(完整word版)比例知识点归纳
(完整word版)小数、分数、百分数和比知识点归纳,推荐文档
知识要点归总——总复习数的认识(二)小数、分数、百分数和比知识点一小数1.读法:读小数的时候,整数部分按照整数的读法来读(整数部分是0的读作“零”),小数点读作:“点”,小数部分从高位到低位顺次读出每个数位上的数字。
2.写法:写小数的时候,整数部分按照整数的写法来写(整数部分是零的写作“0”,小数点点在个位的右下角,小数部分从高位到低位顺次写出每一个数位上的数字。
3.小数的大小比较:比较两个小数的大小,先看它们的整数部分,整数部分大的那个数就大;整数部分相同的,十分位上的数大的那个数就大;十分位上的数相同的,百分位上的数大的那个数就大……4.求小数的近似数:根据要求保留小数位数,确定好从哪一位起按照“四舍五入”的方法省略尾数。
5.小数化成分数的方法:先把小数改写成分母是10,100,1000…的分数,再约分,就化成了分数。
6.小数化成百分数的方法:先将小数点向右移动两位,再在后面添上“%”,就化成了百分数。
7.小数的分类:(1)按整数部分分类:分为“纯小数”和“带小数”两种。
“纯小数”是指整数部分为“0”的小数。
例如:0.8,0.207,0.0012等。
“带小数”是指整数部分不为“0”的小数。
例如:2.3,12.608,300.168等。
一般说来,纯小数都小于1,而带小数都大于1或等于1。
(2)按小数部分分类:分为“有限小数”和“无限小数”两种。
小数部分的位数有限的小数,叫做有限小数;小数部分的位数是无限的小数,叫做无限小数。
(3)无限小数的分类:在无限小数中又分为无限循环不数和无限不循环小数。
无限循环小数是指一个无限小数,如果从小数部分的某一位起,都是由一个或几个数字依照一定的顺序连续不断地重复出现,这样的小数叫做无限循环小数,简称“循环小数”。
无限不循环小数是指一个小数的数位无限多,而且小数部分各数位上的数字是不循环的,这样的小数叫做无限不循环小数。
在小学数学中,圆周率(π)3.1415926…便是一个无限不循环小数(无理数)。
六年级下册数学小升初数学知识点精讲标准课件比例尺的应用人教版(21张)标准课件
40000×
=5(厘米)
实际距离×比例尺=图上距离 你能在方格纸上画出教室的平面图吗?(小方格边长都是1厘米,请把平面图涂上颜色)
分析:已知比例尺1:6000000和图上距离24厘米,求实际距离 答:南京到北京的实际距离大约是1440千米。
图上距离︰实际距离=比例尺
在比例尺1:6000000的地图上,量得重庆到北京的图上距离是24厘米,重庆到北京的实际距离是多少?
40000×
=5(厘米)
图上距离÷比例尺=实际距离
800× = 8 (厘米)
8米=800厘米 6米=600厘米
实际距离×比例尺=图上距离 分析:已知比例尺1:6000000和图上距离24厘米,求实际距离
答:两地的实际距离是500km。 在一幅地图上量得AB两城市之间的距离是8厘米,而AB两城市之间的实际距离是400千米,这幅地图的比例尺是多少呢?
公式: 图上距离÷比例尺=实际距离
24÷
=144000000(厘米)
144000000厘米=1440千米 答:南京到北京的实际距离大约是1440千米。
=
题3 在一幅地图上量得AB两城光市之明间小的距学离到是8少厘米年,宫而A的B两距城离市之为间4的0实0际米距离,是在400比千例米,尺这1幅:地图8的0比0例0尺的是多少呢?
1厘米
÷
100厘米
1:100
解: 1厘米表示1米,比例尺是1:100
8米=800厘米 6米=600厘米
800×
= 8 (厘米)
600×
= 6 (厘米)
题2 在比例尺1:6000000的地图上,量得重庆到北京的图上
距离是24厘米,重庆到北京的实际距离是多少?
分析:已知比例尺1:6000000和图上距离24厘米,求实际距离
反比例函数知识点归纳(重点)
A.第一、二、三象限
B.第一、二、四象限
C.第一、三、四象限
D.第二、三、四象限
〔6〕函数
和
〔k≠0〕,它们在同一坐标系内的图象大致是〔 〕.
-
. word.zl-
..
-
A.
B.
C.
D.
3.函数的增减性
〔1〕在反比例函数
〔 〕.
A.正数
B.负数
的图象上有两点 C.非正数
,
,且
D.非负数
,那么
的值为
PQC 的面积为 .
图1
图2
5.说明:
〔1〕双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个
分支分别讨论,不能一概而论.
〔2〕直线
与双曲线
的关系:
当
时,两图象没有交点;当
时,两图象必有两个交点,且这两个交点关于原点成中心对称.
〔3〕反比例函数与一次函数的联系.
〔四〕实际问题与反比例函数
1.求函数解析式的方法:
y 随 x 的增大而
〔填“增大〞或“减小〞〕.
注意,〔3〕中只有②是符合题意的,而③是在“每一个象限内〞 y 随 x 的增大而减小.
4.解析式确实定
〔1〕假设 与 成反比例, 与 成正比例,那么 y 是 z 的〔 〕.
A.正比例函数
B.反比例函数
C.一次函数
D.不能确定
〔2〕假设正比例函数 y=2x 与反比例函数 们的另一个交点为________.
-
. word.zl-
..
-
4.k 的几何意义
如图1,设点 P〔a,b〕是双曲线
上任意一点,作 PA⊥x 轴于 A 点,PB⊥y 轴于 B 点,那么矩形 PBOA 的面
小学数学知识点大全(三)比和比例word格式样版
小学数学知识点大全(三)比和比例word格式样版一、比的认识1、生活中两个量之间存在倍比关系。
2、两个数相除,又叫作这个两个数的比。
3、读写法:在两个数的比中,中间的是比号,比号前面的数是比的前项,比号后面的数是比的后项。
比的前项、后项可以是分数、小数、整数或具体的数量,2:3 , 0.3:0.2, 30米:20千米都是比.连比:三个或三个以上的数的关系也可以用比来表示,例如:一个长方体的长、宽、高的比是3:4:5,这样的比叫作“连比”。
4、以下三种“比”的不同:(1)体育比赛中的2比0,这里的“比”只是记录比赛双方得分的一种形式,表示一方得2分,另一方得0分。
(2)20比15多5。
这里的“比”是一种加减关系。
男生人数4人,女生人数是3人,男生人数与女生人数的比是4:3,这里的比就是我们数学中要学的比,表示的是男生与女生人数的倍比关系。
它表示男生人数是(接图)(3)甘蔗汁与水体积比是1:2 水与甘蔗汁的体积比是2:1。
(4)“路程”与“时间”的比的“比值”表示的是“速度”。
比值越大,速度越快,比值越小,速度越慢。
“总价”与“数量”的比的“比值”表示的是“单价”。
比值越大,商品越贵,比值越小,商品越便宜。
7、“比、分数、除法”的关系比的前项相当于分子,被除数,比号相当于分数线,除号,比的后项相当于分母,除数。
比值相当于分数值、商。
分子前项被除数分数线比号除号分母后项除数(不0)分数的值比值商8、(1)比的基本性质:比的前项或后项同时乘或除以相同的数(0除外),比值大小不变,这叫作“比的基本性质”。
(比)(2)商不变规律:被除数与除数同时乘或除以相同的数(0除外),比值大小不变,这叫作“商不变规律”。
(除法)(3)分数的基本性质:分子与分母同时乘或除以相同的数(0除外),分数的大小不变,这叫作“分数的基本性质”。
(分数)9、把一个比化成最简整数比的过程叫“化简比”或“比的化简”。
比的化简的结果叫“最简比”用a:b形式表示。
(完整word版)六年级数学总复习知识点梳理
第一部分数与代数(一)数的认识知识点一:数的意义和分类自然数、整数、正数和负数、分数、百分数、小数知识点二:计数单位和数位1、计数单位:个、十、百……以及十分之一、百分之一、千分之一……都是计数单位。
“一”是基本单位,其他单位又叫做辅助单位。
2、十进制计数法3、数位:在计数时,计数单位要按照一定的顺序排列起来,它们所在的位置叫做数位。
4、数位顺序表知识点三:数的大小比较知识点四:数的性质1、分数的基本性质:分数的分子和分母同时乘或者除以相同的数(0除外),分数的大小不变。
2、小数的基本性质:小数的末尾添上0或者去掉0,小数的大小不变。
3、小数点位置移动引起小数大小变化的规律知识点五:因数、倍数、质数、合数1、因数和倍数已知a、b、c均为正整数,且a×b=c,那么c就是a和b的倍数,a和b就是c的因数。
倍数和因数是相互依存的。
一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它的本身;一个数的倍数的个数是无限的,其中最小的倍数是它本身,没有最大的倍数。
一个数既是它自身的因数,又是它自身的倍数。
2、最大公因数和最小公倍数最大公因数:几个数公有的因数,叫做这几个数的公因数,其中最大的一个,叫做这几个数的最大公因数。
最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数。
3、质数和合数质数:一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数)。
最小的质数是2。
合数:一个数,如果除了1和它本身两个因数外还有别的因数,这样的数叫做合数。
最小的合数是4。
1既不是质数,也不是合数。
(二)数的运算知识点一:四则运算的意义1、加法的意义:把两个数合并成一个数的运算。
2、减法的意义:已知两个数的和与其中的一个加数,求另一个加数的运算。
3、整数乘法的意义:求几个相同加数的和的简便运算。
4、小数乘法的意义:小数乘整数与整数乘法的意义相同,也是求几个相同加数的和的简便运算;一个数乘小数求这个数的十分之几、百分之几……是多少。
(完整word版)初中数学知识点归纳总结(精华版)
第一章 有理数考点一、实数的概念及分类 (3分)1、实数的分类正有理数有理数 零 有限小数和无限循环小数实数 负有理数正无理数无理数 无限不循环小数负无理数2、无理数:32,7,3π+8,sin60o 。
第二章 整式的加减考点一、整式的有关概念 (3分)1、单项式只含有数字与字母的积的代数式叫做单项式.注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如b a 2314-,这种表示就是错误的,应写成b a 2313-。
一个单项式中,所有字母的指数的和叫做这个单项式的次数。
如c b a 235-是6次单项式。
考点二、多项式 (11分)1、多项式几个单项式的和叫做多项式.其中每个单项式叫做这个多项式的项。
多项式中不含字母的项叫做常数项。
多项式中次数最高的项的次数,叫做这个多项式的次数.2、同类项所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。
几个常数项也是同类项。
第三章一元一次方程考点一、一元一次方程的概念(6分)1、一元一次方程只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程,其中方程0≠=+bax叫做一元一次方程的标准形式,a是未知数x的系数,b是常数项。
a)x为未知数,(0第四章图形的初步认识考点一、直线、射线和线段(3分)1、点和直线的位置关系有线面两种:①点在直线上,或者说直线经过这个点.②点在直线外,或者说直线不经过这个点。
2、线段的性质(1)线段公理:所有连接两点的线中,线段最短。
也可简单说成:两点之间线段最短。
(2)连接两点的线段的长度,叫做这两点的距离。
(3)线段的中点到两端点的距离相等。
(4)线段的大小关系和它们的长度的大小关系是一致的。
3、线段垂直平分线的性质定理及逆定理垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线。
线段垂直平分线的性质定理:线段垂直平分线上的点和这条线段两个端点的距离相等。
逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
小学六年级下册数学讲义第四章 比例 人教新课标版(含解析)
人教版小学六年级数学下册同步复习与测试讲义第四章比例【知识点归纳总结】故选:B.点评:本题主要考查比例的意义,注意判断能否组成比例可以用求比值的方法,求出比值,比值相等两个比就能组成比例.例2:在比例3:4=9:12中,若第一个比的后项加上8,要使比例仍然成立,则第二个比的后项应加上()A、8B、12C、24D、36分析:在比例3:4=9:12中,若第一个比的后项加上8,由4变成12,这样两内项的积就成了108,根据比例的性质,两外项的积也得是108,再用108除以前一个比的前项3即得后一个比的后项,进而求出第二个比的后项应加上几即可.解:比例3:4=9:12中,第一个比的后项加上8,由4变成12,则两内项的积:12×9=108,两外项的积也得是108,第二个比的后项应是:108÷3=36,第二个比的后项应加上:36-12=24;故选:C.点评:此题主要考查比例的基本性质:在比例里,两内项的积等于两外项的积.点评:此题属于辨识两种相关联的量成什么比例,就看这两种量是对应的比值一定,还是对应的乘积一定,再做出判断.例2:长方形的面积一定,长和宽()A、成正比例B、成反比例C、不成比例分析:根据正比例的意义x:y=k(一定)和反比例的意义xy=k(一定),因为长×宽=长方形的面积(一定),符合反比例的意义.解:根据长方形的面积公式,长×宽=长方形的面积(一定),符合反比例的意义xy=k(一定),所以长方形的面积一定,长和宽成反比例.故选:B.点评:此题主要考查正、反比例的意义,以及长方形的面积公式.3. 解比例根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个比例中的另外一个未知项.求比例中的未知项,叫做解比例.一般来说,求比例的未知项有以下两种情况:例2:如果比例的两个外项互为倒数,那么比例的两个内项()A、成反比例B、成正比例C、不成比例分析:根据互为倒数的定义和比例的两内项之积等于两外项之积,可得比例的两个内项之积等于1,再根据成反比例的定义即可求解.解:因为比例的两个外项互为倒数,那么比例的两个内项之积=1(为恒指),则比例的两个内项成反比例.故选:A.点评:本题考查了倒数的定义和成反比例的条件,两种相关联的量,一种量变化,另一种量也随着变化,这两种量中相对应的两个数的积一定.这两种量叫做成反比例的量.它们的关系叫做反比例关系.4. 比例的应用根据问题中的不变量找出两种相关联的量,并判断这两种相关联的量成什么比例关系,根据正、5. 比的应用1.按比例分配问题的解题方法:(1)把比看作分得的份数,用先求出每一份的方法来解答.解题步骤:a.求出总份数;b.求出每一份是多少;c.求出各部分相应的具体数量.(2)转化成份数乘法来解答.解题步骤:a.先根据比求出总份数;b.再求出各部分量占总量的几分之几;c.求出各部分的数量.2.按比例分配问题常用解题方法的应用:(1)已知一个数量的各部分的比和其中某一部分的量,求另外几个部分量;(2)已知两个量或几个量的比和其中两个量的差,求总量.【经典例题】例1:一个三角形与一个平行四边形的面积和底部都相等,这个三角形与平行四边形高的比是()A、2:1B、1:2C、1:1D、3:1分析:根据三角形和平行四边形的面积公式可得:三角形的高=面积×2÷底;平行四边形的高=面积÷底,由此即可进行比较,解答问题.解:三角形的高=面积×2÷底,平行四边形的高=面积÷底,当三角形和平行四边形的面积和底分别相等时,三角形的高是平行四边形的高的2倍.所以这个三角形与平行四边形高的比是2:1.故选:A.点评:考查了平行四边形的面积和三角形的面积公式,解题的关键是知道底相等、面积也相等的三角形和平行四边形中三角形的高是平行四边形的高的2倍.例2:甲、乙两人各走一段路,他们的速度比是3:4,路程比是8:3,那么他们所需时间比是()答:甲乙所需的时间比是32:9.故选:B.点评:关键是把速度和路程设出来,然后根据时间=路程÷速度,先求得各自用的时间,再写出所用的时间比并化简比.6.辨识成正比例的量与成反比例的量1.成正比例的量:(1)“变化方向”相同,一种量扩大或缩小,另一种量也扩大或缩小.2.成反比例的量:(1)“变化方向”相反,一种量扩大或缩小,另一种量反而缩小或扩大.(2)相对应的两个数的乘积一定.(3)关系式:xy=k(一定).3.判断方法:关键是看着两种相关量中相对应的两个数是商一定还是积一定,如果商一定,所以xy=1,是乘积一定,x和y成反比例;故选:D.点评:此题属于根据正、反比例的意义,辨识两种相关联的量是否成反比例,就看这两种量是否是对应的乘积一定,再做出选择.【同步测试】单元同步测试题一.选择题(共8小题)1.当:4=x:5时,x的值是()A.B.C.D.2.根据6×7=2×21,写出下面的比例中正确的一组是()A.6:7=2:24B.6:2=7:21C.6:2=21:7 3.如表,如果x和y成反比例,那么“?”处应填()x3?y56A.2B.3.6C.2.5D.104.语文书和数学书共40本,语文书的本数和数学书的本数的比可能是()A.4:3B.4:5C.5:3D.无法确定5.煤的总量一定,每天烧煤量和烧煤的天数()关系.A.成正比例B.成反比例C.不成比例D.无法判断6.A=,如果B一定,A和C这两种量成()关系.A.正比例B.反比例C.不成比例D.按比例分配7.一个三角形三个内角度数的比是1:3:4,这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形8.一个长4cm,宽2cm的长方形按4:1放大,得到的图形的面积是()cm2.A.32B.72C.128二.填空题(共8小题)9.甲数与乙数的比例为5:3,甲数为60,乙数为.10.解比例:3.5:x=0.5:20%则x=11.表中x和y是两个成反比例的量,请将表格填写完整.x36120.18y10154012.一个最简分数的分母减去一个数,分子加上同一个数,所得的新分数可以约简为,这个数是.13.按照如图的配方,做5人份炒面,需要购买克面.14.利用正比例图象解决问题时,想找出已知量所在的数轴及位置,然后在另一数轴上找出已知量相的数值.15.一个比例中,两个内项的积是1,其中一个外项是1.25,另一个外项是.16.在3,15,12,5,9,30,20中,把可以组成的比例写出两组、.三.判断题(共5小题)17.比例2:a=b:3,那么a与b的积是6.(判断对错)18.甲数的与乙数的相等,且甲、乙均不为零,则甲数大于乙数..(判断对错)19.a:b=2:4,则b是a的2倍.(判断对错)20.小明上学,已经走的路程与剩下的路程,是两个相关联的量.(判断对错)21.如果小华与小红体重的比是7:8,那么小华就比小红轻.(判断对错)四.计算题(共1小题)22.解比例.=4:2.4x:=15:五.应用题(共6小题)23.一种酒精溶液,水和酒精的比是4:1.如果要调3.2升的酒精溶液,水和酒精分别需要多少毫升?24.学校体育组购进12根大绳,准备按年级学生人数分配给参加“蓓蕾计划”的一、二、三年级学生.一年级45人,二年级75人,三年级60人,二年级能分到多少根大绳?25.修路队修一段铁路,修了一天后,已修路程和未修路程的比是1:4,第二天修了3600米,正好修完这条铁路的一半,这段铁路长多少米?26.甜甜学习做面包,她搜索得知,做面包需要的面粉、全麦、黄油可以按10:4:1配制.如果三样食材配成后共重3000克,其中含有全麦多少克?如果这三样食材各有200克制作这种面包,当面粉全部用完时,黄油还剩多少克?27.六年级一、二、三3个班献爱心捐书,一班捐的本数是三个班总数的,二、三两个班捐的本数比是4:3.已知三个班捐书总数为700本.求三班捐了多少本?28.解决问题.参考答案与试题解析一.选择题(共8小题)1.【分析】根据比例的性质,把比例先改写成两个内项的积等于两个外项的积的形式,再进一步求出比例中的未知项,再进行选择.【解答】解::4=x:5,4x=×5,4x=3,x=.故选:B.【点评】此题考查比例性质的运用即解比例.2.【分析】根据比例的性质:两内项的积等于两外项的积,据此逐项写出等式,与等式6×7=2×21比较得解.【解答】解:A、因为6:7=2:24,6×24不等于7×2,所以选项A不正确.B、因为6:2=7:21,6×21不等于7×2,所以选项B不正确.C、因为6:2=21:7,所以6×7=2×21,所以选项C正确.由此得出C是正确的.故选:C.【点评】此题考查比例性质的灵活运用,即:两内项的积等于两外项的积.3.【分析】如果x和y成反比例,则x和y的乘积一定,由此列出比例解答即可.【解答】解:6x=3×56x=15x=2.5答:如果x和y成反比例,那么“?”处填2.5.故选:C.【点评】此题属于根据反比例的意义解题,如果两种相关联的量成反比例,则对应的乘积一定;再根据乘积一定列出比例,求得未知数的数值即可.4.【分析】要求这两种书的本数比是几比几,因为数的本数应该为整数,所以只要40能整除比的前项和后项份数的和即可.【解答】解:A、因为4+3=7,7不能整除40,所以这两种书的本数比不可能是4:3;B、因为4+5=9,9不能整除40,所以这两种书的本数比不可能是4:5;C、5+3=8,40能被8整除,所以这两种书的本数比可能是5:3;故选:C.【点评】此题考查了学生对比的应用以及分析判断的能力.5.【分析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.【解答】解:因为:每天烧煤量×烧煤天数=煤的总量(一定),是乘积一定,所以每天烧煤量和烧煤天数成反比例;故选:B.【点评】此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.6.【分析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.【解答】解:A=,如果B一定,即AC=B(一定),是乘积一定,则A和C成反比例;故选:B.【点评】此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.7.【分析】根据题意可得:三角形的三个内角分别占三角形内角和的、和,三角形的内角和是180度,根据一个数乘分数的意义分别求出三个角,进而进行判断即可.【解答】解:1+3+4=8180°×=22.5°180°×=67.5°180°×=90°所以该三角形是直角三角形.故选:B.【点评】解答此题的关键是先根据一个数乘分数的意义分别求出三个角,进而根据三角形的分类,判断即可.8.【分析】先根据按4:1放大,放大后长和宽是原来的4倍,求出放大后的长和宽,再求出面积.【解答】解:放大后的长:4×4=16(厘米);放大后的宽:2×4=8(厘米);面积:16×8=128(平方厘米);故选:C.【点评】先根据比例求出放大后的长和宽,再求出面积.二.填空题(共8小题)9.【分析】利用比例的基本性质即可求解,即两内项之积等于两外项之积.【解答】解:设乙数为x,则5:3=60:x,5x=180,x=36.故答案为:36.【点评】此题主要考查比例的基本性质.10.【分析】根据比例的基本性质,原式化成0.5x=3.5×20%,再依据等式的性质,方程两边同时除以0.5求解.【解答】解:3.5:x=0.5:20%0.5x=3.5×20%0.5x÷0.5=0.7÷0.5x=1.4;故答案为:1.4.【点评】本题主要考查学生依据等式的性质以及比例基本性质解方程的能力,解方程时注意对齐等号.11.【分析】根据x和y两个量成反比例关系,可知x和y这两个量对应的乘积一定,进而根据乘积一定得解.【解答】解:12×15=180180÷36=5180÷10=18180÷0.18=1000180÷40=4.5如图:x36180120.18 4.5y51015100040故答案为:5,180,1000,4.5.【点评】此题属于考查正、反比例的意义,如果两种相关联的量成反比例关系,那么它们对应的乘积一定相等.12.【分析】若设这个数为x,则的分母减去一个数,分子加上同一个数后,新分数的分子与分母的比是,据此就可以列比例求解.【解答】解:设这个数为x,则=,5×(13+x)=3×(27﹣x),65+5x=81﹣3x,8x=16,x=2;答:这个数是2.故答案为:2.【点评】解答此题的关键是明白的分母减去一个数,分子加上同一个数后,新分数与成比例,从而问题得解.13.【分析】通过观察配方表可知,2人份炒面需要600克面粉,由此可以求出1人份炒面需要面粉多少克,再根据乘法的意义,用乘法解答即可.【解答】解:600÷2×5=300×5=1500(克)答:需要购买1500克面粉.故答案为:1500.【点评】此题考查的目的是理解比的意义,掌握比与除法之间的联系及应用.14.【分析】根据正比例的定义,以及函数图象的对应关系即可求解.【解答】解:利用正比例图象解决问题时,想找出已知量所在的数轴及位置,然后在另一数轴上找出已知量相对应的数值.故答案为:对应.【点评】考查了正比例图象,关键是熟练掌握正比例的定义,以及利用正比例图象解决问题.15.【分析】根据比例的基本性质:在比例中,两个外项的积等于两个内项的积;已知两个内项的积是1,则两个外项的积也是1;用1除以1.25,即为另一个外项.【解答】解:因为两内项之积等于两外项之积,所以另一个外项是:1÷1.25=0.8.故答案为:0.8.【点评】本题主要考查比例基本性质的应用.16.【分析】根据比例的基本性质“两外项的积等于两内项的积”,只要找出四个数中任意两个数的积等于另外两个数的积,就说明这四个数能组成比例.据此解答.【解答】解:在3,15,12,5,9,30,20中3×20=12×5所以可以组成比例:3:12=5:20、3:5=12:20.故答案为:3:12=5:20、3:5=12:20.【点评】此题考查比例的意义和比例的性质的运用:验证所给的四个数能否组成比例,可以根据比例的性质:两外项的积等于两内项的积;也可以用求比值的方法,任意两个数的比值和另外两个数的比值相等,就能组成比例,否则就不能组成比例.三.判断题(共5小题)17.【分析】根据比例的性质,两个内项之积等于两个外项之积,进行判断即可.【解答】解:2:a=b:3,ab=2×3=6;所以原题计算正确;故答案为:√.【点评】此题考查比例性质的运用.18.【分析】利用比例的性质,将两个内项积等于两个外项积先改写成比例,再进一步化简比得解.【解答】解:甲数×=乙数×,则甲数:乙数=:=24:25,因为24份的数<25份的数,所以甲数<乙数.故答案为:错误.【点评】此题考查比例的运用,关键是把两个内项积等于两个外项积先改写成比例的形式.19.【分析】在比例中,两个外项的积等于两个内项的积,据此先把a:b=2:4改写成2b=4a,再根据等式的性质,两边同除以2得到b=2a,即b是a的2倍;据此判断即可.【解答】解:a:b=2:4,即2b=4a,则b=2a,即b是a的2倍;所以原题说法正确.故答案为:√.【点评】此题考查了比例的基本性质和等式性质的运用.20.【分析】已经走的路程与剩下的路程相加是总路程,它们是加数、加数与和的关系,所以已经走的路程与剩下的路程是两个相关联的量,据此判断.【解答】解:已经走的路程与剩下的路程相加是总路程,所以已经走的路程与剩下的路程是两个相关联的量.原题说法正确.故答案为:√.【点评】此题考查了两种相关联的量,成正比例、反比例,不成比例,有三种情况.21.【分析】如果小华与小红体重的比是7:8,把小华的体重看作7份数,把小红体重看作8份数,据此解答.【解答】解:小华与小红体重的比是7:8,把小华的体重看作7份数,把小红体重看作8份数,7<8,所以小华就比小红轻;原题说法正确.故答案为:√.【点评】此题考查了比的运用,把比看作份数比来理解.四.计算题(共1小题)22.【分析】(1)根据比例的性质,两外项之积等于两内项之积,把比例转化成一般方程4x=0.2×2.4,再根据等式的性质,方程两边都除以4即可得到原比例的解.(2)根据比例的性质,两外项之积等于两内项之积,把比例转化成一般方程x=×15,再根据等式的性质,方程两边都除以即可得到原比例的解.【解答】解:(1)=4:2.44x=0.2×2.44x÷4=0.2×2.4÷4x=0.12(2)x:=15:x=×15x÷=×15÷x=8【点评】解比例时,先根据比例的性质,两外项之积等于两内项之积,把比例转化成一般方程,然后再根据解方程的方法解答.五.应用题(共6小题)23.【分析】先求出总份数,即4+1=5份,然后分别求出水和酒精各占3.2升的几分之几,最后根据分数乘法的意义解答即可.【解答】解:4+1=53.2×=2.56(升)3.2×=0.64(升)答:水需要2.56毫升;酒精需要0.64毫升.【点评】此题主要考查按比例分配应用题的特点:已知两个数的比(三个数的比),两个数的和(三个数的和),求这两个数(三个数),用按比例分配解答.24.【分析】把大绳的根数看作单位“1”,先求出总人数,再求出二年级学生人数占总人数的几分之几,然后根据一个数乘分数的意义,用乘法解答.【解答】解:45+75+60=180(人)12×=5(根)答:二年级能分到5根大绳.【点评】此题考查的目的是理解掌握按比例分配应用题的结构特征及解答规律.即先求出总份数,再求出各部分占总数的几分之几,然后根据一个数乘分数的意义解答.25.【分析】把这段铁路的总长度看作单位“1”,修了1天后,已修的占总长度的,第二天修3600米,已修的占总长度的,则3600的对应分率是(﹣),用对应量除以对应分率,就是这段铁路的总长度.【解答】解:3600÷(﹣)=3600÷=12000(米)答:这段铁路长12000米.【点评】解答此题的关键是:求出3600的对应分率,用对应量除以对应分率,就是这条段路的总长度.26.【分析】已知一种面包需要的面粉、全麦、黄油可以按10:4:1配制.又知三样食材配成后共重3000克,先求出一份是多少克,进而求出含有全麦多少克;如果这三样食材各有200克制作这种面包,先求出面粉200克对应的黄油克数,再用200克减去对应的黄油克数即可求解.【解答】解:3000×=3000×=800(克)200﹣200÷10×1=200﹣20=180(克)答:其中含有全麦800克,黄油还剩180克.【点评】此题考查的目的是掌握按比例分配应用题的结构特征和解答规律,此题关键是求出一份是多少千克.进而求出缺少和剩余的各是多少千克.27.【分析】把六年级三个班捐书的总数看作单位“1”,一班捐的本数是三个班总数的,根据一个数乘分数的意义,用乘法即可得出一班捐的本数,用总数减去一班捐的本数就是二班和三班共捐书多少本,已知二、三两个班捐的本数比是4:3,也就是三班捐书的本数占二、三班捐书本数的,根据一个数乘分数的意义,用乘法即可求得三班捐了多少本.【解答】解:700×=280(本)(700﹣280)×=420×=180(本)答:三班捐书180本.【点评】此题考查的目的是理解掌握比的意义及应用,以及比与分数之间的联系及应用.28.【分析】根据高年级和低年级所分的本数比,求出各占剩余本数的几分之几,进而根据分数乘法解决问题.【解答】解:640×=400(本)640×=240(本)答:高年级分得400本图书,低年级分得240本图书.【点评】本题考查了分数问题和按比例分配的实际问题,按比例分配的方法求出两个年级的本数,是比较难的问题.。
(完整word版)九年级数学相似三角形知识点及习题
相似三角形要点一、本章的两套定理第一套(比例的有关性质): b a n d b m c a n d b n m d c b a =++++++⇒≠+++=== :)0(等比性质 涉及概念:①第四比例项②比例中项③比的前项、后项,比的内项、外项④黄金分割等。
二、有关知识点:1.相似三角形定义: 对应角相等,对应边成比例的三角形,叫做相似三角形。
2.相似三角形的表示方法:用符号“∽”表示,读作“相似于”。
3.相似三角形的相似比: 相似三角形的对应边的比叫做相似比。
4.相似三角形的预备定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所截成的三角形与原三角形相似。
5.相似三角形的判定定理:(1)三角形相似的判定方法与全等的判定方法的联系列表如下:类型斜三角形 直角三角形 全等三角形的判定 SASSSS AAS (ASA ) HL 相似三角形的判定 两边对应成比例夹角相等 三边对应成比例 两角对应相等一条直角边与斜边对应成比例 从表中可以看出只要将全等三角形判定定理中的“对应边相等”的条件改为“对应边成比例”就可得到相似三角形的判定定理,这就是我们数学中的用类比的方法,在旧知识的基础上找出新知识并从中探究新知识掌握的方法。
6.直角三角形相似:(1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似。
(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。
7.相似三角形的性质定理:(1)相似三角形的对应角相等。
(2)相似三角形的对应边成比例。
(3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比。
(4)相似三角形的周长比等于相似比。
(5)相似三角形的面积比等于相似比的平方。
8.相似三角形的传递性 如果△ABC ∽△A 1B 1C 1,△A 1B 1C 1∽△A 2B 2C 2,那么△ABC ∽A 2B 2C 2三、注意1、相似三角形的基本定理,它是相似三角形的一个判定定理,也是后面学习的相似三角形的判定定理的基础,这个定理确定了相似三角形的两个基本图形“A ”型和“ X ”型。
正比例函数一次函数和反比例函数知识点归纳
正比例函数、一次函数和反比例函数知识点归纳正比例函数:解析式:y=kx(k为常数,k≠0) ,k叫做函数的比例系数;(注意:x的指数为1)图像:过原点的直线;必过点:(0,0)和(1,k);走向:k>o,图像过一三象限,k<0,图像过二四象限;yx倾斜度:|k|越大,倾斜度越大,也就是越靠近y轴,|k|越小,倾斜度越小,也就是越靠近x 轴;如图:x增减性:k>0,y随x的增大而增大;k<0,y随x的增大而减小;一次函数:解析式:y=kx+b(k,b为常数,k≠0),k叫做函数的比例系数,(注意:x的指数为1,b为直线与y轴交点的纵坐标) ;正比例函数是一次函数的特殊情况,即b=0时的一种情况;图像:一条直线;必过点:(0,b)(-b/k,0);走向:k>o,b>0,图像过一二三象限,k>0,b<0,图像过一三四象限;yk<o,b>0,图像过一二四象限k<o,b>0,图像过二三四象限x倾斜度:|k|x轴;如图:x增减性:k>0,y随x的增大而增大;k<0,y随x的增大而减小;平移:y=kx+b,向上平移m个单位:y=kx+b+m;向下平移n个单位:y=kx+b-n;向左平移m个单位:y=k(x+m)+b;向右平移n个单位:y=k(x-n)+b;简称:上加下减,左加右减;(注:上加下减到代数式后面,左加右减到x后面,直接与x 进行加减,与系数和指数都没关系);反比例函数:解析式:y=k/x(k为常数,k≠0)图像:双曲线(图像无限靠近坐标轴,但永不相交。
)所在象限:k>0图像经过一三象限;k<0图像经过二四象限。
ykx增减性:k>0,y随x的增大而减小;k<0,y随x的增大而增大;。
(完整版)正比例和反比例的意义知识点(可编辑修改word版)
正比例和反比例的意义知识点一:正比例和反比例的意义(1)正比例两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量变叫做成正比例的量,它们的关系叫做正比例关系。
用字母x 和y 表示两种相关联的量,用k 表示一定的量,那么正比例关系可以写成:y=k (一定)x例如,总价随着数量的变化而变化,总价和数量的比的比值(单价)是一定的,我们就说,总价和数量是成正比例的量。
工总=工效(一定)工总和工时是成正比例的量工时路程=速度(一定)所以路程与时间成正比例。
时间(2)反比例两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。
用字母x 和y 表示两种相关联的量,用k 表示一定的量,那么反比例关系可以写成:x × y = k (一定)例如,长×宽=面积(一定)长和宽是成反比例的量每本的页数×装订的本数=纸的总页数(一定)每本的页数和装订的本数是成反比例的量知识点二:正比例和反比例有什么相同点和不同点?(1)相同点:正、反比例都是研究两种相关联的量之间的关系,即一种量变化,另一种量也随着变化。
(2)不同点:正比例是两种相关联的量中相对应的两个数的比值(商)一定;反比例是两种相关联的量中相对应的两个数的积一定。
不同点知识点三:正比例和反比例的图像是一条什么线?(1)正比例关系的图象是一条过原点的直线。
(2)反比例关系的量是一条不过原点的曲线。
知识点四:正比例和反比例的判断(1)先判断两种量x 和y 是不是相关联的量,即一种量变化,另一种量也随着变化。
(2)若符合y=k (一定),则x 和y 成正比例;若符合x ×y =k (一定),则x 和y 成反x比例;否则,这两种量就不成比例关系。
【典型例题】题型一:根据图标填写信息例 1 :购买面粉的重量和钱数如下表,根据表填空。
(完整版)六年级下册数学第四单元比例知识点
人教版六年级数学下册知识点归纳整理第四单元比例1、比的意义(1)两个数相除又叫做两个数的比。
(2)“:”是比号,读作“比”。
比号前面的数叫做比的前项,比号后面的数叫做比的后项.比的前项除以后项所得的商,叫做比值。
(3)同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商。
(4)比值通常用分数表示,也可以用小数表示,有时也可能是整数。
(5)比的后项不能是零。
(6)根据分数与除法的关系,可知比的前项相当于分子,后项相当于分母,比值相当于分数值.2、比的基本性质:比的前项和后项同时乘上或者除以相同的数(0除外),比值不变,这叫做比的基本性质。
3、求比值和化简比:求比值的方法:用比的前项除以后项,它的结果是一个数值可以是整数,也可以是小数或分数。
根据比的基本性质可以把比化成最简单的整数比。
它的结果必须是一个最简比,即前、后项是互质的数。
4、按比例分配:在农业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配。
这种分配的方法通常叫做按比例分配。
方法:首先求出各部分占总量的几分之几,然后求出总数的几分之几是多少。
5、比例的意义:表示两个比相等的式子叫做比例。
组成比例的四个数,叫做比例的项。
两端的两项叫做外项,中间的两项叫做内项.6、比例的基本性质:在比例里,两个外项的积等于两个两个内项的积.7、比和比例的区别(1)比表示两个量相除的关系,它有两项(即前、后项);比例表示两个比相等的式子,它有四项(即两个内项和两个外项)。
(2)比有基本性质,它是化简比的依据;比例有基本性质,它是解比例的依据。
8、解比例:根据比例的基本性质,把比例转化成以前学过的方程,求比例中的未知项,叫做解比例。
9、成正比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。
用字母表示y/x=k(一定)10、成反比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,他们的关系叫做反比例关系。
(完整word版)六年级下册小升初试题百分数比例讲义及练习题通用版.doc
第四讲百分数比比例百分数的应用第一部分知识点梳理常见类型题:1.求常见的百分率问题如:达标率、及格率、成活率、发芽率、出勤率等。
解题方法: a 率 =a 的数量÷总量×100%2. 求 A 的 B%是多少解题方法: A× B%3. 已知一个数的 B%是 A,求这个数解题方法:这个数 =A÷B%4.求一个数比另一个数多(或少)百分之几解题方法:( 1)求甲比乙多百分之几?(甲-乙)÷乙×100%( 2)求乙比甲少百分之几?(甲-乙)÷甲×100%5.已知一个数比另一个数多或少百分之几(已知数),和其中一个数,求另一个数解题方法:( 1)A 增加 B%是多少? A×( 1+B%)(2)A减少B%后是多少?A×(1-B%)(3)某数增加 B%后是 A,求这个数是多少? A÷( 1+B%)(4)某数减少 B%后是 A,求这个数是多少? A÷( 1-B%)6.折扣和成数:几折(几成)就是十分之几也就是百分之几十主要公式:现价 =原价×折扣原价=现价÷折扣折扣=现价÷原价×100%7.纳税问题纳税的意义:根据国家税法的有关规定,按照一定比率把集体或个人收入的一部分缴纳给国家。
主要公式:( 1)应纳税额 =收入额÷纳税率( 2)收入额 =应纳税额×纳税率(3)纳税率 = 应纳税额× 100%收入额8.银行储蓄问题有关概念:(1)本金:存入银行的钱叫本金。
( 2)利息:取款时银行多支付的钱叫利息(缴纳利息税时,称之为税后利息)。
(3)利率:利息与本金的比值叫做利率(4)利息税:对储蓄存款利息所征收的个人所得税。
(5)存款形式:分为定期与活期,定期又包括整存整取和另存整取的形式。
主要公式:( 1)利息 =本金×利率×时间( 2)本息的计算公式:本息=本金 +利息 =本金 +本金×利率×时间= 本金×( 1+利率×时间)9.列方程解稍复杂的百分数实际问题主要题型:( 1)以总量为等量关系建立方程。
(word版)北师大版小学数学级总复习知识点汇总,文档
2021年北师大版小学1-6年级总复习知识点第一局部:数与代数一、数的认识1、整数2、小数、分数、百分数二、数的运算1、数的意义2、计算与应用3、估算4、运算律三、式与方程四、正、反比例五、常见的量六、探索规律第二局部:图形与几何一、图形的认识二、图形与测量三、图形的运动四、图形与位置第三局部:统计与概率一、统计二、可能性第四局部:解决问题的策略第一局部:数与代数〔教材第63~88页〕一、数的认识〔一〕整数〔教材第知识点1:整数63~67页〕1.整数的定义:像-3,-2,-1,0,1,2,3,这样的数称为整数。
整数的个数是无限的。
在整数中,大于零的数称为正整数,小于零的数称为负整数。
正整数、零与负整数统称为整数。
0既不是正整数,也不是负整数。
2.整数的计数单位和数位。
〔1〕整数数位顺序表。
数级亿级万级个级千十千十数位亿亿亿万万万千十位位位位位位位位计数单位千十千十亿亿亿万万万千十2〕数的分级:按照我国的计数习惯,整数从个位起,每四个数位是一级。
个位、十位、百位、千位是个级,表示多少个一;万位、十万位、百万位、千万位是万级,表示多少个万;亿位、十亿位、百亿位、千亿位是亿级,表示多少个亿3〕计数单位:一〔个〕、十、百、千、万、十万、百万、千万、亿、十亿、百亿、千亿都是整数的计数单位。
4〕数位:在计数时,计数单位按照一定的顺序排列起来,它们所占的位置叫数位。
3.整数的读法:先分级,再读数,从高位到低位,一级一级地读,每一级末尾的0都不读出来,其他数位连续有几个0都只读一个零。
4.整数的写法:从高位到低位,一级一级地写,哪一个数位上一个计数单位也没有,就在哪一个数位上写0。
知识点2:自然数1.自然数的定义:我们在数物体的时候,用来表示物体个数的0,1,2,3,4,5,叫作自然数。
“0〞是最小的自然数,自然数的个数是无限的,没有最大的自然数。
2.自然数的根本单位:任何非“0〞的自然数都是由假设干个“1〞组成的,因此“1〞是自然-1-数的根本单位。
(完整版)小数、分数、百分数和比知识点归纳
知识要点归总——总复习数的认识(二)小数、分数、百分数和比知识点一小数1.读法:读小数的时候,整数部分按照整数的读法来读(整数部分是0的读作“零”),小数点读作:“点”,小数部分从高位到低位顺次读出每个数位上的数字。
2.写法:写小数的时候,整数部分按照整数的写法来写(整数部分是零的写作“0”,小数点点在个位的右下角,小数部分从高位到低位顺次写出每一个数位上的数字。
3.小数的大小比较:比较两个小数的大小,先看它们的整数部分,整数部分大的那个数就大;整数部分相同的,十分位上的数大的那个数就大;十分位上的数相同的,百分位上的数大的那个数就大……4.求小数的近似数:根据要求保留小数位数,确定好从哪一位起按照“四舍五入”的方法省略尾数。
5.小数化成分数的方法:先把小数改写成分母是10,100,1000…的分数,再约分,就化成了分数。
6.小数化成百分数的方法:先将小数点向右移动两位,再在后面添上“%”,就化成了百分数。
7.小数的分类:(1)按整数部分分类:分为“纯小数”和“带小数”两种。
“纯小数”是指整数部分为“0”的小数。
例如:0.8,0.207,0.0012等。
“带小数”是指整数部分不为“0”的小数。
例如:2.3,12.608,300.168等。
一般说来,纯小数都小于1,而带小数都大于1或等于1。
(2)按小数部分分类:分为“有限小数”和“无限小数”两种。
小数部分的位数有限的小数,叫做有限小数;小数部分的位数是无限的小数,叫做无限小数。
(3)无限小数的分类:在无限小数中又分为无限循环不数和无限不循环小数。
无限循环小数是指一个无限小数,如果从小数部分的某一位起,都是由一个或几个数字依照一定的顺序连续不断地重复出现,这样的小数叫做无限循环小数,简称“循环小数”。
无限不循环小数是指一个小数的数位无限多,而且小数部分各数位上的数字是不循环的,这样的小数叫做无限不循环小数。
在小学数学中,圆周率(π)3.1415926…便是一个无限不循环小数(无理数)。
完整word版)高中数学知识点总结(最全版)
完整word版)高中数学知识点总结(最全版)XXX Knowledge Chapter 1: n Concept1) Concept of n① Given two non-empty sets A and B。
if there is a certain correspondence rule f。
for any number x in set A。
there is a unique number f(x) in set B corresponding to it。
then such a correspondence (including sets A。
B。
and the correspondence rule f from A to B) is called a n from set A to set B。
denoted as f:A B.② The three elements of a n: domain。
range。
and correspondence rule.③ Only two ns with the same domain and correspondence rule are the same n.2) Concept and n of Interval① Given two real numbers a and b。
and a b。
the set of real numbers x satisfying a x b is called a closed interval。
denoted as [a,b]。
the set of real numbers x satisfying a x b is called an open interval。
denoted as (a,b)。
the set of real numbersx satisfying a x b or a x b is called a half-open interval。
比和比例知识点归纳完整版
比和比例知识点归纳标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]比和比例知识点归纳1、比的意义和性质比的意义:两个数相除又叫做两个数的比。
例如:9 : 6 = 1.5前比后比项号项值比的基本性质:比的前项和后项都乘以或除以相同的数(零除外),比值不变。
应用比的基本性质可以化简比。
习题:一、判断。
1、比的前项和后项同时乘一个相同的数,比值不变。
()2、比的基本性质和商的基本性质是一致的。
()3、10克盐溶解在100克水中,这时盐和盐水的比是1:10. ()4、比的前项乘5,后项除以1/5,比值不变。
()5、男生比女生多2/5,男生人数与女生人数的比是7:5. ()6、“宽是长的几分之几”与“宽与长的比”,意义相同,结果表达不同。
()7、2/5既可以看做分数,也可以看做是比。
()二、应用题。
1.一项工程,甲单独做20天完成,乙单独做30天完成。
(1)写出甲、乙两队完成这项工程所用的时间比,并化简。
(2)写出甲、乙两队工作效率比,并化简。
2.育才小学参加运动会的男生人数和女生人数的比是5∶3,其中女生72人。
那么男生比女生多多少人3.食品店有白糖和红糖共360千克,红糖的质量是白糖的。
红糖和白糖各有多少千克4.甲、乙两个车间的平均人数是162人,两车间的人数比是5∶7。
甲、乙两车间各有多少人?5.有一块长方形地,周长100米,它的长与宽的比是3∶2。
这块地有多少平方米?6.建筑用混凝土是由水泥、沙、石子按5∶4∶3搅拌而成,某公司建住宅楼需混凝土2400吨,需水泥、沙、石子各多少吨?外项2、比例的意义和性质:比例的意义:表示两个比相等的式子叫做比例。
例如:9 :6 = 3 : 2内项比例的基本性质:在比例中两个内项的积等于两个外项的积。
应用比例的基本性质可以解比例。
3、比和分数、除法的关系:习题:一、填空(1)两个数相除又叫做两个数的()。
(2)在5:4中,比的前项是(),后项是(),比值是()(3)8:9读作:(),这个比还可以写成()。
(完整word版)初中数学知识点全总结(完美打印版),推荐文档
七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.第一章 有理数一、知识框架二.知识概念1.有理数:(1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论; 5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定. 11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a .13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减.本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。
(word完整版)小学六年级比例知识点复习,推荐文档
学生唐睿学校汇景小学年级小六教师林老师授课日期授课时段课题第四单元:比率要点: 1、理解比率的意义和根本性质。
2、解比率的方法。
3、正比率的意义、正比了关系图像的特点和作用。
4、反比率的意义。
5、理解比率尺的意义,能依照比率尺图上距离或实质距离。
6、认识图形的放大与减小现象,领悟图形的相似性。
知识要点及7、掌握用正、反比率知识解决问题的方法与步骤。
重难点难点: 1、判断两个比可否组成比率。
2、运用比率的知识解决问题。
3、能正确判断两种量可否成正比率关系。
4、能正确判断两种量可否成反比率关系。
5、依照比率尺画出平面图。
6、能在方格纸上按必然的比将图形放大也许减小。
7、依照正、反比率关系列出方程。
前一次作业完成情况:作业议论□好□还能够更好:作业部署教师课堂评价留言家长反应签字:日期:年月日比率一、知识要点1、根本看法〔1〕两个数相除,又叫做这两个数的比,“∶〞是比号,比号前面的数叫做比的前项,比号后面的数叫做比的后项,前项除今后项所得的商叫做比值。
比的后项不行以为0。
〔2〕分数的根本性质∶ 分数的分子和分母同时乘以也许除以相同的数〔0 除外〕,分数的大小不变。
乘积是 1 的两个数互为倒数。
1 的倒数是 1, 0 没有倒数。
〔3〕商不变的规律∶ 在除法里,被除数和除数同时扩大也许同时减小相同的倍〔0 除外〕,商不变。
〔4〕比的根本性质∶比的前项和后项同时乘以也许除以相同的数〔0 除外〕,它们的比值不变。
〔5〕小数的性质∶ 在小数的尾端添上零也许去掉零小数的大小不变。
〔6〕公因数只有 1 的两个数叫做互质数。
如〔 5 和 7,7 和 9,8 和 9〕最简整数比∶比的前项和后项是互质数。
〔7〕比的化简∶用商不变的性质、分数的根本性质或比的根本性质来化简。
〔8〕比率∶①表示两个比相等的式子叫做比率。
如∶〔3∶ 4=9∶ 12〕。
比率有四个项,分别是两个内项和两个外项。
在 3∶ 4=9∶ 12 中,其中 3 与 12 叫做比率的外项, 4 与 9 叫做比率的内项。
(完整word版)六年级数学上册《比认识》知识点总结北师大版
六年级数学上册?比的认识?知识点总结北师大版〔一〕比的根本看法1.两个数相除又叫做两个数的比。
比的前项除今后项所得的商,叫做比值。
2.比值平时用分数、小数和整数表示。
3.比的后项不能够为0。
4.同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商;5.依照分数与除法的关系,比的前项相当于分子,比的后项相当于分母,比值相当于分数的值。
6.比的根本性质:比的前项和后项同时乘上也许同时除以相同的数(0除外〕,比值不变。
〔二〕求比值1、求比值:用比的前项除以比的后项〔三〕化简比1、化简比:用比的前项除以比的后项求出分数的比值后,在把分数比值改成比。
〔四〕比的应用1、比的第一种应用:两个或几个数量的和,这两个或几个数量的比,求这两个或这几个数量是多少?比方:六年级有 60 人,男女生的人数比是5:7,男女生各有多少人?题目剖析: 60 人就是男女生人数的和。
解题思路:第一步求每份:60÷〔 5+7〕=5 人第二步求男女生:男生:5×5=25 人女生:5×7=35人。
2、比的第二种应用:一个数量是多少,两个或几个数的比,求别的几个数量是多少?比方:六年级有男生25 人,男女生的比是5:7,求女生有多少人?全班共有多少人?题目剖析:“男生25 人〞就是其中的一个数量。
解题思路:第一步求每份:25÷5=5 人第二步求女生:女生: 5×7=35 人。
全班: 25+35=60人3、比的第三种应用:两个数量的差,两个或几个数的比,求这两个或这几个数量是多少?比方:六年级的男生比女生多20 人〔或女生比男生少20 人〕,男女生的比是 7:5,男女生各有多少人?全班共有多少人?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
比例知识点归纳(六年级)
比的意义:
(1)两个数相除又叫做两个数的比
(2)“:”是比号,读作“比”。
比号前面的数叫做比的前项,比号后面的数叫做比的后项。
比的前项除以后项所得的商,叫做比值。
(3)同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商。
(4)比值通常用分数表示,也可以用小数表示,有时也可能是整数。
(5)比的后项不能是零。
(6)根据分数与除法的关系,可知比的前项相当于分子,后项相当于分母,比值相当于分数值。
比的性质:比的前项和后项同时乘上或者除以相同的数(0除外),比值不变,这叫做比的基本性质。
求比值和化简比:求比值的方法:用比的前项除以后项,它的结果是一个数值可以是整数,也可以是小数或分数。
根据比的基本性质可以把比化成最简单的整数比。
它的结果必须是一个最简比,即前、后项是互质的数。
比例尺:图上距离:实际距离=比例尺
要求会求比例尺;已知图上距离和比例尺求实际距离;已知实际距离和比例尺求图上距离。
线段比例尺:在图上附有一条注有数目的线段,用来表示和地面上相对应的实际距离。
按比例分配:
在农业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配。
这种分配的方法通常叫做按比例分配。
方法:首先求出各部分占总量的几分之几,然后求出总数的几分之几是多少。
比例的意义:
表示两个比相等的式子叫做比例。
组成比例的四个数,叫做比例的项。
两端的两项叫做外项,中间的两项叫做内项。
比和比例的区别:
比表示两个量相除的关系,它有两项(即前项和后项)比例表示两个比相等的式子,它有四项(即两个前项和两个后项)
比例的性质:在比例里,两个外项的积等于两个内向的积。
这叫做比例的基本性质。
解比例:根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个数比例中的另外一个未知项。
求比例中的未知项,叫做解比例。
成正比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。
用字母表示y/x=k(一定)
成反比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,他们的关系叫做反比例关系。
用字母表示x×y=k(一定)。