax ax b x a x b =--=-++--=-+-, 2(1)y x a x =+-',当10a +,即1a -时,0y ',()y f x ax b =--在[0,)+∞上递增,()y f x ax b =--最多一个零点.不合题意;当10a +>,即1a >-时,令0y '>得[1x a ∈+,)+∞,函数递增,令0y '<得[0x ∈,1)a +,函数递减;函数最多有2个零点;根据题意函数()y f x ax b =--恰有3个零点⇔函数()y f x ax b =--在(,0)-∞上有一个零点,在[0,)+∞上有2个零点, 如图:∴01b a <-且3211(1)(1)(1)032b a a a b ->⎧⎪⎨+-++-<⎪⎩, 解得0b <,10a ->,310(116,)b a a >>-+∴>-. 故选C .【点睛】遇到此类问题,不少考生会一筹莫展.由于方程中涉及,a b 两个参数,故按“一元化”想法,逐步分类讨论,这一过程中有可能分类不全面、不彻底.11.A解析:A 【解析】 【分析】本题根据基本不等式,结合选项,判断得出充分性成立,利用“特殊值法”,通过特取,a b 的值,推出矛盾,确定必要性不成立.题目有一定难度,注重重要知识、基础知识、逻辑推理能力的考查. 【详解】当0, 0a >b >时,a b +≥,则当4a b +≤时,有4a b ≤+≤,解得4ab ≤,充分性成立;当=1, =4a b 时,满足4ab ≤,但此时=5>4a+b ,必要性不成立,综上所述,“4a b +≤”是“4ab ≤”的充分不必要条件. 【点睛】易出现的错误有,一是基本不等式掌握不熟,导致判断失误;二是不能灵活的应用“赋值法”,通过特取,a b 的值,从假设情况下推出合理结果或矛盾结果.12.B解析:B 【解析】根据频率分布直方可知成绩低于60分的有第一、二组数据,在频率分布直方图中,对应矩形的高分别为0.005,0.01,每组数据的组距为20, 则成绩低于60分的频率P=(0.005+0.010)×20=0.3. 又因为低于60分的人数是15人, 所以该班的学生人数是15÷0.3=50. 本题选择B 选项.二、填空题13.【解析】【分析】由题意知渐近线方程是再据得出与的关系代入渐近线方程即可【详解】∵双曲线的两个顶点三等分焦距∴又∴∴渐近线方程是故答案为【点睛】本题考查双曲线的几何性质即双曲线的渐近线方程为属于基础题解析:y =±【解析】 【分析】由题意知,渐近线方程是b y x a =±,1223a c =⨯,再据222c ab =+,得出 b 与a 的关系,代入渐近线方程即可. 【详解】∵双曲线22221x y a b-= (0,0)a b >>的两个顶点三等分焦距,∴1223a c =⨯,3c a =,又222c a b =+,∴b =∴渐近线方程是by x a=±=±,故答案为y =±. 【点睛】本题考查双曲线的几何性质即双曲线22221x y a b-= (0,0)a b >>的渐近线方程为b y xa =±属于基础题.14.【解析】【分析】变换得到代入化简得到得到答案【详解】则故故答案为:【点睛】本题考查了指数对数变换换底公式意在考查学生的计算能力 解析:10【解析】 【分析】变换得到2log a m =,5log b m =,代入化简得到11log 102m a b+==,得到答案. 【详解】25a b m ==,则2log a m =,5log b m =,故11log 2log 5log 102,10m m m m a b+=+==∴=. 故答案为:10. 【点睛】本题考查了指数对数变换,换底公式,意在考查学生的计算能力.15.6【解析】【分析】画出不等式组表示的可行域由可得平移直线结合图形可得最优解于是可得所求最小值【详解】画出不等式组表示的可行域如图中阴影部分所示由可得平移直线结合图形可得当直线经过可行域内的点A 时直线解析:6 【解析】 【分析】画出不等式组表示的可行域,由32z x y =-可得322z y x =-,平移直线322zy x =-,结合图形可得最优解,于是可得所求最小值. 【详解】画出不等式组表示的可行域,如图中阴影部分所示.由32z x y =-可得322zy x =-. 平移直线322z y x =-,结合图形可得,当直线322zy x =-经过可行域内的点A 时,直线在y 轴上的截距最大,此时z 取得最小值.由题意得A 点坐标为(2,0),∴min 326z =⨯=,即32z x y =-的最小值是6.故答案为6.【点睛】求目标函数(0)z ax by ab =+≠的最值时,可将函数z ax by =+转化为直线的斜截式:a z y xb b =-+,通过求直线的纵截距z b的最值间接求出z 的最值.解题时要注意:①当0b >时,截距z b 取最大值时,z 也取最大值;截距z b取最小值时,z 也取最小值;②当0b <时,截距z b 取最大值时,z 取最小值;截距z b取最小值时,z 取最大值. 16.【解析】则则的最小值为点睛:本题主要考查基本不等式解决本题的关键是由有在用基本不等式求最值时应具备三个条件:一正二定三相等①一正:关系式中各项均为正数;②二定:关系式中含变量的各项的和或积必须有一个解析:3+【解析】21a b +=,则1111223+3b a a b a b a b a b +=++=+≥+()()11a b+的最小值为3+点睛:本题主要考查基本不等式,解决本题的关键是由21a b +=,有11112a b a b a b+=++()(),在用基本不等式求最值时,应具备三个条件:一正二定三相等.①一正:关系式中,各项均为正数;②二定:关系式中,含变量的各项的和或积必须有一个为定值;③三相等:含变量的各项均相等,取得最值.17.【解析】试题分析:因为和关于轴对称所以那么(或)所以【考点】同角三角函数诱导公式两角差的余弦公式【名师点睛】本题考查了角的对称关系以及诱导公式常用的一些对称关系包含:若与的终边关于轴对称则若与的终边 解析:79- 【解析】试题分析:因为α和β关于y 轴对称,所以2,k k Z αβππ+=+∈,那么1sin sin 3βα==,cos cos 3αβ=-=(或cos cos 3βα=-=), 所以()2227cos cos cos sin sin cos sin 2sin 19αβαβαβααα-=+=-+=-=-. 【考点】同角三角函数,诱导公式,两角差的余弦公式【名师点睛】本题考查了角的对称关系,以及诱导公式,常用的一些对称关系包含:若α与β的终边关于y 轴对称,则2,k k Z αβππ+=+∈ ,若α与β的终边关于x 轴对称,则2,k k Z αβπ+=∈,若α与β的终边关于原点对称,则2,k k Z αβππ-=+∈. 18.660【解析】【分析】【详解】第一类先选女男有种这人选人作为队长和副队有种故有种;第二类先选女男有种这人选人作为队长和副队有种故有种根据分类计数原理共有种故答案为解析:660【解析】【分析】【详解】第一类,先选1女3男,有316240C C =种,这4人选2人作为队长和副队有2412A =种,故有4012480⨯= 种;第二类,先选2女2男,有226215C C =种,这4人选2人作为队长和副队有2412A =种,故有1512180⨯=种,根据分类计数原理共有480180660+=种,故答案为660.19.【解析】【分析】【详解】设AB=2作CO ⊥面ABDEOH ⊥AB 则CH ⊥AB ∠CHO 为二面角C−AB−D 的平面角CH=3√OH=CHcos ∠CHO=1结合等边三角形ABC 与正方形ABDE 可知此四棱锥为 解析:16【解析】【分析】【详解】设AB =2,作CO ⊥面ABDEOH ⊥AB ,则CH ⊥AB ,∠CHO 为二面角C −AB −D 的平面角,CH =3√,OH =CH cos ∠CHO =1,结合等边三角形ABC 与正方形ABDE 可知此四棱锥为正四棱锥,3,11(),2212AN EM CH ANAC AB EM AC AE AN EM====+=-∴⋅= 故EM ,AN 116=,20.1:8【解析】考查类比的方法所以体积比为1∶8解析:1:8【解析】考查类比的方法,11111222221111314283S h V Sh V S h S h ⋅⨯====,所以体积比为1∶8. 三、解答题21.(1)证明见解析(2)3 【解析】【分析】(1)先证明AC ⊥平面PBC ,然后可得平面EAC ⊥平面PBC ;(2)建立坐标系,根据二面角P AC E --可得PC 的长度,然后可求直线PA 与平面EAC 所成角的正弦值.【详解】(1)PC ⊥平面ABCD ,AC ⊂平面ABCD ,得AC PC ⊥.又1AD CD ==,在Rt ADC∆中,得AC =,设AB 中点为G ,连接CG ,则四边形ADCG 为边长为1的正方形,所以CG AB ⊥,且BC =因为222AC BC AB +=,所以AC BC ⊥,又因为BC PC C ⋂=,所以AC ⊥平面PBC ,又AC ⊂平面EAC ,所以平面EAC ⊥平面PBC .(2)以C 为坐标原点,分别以射线CD 、射线CP 为y 轴和z 轴的正方向,建立如图空间直角坐标系, 则()0,0,0C ,()1,1,0A ,()1,1,0B -.又设()()0,0,0P a a >,则11,,222a E ⎛⎫- ⎪⎝⎭,()1,1,0CA =,()0,0,CP a =,11,,222a CE ⎛⎫=- ⎪⎝⎭,()1,1,PA a =-. 由BC AC ⊥且BC PC ⊥知,()1,1,0m CB ==-为平面PAC 的一个法向量. 设(),,n x y z =为平面EAC 的一个法向量,则0n CA n CE ⋅=⋅=,即00x y x y az +=⎧⎨-+=⎩,取x a =,y a =-,则(),,2n a a =--,有26cos ,2m nm n m n a ⋅===⋅+,得2a =,从而()2,2,2n =--,()1,1,2PA =-. 设直线PA 与平面EAC 所成的角为θ,则sin cos ,n PAn PA n PA θ⋅==⋅22423612-+==⨯. 即直线PA 与平面EAC 所成角的正弦值为23.【点睛】本题主要考查空间平面与平面垂直及线面角的求解,平面与平面垂直一般转化为线面垂直来处理,空间中的角的问题一般是利用空间向量来求解.22.(1)2()210f x x x =-(2)223268,,22535(),,2225210,,2t t t g t t t t t ⎧--≤⎪⎪⎪=-<<⎨⎪⎪-≥⎪⎩【解析】(1)因为()f x 是二次函数,不等式()0f x <的解集是0,5,所以可设()(5)(0).f x ax x a =->,然后因为-1比5离对称轴的距离远,所以最大值为(-1)=6a,求出a 值,从而求出f(x)的解析式.(II )本小题属于二次函数轴定区间动的问题,分三种情况讨论分别求其最小值即可. 解:(1)()f x 是二次函数,且()0f x <的解集是(0,5),∴可设()(5)(0).f x ax x a =->()f x ∴在区间[]1,4-上的最大值是(1)6.f a -=由已知,得612,a =2,a ∴=2()2(5)210().f x x x x x x R ∴=-=-∈(2)由(1)知22525()2102.22f x x x x ⎛⎫∴=-=-- ⎪⎝⎭,开口向上,对称轴为52x = ①当512t +≤,即32t ≤时,()f x 在[],1t t +上是单调递减, ()()()2221101268g t t t t t ∴=+-+=--②当52t ≥时,()f x 在[],1t t +上是单调递减 ()22210210g t t t t t ∴=-=-③当512t t ≤≤+,即3522t ≤≤时,()f x 在对称轴处取得最小值 ()52522g t f ⎛⎫∴==- ⎪⎝⎭23.(1)证明见解析;(2)112. 【解析】【分析】(1)连接PF ,BD 由三线合一可得AD ⊥BF ,AD ⊥PF ,故而AD ⊥平面PBF ,于是AD ⊥PB ;(2)先证明PF ⊥平面ABCD ,再作PF 的平行线,根据相似找到G ,再利用等积转化求体积.【详解】连接PF ,BD,∵PAD ∆是等边三角形,F 为AD 的中点,∴PF ⊥AD ,∵底面ABCD 是菱形,3BAD π∠=,∴△ABD 是等边三角形,∵F 为AD 的中点,∴BF ⊥AD ,又PF ,BF ⊂平面PBF ,PF ∩BF =F ,∴AD ⊥平面PBF ,∵PB ⊂平面PBF ,∴AD ⊥PB .(2)由(1)得BF ⊥AD ,又∵PD ⊥BF ,AD ,PD ⊂平面PAD ,∴BF ⊥平面PAD ,又BF ⊂平面ABCD ,∴平面PAD ⊥平面ABCD ,由(1)得PF ⊥AD ,平面PAD ∩平面ABCD =AD ,∴PF ⊥平面ABCD ,连接FC 交DE 于H,则△HEC 与△HDF 相似,又1142EC BC FD ==,∴CH=13CF , ∴在△PFC 中,过H 作GH //PF 交PC 于G ,则GH⊥平面ABCD ,又GH ⊂面GED ,则面GED⊥平面ABCD ,此时CG=13CP, ∴四面体D CEG -的体积111311223382312D CEG G CED CED V V S GH PF --==⋅=⨯⨯⨯⨯⨯=. 所以存在G 满足CG=13CP, 使平面DEG ⊥平面ABCD ,且112D CEG V -=. 【点睛】 本题考查了线面垂直的判定与性质定理,面面垂直的判定及性质的应用,考查了棱锥的体积计算,属于中档题.24.(1)见解析;(26 【解析】【分析】(1)根据线面平行的判定定理直接证明即可;(2)连接BD 交EF 与点N ,先由题中条件得到MND ∠为二面角M EF D ﹣﹣的平面角,再解三角形即可得出结果.【详解】(1)PB 平面MEF .证明如下:在图1中,连接BD ,交EF 于N ,交AC 于O , 则1124BN BO BD ==,在图2中,连接BD 交EF 于N ,连接MN ,在DPB 中,有14BN BD =,14PM PD =, MN PB ∴. PB ⊄平面MEF ,MN ⊂平面MEF ,故PB 平面MEF ;(2)连接BD 交EF 与点N ,图2中的三角形PDE 与三角形PDF 分别是图1中的Rt ADE 与Rt CDF ,PD PE PD PF ∴⊥⊥,,又PE PE P ⋂=,PD ∴⊥平面PEF ,则PD EF ⊥,又EF BD ⊥,EF ∴⊥平面PBD ,则MND ∠为二面角M EF D ﹣﹣的平面角.可知PM PN ⊥,则在Rt MND 中,12PM PN =,=,则22PM PN 3MN =+=.在MND 中,332MD DN ==,,由余弦定理,得22262MN DN MD cos MND MN DN +-∠==⋅. ∴二面角M EF D ﹣﹣的余弦值为6.【点睛】本题主要考查线面平行的判定,以及二面角的求法,熟记线面平行的判定定理以及二面角的概念即可,属于常考题型.25.(1);(2);(3).【解析】试题分析:(1)根据直方图的意义,求出后四个小矩形的面积和即可求得被调查者满意或非常满意该项目的频率;(2)根据频率分布直方图,被调查者非常满意的频率是,根据独立重复试验次发生次的概率公式可得结果;(3)随机变量的所有可能取值为0,1,2,利用组合知识根据古典概型概率公式分别求出各随机变量的概率,即可得分布列,根据期望公式可得结果.试题解析:(1)根据题意:60分或以上被认定为满意或非常满意,在频率分布直方图中,评分在的频率为:;(2)根据频率分布直方图,被调查者非常满意的频率是,用样本的频率代替概率,从该市的全体市民中随机抽取1人,该人非常满意该项目的概率为,现从中抽取3人恰有2人非常满意该项目的概率为:;(3)∵评分低于60分的被调查者中,老年人占,又从被调查者中按年龄分层抽取9人,∴这9人中,老年人有3人,非老年人6人,随机变量的所有可能取值为0,1,2,的分布列为:012的数学期望.。

2019-2020数学高考一模试题(带答案)

2019-2020数学高考一模试题(带答案)

2019-2020数学高考一模试题(带答案)一、选择题1.已知回归直线方程中斜率的估计值为1.23,样本点的中心()4,5,则回归直线方程为( )A . 1.2308ˆ.0yx =+ B .0.0813ˆ.2y x =+ C . 1.234ˆyx =+ D . 1.235ˆy x =+ 2.若圆与圆222:680C x y x y m +--+=外切,则m =( ) A .21 B .19 C .9 D .-113.设a b ,为两条直线,αβ,为两个平面,下列四个命题中,正确的命题是( ) A .若a b ,与α所成的角相等,则a b ∥B .若a αβ∥,b ∥,αβ∥,则a b ∥C .若a b a b αβ⊂⊂P ,,,则αβ∥D .若a b αβ⊥⊥,,αβ⊥,则a b ⊥r r4.已知函数()()sin f x A x =+ωϕ()0,0A ω>>的图象与直线()0y a a A =<<的三个相邻交点的横坐标分别是2,4,8,则()f x 的单调递减区间是( ) A .[]6,63k k ππ+,k Z ∈ B .[]63,6k k ππ-,k Z ∈ C .[]6,63k k +,k Z ∈D .[]63,6k k -,k Z ∈5.函数32()31f x x x =-+的单调减区间为 A .(2,)+∞ B .(,2)-∞ C .(,0)-∞ D .(0,2)6.如图所示,程序据图(算法流程图)的输出结果为( )A .34B .16C .1112D .2524 7.函数2||()x x f x e -=的图象是( )A .B .C .D .8.在△ABC 中,a =5,b =3,则sin A :sin B 的值是( )A .53B .35C .37D .57 9.已知π,4αβ+=则(1tan )(1tan )αβ++的值是( ) A .-1 B .1 C .2 D .410.已知,m n 是两条不同的直线,α,β是两个不同的平面,给出下列命题: ①若m αP ,m n ⊥,则n α⊥;②若m α⊥,n αP ,则m n ⊥;③若,m n 是异面直线,m α⊂,m βP ,n β⊂,n αP ,则αβ∥;④若,m n 不平行,则m 与n 不可能垂直于同一平面.其中为真命题的是( )A .②③④B .①②③C .①③④D .①②④11.某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组一次为[)[)[)20,40,40,60,60,80,[80,100].若低于60分的人数是15人,则该班的学生人数是( )A .45B .50C .55D .12.在[0,2]π内,不等式3sin 2x <-的解集是( ) A .(0)π, B .4,33ππ⎛⎫ ⎪⎝⎭ C .45,33ππ⎛⎫ ⎪⎝⎭ D .5,23ππ⎛⎫ ⎪⎝⎭二、填空题13.有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.14.已知复数z=(1+i )(1+2i ),其中i 是虚数单位,则z 的模是__________15.设a R ∈,直线20ax y -+=和圆22cos ,12sin x y θθ=+⎧⎨=+⎩(θ为参数)相切,则a 的值为____.16.在平面上,若两个正三角形的边长的比为1:2,则它们的面积比为1:4,类似地,在空间内,若两个正四面体的棱长的比为1:2,则它们的体积比为 ▲ 17.记n S 为数列{}n a 的前n 项和,若21n n S a =+,则6S =_____________. 18.34331654+log log 8145-⎛⎫+= ⎪⎝⎭________. 19.已知集合P 中含有0,2,5三个元素,集合Q 中含有1,2,6三个元素,定义集合P+Q 中的元素为a+b ,其中a ∈P ,b ∈Q ,则集合P+Q 中元素的个数是_____.20.三个数成等差数列,其比为3:4:5,又最小数加上1后,三个数成等比数列,那么原三个数是三、解答题21.在ABC ∆中,内角A ,B ,C 的对边a ,b ,c ,且a c >,已知2BA BC ⋅=u u u r u u u r,1cos 3B =,3b =,求: (1)a 和c 的值;(2)cos()B C -的值. 22.我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行调查,通过抽样,获得某年100为居民每人的月均用水量(单位:吨),将数据按照分成9组,制成了如图所示的频率分布直方图.(1)求直方图的的值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由;(3)估计居民月用水量的中位数.23.“微信运动”是手机APP 推出的多款健康运动软件中的一款,大学生M 的微信好友中有400位好友参与了“微信运动”.他随机抽取了40位参与“微信运动”的微信好友(女20人,男20人)在某天的走路步数,经统计,其中女性好友走路的步数情况可分为五个类别:A 、02000:步,(说明:“02000:”表示大于或等于0,小于2000,以下同理),B 、20005000:步,C 、50008000:步,D 、800010000:步,E 、1000012000:步,且A 、B 、C 三种类别的人数比例为1:4:3,将统计结果绘制如图所示的柱形图;男性好友走路的步数数据绘制如图所示的频率分布直方图.(Ⅰ)若以大学生M 抽取的微信好友在该天行走步数的频率分布,作为参与“微信运动”的所有微信好友每天走路步数的概率分布,试估计大学生M 的参与“微信运动”的400位微信好友中,每天走路步数在20008000:的人数;(Ⅱ)若在大学生M 该天抽取的步数在800010000:的微信好友中,按男女比例分层抽取6人进行身体状况调查,然后再从这6位微信好友中随机抽取2人进行采访,求其中至少有一位女性微信好友被采访的概率.24.红队队员甲、乙、丙与蓝队队员A 、B 、C 进行围棋比赛,甲对A ,乙对B ,丙对C 各一盘,已知甲胜A ,乙胜B ,丙胜C 的概率分别为0.6,0.5,0.5,假设各盘比赛结果相互独立.(I )求红队至少两名队员获胜的概率;(II )用ξ表示红队队员获胜的总盘数,求ξ的分布列和数学期望E ξ.25.已知0,0a b >>.(1)211ab a b≥+ ; (2)若a b >,且2ab =,求证:224a b a b+≥-.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】由题意得在线性回归方程$ˆy bxa =+$中 1.23b =$,然后根据回归方程过样本点的中心得到$a的值,进而可得所求方程. 【详解】设线性回归方程$ˆy bxa =+$中,由题意得 1.23b =$, ∴$1.23ˆy x a=+. 又回归直线过样本点的中心()4,5,∴$5 1.234a=⨯+, ∴$0.08a=, ∴回归直线方程为 1.2308ˆ.0yx =+. 故选A .【点睛】本题考查线性回归方程的求法,其中回归直线经过样本点的中心时解题的关键,利用这一性质可求回归方程中的参数,也可求样本数据中的未知参数,属于基础题.2.C解析:C【解析】试题分析:因为()()22226803425x y x y m x y m +--+=⇒-+-=-,所以250m ->25m ⇒<且圆2C 的圆心为()3,4,根据圆与圆外切的判定(圆心距离等于半径和)可得1=9m ⇒=,故选C. 考点:圆与圆之间的外切关系与判断3.D解析:D【解析】【分析】【详解】 试题分析:A 项中两直线a b ,还可能相交或异面,错误;B 项中两直线a b ,还可能相交或异面,错误;C 项两平面αβ,还可能是相交平面,错误;故选D.4.D解析:D【解析】【详解】由题设可知该函数的最小正周期826T =-=,结合函数的图象可知单调递减区间是2448[6,6]()22k k k Z ++++∈,即[36,66]()k k k Z ++∈,等价于[]63,6k k -,应选答案D . 点睛:解答本题的关键是充分利用题设中的有效信息“函数()()sin f x A x ωϕ=+ (0,0)A ω>>的图象与直线(0)y a a A =<<的三个相邻交点的横坐标分别是2,4,8”.结合图像很容易观察出最小正周期是826T =-=,进而数形结合写出函数的单调递减区间,从而使得问题获解.5.D解析:D【解析】【分析】对函数求导,让函数的导函数小于零,解不等式,即可得到原函数的单调减区间.【详解】32'2()31()363(2)002f x x x f x x x x x x -=-<⇒=+∴=<-<Q ,所以函数的单调减区间为(0,2),故本题选D.【点睛】本题考查了利用导数求函数的单调减区间问题,正确求出导函数是解题的关键.6.C解析:C【解析】由算法流程图知s =0+12+14+16=1112.选C. 7.A解析:A【解析】【分析】通过(0)1f =,和函数f(x)>0恒成立排除法易得答案A .【详解】2||()x x f x e -=,可得f(0)=1,排除选项C,D;由指数函数图像的性质可得函数f(x)>0恒成立,排除选项B ,故选A【点睛】图像判断题一般通过特殊点和无穷远处极限进行判断,属于较易题目.8.A解析:A【解析】由正弦定理可得:sin 5sin 3A aB b == . 本题选择A 选项. 9.C解析:C【解析】【分析】 由4παβ+=,得到1tanαβ+=(),利用两角和的正切函数公式化简1tan αβ+=(),即可得到所求式子的值.【详解】 由由4παβ+=,得到1tanαβ+=(), 所以11tan tan tan tan tan αβαβαβ++==-() ,即1tan tan tan tan αβαβ+=-, 则1112tan tan tan tan tan tan αβαβαβ++=+++=()() . 故选C .【点睛】本题考查学生灵活运用两角和与差的正切函数公式及特殊角的三角函数值化简求值,是一道基础题.10.A解析:A【解析】【分析】根据空间中点、线、面位置关系,逐项判断即可.【详解】①若m αP ,m n ⊥,则n 与α位置关系不确定;②若n αP ,则α存在直线l 与n 平行,因为m α⊥,所以m l ⊥,则m n ⊥; ③当m α⊂,m P β,n β⊂,n αP 时,平面α,β平行;④逆否命题为:若m 与n 垂直于同一平面,则,m n 平行,为真命题.综上,为真命题的是②③④.故选A【点睛】本题主要考查空间中点线面位置关系,熟记线面关系、面面关系,即可求解,属于常考题型.11.B解析:B【解析】根据频率分布直方可知成绩低于60分的有第一、二组数据,在频率分布直方图中,对应矩形的高分别为0.005,0.01,每组数据的组距为20,则成绩低于60分的频率P=(0.005+0.010)×20=0.3.又因为低于60分的人数是15人,所以该班的学生人数是15÷0.3=50.本题选择B选项.12.C解析:C【解析】【分析】根据正弦函数的图象和性质,即可得到结论.【详解】解:在[0,2π]内,若sin x32-<,则43π<x53π<,即不等式的解集为(43π,53π),故选:C.【点睛】本题主要考查利用三角函数的图象与性质解不等式,考查数形结合的思想,属于基础题.二、填空题13.1和3【解析】根据丙的说法知丙的卡片上写着和或和;(1)若丙的卡片上写着和根据乙的说法知乙的卡片上写着和;所以甲的说法知甲的卡片上写着和;(2)若丙的卡片上写着和根据乙的说法知乙的卡片上写着和;又加解析:1和3.【解析】根据丙的说法知,丙的卡片上写着1和2,或1和3;(1)若丙的卡片上写着1和2,根据乙的说法知,乙的卡片上写着2和3;所以甲的说法知,甲的卡片上写着1和3;(2)若丙的卡片上写着1和3,根据乙的说法知,乙的卡片上写着2和3;又加说:“我与乙的卡片上相同的数字不是2”;所以甲的卡片上写的数字不是1和2,这与已知矛盾;所以甲的卡片上的数字是1和3.14.【解析】【分析】利用复数的运算法则模的计算公式即可得出【详解】解:复数z =(1+i )(1+2i )=1﹣2+3i =﹣1+3i ∴|z|故答案为【点睛】对于复数的四则运算要切实掌握其运算技巧和常规思路如其【解析】【分析】利用复数的运算法则、模的计算公式即可得出.【详解】解:复数z =(1+i )(1+2i )=1﹣2+3i =﹣1+3i ,∴|z|==.【点睛】对于复数的四则运算,要切实掌握其运算技巧和常规思路,如()()a bi c di ++=()()(,,,)ac bd ad bc i a b c d R -++∈.其次要熟悉复数相关概念,如复数(,)a bi a b R +∈的实部为a 、虚部为b(,)a b 、共轭复数为a bi -.15.【解析】【分析】根据圆的参数方程确定圆的半径和圆心坐标再根据直线与圆相切的条件得出满足的方程解之解得【详解】圆化为普通方程为圆心坐标为圆的半径为由直线与圆相切则有解得【点睛】直线与圆的位置关系可以使 解析:34【解析】【分析】根据圆的参数方程确定圆的半径和圆心坐标,再根据直线与圆相切的条件得出a 满足的方程,解之解得。

2019-2020数学高考一模试题附答案

2019-2020数学高考一模试题附答案

2019-2020数学高考一模试题附答案一、选择题1.某学校开展研究性学习活动,某同学获得一组实验数据如下表: x 1.993 4 5.16.12y1.5 4.04 7.5 1218.01对于表中数据,现给出以下拟合曲线,其中拟合程度最好的是( ) A .22y x =- B .1()2xy =C .2y log x =D .()2112y x =- 2.若43i z =+,则zz=( ) A .1B .1-C .4355i + D .4355i - 3.一个长方体去掉一个小长方体,所得几何体的正视图与侧(左)视图分别如图所示,则该几何体的俯视图为( )A .B .C .D .4.设i 为虚数单位,则(x +i)6的展开式中含x 4的项为( ) A .-15x 4B .15x 4C .-20i x 4D .20i x 45.甲、乙、丙3位志愿者安排在周一至周五的5天中参加某项志愿者活动,要求每人参加一天且每天至多安排一人,并要求甲安排在另外两位前面,不同的安排方法共有( ) A .20种B .30种C .40种D .60种6.已知函数()25,1,,1,x ax x f x a x x⎧---≤⎪=⎨>⎪⎩是R 上的增函数,则a 的取值范围是( )A .30a -≤<B .0a <C .2a ≤-D .32a --≤≤7.若不等式222424ax ax x x +-<+ 对任意实数x 均成立,则实数a 的取值范围是( ) A .(22)-,B .(2)(2)-∞-⋃+∞,, C .(22]-,D .(2]-∞,8.函数()sin(2)2f x x π=-的图象与函数()g x 的图象关于直线8x π=对称,则关于函数()y g x =以下说法正确的是( )A .最大值为1,图象关于直线2x π=对称B .在0,4π⎛⎫⎪⎝⎭上单调递减,为奇函数C .在3,88ππ⎛⎫-⎪⎝⎭上单调递增,为偶函数 D .周期为π,图象关于点3,08π⎛⎫⎪⎝⎭对称 9.正方形ABCD 中,点E 是DC 的中点,点F 是BC 的一个三等分点,那么EF =u u u v( )A .1123AB AD -u u uv u u u vB .1142AB AD +u u uv u u u vC .1132AB DA +u u uv u u u vD .1223AB AD -u u uv u u u v .10.已知236a b ==,则a ,b 不可能满足的关系是()A .a b ab +=B .4a b +>C .()()22112a b -+-< D .228a b +> 11.已知a 为函数f (x )=x 3–12x 的极小值点,则a=A .–4B .–2C .4D .212.已知全集{}1,0,1,2,3U =-,集合{}0,1,2A =,{}1,0,1B =-,则U A B =I ð( ) A .{}1- B .{}0,1 C .{}1,2,3-D .{}1,0,1,3-二、填空题13.若双曲线22221x y a b-=()0,0a b >>两个顶点三等分焦距,则该双曲线的渐近线方程是___________.14.设函数()212log,0 log(),0x xf x x x>⎧⎪=⎨-<⎪⎩,若()()f a f a>-,则实数a的取值范围是__________.15.i是虚数单位,若复数()()12i a i-+是纯虚数,则实数a的值为 .16.已知函数21,1()()1a x xf xx a x⎧-+≤=⎨->⎩,函数()2()g x f x=-,若函数()()y f x g x=-恰有4个不同的零点,则实数a的取值范围为______.17.设正数,a b满足21a b+=,则11a b+的最小值为__________.18.已知(13)nx+的展开式中含有2x项的系数是54,则n=_____________.19.在体积为9的斜三棱柱ABC—A1B1C1中,S是C1C上的一点,S—ABC的体积为2,则三棱锥S—A1B1C1的体积为___.20.高三某班一学习小组的,,,A B C D四位同学周五下午参加学校的课外活动,在课外活动中,有一人在打篮球,有一人在画画,有一人在跳舞,另外一人在散步,①A不在散步,也不在打篮球;②B不在跳舞,也不在散步;③“C在散步”是“A在跳舞”的充分条件;④D不在打篮球,也不在散步;⑤C不在跳舞,也不在打篮球.以上命题都是真命题,那么D在_________.三、解答题21.如图,在四棱锥P−ABCD中,AB//CD,且90BAP CDP∠=∠=o.(1)证明:平面P AB⊥平面P AD;(2)若P A=PD=AB=DC,90APD∠=o,求二面角A−PB−C的余弦值.22.已知曲线C:(t为参数), C:(为参数).(1)化C,C的方程为普通方程,并说明它们分别表示什么曲线;(2)若C 上的点P 对应的参数为,Q 为C 上的动点,求中点到直线(t 为参数)距离的最小值.23.设函数22()ln (0)f x a x x ax a =-+>(Ⅰ)求()f x 单调区间(Ⅱ)求所有实数a ,使21()e f x e -≤≤对[1,e]x ∈恒成立 注:e 为自然对数的底数24.(辽宁省葫芦岛市2018年二模)直角坐标系xOy 中,直线l 的参数方程为21x tcos y tsin αα=+⎧⎨=+⎩(t 为参数),在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点为极点,以x 轴正半轴为极轴)中,圆C 的方程为6cos ρθ=.(1)求圆C 的直角坐标方程;(2)设圆C 与直线l 交于点,A B ,若点P 的坐标为()2,1,求PA PB +的最小值.25.在平面直角坐标系xOy 中,直线l 的参数方程为21x ty at=+⎧⎨=-⎩(t 为参数,a R ∈),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,线C 的极坐标方程是224πρθ⎛⎫=+⎪⎝⎭. (1)求直线l 的普通方程和曲线C 的直角坐标方程; (2)己知直线l 与曲线C 交于A 、B 两点,且7AB =a 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】根据,x y 的数值变化规律推测二者之间的关系,最贴切的是二次关系. 【详解】根据实验数据可以得出,x 近似增加一个单位时,y 的增量近似为2.5,3.5,4.5,6,比较接近()2112y x =-,故选D. 【点睛】本题主要考查利用实验数据确定拟合曲线,求解关键是观察变化规律,侧重考查数据分析的核心素养.2.D解析:D 【解析】 【详解】 由题意可得 :22435z =+=,且:43z i =-,据此有:4343555z i i z -==-. 本题选择D 选项.3.C解析:C 【解析】 【分析】从正视图和侧视图上分析,去掉的长方体的位置应该在的方位,然后判断俯视图的正确图形. 【详解】由正视图可知去掉的长方体在正视线的方向,从侧视图可以看出去掉的长方体在原长方体的右侧, 由以上各视图的描述可知去掉的长方体在原长方体的右上方,其俯视图符合C 选项. 故选C .点评:本题考查几何体的三视图之间的关系,要注意记忆和理解“长对正、高平齐、宽相等”的含义. 考点:三视图.4.A解析:A 【解析】 试题分析:二项式的展开式的通项为,令,则,故展开式中含的项为,故选A.【考点】二项展开式,复数的运算【名师点睛】本题考查二项式定理及复数的运算,复数的概念及运算也是高考的热点,几乎是每年必考的内容,属于容易题.一般来说,掌握复数的基本概念及四则运算即可.二项式可以写为,则其通项为,则含的项为.5.A解析:A 【解析】 【分析】 【详解】根据题意,分析可得,甲可以被分配在星期一、二、三;据此分3种情况讨论,计算可得其情况数目,进而由加法原理,计算可得答案.解:根据题意,要求甲安排在另外两位前面,则甲有3种分配方法,即甲在星期一、二、三;分3种情况讨论可得,甲在星期一有A 42=12种安排方法, 甲在星期二有A 32=6种安排方法, 甲在星期三有A 22=2种安排方法, 总共有12+6+2=20种; 故选A .6.D解析:D 【解析】 【分析】根据分段函数的单调性特点,两段函数在各自的定义域内均单调递增,同时要考虑端点处的函数值. 【详解】要使函数在R 上为增函数,须有()f x 在(,1]-∞上递增,在(1,)+∞上递增,所以21,20,115,1a a a a ⎧-≥⎪⎪<⎨⎪⎪--⨯-≤⎩,解得32a --≤≤.故选D. 【点睛】本题考查利用分段函数的单调性求参数的取值范围,考查数形结合思想、函数与方程思想的灵活运用,求解时不漏掉端点处函数值的考虑.7.C解析:C 【解析】由题意,不等式222424ax ax x x +-<+,可化为2(2)2(2)40a x a x -+--<, 当20a -=,即2a =时,不等式恒成立,符合题意; 当20a -≠时,要使不等式恒成立,需2)2204(44(2)0a a a --<⎧⎨∆=+⨯-<⎩n , 解得22a -<<,综上所述,所以a 的取值范围为(2,2]-,故选C .8.B解析:B 【解析】先求出函数y=g(x)的解析式,再利用三角函数的图像和性质对每一个选项逐一分析判断. 【详解】设点P(x,y)是函数()y g x =图像上的任意一点,则点Q (x ,)4y π-+在函数y=f(x)的图像上,sin[2(-x+)]sin 2()42y x g x ππ=-=-=,对于选项A,函数y=g(x)的最大值为1,但是()012g π=≠±,所以图象不关于直线2x π=对称,所以该选项是错误的;对于选项B,()()g x g x -=-,所以函数g(x)是奇函数,解222+22k x k ππππ-≤≤得+44k x k ππππ-≤≤,)k Z ∈(,所以函数在0,4π⎛⎫⎪⎝⎭上单调递减,所以该选项是正确的; 对于选项C,由前面分析得函数y=g(x)的增区间为3[+,]()44k k k Z ππππ+∈,且函数y=g(x)不是偶函数,故该选项是错误;对于选项D,函数的周期为π,解2,,2k x k x ππ=∴=所以函数图像的对称中心为,0)(k Z)2k π∈(,所以该选项是错误的. 故选:B 【点睛】本题主要三角函数的解析式的求法,考查三角函数的图像和性质,意在考查学生对这些知识的理解掌握水平和分析推理能力.9.D解析:D 【解析】 【分析】用向量的加法和数乘法则运算。

2019-2020高考数学一模试卷含答案

2019-2020高考数学一模试卷含答案

2019-2020高考数学一模试卷含答案一、选择题1.已知在ABC V 中,::3:2:4sinA sinB sinC =,那么cosC 的值为( )A .14-B .14C .23-D .232.()22x xe ef x x x --=+-的部分图象大致是( )A .B .C .D .3.已知2a ib i i+=+ ,,a b ∈R ,其中i 为虚数单位,则+a b =( ) A .-1B .1C .2D .34.通过随机询问110名不同的大学生是否爱好某项运动,得到如下的列联表:男女总计爱好402060不爱好203050总计6050110由2222()110(40302030),7.8()()()()60506050n ad bc K K a b c d a c b d -⨯⨯-⨯==≈++++⨯⨯⨯算得 附表:参照附表,得到的正确结论是( )A .有99%以上的把握认为“爱好该项运动与性别有关”B .有99%以上的把握认为“爱好该项运动与性别无关”C .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”D .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关” 5.在空间直角坐标系中,点P(3,4,5)与Q(3,-4,-5)两点的位置关系是( ) A .关于x 轴对称 B .关于xOy 平面对称 C .关于坐标原点对称 D .以上都不对6.设a b ,为两条直线,αβ,为两个平面,下列四个命题中,正确的命题是( ) A .若a b ,与α所成的角相等,则a b ∥ B .若a αβ∥,b ∥,αβ∥,则a b ∥ C .若a b a b αβ⊂⊂P ,,,则αβ∥ D .若a b αβ⊥⊥,,αβ⊥,则a b ⊥r r7.已知集合{}{}x -1<x 1Q=x 0x 2P =<<<,,那么P Q=⋃ A .(-1,2)B .(0,1)C .(-1,0)D .(1,2)8.在正方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为A .2B C D .2 9.在△ABC 中,a =5,b =3,则sin A :sin B 的值是( ) A .53B .35C .37D .5710.在如图的平面图形中,已知1,2,120OM ON MON ==∠=o,2,2,BM MA CN NA ==u u u u v u u u v u u u v u u u v 则·BC OM u u u vu u u u v的值为A .15-B .9-C .6-D .011.已知2tan()5αβ+=,1tan()44πβ-=,则tan()4πα+的值等于( ) A .1318B .322C .1322D .31812.把红、黄、蓝、白4张纸牌随机分给甲、乙、丙、丁4个人,每人分得一张,事件“甲分得红牌”与事件“乙分得红牌”是 A .对立事件 B .互斥但不对立事件 C .不可能事件D .以上都不对二、填空题13.设n S 是等差数列{}*()n a n N ∈的前n 项和,且141,7a a ==,则5______S =14.已知圆锥的侧面展开图是一个半径为2cm ,圆心角为23π的扇形,则此圆锥的高为________cm .15.在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,若3A π=,3a =b=1,则c =_____________16.ABC △的内角,,A B C 的对边分别为,,a b c .若π6,2,3b ac B ===,则ABC △的面积为__________.17.已知圆台的上、下底面都是球O 的截面,若圆台的高为6,上、下底面的半径分别为2,4,则球O 的表面积为__________.18.已知函数sin(2)()22y x ϕϕππ=+-<<的图象关于直线3x π=对称,则ϕ的值是________.19.设复数1(z i i =--虚数单位),z 的共轭复数为z ,则()1z z -⋅=________.20.若x ,y 满足约束条件220100x y x y y --≤⎧⎪-+≥⎨⎪≤⎩,则32z x y =+的最大值为_____________.三、解答题21.已知曲线C :(t 为参数), C :(为参数).(1)化C ,C 的方程为普通方程,并说明它们分别表示什么曲线; (2)若C 上的点P 对应的参数为,Q 为C 上的动点,求中点到直线(t 为参数)距离的最小值.22.如图,在直四棱柱1111ABCD A B C D -中,底面ABCD 是矩形,1A D 与1AD 交于点E .124AA AB AD ===.(1)证明:AE ⊥平面ECD ;(2)求直线1A C 与平面EAC 所成角的正弦值.23.十九大以来,某贫困地区扶贫办积极贯彻落实国家精准扶贫的政策要求,带领广大农村地区人民群众脱贫奔小康.经过不懈的奋力拼搏,新农村建设取得巨大进步,农民收入也逐年增加.为了更好的制定2019年关于加快提升农民年收入力争早日脱贫的工作计划,该地扶贫办统计了2018年50位农民的年收入并制成如下频率分布直方图:附:参考数据与公式 6.92 2.63≈,若 ()2~,X Nμσ,则①()0.6827P X μσμσ-<+=…;② (22)0.9545P X μσμσ-<+=…;③ (33)0.9973P X μσμσ-<+=….(1)根据频率分布直方图估计50位农民的年平均收入x (单位:千元)(同一组数据用该组数据区间的中点值表示);(2)由频率分布直方图可以认为该贫困地区农民年收入 X 服从正态分布 ()2,N μσ,其中μ近似为年平均收入2,x σ 近似为样本方差2s ,经计算得:2 6.92s =,利用该正态分(i )在2019年脱贫攻坚工作中,若使该地区约有占总农民人数的84.14%的农民的年收入高于扶贫办制定的最低年收入标准,则最低年收入大约为多少千元?(ii )为了调研“精准扶贫,不落一人”的政策要求落实情况,扶贫办随机走访了1000位农民.若每个农民的年收入相互独立,问:这1000位农民中的年收入不少于12.14千元的人数最有可能是多少?24.在平面直角坐标系xOy 中,直线l 的参数方程为21x ty at=+⎧⎨=-⎩(t 为参数,a R ∈),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,线C 的极坐标方程是4πρθ⎛⎫=+⎪⎝⎭. (1)求直线l 的普通方程和曲线C 的直角坐标方程;(2)己知直线l 与曲线C 交于A 、B 两点,且AB =a 的值.25.已知函数()()2f x x 2a 1x 2alnx(a 0)=-++>.()1求()f x 的单调区间;()2若()f x 0≤在区间[]1,e 上恒成立,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】 【详解】::sin :sin :sin 3:2:4a b c A B C == ,不妨设3,2,4a k b k c k ===,,则()()()2223241cos 2324k k k C k k+-==-⨯⨯ ,选A.2.A解析:A 【解析】 【分析】根据函数的奇偶性,排除D ;根据函数解析式可知定义域为{}1x x ≠±,所以y 轴右侧虚线部分为x=1,利用特殊值x=0.01和x=1.001代入即可排除错误选项.由函数解析式()22x x e e f x x x --=+-,易知()22x xe ef x x x ---=+-=() f x - 所以函数()22x xe ef x x x --=+-为奇函数,排除D 选项根据解析式分母不为0可知,定义域为{}1x x ≠±,所以y 轴右侧虚线部分为x=1, 当x=0.01时,代入()f x 可得()0f x <,排除C 选项 当x=1.001时,代入()f x 可得()0f x >,排除B 选项 所以选A 【点睛】本题考查了根据函数解析式判断函数的图象,依据主要是奇偶性、单调性、特殊值等,注意图中坐标的位置及特殊直线,属于中档题.3.B解析:B 【解析】 【分析】利用复数除法运算法则化简原式可得2ai b i -=+,再利用复数相等列方程求出,a b 的值,从而可得结果. 【详解】因为22222a i ai i ai b i i i+--==-=+- ,,a b ∈R , 所以2211b b a a ==⎧⎧⇒⎨⎨-==-⎩⎩,则+1a b =,故选B. 【点睛】复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数、复数的模这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.4.A解析:A 【解析】 【分析】 【详解】由27.8 6.635K ≈>,而()26.6350.010P K ≥=,故由独立性检验的意义可知选A5.A解析:A【解析】点P(3,4,5)与Q(3,-4,-5)两点的x 坐标相同,而y 、z 坐标互为相反数,所以两点关于x 轴对称. 考点:空间两点间的距离.6.D解析:D 【解析】 【分析】 【详解】试题分析:A 项中两直线a b ,还可能相交或异面,错误; B 项中两直线a b ,还可能相交或异面,错误; C 项两平面αβ,还可能是相交平面,错误; 故选D.7.A解析:A 【解析】利用数轴,取,P Q 所有元素,得P Q =U (1,2)-.【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理.8.C解析:C 【解析】 【分析】利用正方体1111ABCD A B C D -中,//CD AB ,将问题转化为求共面直线AB 与AE 所成角的正切值,在ABE ∆中进行计算即可. 【详解】在正方体1111ABCD A B C D -中,//CD AB ,所以异面直线AE 与CD 所成角为EAB ∠, 设正方体边长为2a ,则由E 为棱1CC 的中点,可得CE a =,所以5BE a =,则55tan 22BE a EAB AB a ∠===.故选C.【点睛】求异面直线所成角主要有以下两种方法:(1)几何法:①平移两直线中的一条或两条,到一个平面中;②利用边角关系,找到(或构造)所求角所在的三角形;③求出三边或三边比例关系,用余弦定理求角;(2)向量法:①求两直线的方向向量;②求两向量夹角的余弦;③因为直线夹角为锐角,所以②对应的余弦取绝对值即为直线所成角的余弦值.9.A解析:A 【解析】 由正弦定理可得:sin 5sin 3A aB b == . 本题选择A 选项.10.C解析:C 【解析】分析:连结MN ,结合几何性质和平面向量的运算法则整理计算即可求得最终结果. 详解:如图所示,连结MN ,由2,2BM MA CN NA ==u u u u v u u u v u u u v u u u v可知点,M N 分别为线段,AB AC 上靠近点A 的三等分点,则()33BC MN ON OM ==-u u u v u u u u v u u u v u u u u v ,由题意可知:2211OM ==u u u u v ,12cos1201OM ON ou u u u v u u u v ⋅=⨯⨯=-,结合数量积的运算法则可得:()2333336BC OM ON OM OM ON OM OM ⋅=-⋅=⋅-=--=-u u u v u u u u v u u u v u u u u v u u u u v u u u v u u u u v u u u u v .本题选择C 选项.点睛:求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义.具体应用时可根据已知条件的特征来选择,同时要注意数量积运算律的应用.11.B解析:B 【解析】 【分析】由题可分析得到()tan +tan 44ππααββ⎡⎤⎛⎫⎛⎫=+-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,由差角公式,将值代入求解即可 【详解】 由题,()()()21tan tan 3454tan +tan 21442211tan tan 544παββππααββπαββ⎛⎫+---⎪⎡⎤⎛⎫⎛⎫⎝⎭=+--=== ⎪ ⎪⎢⎥⎛⎫⎝⎭⎝⎭⎣⎦+⨯++-⎪⎝⎭,故选:B 【点睛】本题考查正切的差角公式的应用,考查已知三角函数值求三角函数值问题12.B解析:B 【解析】 【分析】本题首先可以根据两个事件能否同时发生来判断出它们是不是互斥事件,然后通过两个事件是否包含了所有的可能事件来判断它们是不是对立事件,最后通过两个事件是否可能出现来判断两个事件是否是不可能事件,最后即可得出结果., 【详解】因为事件“甲分得红牌”与事件“乙分得红牌”不可能同时发生,所以它们是互斥事件, 因为事件“甲分得红牌”与事件“乙分得红牌”不包含所有的可能事件,所以它们不是对立事件,所以它们是互斥但不对立事件,故选B . 【点睛】本题考查了事件的关系,互斥事件是指不可能同时发生的事件,而对立事件是指概率之和为1的互斥事件,不可能事件是指不可能发生的事件,考查推理能力,是简单题.二、填空题13.25【解析】由可得所以解析:25 【解析】由141,7a a ==可得11,2,21n a d a n ===-,所以5(19)5252S +⨯==. 14.【解析】【分析】设此圆的底面半径为高为母线为根据底面圆周长等于展开扇形的弧长建立关系式解出再根据勾股定理得即得此圆锥高的值【详解】设此圆的底面半径为高为母线为因为圆锥的侧面展开图是一个半径为圆心角为解析:3【解析】【分析】设此圆的底面半径为r ,高为h ,母线为l ,根据底面圆周长等于展开扇形的弧长,建立关系式解出r ,再根据勾股定理得22h l r =- ,即得此圆锥高的值. 【详解】设此圆的底面半径为r ,高为h ,母线为l ,因为圆锥的侧面展开图是一个半径为2cm ,圆心角为23π的扇形, 所以2l =,得24233r l πππ=⨯= ,解之得23r =, 因此,此圆锥的高2222242cm 332h l r ⎛⎫=-=-= ⎪⎝⎭,故答案为42. 【点睛】本题给出圆锥的侧面展开图扇形的半径和圆心角,求圆锥高的大小,着重考查了圆锥的定义与性质和旋转体侧面展开等知识,属于基础题.15.2【解析】【分析】根据条件利用余弦定理可建立关于c 的方程即可解出c 【详解】由余弦定理得即解得或(舍去)故填2【点睛】本题主要考查了利用余弦定理求三角形的边属于中档题解析:2 【解析】 【分析】根据条件,利用余弦定理可建立关于c 的方程,即可解出c. 【详解】由余弦定理2222cos a b c bc A =+-得231c c =+-,即220c c --=,解得2c =或1c =-(舍去).故填2. 【点睛】本题主要考查了利用余弦定理求三角形的边,属于中档题.16.【解析】【分析】本题首先应用余弦定理建立关于的方程应用的关系三角形面积公式计算求解本题属于常见题目难度不大注重了基础知识基本方法数学式子的变形及运算求解能力的考查【详解】由余弦定理得所以即解得(舍去 解析:3【解析】【分析】本题首先应用余弦定理,建立关于c 的方程,应用,a c 的关系、三角形面积公式计算求解,本题属于常见题目,难度不大,注重了基础知识、基本方法、数学式子的变形及运算求解能力的考查.【详解】由余弦定理得2222cos b a c ac B =+-, 所以2221(2)2262c c c c +-⨯⨯⨯=, 即212c =解得c c ==-所以2a c ==11sin 222ABC S ac B ∆==⨯= 【点睛】本题涉及正数开平方运算,易错点往往是余弦定理应用有误或是开方导致错误.解答此类问题,关键是在明确方法的基础上,准确记忆公式,细心计算.17.【解析】【分析】本道题结合半径这一条件利用勾股定理建立等式计算半径即可【详解】设球半径为R 球心O 到上表面距离为x 则球心到下表面距离为6-x 结合勾股定理建立等式解得所以半径因而表面积【点睛】本道题考查 解析:80π【解析】【分析】本道题结合半径这一条件,利用勾股定理,建立等式,计算半径,即可。

2019-2020年高三一模数学试题 含答案

2019-2020年高三一模数学试题 含答案

2019-2020年高三一模数学试题 含答案xx.12.21一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1.2. 已知抛物线的顶点在平面直角坐标系原点,焦点在轴上,若经过点,则 其焦点到准线的距离为3. 若线性方程组的增广矩阵为,解为,则4. 若复数满足:(是虚数单位),则5. 在的二项展开式中第四项的系数是 (结果用数值表示)6. 在长方体中,若,,则异面直线与所成角的大小为7. 若函数的值域为,则实数的取值范围是8. 如图,在△中,若,,,则9. 定义在上的偶函数,当时,,则在上的零点个数为 个10. 将6辆不同的小汽车和2辆不同的卡车驶入如图所示的10个车位中的某8个内,其中 2辆卡车必须停在与的位置,那么不同的停车位置安排共有 种(结果用数值 表示)11. 已知数列是首项为1,公差为的等差数列,前项和为,设,若数列是递减数列,则实数的取值范围是12. 若使集合2{|(6)(4)0,}A x kx k x x Z =--->∈中的元素个数最少,则实数的取值 范围是二. 选择题(本大题共4题,每题5分,共20分)13. “”是“”的( )条件A. 充分不必要B. 必要不充分C. 充分必要D. 既不充分也不必要14. 若(是虚数单位)是关于的方程的一个复数根,则( )A. ,B. ,C. ,D. ,15. 已知函数为上的单调函数,是它的反函数,点和点均在函数的图像上,则不等式的解集为( )A. B. C. D.16. 如图,两个椭圆、内部重叠区域的边界记为曲线,是曲线上的任意一点,给出下列三个判断:(1)到、、、四点的距离之和为定值(2)曲线关于直线、均对称(3)曲线所围区域面积必小于36上述判断中正确命题的个数为()A. 0个B. 1个C. 2个D. 3个三. 解答题(本大题共5题,共14+14+14+16+18=76分)17. 已知平面,,,,是的中点;(1)求与平面所成角的大小;(结果用反三角函数值表示)(2)求△绕直线旋转一周所构成的旋转体的体积;(结果保留)18. 已知函数2sin ()1x xf xx-=;(1)当时,求的值域;(2)已知△的内角的对边分别为,若,,,求△的面积;19. 某创业团队拟生产、两种产品,根据市场预测,产品的利润与投资额成正比(如图1),产品的利润与投资额的算术平方根成正比(如图2);(注:利润与投资额的单位均为万元)(1)分别将、两种产品的利润、表示为投资额的函数;(2)该团队已筹集到10万元资金,并打算全部投入、两种产品生产,问:当产品的投资额为多少万元时,生产、两种产品能获得最大利润,最大利润为多少?20. 如图,双曲线的左、右焦点、,过作直线交轴于点;(1)当直线平行于的一条渐近线时,求点到直线的距离;(2)当直线的斜率为1时,在的右支上是否存在点,满足?,若存在,求点的坐标,若不存在,说明理由;(3)若直线与交于不同两点、,且上存在一点,满足(其中为坐标原点),求直线的方程;21. 正数数列、满足:,且对一切,,是与的等差中项,是与的等比中项;(1)若,,求、的值;(2)求证:是等差数列的充要条件是为常数数列;(3)记,当,,指出与的大小关系并说明理由;参考答案一. 填空题1. 2. 3. 4. 5. 6. 7.8. 9. 10. 11. 12.二. 选择题13. C 14. D 15. C 16. C三. 解答题17.(1);(2);18.(1);(2);19.(1),;(2)对投资3.75万元,对投资6.25万元,可获得最大利润万元;20.(1);(2)不存在;(3);21.(1),;(2)略;(3);。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

试题分析:由题意,这是几何概型问题,班车每 30 分钟发出一辆,到达发车站的时间总长
度为 40,等车不超过 10 分钟的时间长度为 20,故所求概率为 20 1 ,选 B. 40 2
【考点】几何概型
【名师点睛】这是全国卷首次考查几何概型,求解几何概型问题的关键是确定“测度”,常见的 测度有长度、面积、体积等.
5.C
解析:C 【解析】 【分析】 在三角形中,利用正弦定理可得结果. 【详解】
解:在 ABC 中, 可得 BC AC ,
sin A sin B
即32 sin 60
32
AC ,即 sin 45
3
2
AC 2,
2
解得 AC 2 3 ,
故选 C.
【点睛】
本题考查了利用正弦定理解三角形的问题,解题的关键是熟练运用正弦定理公式.
的运算,即可求解. 【详解】
∵向量 a , b 满足 a 2 , b a b 3,∴ 22 32 2a b 3 ,解得 a b 2 .
则 a 2b
2
2
a 4b 4a b
22 432 42 4 2 .故选 D.
【点睛】 本题主要考查了向量的数量积的运算,及向量的模的运算问题,其中解答中熟记向量的数 量积的运算和向量的模的运算公式,合理、准确运算是解答的关键,着重考查了推理与运 算能力,属于基础题.
8.圆 C1:x2+y2=4 与圆 C2:x2+y2﹣4x+4y﹣12=0 的公共弦的长为( )
A. 2
B. 3
C. 2 2
D. 3 2
9.已知 m, n 是两条不同的直线, , 是两个不同的平面,给出下列命题:
①若 m , m n ,则 n ;
②若 m , n ,则 m n ;
A.
B.
C.
D.
11.一个样本 a,3,4,5,6 的平均数是 b,且不等式 x2-6x+c<0 的解集为(a,b),则这个
样本的标准差是( )
A.1
B. 2
C. 3
D.2
12.如图所示,网格纸上小正方形的边长为 1,粗线画出的是由一个棱柱挖去一个棱锥后 的几何体的三视图,则该几何体的体积为
A.72
④逆否命题为:若 m 与 n 垂直于同一平面,则 m, n 平行,为真命题.
综上,为真命题的是②③④.
故选 A
【点睛】 本题主要考查空间中点线面位置关系,熟记线面关系、面面关系,即可求解,属于常考题
型.
10.D
解析:D 【解析】 【分析】
根据指数型函数和对数型函数单调性,判断出正确选项. 【详解】
由于 a
19.在 ABC 中,若 AB 13 , BC 3, C 120 ,则 AC _____.
20.
16 81
3
4
+log3
5 4
log3
4 5
________.
三、解答题
21.某中学拟在高一下学期开设游泳选修课,为了了解高一学生喜欢游泳是否与性别有 关,该学校对 100 名高一新生进行了问卷调查,得到如下列联表:
对三角形 F1NF2 运用余弦定理,得到
2a 2
2
2a
2
2a 2 2c2 2
2a 2
2a
2 2a cos450 ,解得 e c
3
a
故选 B.
【点睛】
本道题考查了双曲线的性质,考查了余弦定理,关键利用余弦定理,解三角形,进而计算
x,即可,难度偏难.
7.C
解析:C 【解析】 【分析】 定义域相同,对应关系一致的函数是同一函数,由此逐项判断即可. 【详解】
(a b)(c d)(a c)(b d)
22.如图,四棱锥 P ABCD 的底面 ABCD 是平行四边形,连接 BD ,其中 DA DP , BA BP .
(1)求证: PA BD ; (2)若 DA DP , ABP 600 , BA BP BD 2 ,求二面角 D PC B 的正弦

2
所以公共弦长为: l 2 r2 d 2 2 2 .
故选:C 【点睛】
本题主要考查直线与圆,圆与圆的位置关系,还考查了运算求解的能力,属于基础题.
9.A
解析:A 【解析】
【分析】
根据空间中点、线、面位置关系,逐项判断即可. 【详解】
①若 m , m n ,则 n 与 位置关系不确定; ②若 n ,则 存在直线 l 与 n 平行,因为 m ,所以 m l ,则 m n ; ③当 m , m , n , n 时,平面 , 平行;
喜欢游 不喜欢游 合



男 10

女 20

合 计
已知在这 100 人中随机抽取 1 人抽到喜欢游泳的学生的概率为 .
(1)请将上述列联表补充完整; (2)并判断是否有 99.9%的把握认为喜欢游泳与性别有关?并说明你的理由; (3)已知在被调查的学生中有 5 名来自甲班,其中 3 名喜欢游泳,现从这 5 名学生中随机
2 x3
)r
,化简得 Tr 1
(2)r C5r x105r ,
令10 5r 0 ,即 r
故选:C. 【点睛】
2 ,故展开式中的常数项为T3 (2)2 C52 40 .
本题主要考查二项式定理、二项展开式的应用,熟练运用公式来解题是关键.
4.D
解析:D 【解析】 【分析】
由题意,根据向量的模的运算,可得 22 +32 +2a b 3,求得 a b 2 ,再根据向量模
16.在等腰梯形 ABCD 中,已知 AB DC , AB 2, BC 1, ABC 60 , 点 E 和点 F 分别在
线段
BC

CD
上,且
BE
2 3
BC,
DF
1 6
DC , 则
AE
AF
的值为

17.已知直线 :
与圆
交于 两点,过 分别作 的垂线与
轴交于 两点.则
_________.
18.设复数 z 1 i(i 虚数单位), z 的共轭复数为 z ,则 1 z z ________.
③若 m, n 是异面直线, m , m , n , n ,则∥ ;
④若 m, n 不平行,则 m 与 n 不可能垂直于同一平面.
其中为真命题的是( )
A.②③④
B.①②③
C.①③④
D.①②④
10.当 a 1时, 在同一坐标系中,函数 y ax 与 y loga x 的图像是( )
值. 23.某小组共 10 人,利用假期参加义工活动,已知参加义工活动次数为 1,2,3 的人数分 别为 3,3,4,现从这 10 人中随机选出 2 人作为该组代表参加座谈会.
1 设 A 为事件“选出的 2 人参加义工活动次数之和为 4”,求事件 A 发生的概率;
2 设 X 为选出的 2 人参加义工活动次数之差的绝对值,求随机变量 X 的分布列和数学期
8.C
解析:C 【解析】 【分析】 两圆方程相减,得到公共弦所在的直线方程,然后利用其中一个圆,结合弦长公式求解. 【详解】 因为圆 C1:x2+y2=4 与圆 C2:x2+y2﹣4x+4y﹣12=0,
两式相减得 x y 2 0 ,即公共弦所在的直线方程.
2
圆 C1:x2+y2=4,圆心到公共弦的距离为 d
①中 f x 2x3 的定义域为 ,0 , f x x 2x 的定义域也是 ,0 ,但
f x 2x3 x 2x 与 f x x 2x 对应关系不一致,所以①不是同一函数;
②中 f x x 与 g x x2 定义域都是 R,但 g x x2 x 与 f x x 对应关系不
A. 3 2
B. 3
C. 2 3
D. 4 3
6.设双曲线 C :
x2 a2
y2 b2
1(a
0,b
0 )的左、右焦点分别为 F1,F2
,过 F1 的直线分别
交双曲线左右两支于点 M,N ,连结 MF2,NF2 ,若 MF2 NF2 0 , MF2 NF2 ,则双曲
线 C 的离心率为( ).
A. 2
1,所以
y
ax
1 a
x

R
上的递减函数,且过 0,1

y
loga
x 为0,
上的单调递减函数,且过 1,0 ,故只有 D 选项符合.
故选:D. 【点睛】
本小题主要考查指数型函数、对数型函数单调性的判断,考查函数图像的识别,属于基础
抽取 2 人,求恰好有 1 人喜欢游泳的概率. 下面的临界值表仅供参考:
P 0.15
(K2≥k)
0.10
0.05
k
2.072
2.706
3.841
0.025 5.024
0.010 6.635
0.005 7.879
0.001 10.828
(参考公式: K2
n(ad bc)2
,其中 n=a+b+c+d)
()
A.①③④
B.②④
3.
(x2
2 x3
)5
展开式中的常数项为(

A.80
Bபைடு நூலகம்-80
C.②③④ C.40
D.①②③ D.-40
4.设向量 a , b 满足 a 2 ,| b || a b | 3 ,则 a 2b ( )
A.6
B. 3 2
C.10
D. 4 2
5.在 ABC 中, A 60 , B 45, BC 3 2 ,则 AC ( )
25.已知函数 f x ax 1lnx , a R . ( Ⅰ ) 讨论函数 f x 的单调区间; ( Ⅱ ) 若函数 f x 在 x 1处取得极值,对 x 0, , f x bx 2 恒成立,求实数
相关文档
最新文档