【原创教案】《幂函数》公开课教案
《幂函数》 示范公开课教学设计
《幂函数》教学设计(1)通过观察图像,了解幂函数图像的变化情况和性质,加深学生对研究函数性质的基本方法和流程的经验,提升学生的数学抽象素养.(2)了解几个常见的幂函数的性质,通过这几个幂函数的性质,总结幂函数的性质.提升学生的数学运算素养.(3)应用幂函数的图像和性质解决有关简单问题,培养学生逻辑推理素养1、教学重点:从具体的幂函数中认识幂函数的概念和性质. 教学难点:(1)从幂函数的图像中概括其性质(2)根据幂函数的单调性比较两个同指数的指数式的大小PPT 课件.一、整体概览问题1:阅读课本第33-36页,回答下列问题: (1)本节将要研究哪类问题?(2)本节要研究的问题在数学中的地位是怎样的?师生活动:学生带着问题阅读课本,老师指导学生概括总结章引言的内容.预设的答案:本节课要学的内容是幂函数的图像及其性质,其核心幂函数的性质应用.本节是学生在之前已经学习了幂的意义以及幂的运算,学习了反比例函数、一次函数和二次函数.事实上,21,,x y x y x y ===-都是幂函数,学生对它们的基本性质和图像都已经很熟悉.学生在学习了函数的概念、基本性质,以及指数函数、对数函数的概念、性质和图像之后,紧接着学习幂函数,从知识体系上讲是自然衔接,从学生的认知结构上讲则是抓住了学习的“最近发展区”顺势而为,学生可以很容易地应用函数的研究方法来分析幂函数,从而进一步体验研究函数性质和图像的基本过程和方法.◆教学目标◆教学重难点 ◆◆课前准备◆教学过程设计意图:通过本节课内容的预习,让学生明晰下一阶段的学习目标,初步搭建学习内容的框架.二、问题导入问题2:我们已经知道,在关系式b a N =中,当底数a 为大于0且不等于1的常数时;如果把b 作为自变量、N 作为因变量,则N 就是b 的指数函数;如果把N 作为自变量、b 作为因变量,则b 就是N 的对数函数(即N b a log =).那么,当b 为常数时,是否可以将底数a 作为自变量,N 作为因变量来构造函数关系呢?师生活动:学生尝试自己得出问题的结果.并思考运算法则的得出过程.预设的答案:在关系式N =a b 中,以a 为自变量、N 为因变量构造的函数为b x y =,其中的N 即为因变量y ,a 即为自变量x .设计意图:从学生熟悉的公式导入,由指数的运算得出对数的运算,唤醒学生由已有的知识解决未知的问题,激发学生的兴趣.引语:构造出来的函数就是本节我们要讨论的幂函数(板书:幂函数)【新知探究】问题3: 我们以前学过函数y =x ,y =x 2,1y x=,这三个函数的解析式有什么共同的特点吗?你能根据指数运算的定义,把这三个函数的解析式改写成统一的形式吗?师生活动:学生自行书写,教师给出答案.预设的答案:这三个函数的解析式改写成统一的形式为αx y =. 设计意图:通过实际例子的归纳总结,自然的引出幂函数的概念.一般地,函数αx y =称为幂函数,其中a 为常数,上面提到的函数y =x ,y =x 2,y =x1都是幂函数.下面我们通过具体函数来研究幂函数的一些性质. 首先来研究函数21x y =问题4:判断−4,−3,−2,−1,4,3,2,1,41,0,41-这些数中,哪些在函数21x y =的定义域内,求出对应的函数值,并填写下表(只需要填在定义域内的数及对应的函数值),由此猜测这个函数的定义域、值域、奇偶性、单调性,尝试并说明理由.由于21x y ==x ,由此不难知道,函数21x y =的性质有: (1)定义域是 (2)值域是 (3)奇偶性是 (4)单调性是师生活动:学生充分思考后,写出并由老师给出答案.此图片是动画缩略图,本资源为《幂函数的图象与性质》知识探究,通过交互式动画的方式,运用了本资源,可以吸引学生的学习兴趣,增加教学效果,提高教学效率.本资源适用于认识幂函数的教学,供教师备课和授课使用.若需使用,请插入动画【数学探究】幂函数的图象与性质(教师可以多次使用这个动画,用于讲解不同类型的幂函数,以及图像性质的对比讲解)本资源展现几个特殊幂函数的性质,辅助教师教学,加深学生对于知识的理解和掌握.本资源适用于几个特殊幂函数的性质的教学,供教师备课和授课时参考.若需使用,请插入图片【知识点解析】几个特殊幂函数的性质预设的答案:函数21xy=的性质有:(1)定义域是:),0[+∞(2)值域是:),0[+∞(3)奇偶性是:非奇非偶函数(4)单调性是:增函数设计意图:通过学生根据具体数值得出归纳出函数的性质,培养学生的自主学习能力. 根据以上信息可知,函数21xy=图像上的点,除了原点,其余点都在第一象限,通过描点(如左下图所示),可作出其图像,如右下图所示问题5:给出研究函数y=x3的性质与图像的方法,并用你的方法得出这个函数的性质:(1)定义域是(2)值域是(3)奇偶性是(4)单调性是(5)如图所示中已经作出了函数y=x-1,y=x,y=x2的图像,在其中作出函数y=x3图像.师生活动:学生充分思考后,写出并由老师给出答案.预设的答案:(1)定义域是R(2)值域是R(3)奇偶性是奇函数(4)单调性是增函数(5)函数y=x3图像教师可借助多媒体呈现.设计意图:通过学生根据具体数值得出归纳出函数的性质,培养学生的自主学习能力. 总结:一般地,幂函数y =x α,随着α的取值不同,函数的定义域、值域、奇偶性、单调性也不尽相同,但也有一些共同的特征:(1)所有的幂函数在区间(0,+∞)上都有定义,因此在第一象限内都有图像,并且图像都通过点(1,1).(2)如果α>0,则幂函数的图像通过原点,并且在区间[0,+∞)上是增函数.(3)如果α<0,则幂函数在区间(0,+∞)上是减函数,且在第一象限内:当x 从右边趋向于原点时,图像在y 轴右方且无限地通近y 轴;当x 无限增大时,图像在x 轴上方且无限地逼近x 轴.【巩固练习】例1 比较下列各题中两个值的大小: (1)2.31.1和2.51.1;(2)312)2(-+a 和312-.师生活动:学生分析解题思路,给出答案.预设的答案: 解:(1)考察幂函数y =x 1.1,因为其在区间[0,+∞)上是增函数,而且2.3<2.5,所以2.31.1<2.51.1.考察幂函数13y x -=,因为其在区间(0,+∞)上是减函数,而且a 2+2≥2,所以()113322a 2--+≤设计意图:考查利用幂函数的单调性比较数的大小.例 2.讨论函数32x y =的定义域、奇偶性,通过描点作出它的图像,并根据图像说明函数的单调性.师生活动:学生分析解题思路,利用幂函数的性质,给出答案. 预设的答案:解:因为3232x x y ==,所以不难看出函数的定义域为R ,记,)(32x x f =则)()()()(32323232x f x x x x x f ===-=-=-,所以函数32x y =为偶函数,因此函数的图像关于y 轴对称 ,通过列表描点连线.可以作出32x y =的图像,由图像可得,函数32x y =在区间]0,(-∞上是单调递减,在区间),0[+∞上单调递增 设计意图:通过利用函数的解析式得出函数的奇偶性,作出函数的图像,得出函数的单调性,巩固学生对幂函数的性质应用.练习:教科书第36页习题4-4A 1,2,3,4,5题.师生活动:学生做练习,教师根据学生练习情况给予反馈.【教学反思】通过实例,了解幂函数的概念,结合函数的图像,了解他们的变化情况,掌握研究一般幂函数的方法和思想.使学生通过观察函数的图像来总结性质,并通过已学的知识对总结出的性质进行解释,从而达到对任一幂函数性质的分析【课堂小结】1.板书设计: 4.4幂函数1.幂函数 例1问题:(1).幂函数是如何定义的? (2).幂函数的解析式具有什么特点?(3).常见幂函数的具有哪些性质?师生活动:学生尝试总结,老师适当补充.预设的答案:一般地,函数y x α=称为幂函数,其中α为常数,上面提到的函数y =x ,y =x 2,y =x1都是幂函数.(2)幂函数的解析式都是y x α=.(3)一般地,幂函数y x α=,随着α的取值不同,函数的定义域、值域、奇偶性、单调性也不尽相同,但也有一些共同的特征:①所有的幂函数在区间(0,+∞)上都有定义,因此在第一象限内都有图像,并且图像都通过点(1,1).②如果α>0,则幂函数的图像通过原点,并且在区间[0,+∞)上是增函数.③如果α<0,则幂函数在区间(0,+∞)上是减函数,且在第一象限内:当x 从右边趋向于原点时,图像在y 轴右方且无限地通近y 轴;当x 无限增大时,图像在x 轴上方且无限地逼近x 轴.设计意图:通过梳理本节课的内容,能让学生更加明确幂函数的图像及其性质.布置作业:教科书第8页习题C 1,2题.【目标检测】1.函数y =(x 2-2x )21-的定义域是( )A .{x |x ≠0或x ≠2}B .(-∞,0)∪(2,+∞)C .(-∞,0]∪[2,+∞)D .(0,2) .设计意图:考查学生对换元法在解题中的应用. 2.下列函数中,是幂函数的是( ) A .y =2x B .y =2x 3 C .y =1x D .y =2x设计意图:考查学生对幂函数定义的理解. 3.下列结论正确的是( )A .幂函数的图像一定过原点B .当α<0时,幂函数y =x α是减函数C .当α>0时,幂函数y =x α是增函数D .函数y =x 2既是二次函数,也是幂函数设计意图:考查学生对幂函数性质的理解. 4.下列函数中,在(-∞,0)上是增函数的是( ) A .y =x 3 B .y =x 2 C .y =1x D .y =23x设计意图:考查学生对幂函数单调性的理解.参考答案:1.解析:函数y =(x 2-2x )21-化为y =1x 2-2x,要使函数有意义需x 2-2x >0,即x >2或x <0,所以函数的定义域为{x |x >2或x <0}. 答案:B 2.C 3.D 4.A。
《幂函数》教案
《幂函数》教案《幂函数》教案教学目标知识与技能通过具体实例了解幂函数的图象和性质,并能进行简单的应用.过程与方法能够类比研究一般函数、指数函数、对数函数的过程与方法,来研究幂函数的图象和性质.情感、态度、价值观体会幂函数的变化规律及蕴含其中的对称性.教学重点重点从五个具体幂函数中认识幂函数的一些性质.难点画五个具体幂函数的图象并由图象概括其性质,体会图象的变化规律.教学程序与环节设计:教学过程环节教学内容设计师生双边互动创设情境组织探究尝试练习巩固反思作业回馈课外活动问题引入.幂函数的图象和性质.幂函数性质的初步应用.复述幂函数的图象规律及性质.幂函数性质的初步应用.利用图形计算器或计算机探索一般幂函数的图象规律.创设情境阅读教材P90的具体实例(1)~(5),思考下列问题:1.它们的对应法则分别是什么?2.以上问题中的函数有什么共同特征?(答案)1.(1)乘以1;(2)求平方;(3)求立方;(4)开方;(5)取倒数(或求-1次方).2.上述问题中涉及到的函数,都是形如αxy=的函数,其中x是自变量,是α常数.生:独立思考完成引例.师:引导学生分析归纳概括得出结论.师生:共同辨析这种新函数与指数函数的异同.组织探究材料一:幂函数定义及其图象.一般地,形如αxy=)(Ra∈的函数称为幂函数,其中α为常数.下面我们举例学习这类函数的一些性质.作出下列函数的图象:(1)xy=;(2)21xy=;(3)2xy=;(4)1-=xy;(5)3xy=.[解] ○1列表(略)○2图象师:说明:幂函数的定义来自于实践,它同指数函数、对数函数一样,也是基本初等函数,同样也是一种“形式定义”的函数,引导学生注意辨析.生:利用所学知识和方法尝试作出五个具体幂函数的图象,观察所图象,体会幂函数的变化规律.师:引导学生应用画函数的性质画图象,如:定义域、奇偶性.师生共同分析,强调画图象易犯的错误.环节教学内容设计师生双边互动组织探究材料二:幂函数性质归纳.(1)所有的幂函数在(0,+∞)都有定义,并且图象都过点(1,1);(2)0>α时,幂函数的图象通过原点,并且在区间),0[+∞上是增函数.特别地,当1>α时,幂函数的图象下凸;当10<<α时,幂函数的图象上凸;(3)0<α时,幂函数的图象在区间),0(+∞上是减函数.在第一象限内,当x从右边趋向原点时,图象在y轴右方无限地逼近y轴正半轴,当x趋于∞+时,图象在x轴上方无限地逼近x轴正半轴.师:引导学生观察图象,归纳概括幂函数的的性质及图象变化规律.生:观察图象,分组讨论,探究幂函数的性质和图象的变化规律,并展示各自的结论进行交流评析,并填表.材料三:观察与思考观察图象,总结填写下表:xy=2xy=3xy=21xy=1-=xy定义域值域奇偶性单调性定点材料五:例题[例1](教材P78例题)[例2]比较下列两个代数值的大小:(1)5.1)1(+a,5.1a(2)322)2(-+a,322-[例3] 讨论函数3xy=的定义域、奇偶性,作师:引导学生回顾讨论函数性质的方法,规范解题格式与步骤.并指出函数单调性是判别大小的重要工具,幂函数的图象可以在单调性、奇偶性基础上较快描出.出它的图象,并根据图象说明函数的单调性.生:独立思考,给出解答,共同讨论、评析.环节呈现教学材料师生互动设计尝试练习1.利用幂函数的性质,比较下列各题中两个幂的值的大小:(1)433.2,434.2;(2)5631.0,5635.0;(3)23(-,23)3(-;(4)211.1-,219.0-.2.作出函数23xy=的图象,根据图象讨论这个函数有哪些性质,并给出证明.3.作出函数2-=xy和函数2)3(--=xy的图象,求这两个函数的定义域和单调区间.4.用图象法解方程:(1)1-=xx;(2)323-=xx.探究与发现1.如图所示,曲线是幂函数αxy=在第一象限内的图象,已知α分别取2,21,1,1-四个值,则相应图象依次为:.2.在同一坐标系内,作出下列函数的图象,你能发现什么规律?(1)3-=xy和31-=xy;规律1:在第一象限,作直线)1(>=aax,它同各幂函数图象相交,按交点从下到上的顺序,幂指数按从小到大的顺序排列.规律2:幂指数互为倒数的幂函数在第一象限内的图象关于直线xy=对称.(2)45x y =和54x y =.作业回馈1.在函数1,,2,1222=+===y x x y x y x y 中,幂函数的个数为:A .0B .1C .2D .3环节呈现教学材料师生互动设计2.已知幂函数)(x f y =的图象过点)2,2(,试求出这个函数的解析式.3.在固定压力差(压力差为常数)下,当气体通过圆形管道时,其流量速率R 与管道半径r 的四次方成正比.(1)写出函数解析式;(2)若气体在半径为3cm 的管道中,流量速率为400cm 3/s ,求该气体通过半径为r 的管道时,其流量速率R 的表达式;(3)已知(2)中的气体通过的管道半径为5cm ,计算该气体的流量速率.4.1992年底世界人口达到54.8亿,若人口的平均增长率为x%,2008年底世界人口数为y (亿),写出:(1)1993年底、1994年底、2000年底的世界人口数;(2)2008年底的世界人口数y 与x 的函数解析式.课外活动利用图形计算器探索一般幂函数αx y =的图象随α的变化规律.收获与体会1.谈谈五个基本幂函数的定义域与对应幂函数的奇偶性、单调性之间的关系?2.幂函数与指数函数的不同点主要表现在哪些方面?。
幂函数教案
2.3幂函数(一)教学目标: ㈠知识和技能1.理解幂函数的概念,会画幂函数的图象,并能结合这几个幂函数的图象,理解幂函数图象的变化情况和性质。
2.理解几个常见的幂函数的性质。
1.通过观察、总结幂函数的性质,培养学生概括抽象和识图水平。
2.使学生进一步体会数形结合的思想。
㈢情感、态度与价值观1.通过生活实例引出幂函数的概念,使学生体会到生活中处处有数学,激发学生的学习兴趣。
2.利用计算机等工具,理解幂函数和指数函数的本质差别,使学生充分理解到现代技术在人们理解世界的过程中的作用,从而激发学生的学习欲望。
教学重点常见幂函数的概念和性质 教学难点幂函数的单调性与幂指数的关系 教学过程(一)引入新课(1) 假如张红购买了每千克1元的蔬菜w 千克,那么她需要支付p=w 元,这里p 是w 的函数;(2) 假如正方形的边长为a ,那么正方形的面积S=a 2,这里S 是a 的函数; (3) 假如立方体的边长为a ,那么立方体的体积V=a 3,这里V 是a 的函数;(4) 假如一个正方形场地的面积为S ,那么这个正方形的边长21S a =,这里a 是S 的函数; (5) 假如某人t 秒内骑车行进了1 km ,那么他骑车的平均速度v=1-t km/s ,这里v 是t 的函数。
思考:这些函数有什么共同的特征?他们有以下共同特点:(1)都是函数;(2) 指数为常数. (3) 均是以自变量为底的幂; (二)新课讲授1、一般地,函数y=x α叫做幂函数,其中x 是自变量,α是常数. 注意:幂函数中α的能够为任意实数.2、练一练:1。
判断以下函数是否为幂函数.(1) 4x y = (2)21x y = (3)22x y = (4)2x y -= (5)23+=x y()。
m ,x m m x f m 的值求是幂函数已知例3221)(:1+-+=.),,2()(:22解析式试求出这个函数的的图像过点已知幂函数例x f y =3、在同一平面直角坐标系内作出幂函数y=x ,2x y =,3x y =,21x y =,1-=x y 的图象:观察图象,总结填写下表:x y = 2x y = 3x y = 21x y = 1-=x y定义域 值域 奇偶性 单调性 定点1.在第一象限内一定有幂函数的图像,第四象限肯定没有幂函数的图像,在第二象限、第三象限可能有也可能没有(根据幂函数的奇偶性来判断)。
《幂函数》公开课教案
根据下列函数的图象,写出它们的定义域:
⑴ ⑵ ⑶ ⑷
选做题
(1)用计算机软件作出上述函数的图象
②正方形面积y与边长x之间的解析式;
③正方形场地的边长y与面积x之间的解析式;
④如果某人x秒内骑车行进1千米,那么他骑车的平均速度y与时间x之间解析式。
幻灯片演示问题。学生口答,教师板书答案。
教学环节
教学任务
教学步骤
问题设计
师生活动
合作交流探究新知
任务一:认识幂函数
一般地,形如 (α∈R为常数。
幻灯片演示题目。学生独立思考,讨论回答,教师巡视引导,及时评价学生的回答。
任务二:描述定义域
幂函数没有统一的定义域。
1.画图方法
问题2:你能画出 的图象吗?
师生共同回顾描点作图法步骤,
教师简介用几何画板作图方法。
2.观察图象
例2、观察下列幂函数在同一坐标系中的图象,指出它们的定义域:
⑴ ⑵ ⑶
⑷ ⑸
⑴ ⑵ ⑶ ⑷
学生完成学案中练习,教师巡视,及时指导学困学生,学生给出答案,教师点评。
总结课题回顾反思
本节课我们学习了幂函数的形式 (α∈R,α≠0),通过观察幂函数的图象,知道了幂函数没有统一的定义域,但在(0,+∞)都有定义。了解到幂函数的单调性还是有一定规律的。
教师引导,学生回答。
布置任务课后延伸
几何画板展示图象,学生观察,讨论并回答。
3.总结规律
思考2:五个幂函数的定义域一定相同吗?定义域有什么共同点?
学生思考,教师引导并总结。
联系实际解决问题
任务三:回归生活
结合生活
列举实例
例3、我家到学校之间相距1公里的路程,每天步行上学,所用时间y小时,步行速度为x公里/小时,写出y与x之间的函数关系式。如果我走的慢,速度为3.5公里/小时,则步行上学需多久?如果我走的快些,速度为5.5公里/小时,则步行上学需多久?
幂函数教案(第1课时)
幂函数教案(第1课时)教学目标:㈠知识和技能1.了解幂函数的概念,会画幂函数,,的图象,并能结合这几个幂函数的图象,了解幂函数图象的变化情况和性质。
2.了解几个常见的幂函数的性质。
㈡过程与方法1.通过观察、总结幂函数的性质,培养学生概括抽象和识图能力。
2.使学生进一步体会数形结合的思想。
㈢情感、态度与价值观1.通过生活实例引出幂函数的概念,使学生体会到生活中处处有数学,激发学生的学习兴趣。
2.利用计算机等工具,了解幂函数和指数函数的本质差别,使学生充分认识到现代技术在人们认识世界的过程中的作用,从而激发学生的学习欲望。
教学重点常见幂函数的概念和性质教学难点幂函数的单调性与幂指数的关系教学过程一、创设情景,引入新课问题1:如果张红购买了每千克1元的水果w千克,那么她需要付的钱数p(元)和购买的水果量w(千克)之间有何关系?(总结:根据函数的定义可知,这里p是w的函数)问题2:如果正方形的边长为a,那么正方形的面积,这里S是a的函数。
问题3:如果正方体的边长为a,那么正方体的体积,这里V是a的函数。
问题4:如果正方形场地面积为S,那么正方形的边长,这里a是S的函数问题5:如果某人s内骑车行进了km,那么他骑车的速度,这里v是t的函数。
以上是我们生活中经常遇到的几个数学模型,你能发现以上几个函数解析式有什么共同点吗?(右边指数式,且底数都是变量)这只是我们生活中常用到的一类函数的几个具体代表,如果让你给他们起一个名字的话,你将会给他们起个什么名字呢?(变量在底数位置,解析式右边都是幂的形式)(适当引导:从自变量所处的位置这个角度)(引入新课,书写课题)二、新课讲解(一)幂函数的概念如果设变量为,函数值为,你能根据以上的生活实例得到怎样的一些具体的函数式?这里所得到的函数是幂函数的几个典型代表,你能根据此给出幂函数的一般式吗?这就是幂函数的一般式,你能根据指数函数、对数函数的定义,给出幂函数的定义吗?幂函数的定义:一般地,我们把形如的函数称为幂函数(power function),其中是自变量,是常数。
幂函数教案
幂函数教案1. 了解幂函数的定义与性质2. 掌握幂函数的图像特征和变化规律3. 能够应用幂函数解决实际问题教学重点:1. 幂函数的基本定义2. 幂函数的图像特征和变化规律3. 幂函数的应用教学难点:1. 幂函数的变化规律和推导过程2. 如何将幂函数应用于实际问题的解决教学方法:讲授、演示、模拟、探究、归纳、实践等多种教学方法相结合。
教学手段:多媒体教学手段、问答互动、小组合作等手段相结合。
教学过程:Step 1 引入新知1. 教师可以通过多媒体展示一些日常生活或工作中与幂函数相关的实例,如身高、电话费等,引发学生对幂函数的兴趣。
2. 教师可以让学生在小组内讨论幂函数的定义与性质,并让几位同学发表自己的理解和看法。
Step 2 探究幂函数的定义与性质1. 定义幂函数:f(x)=x^a (其中,a为常数,x为变量,且a≠0)2. 讲解幂函数的图像特征:a>1 时,是一条向上的单调增函数;a=1 时,是一条过原点的直线;0<a<1 时,是一条向下的单调增的函数;a<0 时,分为两种情况:a=-1时,是一条过原点的直线;a<-1时,是一条向下的单调减函数。
3. 幂函数的性质:偶函数、奇函数、单调性Step 3 探究幂函数的变化规律1. 讲解如何利用幂函数的图像,通过a的变化推导幂函数的特点和变化规律。
2. 让学生模拟实验,通过手工计算,验证幂函数的变化规律。
Step 4 应用幂函数解决实际问题1. 讲解如何将所学的幂函数应用于实际问题的解决。
2. 教师给出一些与幂函数相关的应用题,让学生在小组内讨论,并找到解题的有效方法。
Step 5 总结与拓展1. 用幂函数的概念总结一遍所学的知识点。
2. 教师可以适时地推出一些与幂函数相关的拓展问题,以拓展课堂思维。
3. 课堂评价:通过问答、小组讨论、实习演绎等方式,对学生的课堂表现进行评价。
教学反思:幂函数是高中数学中的一种基本函数,对于理解其他函数、解决实际问题等方面都具有很重要的作用。
数学《幂函数》教案
数学《幂函数》教案【导语】幂函数是一类特殊的函数,它们都以x为自变量,y为因变量,且y是x的某个非负整数次方的函数(指数函数)。
【预习任务】1.回忆函数概念、函数图像的基本性质;2.了解指数函数与幂函数的区别;3.预习本课幂函数的概念、性质和应用。
【学习目标】1.了解幂函数的基本概念和基本性质;2.掌握幂函数的绘制和变换;3.应用幂函数解决实际问题。
【学习重点】1.幂函数的概念及表达式;2.幂函数的图像及其特征;3.幂函数的应用。
【学习难点】1.幂函数的绘制和变换;2.在实际问题中应用幂函数。
【教学方法】1.理论讲解法;2.示例分析法。
【教学步骤】一、引入新知识教师介绍幂函数的概念和特点,与指数函数的区别,并通过举例进行说明,引起学生兴趣。
二、讲解幂函数的定义和表达式1.定义:y=x^n,其中n为正整数;2.表达式的含义及其特点:表达式中n表示幂指数,当n=1时,即为一次函数;当n>1时,在x>0时为增函数,x<0时为减函数,n<0时为奇函数,n>0时为偶函数。
三、掌握幂函数的图像及其特征1.绘制幂函数y=x^n (n=1,2,3,4)的图像;2.分析幂函数的图像及其特征:幂指数n的大小直接影响曲线的陡峭程度和开口的方向;当n为偶数时,曲线在y轴的正半轴上下对称,当n为奇数时,曲线在原点对称。
四、掌握幂函数的基本变换1.沿x轴方向平移:y=x^n+a (a>0时向上平移,a<0时向下平移);2.纵向伸缩:y=kx^n (k>1时向上伸缩,0<k<1时向下壁缩);3.横向伸缩:y=(x/a)^n (a>1时横向压缩,0<a<1时横向伸展);4.掌握幂函数的基本变换规律。
五、应用幂函数解决实际问题1.通过幂函数解决实际问题;2.对几个幂函数的实例进行讲解。
六、巩固练习练习幂函数的绘制和变换,独立解决实际问题。
【教学反思】本节课主要介绍了幂函数的概念和性质,包括幂函数图像的绘制、基本变换和应用。
幂函数教案
幂函数教案一、教学目标1. 理解幂函数的基本概念和特点;2. 掌握幂函数的图像、定义域、值域、单调性和奇偶性等性质;3. 学会利用幂函数求解实际问题。
二、教学重点1. 幂函数的定义和基本性质;2. 幂函数图像的绘制;3. 幂函数的应用。
三、教学难点1. 幂函数图像的绘制和分析;2. 幂函数在实际问题中的应用。
四、教学准备1. 教师准备:教案、教材、黑板、彩色粉笔;2. 学生准备:课本、笔记本。
五、教学过程Step 1:导入引入(1)教师出示一道数学问题:“一个物体的温度随时间变化的规律可以表示为:T(t) = a * t^b,其中,a和b为常数。
请问,这种规律描述中的T(t)是哪种函数?”引导学生思考和回答。
(2)教师解释幂函数的定义:“幂函数就是以自变量为底数的幂运算,通常表示为y = ax^b,其中a和b为常数,a不等于0。
”Step 2:讲解幂函数的基本性质(1)教师讲解幂函数的定义域和值域:“幂函数的定义域为实数集,值域为正实数集。
”(2)教师讲解幂函数的单调性:“当b大于0时,幂函数是递增的;当b小于0时,幂函数是递减的;当b等于0时,幂函数是常数函数。
”(3)教师讲解幂函数的奇偶性:“当b为偶数时,幂函数是偶函数;当b为奇数时,幂函数是奇函数。
”Step 3:绘制幂函数的图像(1)教师带领学生绘制y = 2x^2的图像,并让学生观察和分析:图像是开口朝上的抛物线,对称轴是y轴,图像在第一象限递增。
(2)教师带领学生绘制y = 1/3x^3的图像,并让学生观察和分析:图像是开口朝上的抛物线,对称轴是y轴,图像在第一象限递增。
(3)教师带领学生绘制y = -4x^4的图像,并让学生观察和分析:图像是开口朝下的抛物线,对称轴是y轴,图像在第一象限递减。
Step 4:幂函数的应用(1)教师出示一道实际问题:“假设一辆小汽车以恒定的速度在一条笔直的道路上行驶,车辆的里程数与行驶时间的关系可以表示为:M(t) = a * t^3,其中,M(t)表示里程数(单位:公里),t表示时间(单位:小时),a为常数。
幂函数教学设计(共7篇)
幂函数教学设计〔共7篇〕第1篇:幂函数教学设计《幂函数》教学设计一、设计构思设计理念注重开展学生的创新意识。
学生的数学学习活动不应只限于接受、记忆、模仿和练习,倡导学生积极主动探索、动手实践与相互合作交流的数学学习方式。
这种方式有助于发挥学生学习主动性,使学生的学习过程成为在教师引导下的“再创造〞过程。
我们应积极创设条件,让学生体验数学发现和创造的历程,开展他们的创新意识。
注重提高学生数学思维能力。
课堂教学是促进学生数学思维能力开展的主阵地。
问题解决是培养学生思维能力的主要途径。
所设计的问题应有利于学生主动地进行观察、实验、猜测、验证、推理与交流等教学活动。
内容的呈现应采用不同的表达方式,以满足多样化的学习需求。
伴随新的问题发现和问题解决后成功感的满足,由此刺激学生非认知深层系统的良性运行,使其产生“乐学〞的余味,学生学习的积极性与主动性在教学中便自发生成。
本节主要安排应用类比法进行探讨,加深学生对类比法的体会与应用。
注重学生多层次的开展。
在问题解决的探究过程中应表达“以人为本〞,充分表达“人人学有价值的数学,人人都能获得必需的数学〞,“不同的人在数学上得到不同的开展〞的教学理念。
有意义的数学学习必须建立在学生的主观愿望和知识经验根底之上,而学生的根底知识和学习能力是多层次的,所以设计的问题也应有层次性,使各层次学生都得到开展。
注重信息技术与数学课程的整合。
高中数学课程应尽量使用科学型计算器,各种数学教育技术平台,加强数学教学与信息技术的结合,鼓励学生运用计算机、计算器等进行探索和发现。
另外,在数学教学中,强调数学本质的同时,也让学生通过适度的形式化,较好的理解和使用数学概念、性质。
教材分析幂函数是江苏教育出版社普通高中课程标准实验教科书数学第二章第四节的内容。
该教学内容在人教版试验修订本中已被删去。
标准将该内容重新提出,正是考虑到幂函数在实际生活的应用。
故在教学过程及后继学习过程中,应能够让学生体会其实际应用。
高中数学教案《幂函数》
教学计划:《幂函数》一、教学目标1.知识与技能:学生能够理解幂函数的概念,掌握幂函数的一般形式及其图像特征;能够识别并绘制基本幂函数的图像;理解幂函数在特定区间内的单调性、奇偶性等基本性质。
2.过程与方法:通过观察、分析幂函数的图像,引导学生发现幂函数的性质;通过小组合作、讨论交流,培养学生探究问题的能力和团队合作精神;通过实例分析,提高学生运用幂函数解决实际问题的能力。
3.情感态度与价值观:激发学生对数学的兴趣和好奇心,培养学生的观察力和数学思维能力;通过幂函数的学习,让学生体会数学中的对称美、变化美,增强对数学美的感受力;培养学生的严谨治学态度和科学探索精神。
二、教学重点和难点●教学重点:幂函数的概念、一般形式及其图像特征;幂函数的基本性质(如单调性、奇偶性)及其判断方法。
●教学难点:理解幂函数图像与性质之间的关系,能够准确判断幂函数在特定区间内的性质;运用幂函数性质解决实际问题。
三、教学过程1. 引入新课(约5分钟)●情境创设:通过生活中的实例(如细胞分裂、面积与边长的关系等)引出幂的概念,进而引出幂函数的概念。
●问题导入:提出“这些关系能否用函数来表示?它们具有怎样的图像特征?”等问题,激发学生的好奇心和探究欲。
●明确目标:介绍本节课的学习目标,即掌握幂函数的概念、图像特征及基本性质。
2. 讲授新知(约15分钟)●定义讲解:详细讲解幂函数的概念和一般形式,强调底数为常数且不为0,指数为自变量。
●图像特征:利用多媒体展示基本幂函数(如y=x, y=x², y=x³, y=√x, y=1/x等)的图像,引导学生观察并总结它们的共同特征和不同点。
●性质阐述:结合图像,阐述幂函数在特定区间内的单调性、奇偶性等基本性质,并给出判断方法。
3. 观察探究(约10分钟)●图像分析:引导学生分组观察并分析更多幂函数的图像,记录它们的特征,并尝试从图像中判断幂函数的性质。
●小组讨论:组织学生进行小组讨论,分享各自观察到的图像特征和判断结果,相互纠正错误,共同探究幂函数性质的图像表示方法。
幂函数教学设计(优秀5篇)
讲授新课前,做一份完美的教案,能够更大程度的调动学生在上课时的积极性。
白话文为大家精心整理了幂函数教学设计(优秀5篇),希望能够帮助到大家。
幂函数教学设计篇一1、总体设计说明幂函数是函数教学的最后一个函数,在通过学习了指数函数与对数函数之后,同学们已经基本掌握了研究函数的一般方法,因此幂函数是交给学生自主研究的一个重要的契机。
函数的学习,目的在于通过对几个基本初等函数的研究让学生掌握研究一个陌生函数的方法。
基于以上认识,确定本节课的教学目标如下(1)引导学生从具体实例中概括典型特征,形成幂函数的概念,并用数学符号表示。
(2)运用数学结合的思想,让学生经历从特殊到一般,具体到抽象的研究过程,运动研究函数的一般方法,掌握幂函数的图像特征与性质。
(3)能够利用幂函数的性质比较两个数的大小教学重点与难点如下教学重点:通过让学生经历几个特殊幂函数的研究过程,抽象概括幂函数的图像与性质教学难点:根据具体的幂函数的图像与性质归纳出一般幂函数的图像与性质本节课的教学采用开放式的自主学习方式,通过引导学生对几个具体的幂函数的研究让学生归纳出一般幂函数的图像与性质。
本节课的教学过程分为三个阶段:一是概念建构;二是实验探究;三是性质应用2、教学过程剖析2.1创设情境建构概念问题1 (1)正方形的边长a与面积S之间是函数关系吗?(2)正方体的边长a与体积V之间是函数关系吗?【设计意图】从实际的问题引入,让学生感受幂函数与实际的联系,初步感受幂函数学生找到两个变量之间的函数关系,并给出函数的解析式:和。
师:我们把形如的函数称为幂函数。
直接给出定义,这里其实可以让学生再举几个类似的函数的例子,通过多个实例再让学生抽象幂函数的定义会更好。
师:我们研究问题一般是从特殊到一般,具体到抽象的一个过程,因此我们可以先研究几个特殊的幂函数,比如最特殊,图像长什么样子?生:是一条直线。
师:你确定是一条直线吗?生:是一条直线去掉一个点师:为什么?生:定义域中x不能取到0。
2.3.1幂函数公开课教学设计
§2.3.1幂函数学习目标1、 了解幂函数的概念,知道幂函数的解析式,会用待定系数法求幂函数的解析式;2、 能回忆出:21,1,x y xx y x y ====-的图像,会用描点法作出321,x y x x y ===的图像;3、 通过具体实例,结合5个具体幂函数的图像,能观察并理解这些函数的变化规律。
4、 通过本节课的学习,进一步培养和训练学生数形结合等数学思想方法,提升思考问题、探究问题和反思总结的能力,发展学生的逻辑推理和直观想象的数学核心素养。
学习重难点重点:幂函数的概念、图像、和简单性质 难点:幂函数的图像性质 学习过程课堂活动一:自主学习1、 回忆并作出下列函数的图象.(1)x y = (2)2x y = (3)1-x y =2.函数x y =的定义域为 ;函数3x y =的定义域为 ;请用:列表—描点—连线法画出这两个函数的图像. 列表:描点连线:3、指数函数的解析式为,自变量x在位置,其定义域为。
课堂活动二:合作学习探究一幂函数的概念问题1 :写出下列y关于x的函数解析式:①正方形边长x、面积y;②正方体棱长x、体积y;③正方形面积x、边长y;④某人骑车x秒内匀速前进了1m,骑车速度为y;⑤一物体位移y与时间x,速度1m/s;思考:问题1中的函数是否为指数函数?其函数解析式有什么共同特征?(思考讨论)幂函数的定义形如 的函数称为幂函数,其中x 是 ,α是想一想:下列函数是幂函数吗?(1)y x = (2) y = (3)1y x -= (4)3y = (5)23y x =(6)21y x=(7) 2(2)y x =-(8)12y x = (9)3y x = (10)y x π= 练一练:1 、已知幂函数)(x f y =的图象过点(2,8),则其解析式为 。
2、若函数221(2)m m y m m x+-=+为幂函数,则m 的值为 。
变式:m 为何值时,()f x 是:(1)正比例函数,;(2)反比例函数;(3)二次函数.探究二 幂函数图象与性质y x =1y x -=2y x =12y x =3y x ==图象的基本特征:3.根据上图,完成下列表格y xα通过上图或上表,你能总结归纳出幂函数有哪些性质?1、2、3、…提升感悟:1、本节课从显性知识层面你学到了什么?2、本节课从隐性知识层面(思想方法、能力、素养等)你学到了什么?课后巩固练习1.在函数21y x =,33y x =,22y x x =+,1y x -=,0y x =中,幂函数有( )A .1个B .2个C .3个D .4个 2、下列命题中正确的是A .当0=α时函数αx y =的图象是一条直线 B .幂函数的图象都经过(0,0)和(1,1)点C .若幂函数αx y =是奇函数,则αx y =是定义域上的增函数 D .幂函数的图象不可能出现在第四象限*3、函数34x y =的图象是( )A .B .C .D .4、幂函数)(x f 的图象过点(4,21),那么)8(f 的值为 ( ) A.62 B.64 C.42 D. 641*5、函数1-=x y 在区间]2,21[上的最大值是______________**6、已知)8()232121++<a a (,则a 的取值范围是_______________**7、已知幂函数)(x f 的图象过点(3,27),求证:)(x f 在R 上为奇函数且为增函数.。
2024年《幂函数》教案
《幂函数》教案《幂函数》教案1一、教材分析幂函数是学生在系统学习了指数函数、对数函数之后研究的又一类基本初等函数。
是对函数概念及性质的应用,能进一步培养利用函数的性质(定义域、值域、图像、奇偶性、单调性)研究一个函数的意识。
因而本节课更是一个对学生研究函数的方法和能力的综合提升。
从概念到图象( ),利用这五个函数的图象探究其定义域、值域、奇偶性、单调性、公共点,概括、归纳幂函数的性质,培养学生从特殊到一般再到特殊的一般认知规律。
从教材的整体安排看,学习了解幂函数是为了让学生进一步获得比较系统的函数知识和研究函数的方法,以便能将该方法迁移到对其他函数的研究。
二、教学目标分析依据课程标准,结合学生的认知发展水平和心理特征,确定本节课的教学目标如下:[知识与技能] 使学生了解幂函数的定义,会画常见幂函数的图象,掌握幂函数的图象和性质,初步学会运用幂函数解决问题,进一步体会数形结合的思想。
[过程与方法] 引入、剖析、定义幂函数的过程,启动观察、分析、抽象概括等思维活动,培养学生的思维能力,体会数学概念的学习方法;通过运用多媒体的教学手段,引领学生主动探索幂函数性质,体会学习数学规律的方法,体验成功的乐趣;对幂函数的性质归纳、总结时培养学生抽象概括和识图能力;运用性质解决问题时,进一步强化数形结合思想。
[情感、态度与价值观] 通过生活实例引出幂函数概念,使学生体会生活中处处有数学,激发学生的学习兴趣。
通过本节课的学习,使学生进一步加深研究函数的规律和方法;提高学生的学习能力;养成积极主动,勇于探索,不断创新的学习习惯和品质;树立学科学,爱科学,用科学的精神。
三、重、难点分析[教学重点](1)幂函数的定义与性质;(2)指数α的变化对幂函数y=xα(α∈R)的影响。
从知识体系看,前面有指数函数与对数函数的学习,后面有其他函数的研究,本节课的学习具有承上启下的作用;就知识特点而言,蕴涵丰富的数学思想方法;就能力培养来说,通过学生对幂函数性质的归纳,可培养学生类比、归纳概括能力,运用数学语言交流表达的能力。
高中数学幂函数公开课教案
高中数学幂函数公开课教案(总13页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--高中数学幂函数公开课教案高中数学幂函数公开课教案教学目标:知识与技能:通过具体实例了解幂函数的图象和性质,并能进行简单的应用。
过程与方法:能够类比研究一般函数、指数函数的过程与方法,来研究幂函数的图象和性质。
情感、态度、价值观:体会幂函数的变化规律及蕴含其中的对称性。
教学重点:从五个具体幂函数中认识幂函数的一些性质。
教学难点:画五个具体幂函数的图象并由图象概括其性质,体会图象的变化规律。
教学过程:一.温故知新复习指数函数、对数函数的定义形如y ax(a0,a1)的函数称指数函数;形如y logax(a0,a1)的函数称指数函数。
提问:之前还学过哪些函数?生答:一次函数、二次函数、反比例函数、正比例函数。
将这些函数的特殊形式写出:y x,y x,y x提问:这些是指数函数吗?若不是说出它们与指数函数的相同点与不同点。
生答:相同点:幂的形式。
不同点:自变量x的位置。
引出上述三个函数的一般形式y x,从而引出课题-------幂函数二.幂函数定义1.幂函数的定义:一般地,形如y x(R)的函数叫称为幂函数(powerfunction),其中x是自变量,是常数。
概念辨析:在下列函数中哪些是幂函数?32(1)y2x(2)y x x(3)y(x2)(4)y2114x同桌讨论,给出观点例1:已知幂函数y=f(x)的图像过点(4,2),试求出这个函数的解析式。
1解:设y x,又过(4,2),所以42y x22 1三.探究幂函数图象与性质可通过研究几个常见幂函数的图象与性质------在同一坐标系中画出y x,y x,y x,y x,y x函数的图象,然后观察图象,归纳特征。
学生活动:在事先发给他们的作图纸上通过描点法画图。
教师巡视并辅导。
师生一起校对所画图象的正确性,并根据图象编成幂函数操,(帮助学生记图的同时,也提高学生学习的兴趣)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《幂函数》教学设计
授课班级:高一(8)班
一、教学目标
1.了解幂函数的概念,会求幂函数的解析式。
2.结合幂函数y x =,2
y x =,3
y x = ,1
y x
= ,1
2y x =的图像,掌握它们的性
质。
3.能利用幂函数的单调性比较指数幂的大小。
4.结合幂函数的图像,培养直观想象的数学素养。
5.借助幂函数的性质,培养逻辑推理的数学素养。
二、教学重点:常见幂函数的图像与性质。
教学难点:幂函数的单调性及比较两个幂值的大小。
三、教学方法:启发式、探究式教学法 四、教学辅助:多媒体课件、几何画板 五、教学过程
(一)复习回顾(课前准备)
1.证明:函数()f x =[0,)+∞上是增函数.
2.证明:函数3()f x x =在[0,)+∞上是增函数. (二)创设情景,引入新课
请同学们观察以下几个具体问题,分析归纳这些问题中的函数有什么共同特征? 问题1:如果张红购买了每千克1元的蔬菜x 千克,那么她需要支付y = 元; 问题2:如果正方形的边长为x ,那么正方形的面积y = ; 问题3:如果立方体的边长为x ,那么立方体的体积y = ;
问题4:如果一个正方形场地的面积为x ,那么这个正方形的边长y = ; 问题5:如果某人x s 内骑车行进了1km ,那么他骑车的平均速度
y = /km s 。
(三)概念形成
1、幂函数的概念
幂函数的定义:一般地,函数y x α=叫做幂函数,其中x 为自变量,α是常数。
思考:判断一个函数是幂函数的依据是什么? 答:底数是自变量x 、指数是常数、系数是1。
2.实践理解:
例1:下列函数为幂函数的是( ) A .42y x = B .321y x =- C .2
y x =
D .2y x =
练习:(1) 已知22
()(1)m f x m x
+=+是幂函数,则m =
(2)已知幂函数()y f x =的图象过点,求这个函数的解析式。
(四)常见幂函数的图像与性质
请学生在坐标系内画出下列几个熟悉的幂函数:y x =、2y x =、1y x -=的图象。
对于3y x =、12
y x =这两个函数,教师在课前让学生证明他们的单调性,课堂上借助计算机《几何画板》软件,演示它们的图象。
合作探究:观察函数y x =、2
y x =、1
y x -=、3
y x =、12
y x =的图象,将发现的结论填入表格内。
师生共研:
思考2:根据上表内容并结合图象,试总结函数y x =、2y x =、1y x -=、3y x =、
12
y x =的共同性质;
思考3:当α为任意常数时,幂函数()f x x α=的图象在第一象限有何特征? 牛刀小试:试作出幂函数2y x -=的图像; (五)例题讲解
例2:若四个幂函数a y x =,b y x =,c y x =在同一坐标系中的图像如图,则,,a b c 的大小关系是( )
A .c b a <<
B .a b c <<
C .b c a <<
D .c a b <<
例3:利用幂函数的性质,比较下列各题中两个幂的值的大小: (1)351.6与35
1.5; (2) 1.30.7与 1.30.6; (3)23
5.3-
与23
3.5-
; (4)0.30.15-与0.30.18-.
例4:若33(1)(32)a a +<-,则a 的取值范围是 思考:(1)若1
12
2
(1)(32)a a +<-,则a 的取值范围是 (2)若22(1)(32)a a +<-,则a 的取值范围是
(3)若点2)A 在幂函数()f x 的图象上,点1
(2,)4
B -在幂函数()g x 的图象
上,
①求(),()f x g x 的解析式;
②求当x 为何值时:(i)()()f x g x >;(ii )()()f x g x =;(iii)()()f x g x <. (六)课堂小结
1.理解1个概念——幂函数的概念
2.掌握1个规律——幂函数图象的变化规律 3.会用3个性质——幂函数的性质 (七)布置作业:优化设计。