2016年高考全国三卷理科数学试卷

合集下载

2016年全国高考理科数学试题及答案-全国卷3

2016年全国高考理科数学试题及答案-全国卷3

绝密★启封并使用完毕前试题类型:2016 年普通高等学校招生全国统一考试理科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷 1 至3 页,第Ⅱ卷 3 至5 页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4. 考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合S=S x P(x 2)(x 3) 0 ,T x x 0 ,则S I T=(A) [2 ,3] (B) (- ,2] U [3,+ )(C) [3,+ )(D) (0,2] U [3,+ )4i(2)若z=1+2i ,则zz 1(A)1 (B) -1 (C) i (D)-i(3)已知向量u uvBA1 2( , )2 2,u u u vBC3 1( , ),2 2则ABC=(A)30 0(B) 450 (C) 600 (D)1200(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低0C,B 点表示四月的平均最低气气温的雷达图。

图中 A 点表示十月的平均最高气温约为150C。

下面叙述不正确的是温约为 51(A) 各月的平均最低气温都在00C 以上(B) 七月的平均温差比一月的平均温差大(C) 三月和十一月的平均最高气温基本相同(D) 平均气温高于20 C 的月份有 5 个(5)若tan 34 ,则2cos 2sin 2(A) 6425(B)4825(C) 1 (D)16254 3 1(6)已知 3a 2 ,4b 4 ,3c 25 ,则(A )b a c (B)a b c(C)b c a(D)c a b(7)执行下图的程序框图,如果输入的a=4,b=6,那么输出的n=2(A )3 (B)4 (C)5 (D)6(8)在△ABC中,πB = ,BC 边上的高等于413BC ,则cos A=(A)31010 (B)1010(C)10- (D)10-3 1010(9)如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为(A )18 36 5(B)54 18 5(C)90(D)81(10) 在封闭的直三棱柱ABC -A1B1C1 内有一个体积为V 的球,若AB BC,AB=6,BC =8,AA 1=3,则V 的最大值是(A )4π(B)92 (C)6π(D)323(11)已知O 为坐标原点, F 是椭圆C:2 2x y2 2 1( 0)a ba b的左焦点,A,B 分别为 C的左,右顶点.P 为C 上一点,且PF⊥x 轴.过点 A 的直线l 与线段PF 交于点M,与y 轴交于点 E.若直线BM 经过OE 的中点,则 C 的离心率为(A )13 (B)12(C)23(D)343(12)定义“规范01 数列”{a n} 如下:{ a n} 共有2m 项,其中m 项为0,m 项为1,且对任意k 2m ,a1,a2, ,a k 中0 的个数不少于 1 的个数.若m=4,则不同的“规范01 数列”共有(A )18 个(B)16 个(C)14 个(D)12 个第II 卷本卷包括必考题和选考题两部分. 第( 13) 题~第( 21) 题为必考题,每个试题考生都必须作答. 第( 22) 题~第( 24) 题为选考题,考生根据要求作答.二、填空题:本大题共 3 小题,每小题 5 分(13)若x,y 满足约束条件则z=x+y 的最大值为_____________.(14)函数的图像可由函数的图像至少向右平移_____________个单位长度得到。

2016全国卷3高考试题及答案-理科数学

2016全国卷3高考试题及答案-理科数学

绝密★启封并使用完毕前试题类型:2016年普通高等学校招生全国统一考试理科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合S={}{}(x2)(x3)0,T0S x x x=--≥=I >,则S T=(A) [2,3] (B)(-∞,2] [3,+∞)(C) [3,+∞) (D)(0,2] [3,+∞)(2)若z=1+2i,则41izz=-(A)1 (B) -1 (C) i (D)-i(3)已知向量1(,22BA =,31(),2BC=则∠ABC= (A)300 (B) 450 (C) 600 (D)1200(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。

图中A点表示十月的平均最高气温约为150C,B点表示四月的平均最低气温约为50C。

下面叙述不正确的是(A) 各月的平均最低气温都在00C以上(B) 七月的平均温差比一月的平均温差大 (C) 三月和十一月的平均最高气温基本相同 (D) 平均气温高于200C 的月份有5个(5)若3tan 4α=,则2cos 2sin 2αα+=(A)6425 (B) 4825 (C) 1 (D)1625(6)已知432a =,344b =,1325c =,则(A )b a c << (B )a b c <<(C )b c a <<(D )c a b << (7)执行下图的程序框图,如果输入的a =4,b =6,那么输出的n =(A )3 (B )4 (C )5(D )6(8)在ABC △中,π4B,BC 边上的高等于13BC,则cos A(A) (B) (C )10(D )310(9)如图,格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为(A)18+(B)54+(C )90 (D )81(10) 在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球,若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是(A )4π (B )92π(C )6π (D )323π(11)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b +=>>的左焦点,A ,B 分别为C的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为(A )13(B )12(C )23(D )34(12)定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意2k m ≤,12,,,ka a a 中0的个数不少于1的个数.若m =4,则不同的“规范01数列”共有(A )18个(B )16个(C )14个(D )12个第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答. 二、填空题:本大题共3小题,每小题5分(13)若x ,y 满足约束条件{x −y +1≥0x −2y ≪0x +2y −2≪0 则z=x+y 的最大值为_____________.(14)函数y =sin x −√3cos x 的图像可由函数 y =sin x +√3cos x 的图像至少向右平移_____________个单位长度得到。

(完整word版)2016全国三卷理科数学高考真题及答案.docx

(完整word版)2016全国三卷理科数学高考真题及答案.docx

2016 年普通高等学校招生全国统一考试理科数学一.选择题:本大题共 12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的 .(1)设集合 S= S x P(x2)(x3)0 ,T x x 0,则 S I T=(A) [2 ,3](B) (-, 2]U [3,+)(C) [3,+ )(D) (0, 2] U[3,+ )(2)若 z=1+2i ,则4izz1(A)1(B)-1(C) i(D)-iuuv( 1uuuv(3,1),(3)已知向量BA, 2 ) , BC则 ABC=2222(A)30 0(B)450(C) 60 0(D)120 0(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。

图中A 点表示十月的平均最高气温约为150C, B 点表示四月的平均最低气温约为50C。

下面叙述不正确的是(A) 各月的平均最低气温都在00C 以上(B)七月的平均温差比一月的平均温差大(C)三月和十一月的平均最高气温基本相同(D)平均气温高于 200C 的月份有 5 个(5)若tan3,则 cos22sin 26444816(B)(C) 1(A)25(D)2525 431(6)已知a23, b44, c253,则(A )b a c( B)a b c (C) b c a (D) c a b(7)执行下图的程序框图,如果输入的a=4, b=6,那么输出的n=(A ) 3(B ) 4(C) 5(D ) 6(8)在 △ABC 中,B = πBC1cos A =,边上的高等于则43 BC ,( A )3 10( B )101010( C ) -10 ( D ) - 3 1010 10 (9) 如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为(A ) 18 36 5(B ) 54 18 5(C ) 90 (D ) 81(10) 在封闭的直三棱柱 ABC-A 1B 1C 1 内有一个体积为 V 的球,若AB BC , AB=6 ,BC=8, AA 1 =3,则 V 的最大值是(A ) 4π ( B )9( C ) 6π(D )3223x 2 y 2 1(a b 0) 的左焦点, A , B 分别为 C 的左,右顶点 .P 为(11)已知 O 为坐标原点, F 是椭圆 C :b 2 a 2C 上一点,且 PF ⊥ x 轴 .过点 A 的直线 l 与线段 PF 交于点 M ,与 y 轴交于点 E.若直线 BM 经过 OE 的中点,则C 的离心率为(A )1( B )1( C )2( D )33 2 3 4(12)定义 “规范 01 数列 ”{a n } 如下: { a n } 共有 2m 项,其中 m 项为 0,m 项为 1,且对任意 k 2m , a 1 , a 2, L , a k 中 0 的个数不少于 1 的个数 .若 m=4,则不同的“规范 01 数列”共有 (A ) 18 个( B ) 16 个(C ) 14 个(D ) 12 个二、填空题:本大题共 3 小题,每小题 5 分(13)若 x , y 满足约束条件 错误 ! 未找到引用源。

2016全国卷3高考试题及答案-理科数学

2016全国卷3高考试题及答案-理科数学

绝密★启封并使用完毕前试题类型:2016年普通高等学校招生全国统一考试理科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页.2.答题前,考生务必将自己的、号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4. 考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合S ={}{}(x 2)(x 3)0,T 0S x x x =--≥=I > ,则ST =(A) [2,3] (B)(-∞ ,2] [3,+∞) (C) [3,+∞) (D)(0,2] [3,+∞) (2)若z=1+2i ,则41izz =- (A)1 (B) -1 (C) i (D)-i(3)已知向量1(,22BA = ,31(),2BC = 则∠ABC= (A)300(B) 450(C) 600(D)1200(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。

图中A 点表示十月的平均最高气温约为150C ,B 点表示四月的平均最低气温约为50C 。

下面叙述不正确的是(A) 各月的平均最低气温都在00C 以上(B) 七月的平均温差比一月的平均温差大(C) 三月和十一月的平均最高气温基本相同(D) 平均气温高于200C 的月份有5个 (5)若3tan 4α=,则2cos 2sin 2αα+= (A)6425 (B) 4825 (C) 1 (D)1625(6)已知432a =,344b =,1325c =,则(A )b a c << (B )a b c <<(C )b c a <<(D )c a b << (7)执行下图的程序框图,如果输入的a =4,b =6,那么输出的n =(A )3 (B )4 (C )5 (D )6(8)在ABC △中,π4B,BC 边上的高等于13BC ,则cos A(A (B (C )10(D )310(9)如图,格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为(A )18+(B )54+(C )90 (D )81(10) 在封闭的直三棱柱ABC -A 1B 1C 1有一个体积为V 的球,若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是(A )4π (B )92π(C )6π (D )323π(11)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为(A )13 (B )12 (C )23(D )34 (12)定义“规01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意2k m ≤,12,,,k a a a 中0的个数不少于1的个数.若m =4,则不同的“规01数列”共有(A )18个(B )16个(C )14个(D )12个第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每小题5分(13)若x,y满足约束条件{x−y+1≥0 x−2y≪0x+2y−2≪0则z=x+y的最大值为_____________.(14)函数y=sin x−√3cos x的图像可由函数y=sin x+√3cos x的图像至少向右平移_____________个单位长度得到。

2016年高考数学试题全国3卷(理科)(精校高清)

2016年高考数学试题全国3卷(理科)(精校高清)

| AB | 2 | 3m 3 | 3 ) 3 ,则由 ,代入直线 l 的方程,得 3 ,解得 m 2 3 m2 1
1 , a1 0 . 1 由 S n 1 an , S n 1 1 an 1 得 an 1 an 1 an ,即 an 1 ( 1) an . a 由 a1 0 , 0 得 an 0 ,所以 n 1 . an 1 1 1 n 1 因此 {an } 是首项为 ,公比为 的等比数列,于是 an ( ) . 1 1 1 1 5 1 n 31 5 31 (Ⅱ)由(Ⅰ)得 S n 1 ( 得1 ( ,即 ( , ) ,由 S5 ) ) 1 32 1 32 32 1 解得 1 .
都相切时,球的半径取得最大值 直线 BM 经过 OE 的中点,则 C 的离心率为 (A) 【答案】B 【解析】要使球的体积 V 最大,必须球的半径 R 最大.由题意知球的与直三棱柱的上下底面
(A) 18 36 5 (B) 54 18 5 (C)90 (D)81 【答案】B 【解析】由三视图该几何体是以侧视图为底面的斜四棱柱,所以该几何体的表面积
3 4 4 3 9 ,此时球的体积为 R 3 ( )3 ,故选 B. 2 3 3 2 2 2 2 x y 11.已知 O 为坐标原点,F 是椭圆 C: 2 2 1(a b 0) 的左焦点,A,B 分别为 C 的左,右 a b 顶点.P 为 C 上一点,且 PF x 轴.过点 A 的直线 l 与线段 PF 交于点 M,与 y 轴交于点 E.若
x 2y 0
x
14 . 函 数 y sin x 3 cos x 的 图 像 可 由 函 数 y sin x 3 cos x 的 图 像 至 少 向 右 平 移 _____________个单位长度得到. 【答案】 【 解 析 】 因 为 y sin x 3 cos x 2 sin( x

2016年高考全国Ⅲ理科数学试题及答案(word解析版)

2016年高考全国Ⅲ理科数学试题及答案(word解析版)

2016年普通高等学校招生全国统一考试(全国Ⅲ)数学(理科)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. (1)【2016年全国Ⅲ,理1,5分】设集合()(){}{}|230,|0S x x x T x x =--≥=> ,则S T = ( )(A )[]2,3 (B )(][),23,-∞+∞ (C )[)3,+∞ (D )(][)0,23,+∞ 【答案】D【解析】由()()230x x --≥解得3x ≥或2x ≤,{}23S x x ∴=≤≥或,所以{}023S T x x x =<≤≥ 或,故选D . 【点评】研究集合的关系,处理集合的交、并、补的运算问题,常用韦恩图、数轴等几何工具辅助解题.一般地,对离散的数集、抽象的集合间的关系及运算,可借助韦恩图,而对连续的集合间的运算及关系,可借助数轴的直观性,进行合理转化.(2)【2016年全国Ⅲ,理2,5分】若i 12z =+,则4i1zz =-( )(A )1 (B )1- (C )i (D )i - 【答案】C【解析】4i 4ii (12i)(12i)11zz ==+---,故选C . 【点评】复数的加、减法运算中,可以从形式上理解为关于虚数单位“i ”的多项式合并同类项,复数的乘法与多项式的乘法相类似,只是在结果中把2i 换成1-.复数除法可类比实数运算的分母有理化.复数加、减法的几何意义可依平面向量的加、减法的几何意义进行理解.(3)【2016年全国Ⅲ,理3,5分】已知向量1(2BA =uu v,1)2BC =uu u v ,则ABC ∠=( )(A )30︒ (B )45︒ (C )60︒ (D )120︒ 【答案】A【解析】由题意,得112222cos 11BA BC ABC BA BC+⋅∠===⨯ ,所以30ABC ∠=︒,故选A . 【点评】(1)平面向量a 与b 的数量积为·cos a b a b θ=,其中θ是a 与b 的夹角,要注意夹角的定义和它的取值范围:0180θ︒≤≤︒;(2)由向量的数量积的性质有|a ·cos a ba b θ=,·0a b a b ⇔⊥ =,因此,利用平面向量的数量积可以解决与长度、角度、垂直等有关的问题.(4)【2016年全国Ⅲ,理4,5分】某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图.图中A 点表示十月的平均最高气温约为15C ︒,B 点表示四月的平均最低气温约为5C ︒.下面叙述不正确的是( )(A )各月的平均最低气温都在0C ︒以上 (B )七月的平均温差比一月的平均温差大 (C )三月和十一月的平均最高气温基本相同(D )平均气温高于20C ︒的月份有5个 【答案】D【解析】由图可知0C ︒均在虚线框内,所以各月的平均最低气温都在0C ︒以上,A 正确;由图可在七月的平均温差大于7.5C ︒,而一月的平均温差小于7.5C ︒,所以七月的平均温差比一月的平均温差大,B 正确;由图可知三月和十一月的平均最高气温都大约在5C ︒,基本相同,C 正确;由图可知平均最高气温高于20C ︒的月份有3个或2个,所以不正确,故选D .【点评】解答本题时易错可能有两种:(1)对图形中的线条认识不明确,不知所措,只觉得是两把雨伞重叠在一起,找不到解决问题的方法;(2)估计平均温差时易出现错误,错选B .(5)【2016年全国Ⅲ,理5,5分】若3tan 4α=,则2cos 2sin 2αα+=( ) (A )6425(B )4825(C )1 (D )1625【答案】A 【解析】由3tan 4α=,得34sin ,cos 55αα==或34sin ,cos 55αα=-=-,所以2161264cos 2sin 24252525αα+=+⨯=,故选A .【点评】三角函数求值:①“给角求值”将非特殊角向特殊角转化,通过相消或相约消去非特殊角,进而求出三角函数值;②“给值求值”关键是目标明确,建立已知和所求之间的联系. (6)【2016年全国Ⅲ,理6,5分】已知432a =,254b =,1325c =,则( )(A )b a c << (B )a b c << (C )b c a << (D )c a b << 【答案】A【解析】因为422335244a b ==>=,1223332554c a ==>=,所以b a c <<,故选A .【点评】比较指数的大小常常根据三个数的结构联系相关的指数函数与对数函数、幂函数的单调性来判断,如果两个数指数相同,底数不同,则考虑幂函数的单调性;如果指数不同,底数相同,则考虑指数函数的单调性;如果涉及到对数,则联系对数的单调性来解决.(7)【2016年全国Ⅲ,理7,5分】执行下图的程序框图,如果输入的46a b ==,,那么输出的n =( )(A )3 (B )4 (C )5 (D )6 【答案】B【解析】第一循环,得2,4,6,6,1a b a s n =====;第二循环,得2,6,4,10,2a b a s n =-====;第三循环,得2,4,6,16,3a b a s n =====;第四循环,得2,6,4,2016,4a b a s n =-===>=; 退出循环,输出4n =,故选B .【点评】解决此类型时要注意:第一,要明确是当型循环结构,还是直到型循环结构.根据各自的特点执行循环体;第二,要明确图中的累计变量,明确每一次执行循环体前和执行循环体后,变量的值发生的变化;第三,要明确循环体终止的条件是什么,会判断什么时候终止循环体.(8)【2016年全国Ⅲ,理8,5分】在ABC D 中,π4B =,BC 边上的高等于13BC ,则cos A = ( )(A (B (C )- (D )-【答案】C【解析】设BC 边上的高线为AD ,则3B C A D =,所以AC ,AB =.由余弦定理,知222222cos2AB AC BC A AB AC +-===⋅C .【点评】在平面几何图形中求相关的几何量时,需寻找各个三角形之间的联系,交叉使用公共条件,常常将所涉及到已知几何量与所求几何集中到某一个三角形,然后选用正弦定理与余弦定理求解.(9)【2016年全国Ⅲ,理9,5分】如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为( )(A )18+ (B )54+ (C )90 (D )81 【答案】B【解析】由三视图该集合体是以侧视图为底面的斜四棱柱,所以该几何体的表面积2362332354S =⨯⨯+⨯⨯+⨯⨯=+B .【点评】求解多面体的表面积及体积问题,关键是找到其中的特征图形,如棱柱中的矩形,棱锥中的直角三角形,棱台中的直角梯形等,通过这些图形,找到几何元素间的关系,建立 未知量与已知量间的关系,进行求解.(10)【2016年全国Ⅲ,理10,5分】在封闭的直三棱柱111ABC A B C -内有一个体积为V 的球,若AB BC ⊥,6AB =,8BC =,13AA =,则V 的最大值是( )(A )4π (B )92π (C )6π (D )323π【答案】B【解析】要使球的体积V 最大,必须球的半径R 最大.由题意知球的与直三棱柱的上下底面都相切时,球的半径取得最大值32,此时球的体积为334439()3322R πππ==,故选B .【点评】立体几何是的最值问题通常有三种思考方向:(1)根据几何体的结构特征,变动态为静态,直观判断在什么情况下取得最值;(2)将几何体平面化,如利用展开图,在平面几何图中直观求解;(3)建立函数,通过求函数的最值来求解.(11)【2016年全国Ⅲ,理11,5分】已知O 为坐标原点,F 是椭圆2222:1(0)x y C a b a b+=>>的左焦点,,A B 分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )(A )13(B )12 (C )23 (D )34【答案】A【解析】由题意设直线l 的方程为()y k x a =+,分别令x c =-与0x =得点()FM k a c =-,OE ka =,由~OB E ∆ CBM ∆,得12OE OB FM BC=,即()2ka a k a c a c =-+,整理得13c a =,所以椭圆离心率为1e 3=,故选A . 【点评】求解椭圆的离心率问题主要有三种方法:(1)直接求得,a c 的值,进而求得e 的值;(2)建立,,a b c 的齐次等式,求得ba或转化为关于e 的等式求解;(3)通过特殊值或特殊位置,求出e .(12)【2016年全国Ⅲ,理12,5分】定义“规范01数列”{}n a 如下:{}n a 共有2m 项,其中m 项为0,m 项为1,且对任意2k m ≤,12,,,k a a a 中0的个数不少于1的个数.若4m =,则不同的“规范01数列”共有( ) (A )18个 (B )16个 (C )14个 (D )12个【答案】C【解析】由题意,得必有0a =,1a =,则具体的排法列表如下:,故选C .往往利用表格法、树枝法将其所有可能一一列举出来,常常会达到岀奇制胜的效果.第II 卷本卷包括必考题和选考题两部分。

2016年全国卷3理科数学理科综合试题及答案

2016年全国卷3理科数学理科综合试题及答案

2016年全国卷3理科数学理科综合试题及答案绝密★启用前2016年普通高等学校招生全国统一考试 全国卷3理科数学注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明1.设集合S={}{}|(2)(3)0,|0S x x x T x x =--≥=> ,则S I T= (A )[2,3] (B )(-∞ ,2]U [3,+∞)(C )[3,+∞) (D )(0,2]U [3,+∞) 【答案】D 【解析】试题分析:由(2)(3)0x x --≥解得3x ≥或2x ≤,所以{|23}S x x x =≤≥或,所以{|023}S T x x x =<≤≥I 或,故选D .考点:1、不等式的解法;2、集合的交集运算.2.若12z i =+,则41i zz =-(A )1 (B ) -1 (C )i (D )-i 【答案】C 【解析】试题分析:44(12)(12)11i i i i i zz ==+---,故选C . 考点:1、复数的运算;2、共轭复数. 3.已知向量1(,22BA =uu v,1),22BC =uu u v 则∠ABC=(A )300 (B ) 450 (C )600 (D )1200 【答案】A 【解析】 试题分析:由题意,得112222cos 11||||BA BC ABC BA BC ⨯+⋅∠===⨯u u u r u u u r u u ur u u u r ,所以30ABC ∠=︒,故选A .考点:向量夹角公式.4.某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。

图中A 点表示十月的平均最高气温约为150C ,B 点表示四月的平均最低气温约为50C 。

下面叙述不正确的是(A)各月的平均最低气温都在00C以上(B)七月的平均温差比一月的平均温差大(C)三月和十一月的平均最高气温基本相同(D)平均气温高于200C的月份有5个【答案】D【解析】试题分析:由图可知0C︒均在虚线框内,所以各月的平均最低气温都在0℃以上,A正确;由图可在七月的平均温差大于7.5C︒,而一月的平均温差小于7.5C︒,所以七月的平均温差比一月的平均温差大,B正确;由图可知三月和十一月的平均最高气温都大约在5C︒,基本相同,C正确;由图可知平均最高气温高于20℃的月份有3个或2个,所以不正确.故选D.考点:1、平均数;2、统计图5.若3tan 4α= ,则2cos 2sin 2αα+= (A )6425 (B ) 4825(C )1 (D )1625 【答案】A 【解析】 试题分析:由3tan 4α=,得34sin ,cos 55αα==或34sin ,cos 55αα=-=-,所以2161264cos 2sin 24252525αα+=+⨯=,故选A .考点:1、同角三角函数间的基本关系;2、倍角公式.6.已知432a =,254b =,1325c =,则(A )b a c << (B )a b c << (C )b c a <<(D )c a b << 【答案】A 【解析】试题分析:因为422335244a b==>=,1223332554c a==>=,所以b a c <<,故选A .考点:幂函数的图象与性质.7.执行下图的程序框图,如果输入的46a b ==,,那么输出的n=(A)3 (B)4 (C)5 (D)6【答案】B【解析】试题分析:第一次循环,得2,4,6,6,1=====;第a b a s n二次循环,得2,6,4,10n=;第三次循环,=-===,2a b a s得2,4,6,16,3=====;第四次循环,得a b a s nn=,故选2,6,4,2016,4=-===>=,退出循环,输出4a b a s nB.考点:程序框图.8.在ABC△中,π4B=,BC边上的高等于13BC,则cos A=(A)310(B)10(C)10-(D)310-【答案】C 【解析】试题分析:设BC 边上的高线为AD ,则3BC AD =,所以225AC AD DC AD=+=,2AB AD=.由余弦定理,知22222210cos 210225AB AC BC A AB AC AD AD+-===-⋅⨯⨯,故选C .考点:余弦定理.9.如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为(A )185+ (B )545+ (C )90(D )81 【答案】B 【解析】试题分析:由三视图该几何体是以侧视图为底面的斜四棱柱,所以该几何体的表面积236233233554185S =⨯⨯+⨯⨯+⨯⨯=+B .考点:空间几何体的三视图及表面积. 10.在封闭的直三棱柱111ABC A B C -内有一个体积为V 的球,若AB BC ⊥,6AB =,8BC =,13AA =,则V 的最大值是(A )4π (B )92π(C )6π (D )323π 【答案】B 【解析】试题分析:要使球的体积V 最大,必须球的半径R 最大.由题意知球的与直三棱柱的上下底面都相切时,球的半径取得最大值32,此时球的体积为334439()3322R πππ==,故选B .考点:1、三棱柱的内切球;2、球的体积. 11.已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E.若直线BM 经过OE 的中点,则C 的离心率为 (A )13(B )12(C )23(D )34【答案】A 【解析】试题分析:由题意设直线l 的方程为()y k x a =+,分别令x c=-与x =得点||()FM k a c =-,||OE ka=,由OBE CBM∆∆:,得1||||2||||OE OB FM BC =,即2(c)ka a k a a c=-+,整理,得13c a =,所以椭圆离心率为13e =,故选A . 考点:椭圆方程与几何性质.12.定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意2k m ≤,12,,,ka a a L 中0的个数不少于1的个数.若m=4,则不同的“规范01数列”共有(A )18个 (B )16个 (C )14个 (D )12个 【答案】C 【解析】试题分析:由题意,得必有1a =,81a=,则具体的排法列表如下:考点:计数原理的应用.第II卷(非选择题)请点击修改第II卷的文字说明评卷人得分二、填空题(题型注释)13.若,x y满足约束条件1020220x yx yx y-+≥⎧⎪-≤⎨⎪+-≤⎩则z x y=+的最大值为_____________.【答案】32【解析】试题分析:作出不等式组满足的平面区域,如图所示,由图知,当目标函数z x y=+经过点1(1,)2A时取得最大值,即max13 122z=+=.考点:简单的线性规划问题.14.函数sin y x x=的图像可由函数sin y x x=+的图像至少向右平移_____________个单位长度得到. 【答案】32π 【解析】试题分析:因为sin 2sin()3y x x x π=+=+,sin 2sin()3y x x x π==-=2sin[()]33x π2π+-,所以函数sin y x x=-的图像可由函数sin y x x=的图像至少向右平移32π个单位长度得到. 考点:1、三角函数图象的平移变换;2、两角和与差的正弦函数.15.已知()f x 为偶函数,当0x <时,()ln()3f x x x =-+,则曲线()y f x =在点(1,3)-处的切线方程是_______________。

最新2016年全国3卷理科数学试题及答案解析

最新2016年全国3卷理科数学试题及答案解析
如图,四棱锥 中, 地面 , , , , 为线段 上一点, , 为 的中点.
(I)证明 平面 ;
(II)求直线 与平面 所成角的正弦值.
【答案】(Ⅰ)见解析;(Ⅱ) .
【解析】
试题分析:(Ⅰ)取 的中点 ,然后结合条件中的数据证明四边形 为平行四边形,从而得到 ,由此结合线面平行的判断定理可证;(Ⅱ)以 为坐标原点,以 所在直线分别为 轴建立空间直角坐标系,然后通过求直线 的方向向量与平面 法向量的夹角来处理 与平面 所成角.
(A) (B) (C)90(D)81
【答案】B
(10) 在封闭的直三棱柱 内有一个体积为 的球,若 , , , ,则 的最大值是( )
(A)4π (B) (C)6π (D)
【答案】B
【解析】
试题分析:要使球的体积 最大,必须球的半径 最大.由题意知球的与直三棱柱的上下底面都相切时,球的半径取得最大值 ,此时球的体积为 ,故选B.
解得 .
(18)(本小题满分12分)
下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图
( )由折线图看出,可用线性回归模型拟合 与 的关系,请用相关系数加以说明;
( )建立 关于 的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.
附注:
参考数据: , , , ≈2.646.
【答案】
(15)已知 为偶函数,当 时, ,则曲线 在点 处的切线方程是_______________.
【答案】
【解析】
试题分析:当 时, ,则 .又因为 为偶函数,所以 ,所以 ,则切线斜率为 ,所以切线方程为 ,即 .
(16)已知直线 : 与圆 交于 两点,过 分别做 的垂线与 轴交于 两点,若 ,则 __________________.

2016全国三卷理科数学高考真题及答案 甄选

2016全国三卷理科数学高考真题及答案 甄选

2016全国三卷理科数学高考真题及答案 (优选.)赠人玫瑰,手留余香。

rd2016年普通高等学校招生全国统一考试理科数学一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合S ={}{}(x 2)(x 3)0,T 0S x x x =--≥=I >,则S T =(A) [2,3] (B)(-∞,2][3,+∞) (C)[3,+∞) (D)(0,2][3,+∞) (2)若z=1+2i ,则41izz =- (A)1 (B) -1 (C) i (D)-i (3)已知向量12(,)22BA =,31(,),22BC =则∠ABC= (A)300 (B) 450 (C) 600 (D)1200(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。

图中A 点表示十月的平均最高气温约为150C ,B 点表示四月的平均最低气温约为50C 。

下面叙述不正确的是(A) 各月的平均最低气温都在00C 以上(B) 七月的平均温差比一月的平均温差大(C) 三月和十一月的平均最高气温基本相同 (D) 平均气温高于200C 的月份有5个(5)若3tan 4α=,则2cos 2sin 2αα+=(A)6425(B)4825(C) 1 (D)1625(6)已知432a =,344b =,1325c =,则(A )b a c << (B )a b c <<(C )b c a <<(D )c a b << (7)执行下图的程序框图,如果输入的a =4,b =6,那么输出的n =(A )3 (B )4 (C )5 (D )6(8)在ABC △中,π4B,BC 边上的高等于13BC ,则cos A(A )31010(B )1010 (C )1010(D )31010(9)如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为(A )18365+ (B )54185+ (C )90 (D )81(10) 在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球,若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是(A )4π (B )92π(C )6π (D )323π(11)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B分别为C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C的离心率为(A)13(B)12(C)23(D)34(12)定义“规范01数列”{a n}如下:{a n}共有2m项,其中m项为0,m项为1,且对任意2k m≤,12,,,ka a a中0的个数不少于1的个数.若m=4,则不同的“规范01数列”共有(A)18个(B)16个(C)14个(D)12个二、填空题:本大题共3小题,每小题5分(13)若x,y满足约束条件则z=x+y的最大值为_____________.(14)函数的图像可由函数的图像至少向右平移_____________个单位长度得到。

2016年全国卷3理科数学理科综合试题及答案

2016年全国卷3理科数学理科综合试题及答案

绝密★启用前2016年普通高等学校招生全国统一考试 全国卷3理科数学注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明1.设集合S={}{}|(2)(3)0,|0S x x x T x x =--≥=> ,则ST=(A )[2,3] (B )(—∞ ,2] [3,+∞) (C )[3,+∞) (D)(0,2] [3,+∞) 【答案】D 【解析】试题分析:由(2)(3)0x x --≥解得3x ≥或2x ≤,所以{|23}S x x x =≤≥或,所以{|023}S T x x x =<≤≥或,故选D .考点:1、不等式的解法;2、集合的交集运算. 2.若12z i =+,则41izz =- (A )1 (B) —1 (C )i (D )-i 【答案】C 【解析】 试题分析:44(12)(12)11i ii i i zz ==+---,故选C . 考点:1、复数的运算;2、共轭复数. 3.已知向量1(2BA = ,31(),22BC = 则∠ABC=(A)300 (B ) 450 (C )600 (D )1200【答案】A 【解析】试题分析:由题意,得112222cos 112||||BA BC ABC BA BC ⨯⋅∠===⨯,所以30ABC ∠=︒,故选A .考点:向量夹角公式.4.某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图.图中A 点表示十月的平均最高气温约为150C,B 点表示四月的平均最低气温约为50C.下面叙述不正确的是(A )各月的平均最低气温都在00C 以上 (B )七月的平均温差比一月的平均温差大 (C )三月和十一月的平均最高气温基本相同 (D)平均气温高于200C 的月份有5个 【答案】D 【解析】试题分析:由图可知0C ︒均在虚线框内,所以各月的平均最低气温都在0℃以上,A 正确;由图可在七月的平均温差大于7.5C ︒,而一月的平均温差小于7.5C ︒,所以七月的平均温差比一月的平均温差大,B 正确;由图可知三月和十一月的平均最高气温都大约在5C ︒,基本相同,C 正确;由图可知平均最高气温高于20℃的月份有3个或2个,所以不正确.故选D .考点:1、平均数;2、统计图5.若3tan 4α= ,则2cos 2sin 2αα+= (A)6425 (B ) 4825 (C ) 1 (D )1625【答案】A 【解析】试题分析:由3tan 4α=,得34sin ,cos 55αα==或34sin ,cos 55αα=-=-,所以2161264cos 2sin 24252525αα+=+⨯=,故选A .考点:1、同角三角函数间的基本关系;2、倍角公式. 6.已知432a =,254b =,1325c =,则(A)b a c << (B )a b c << (C )b c a << (D)c a b << 【答案】A 【解析】试题分析:因为422335244a b ==>=,1223332554c a ==>=,所以b a c <<,故选A . 考点:幂函数的图象与性质.7.执行下图的程序框图,如果输入的46a b ==,,那么输出的n =(A )3 (B )4 (C)5 (D)6 【答案】B 【解析】试题分析:第一次循环,得2,4,6,6,1a b a s n =====;第二次循环,得2,6,4,10a b a s =-===,2n =;第三次循环,得2,4,6,16,3a b a s n =====;第四次循环,得2,6,4,2016,4a b a s n =-===>=,退出循环,输出4n =,故选B . 考点:程序框图.8.在ABC △中,π4B ,BC 边上的高等于13BC ,则cos A(A 310 (B 10(C)1010(D )31010【答案】C 【解析】试题分析:设BC 边上的高线为AD ,则3BC AD =,所以225AC AD DC AD =+,2AB =.由余弦定理,知22222210cos 2225AB AC BC A AB AC AD AD+-===⋅⨯⨯,故选C . 考点:余弦定理.9.如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为(A )18365+ (B)54185+ (C )90 (D)81【答案】B 【解析】试题分析:由三视图该几何体是以侧视图为底面的斜四棱柱,所以该几何体的表面积236233233554185S =⨯⨯+⨯⨯+⨯⨯=+B .考点:空间几何体的三视图及表面积.10.在封闭的直三棱柱111ABC A B C -内有一个体积为V 的球,若AB BC ⊥,6AB =,8BC =,13AA =,则V 的最大值是(A )4π (B )92π (C)6π (D )323π 【答案】B 【解析】试题分析:要使球的体积V 最大,必须球的半径R 最大.由题意知球的与直三棱柱的上下底面都相切时,球的半径取得最大值32,此时球的体积为334439()3322R πππ==,故选B . 考点:1、三棱柱的内切球;2、球的体积.11.已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A,B 分别为C 的左,右顶点。

2016年高考数学全国新课标3卷理科试题

2016年高考数学全国新课标3卷理科试题

绝密★启封并使用完毕前试题类型:2016年普通高等学校招生全国统一考试理科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合S={}{}(x 2)(x 3)0,T 0S x x x =--≥=I >P ,则S I T=(A) [2,3] (B)(-∞,2]U [3,+∞)(C)[3,+∞) (D)(0,2]U [3,+∞)(2)若z=1+2i ,则41i zz =- (A)1 (B) -1 (C) i (D)-i(3)已知向量12(,)22BA =uu v ,31(,),22BC =uu u v 则∠ABC= (A)300 (B) 450 (C) 600 (D)1200(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。

图中A 点表示十月的平均最高气温约为150C ,B 点表示四月的平均最低气温约为50C 。

下面叙述不正确的是(A) 各月的平均最低气温都在00C 以上(B) 七月的平均温差比一月的平均温差大(C) 三月和十一月的平均最高气温基本相同(D) 平均气温高于200C 的月份有5个(5)若3tan 4α=,则2cos 2sin 2αα+= (A)6425 (B) 4825 (C) 1(D)1625 (6)已知432a =,234b =,1325c =,则(A )b a c << (B )a b c <<(C )b c a <<(D )c a b <<(7)执行右图的程序框图,如果输入的a =4,b =6,那么输出的n =(A )3(B )4(C )5(D )6(8)在ABC △中,π4B =,BC 边上的高等于13BC ,则cos A = (A )31010(B )1010(C )1010-(D )31010- (9)如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为(A )18365+(B )54185+(C )90(D )81(10) 在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球,若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是(A )4π (B )92π(C )6π (D )323π (11)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为(A )13(B )12(C )23(D )34(12)定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意2k m ≤,12,,,k a a a 中0的个数不少于1的个数.若m =4,则不同的“规范01数列”共有(A )18个 (B )16个 (C )14个 (D )12个第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每小题5分(13)若x,y满足约束条件则z=x+y的最大值为_____________.(14)函数的图像可由函数的图像至少向右平移_____________个单位长度得到。

全国Ⅲ卷高考理科数学真题试卷及答案解析

全国Ⅲ卷高考理科数学真题试卷及答案解析

2016年高考真题理科数学(全国III卷)理科数学考试时间:____分钟题型单选题填空题简答题总分得分单选题(本大题共12小题,每小题____分,共____分。

)1.设集合,则S T=A. .[2,3]B. (-,2] [3,+)C. [3,+)D. (0,2] [3,+)2.若,则A. 1B. -1C. iD. -i3.已知向量,则ABC=A. 300B. 450C. 600D. 12004.某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。

图中A点表示十月的平均最高气温约为150C,B点表示四月的平均最低气温约为50C。

下面叙述不正确的是A. .各月的平均最低气温都在00C以上B. 七月的平均温差比一月的平均温差大C. 三月和十一月的平均最高气温基本相同D. 平均气温高于200C的月份有5个5.若,则A.B.C. 1D.6.已知,,,则A.B.C.D.7.执行下图的程序框图,如果输入的,那么输出的A. 3B. 4C. 5D. 68.在中,,BC边上的高等于,则A.B.C.D.9.如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为A.B.C. 90D. 8110.在封闭的直三棱柱内有一个体积为V的球,若,,,,则V的最大值是A. 4πB.C. 6πD.11.已知O为坐标原点,F是椭圆C:的左焦点,A,B分别为C的左,右顶点.P为C上一点,且轴.过点A的直线l与线段交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为A.B.C.D.12.定义“规范01数列”{a n}如下:{a n}共有2m项,其中m项为0,m项为1,且对任意,中0的个数不少于1的个数.若m=4,则不同的“规范01数列”共有A. 18个B. 16个C. 14个D. 12个填空题(本大题共4小题,每小题____分,共____分。

)13.若满足约束条件则的最大值为_____________.14.函数的图像可由函数的图像至少向右平移_____________个单位长度得到.15.已知为偶函数,当时,,则曲线在点处的切线方程是_______________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016年普通高等学校招生全国统一考试(III 卷)
理科数学
一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符 合题目要求的。

1. 设集合}0|{}0)3)(2(|{>=≥--=x x T x x x S ,,则S ∩ T =
A. [2,3]
B. ),3[]2,(+∞-∞
C. ),3[+∞
D. ),3[]2,0(+∞ 2. =-+=1
i
4i 21z z z ,则
若 A. 1
B. -1
C. i
D. -i
3. 已知向量)2
1
,23()23,
21(==BC BA ,,则∠ABC = A. 30° B. 45°
C. 60°
D. 120°
4. 某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温
和平均最低气温的雷达图。

图中A 点表示十月的平均最高气温约15℃,B 点 表示四月的平均最低气温约为5℃。

下面叙述不正确的是 A. 各月的平均最低气温都在0℃以上 B. 七月的平均温差比一月的平均温差大 C. 三月和十一月的平均最高气温基本相同 D. 平均最高气温高于20℃的月份有5个 5. =+=
ααα2sin 2cos 4
3
tan 2,则若 A.
25
64 B.
2548
C. 1
D. 25
16
6. 已知3
15
23
42542===c b a ,,,则
A. b < a < c
B. a < b < c
C. b < c < a
D. c < a < b 7. 执行右面的程序框图,如果输入的a = 4,b = 6,那么输出的n =
A. 3
B. 4
C. 5
D. 6 8. 在△ABC 中,4
π
=
B ,B
C 边上的高等于
3
1
BC ,则sin A = A.
103
B.
1010
C. 5
D.
1032016.6
9. 如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该
多面体的表面积为
A. 53618+
B. 51854+
C. 90
D. 81
10. 在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球,若AB ⊥BC ,AB = 6,
BC = 8,AA 1 = 3,则V 的最大值是
A. π4
B.
29π C. π6
D. 3
32π
11. 已知O 为坐标原点,F 是椭圆C :)1(122
22>>=+b a b
y a x 的左焦点,A 、B 分别为C 的左、右顶点。

P 为C 上
一点,且PF ⊥x 轴,过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E 。

若直线BM 经过OE 的中点,则C
的离心率为 A.
31
B.
21
C.
32
D.
4
3 12. 定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意k ≤ 2m ,a 1、a 2…a k 中的 0的个数不少于1的个数。

若m = 4,则不同的“规范01数列”共有
A. 18个
B. 16个
C. 14个
D. 12个
二、填空题:本题共4小题,每小题5分,共20分。

13. 设x 、y 满足约束条件⎪⎩

⎨⎧≤-+≤-≥+-,022,02,01y x y x y x 则z = x + y 的最大值为___________。

14. 函数x x y cos 3sin -=的图象可由函数x x y cos 3sin +=的图象至少向右平移_______个单位长度得到。

15. 已知f (x )为偶函数,当x x x f x 3)ln()(0+-=<时,,则曲线y = f (x )在点(1,-3)处的切线方程是______________。

16. 已知直线l :120332
2=+=-++y x m y mx 与圆交于A 、B 两点,过A 、B 分别作l 的垂线与x 轴交于C 、
D 两点,若|AB | = 32,则|CD | =_______。

三、解答题:共70分。

解答应写出文字说明、证明过程或演算步骤。

17. (本小题满分12分)
已知数列{a n }的前n 项和01≠+=λλ,其中n n a S 。

(I )证明{a n }是等比数列,并求其通项公式; (II )若λ,求32
31
5=S 。

下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图。

(I )由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明;
(II )建立y 关于t 的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量。

附注: 参考数据:
2.646755.0)(17.4032.97
1
i 71
7
1
2≈=-==∑∑∑===,,,i i i i i i
y y y t y。

参考公式:相关系数∑∑∑===----=
n
i i n
i i
n
i i i
y y t t
y y t t
r 1
2
1
21
)()()
)((
回归方程t b a y
ˆˆˆ+=中斜率和截距最小二乘估计公式分别为: t b y a
t t
y y t t
b
n
i i
n
i i i
ˆˆ)()
)((ˆ1
2
1
-=---=∑∑==,。

19. (本小题满分12分)
如图,四棱锥P -ABCD 中,P A ⊥底面ABCD ,AD //BC ,AB = AD = AC = 3, P A = BC = 4,M 为线段AD 上一点,AM = 2MD ,N 为PC 的中点。

(I )证明MN // 平面P AB ;
(II )求直线AN 与平面PMN 所成角的正弦值。

20. (本小题满分12分)
已知抛物线C :y 2 = 2x 的焦点为F ,平行于x 轴的两条直线l 1、l 2分别交C 于A 、B 两点,交C 的准线于P 、Q 两点。

(I )若F 在线段AB 上,R 是PQ 的中点,证明AR // FQ ;
(II )若△
PQF 的面积是△ABF 的面积的两倍,求AB 中点的轨迹方程。

设函数A x f x x x f 的最大值为,记,其中|)(|0)1)(cos 1(2cos )(>+-+=ααα。

(I )求)('x f ; (II )求A ;
(III )证明A x f 2|)('|≤。

请考生在第22、23、24题中任选一题作答。

如果多做,则按所做的第一题计分。

22. (本小题满分10分)选修4—1:几何证明选讲
如图,⊙O 中AB 的中点为P ,弦PC 、PD 分别交AB 于E 、F 两点。

(I )若∠PFB = 2∠PCD ,求∠PCD 的大小;
(II )若EC 的垂直平分线与FD 的垂直平分线交于点G ,证明OG ⊥CD 。

23. (本小题满分10分)选修4—4:坐标系与参数方程
在直角坐标系xOy 中,曲线C 1的参数方程为)(,
sin ,
cos 3为参数ααα⎩⎨
⎧==y x 。

以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为22)4
sin(=+
π
θρ。

(I )写出C 1的普通方程和C 2的直角坐标系方程;
(II )设点P 在C 1上,点Q 在C 2上,求| PQ |的最小值及此时P 的直角坐标。

24. (本小题满分10分)选修4—5:不等式选讲
已知函数a a x x f +-=|2|)(。

(I )当a = 2时,求不等式f (x ) ≤ 6的解集;
(II )设函数|12|)(-=x x g 。

当3)()(≥+∈x g x f x 时,R ,求a 的取值范围。

相关文档
最新文档