人教版八年级数学下册十七章勾股定理时说课稿
最新人教版数学八年级下册《勾股定理》说课课稿
![最新人教版数学八年级下册《勾股定理》说课课稿](https://img.taocdn.com/s3/m/f3b405d1af1ffc4fff47ac43.png)
人教版数学八年级下册《勾股定理》说课课稿人教版数学八年级下册《勾股定理》说课课稿一、教材分析这节课是人教版八年级下册第十七章第一节探索勾股定理第一课时,勾股定理是中学数学几个重要定理之一,它揭示了直角三角形三边之间的数量关系,既是直角三角形性质的拓展,也是后续学习“解直角三角形”的基础.它紧密联系了数学中两个最基本的量——数与形,能够把形的特征(三角形中一个角是直角)转化成数量关系(三边之间满足a2+ b2= c2)堪称数形结合的典范,在理论上占有重要地位,在数学发展中起过重要作用,在现实世界中也有着广泛应用.学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。
二、学情分析八年级学生已具备一定的分析与归纳能力,初步掌握了探索图形性质的基本方法 . 但是学生对用割补方法和面积计算证明几何命题的意识和能力存在障碍,对于如何将图形与数有机的结合起来还很陌生.三、学法与教法分析鉴于八年级学生的知识结构和心理特征,本节课我选择引导探索法,由浅入深,由特殊到一般地提出问题。
从探究等腰直角三角形三边的关系入手,再自然过渡到探究一般直角三角形,引导学生去观察、思考、探索、发现,进而得到勾股定理.从而经历知识产生、形成和发展的过程,提高学生的思维能力,有效地激发学生的思维积极性。
荷兰数学教育家赖登塔尔认为,学习数学唯一正确的方法是实现再创造.也就是由学生本人把要学习的东西自己去发现或创造出来,教师的任务是引导和帮助学生去进行这种再创造的工作,而不是把现成的知识灌输给学生. 本节课正是基于这样的理念,根据教材的特点,把学生的探索和验证活动放在首位,一方面要求学生在教师引导下自主探索,合作交流,另一方面要求学生对探究过程中用到的数学思想方法有一定的领悟和认识.从而教给学生探求知识的方法,教会学生获取知识的本领.在教师的启发引导下,学生独立思考、自主探究、获取知识,掌握方法,真正成为学习的主体.在授课过程中,根据学生对课堂提问及习题的解答情况,及时调节课堂节奏。
初中数学《勾股定理》优秀说课稿(优秀3篇)
![初中数学《勾股定理》优秀说课稿(优秀3篇)](https://img.taocdn.com/s3/m/5ac74d69a4e9856a561252d380eb6294dc882217.png)
初中数学《勾股定理》优秀说课稿(优秀3篇)初中数学《勾股定理》优秀说课稿篇一教学目标1、灵活应用勾股定理及逆定理解决实际问题。
2、进一步加深性质定理与判定定理之间关系的认识。
重难点1、重点:灵活应用勾股定理及逆定理解决实际问题。
2、难点:灵活应用勾股定理及逆定理解决实际问题。
一、自主学习1、若三角形的三边是⑴1、、2;⑴;⑴32,42,52⑴9,40,41;⑴(m+n)2-1,2(m+n),(m+n)2+1;则构成的是直角三角形的有()A、2个B、3个?C、4个?D、5个2、已知:在⑴ABC中,⑴A、⑴B、⑴C的对边分别是a、b、c,分别为下列长度,判断该三角形是否是直角三角形?并指出那一个角是直角?⑴a=9,b=41,c=40;⑴a=15,b=16,c=6;⑴a=2,b=,c=4;二、交流展示例1(P33例2)某港口P位于东西方向的`海岸线上。
“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里,它们离开港口一个半小时后分别位于Q、R处,并相距30海里。
如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?分析:⑴了解方位角,及方位名词;⑴依题意画出图形;⑴依题意可求PR,PQ,QR;⑴根据勾股定理的逆定理,求⑴QPR;⑴求⑴RPN。
小结:让学生养成“已知三边求角,利用勾股定理的逆定理”的意识。
例2、一根30米长的细绳折成3段,围成一个三角形,其中一条边的长度比较短边长7米,比较长边短1米,请你试判断这个三角形的形状。
分析:⑴若判断三角形的形状,先求三角形的三边长;⑴设未知数列方程,求出三角形的三边长;⑴根据勾股定理的逆定理,判断三角形是否为直角三角形。
三、合作探究例3、如图,小明的爸爸在鱼池边开了一块四边形土地种了一些蔬菜,爸爸让小明计算一下土地的面积,以便计算一下产量。
小明找了一卷米尺,测得AB=4米,BC=3米,CD=13米,DA=12米,又已知⑴B=90°。
勾股定理(说课稿)
![勾股定理(说课稿)](https://img.taocdn.com/s3/m/0ba360339b6648d7c1c746cf.png)
圆玄中学 刘爱心
一、课题与课时安排 二、课标对教学内容的要求 三、学情分析 四、任务分析 五、教学目标 六、教学过程设计
一、课题与课时安排
•课题:17.1勾股定理 •版本:人教版8下第17章P22-25,
2013年12月第1版, 2014年11月第2次印刷 •课时安排:共4课时,这里是第1课时。
评价终点目标
六、作业
作业1:
运用
作业2:
通过阅读课本材料P22-24、P30、网上搜索等方式 收集勾股定理的其他几何证明方法
探索
密匙:
四个全等直角三角形,两个正方形 b
a c
密匙:
两全等直角三角形,一等腰直角三角形 a
bc
几何画板演示3
谢谢指导!
3.运用新知
新信息进入原有命题的网络
5.引起学生的反 应,提供反馈与 纠正
6.提供技能的应 用
4.巩固新知
5.课堂小结、作 业
变式练习,知识 转化为技能
技能在新的情境 中应用
一、创设情境
•教科书的情境引入及勾股 定理的几何证明材料,操 作起来很费时
•只探索不运用感觉不完整, 目的性不够强。
•重运用轻探索忽略了课标 对“探索”的要求,错过 了数学思维的形成过程。
2.用面积法建立 等量关系
1.用字母表示 线段
2.用代数式表示 线段
求二次方根 解简单的一元二次方程
代数知识
几何知识
数学语言表述
起点能力
五、教学目标
1.能从几何证明方向探索出勾股定理并用数学语言描述; 2.能简单运用勾股定理求直角三角形的边长; 3.能从实际问题中构造直角三角形,并运用勾股定理解决问题。
人教版八年级下册数学人教版八年级数学-勾股定理说课稿
![人教版八年级下册数学人教版八年级数学-勾股定理说课稿](https://img.taocdn.com/s3/m/c951dcfd4b73f242326c5f07.png)
《勾股定理》的说课稿长郡中学史李东尊敬的各位评委、各位教师:你们好!今天我说课的课题是《勾股定理》。
本课选自九年义务教育人教版八年级下册初中数学第十七章第一节的第一课时。
下面我从教学背景分析与处理、教学策略、教学流程等方面对本课的设计进行说明。
一、教学背景分析1、教材分析本节课是学生在已经掌握了直角三角形有关性质的基础上进行学习的,通过2002年国际数学家大会的会徽图案,引入勾股定理,进而探索直角三角形三边的数量关系,并应用它解决问题。
学好本节不仅为下节勾股定理的逆定理打下良好基础,而且为今后学习解直角三角形奠定基础,在实际生活中用途很大。
勾股定理是直角三角形的一条非常重要的性质,是几何中一个非常重要的定理,它揭示了直角三角形三边之间的数量关系,将数与形密切地联系起来,它有着丰富的历史背景,在理论上占有重要的地位。
2、学情分析通过前面的学习,学生已具备一些平面几何的知识,能够进行一般的推理和论证,但如何通过拼图来证明勾股定理,学生对这种解决问题的途径还比较陌生,存在一定的难度,因此,我采用直观教具、多媒体等手段,让学生动手、动口、动脑,化难为易,深入浅出,让学生感受学习知识的乐趣。
3、举世不师,故道益离。
柳宗元◆教学目标:根据八年级学生的认知水平,依据新课程标准和教学大纲的要求,我制定了如下的举世不师,故道益离。
柳宗元◆教学目标:知识与能力:了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理;培养在实际生活中发现问题总结规律的意识和能力.过程与方法:通过创设情境,导入新课,引导学生探索勾股定理,并应用它解决问题,运用了观察、演示、实验、操作等方法学习新知。
情感态度价值观:感受数学文化,激发学生学习的热情,体验合作学习成功的喜悦,渗透数形结合的思想。
4、教学重点、难点通过分析可见,勾股定理是平面几何的重要定理,有着承上启下的作用,在今后的生活实践中有着广泛应用。
因此我确定本课的教学重点为探索和证明勾股定理.由于定理证明的关键是通过拼图,使学生利用面积相等对勾股定理进行证明,而如何拼图,对学生来说有一定难度,为此我确定本课的教学难点为用拼图的方法来证明勾股定理.二、教材处理根据学生情况,为有效培养学生能力,在教学过程中以创设问题情境为先导,我运用了直观教具、多媒体等手段,激发学生学习兴趣,调动学生学习积极性,并开展以探究活动为主的教学模式,边设疑,边讲解,边操作,边讨论,启发学生提出问题,分析问题,进而解决问题,以达到突出重点,攻破难点的目的。
人教版数学八年级下册说课稿:第17章勾股定理复习
![人教版数学八年级下册说课稿:第17章勾股定理复习](https://img.taocdn.com/s3/m/4f224db40875f46527d3240c844769eae109a341.png)
人教版数学八年级下册说课稿:第17章勾股定理复习一. 教材分析人教版数学八年级下册第17章是关于勾股定理复习的内容。
这一章节是在学生学习了勾股定理的基础上进行复习和巩固的,旨在帮助学生加深对勾股定理的理解,并能运用勾股定理解决实际问题。
本章主要包括勾股定理的表述、证明以及应用。
通过复习,使学生能够熟练掌握勾股定理,提高解决问题的能力。
二. 学情分析学生在八年级上册已经学习了勾股定理,对于勾股定理的概念和基本运用有一定的了解。
但在解决复杂问题时,可能会遇到困难。
因此,在复习过程中,需要引导学生回顾和巩固已学知识,提高他们解决实际问题的能力。
同时,学生对于数学知识的学习兴趣和积极性也需要加以激发和培养。
三. 说教学目标1.知识与技能目标:通过复习,使学生能够熟练掌握勾股定理的表述和证明,提高解决问题的能力。
2.过程与方法目标:通过自主学习、合作交流等环节,培养学生解决问题的能力和合作意识。
3.情感态度与价值观目标:激发学生对数学知识的兴趣和好奇心,培养积极的学习态度。
四. 说教学重难点1.教学重点:勾股定理的表述和证明,以及运用勾股定理解决实际问题。
2.教学难点:对于复杂问题的解决,需要引导学生运用勾股定理进行推理和计算。
五. 说教学方法与手段1.教学方法:采用自主学习、合作交流、教师讲解等教学方法,引导学生主动参与学习过程,提高解决问题的能力。
2.教学手段:利用多媒体课件、板书等教学手段,帮助学生直观地理解和掌握勾股定理。
六. 说教学过程1.导入:通过复习勾股定理的定义和基本运用,激发学生的学习兴趣,为后续复习打下基础。
2.自主学习:学生自主复习勾股定理的表述和证明,通过思考和解答相关问题,巩固已学知识。
3.合作交流:学生分组讨论,分享彼此的学习心得和解题经验,互相帮助,提高解决问题的能力。
4.教师讲解:教师针对学生的疑问和难点进行讲解,引导学生运用勾股定理解决实际问题。
5.练习巩固:学生进行相关练习题的解答,检验自己对于勾股定理的理解和运用能力。
人教版数学八年级下册17.1《勾股定理》说课稿1
![人教版数学八年级下册17.1《勾股定理》说课稿1](https://img.taocdn.com/s3/m/0e2117e7c67da26925c52cc58bd63186bdeb926e.png)
人教版数学八年级下册17.1《勾股定理》说课稿1一. 教材分析《勾股定理》是人教版数学八年级下册第17.1节的内容,属于几何学的范畴。
本节内容主要介绍勾股定理的发现、证明及应用。
勾股定理是数学史上重要的定理之一,对于培养学生的逻辑思维能力、空间想象能力具有重要意义。
通过学习本节内容,学生可以了解古代数学家的智慧,提高对数学的兴趣和自信心。
二. 学情分析八年级的学生已经掌握了初中阶段的基本几何知识,具备一定的逻辑思维能力和空间想象能力。
但是,对于勾股定理的证明及应用,部分学生可能还存在一定的困难。
因此,在教学过程中,教师需要关注学生的个体差异,针对不同程度的学生进行引导和帮助,使他们在课堂上充分理解和掌握勾股定理。
三. 说教学目标1.知识与技能:使学生了解勾股定理的发现过程,掌握勾股定理的内容及证明方法,能运用勾股定理解决实际问题。
2.过程与方法:通过观察、猜想、证明等环节,培养学生的逻辑思维能力和空间想象能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生尊重和传承古代数学文化的意识。
四. 说教学重难点1.教学重点:勾股定理的内容、证明方法及应用。
2.教学难点:勾股定理的证明方法,特别是利用几何画板等工具进行动态演示的能力。
五. 说教学方法与手段1.教学方法:采用问题驱动、启发式教学法,引导学生主动探究、合作交流。
2.教学手段:利用多媒体课件、几何画板等工具,进行生动形象的展示和讲解。
六. 说教学过程1.导入:以古代数学家勾股的故事为切入点,激发学生对勾股定理的兴趣。
2.新课讲解:(1)介绍勾股定理的发现过程,让学生了解古代数学家的智慧。
(2)讲解勾股定理的内容,让学生掌握直角三角形三边之间的关系。
(3)引导学生通过观察、猜想、证明等环节,理解并掌握勾股定理的证明方法。
3.课堂练习:布置一些有关勾股定理的应用题,让学生巩固所学知识。
4.总结:对本节课的内容进行梳理,强调勾股定理的重要性和应用价值。
《勾股定理》说课稿(通用6篇)精选全文
![《勾股定理》说课稿(通用6篇)精选全文](https://img.taocdn.com/s3/m/5e611c1868eae009581b6bd97f1922791688be9c.png)
可编辑修改精选全文完整版《勾股定理》说课稿(通用6篇)《勾股定理》篇1尊敬的各位评委、老师,您们好,我是临沂市苍山县实验中学的宋宁。
今天我说课的内容是人教版《数学》八年级下册第十八章第一节《勾股定理》第一课时,我将从教材、教法与学法、教学过程、教学评价以及设计说明五个方面来阐述对本节课的理解与设计。
一、教材分析:(一) 教材的地位与作用从知识结构上看,勾股定理揭示了直角三角形三条边之间的数量关系,为后续学习解直角三角形提供重要的理论依据,在现实生活中有着广泛的应用。
从学生认知结构上看,它把形的特征转化成数量关系,架起了几何与代数之间的桥梁;勾股定理又是对学生进行爱国主义教育的良好素材,因此具有相当重要的地位和作用。
根据数学新课程标准以及八年级学生的认知水平我确定如下学习目标:知识技能、数学思考、问题解决、情感态度。
其中【情感态度】方面,以我国数学文化为主线,激发学生热爱祖国悠久文化的情感。
(二)重点与难点为变被动接受为主动探究,我确定本节课的重点为:勾股定理的探索过程。
限于八年级学生的思维水平,我将面积法(拼图法)发现勾股定理确定为本节课的难点,我将引导学生动手实验突出重点,合作交流突破难点。
二、教学与学法分析教学方法叶圣陶说过“教师之为教,不在全盘授予,而在相机诱导。
”因此教师利用几何直观提出问题,引导学生由浅入深的探索,设计实验让学生进行验证,感悟其中所蕴涵的思想方法。
学法指导为把学习的主动权还给学生,教师鼓励学生采用动手实践,自主探索、合作交流的学习方法,让学生亲自感知体验知识的形成过程。
三、教学过程我国数学文化源远流长、博大精深,为了使学生感受其传承的魅力,我将本节课设计为以下五个环节。
首先,情境导入古韵今风给出《七巧八分图》中的一组图片,让学生利用两组七巧板进行合作拼图。
(请看视频)让学生观察并思考三个正方形面积之间的关系?它们围成了什么三角形?反映在三边上,又蕴含着什么数学奥秘呢?寓教于乐,激发学生好奇、探究的欲望。
八下《17.1.1勾股定理》说课稿
![八下《17.1.1勾股定理》说课稿](https://img.taocdn.com/s3/m/54d75f404b73f242326c5f17.png)
《17.1.1勾股定理》说课稿尊敬的各位评委老师,大家好!今天我说课的题目是(人教版)八年级下册第十七章17.1“勾股定理”第一课时.下面我从教学分析、教学策略、教学过程、教学反思等四个方面对本课的设计进行说明。
一、教学分析1、教材分析:本节是本章的起始课,是学生在学习了三角形有关性质的基础上提出来,它揭示了直角三角形的三边之间的数量关系,对前面的知识起到完善,延伸的作用.搭建了几何图形与数量关系之间的桥梁,为后面学习勾股定理的逆定理及“平行四边形”和“解直角三角形”奠定基础。
不仅在平面几何中是重要的定理,而且在三角学,解析几何学、微积分学中都是理论的基础,对现代数学的发展也产生了重要而深远的影响,没有勾股定理,就难以建立起整个数学的大厦。
因此,勾股定理不仅被认为是是平面几何最重要的定理之一,也被认为是数学中最重要的定理之一.2、学情分析:我们八年级学生(1)知识技能方面:已学过三角形、等腰三角形的有关性质及三角形全等的判定方法;了解了直角三角形的基本特征及相关性质.(2)他们的心理特点:好强、好胜、思维活跃。
在学习上有强烈的求知欲望,乐于探索及表现自我.(3)在活动经验上:学习了轴对称、平移等变换知识,具一定拼图、折叠、作图等操作经验,积累了一定的解决问题的方法,如几何推理论证法、等面积法.3、教学目标:根据学生的认知水平,依据新课程标准与教师指导用书我制订了如下的教学目标:1、知道勾股定理的由来,了解勾股定理的证明,掌握勾股定理的内容,初步会用它进行有关的计算。
2、在勾股定理的探索中,让学生经历“观察—猜想—计算—归纳—验证”的过程,发展合情推理的能力;并体会数形结合和从特殊到一般的数学思想,培养学生的观察、计算以及科学探究问题的能力。
3、通过情境问题激发学生学习的兴趣,使学生在独立思考的基础上,积极参与数学问题的讨论,敢于发表自己的观点,体验获得成功的快乐;通过介绍勾股定理在我国古代的研究,激发学生热爱祖国悠久文化的思想,激励学生发奋学习.基于以上分析确定本节课教学重点:探索和证明勾股定理;教学难点:用拼图的方法探究和证明勾股定理.二、教学策略勾股定理是关于直角三角形三边关系的一个特殊结论.对于这一结论的探究,教师要适时启发、引导.解决问题的关键是想到用合理的割补法求以斜边为边的正方形的面积.程度好的学生会通过自主探索得到,对于有问题的学生可以以师生讨论交流相结合的方式,利用白板动画演示与学生共同归纳割补法求面积。
17.1 勾股定理 说课稿 2022-2023学年人教版八年级数学下册
![17.1 勾股定理 说课稿 2022-2023学年人教版八年级数学下册](https://img.taocdn.com/s3/m/b001cfbaf605cc1755270722192e453611665b44.png)
17.1 勾股定理说课稿一、教学内容本节课的教学内容是《勾股定理》。
二、教学目标本节课的教学目标包括:•理解勾股定理的基本概念和原理;•能够应用勾股定理求解直角三角形的边长;三、教学重点本节课的教学重点是勾股定理的概念和应用。
四、教学难点本节课的教学难点是如何将勾股定理应用到实际问题中。
五、教学准备为了顺利展开本节课的教学活动,我做了以下准备:•准备了教学课件,包括勾股定理的定义和证明过程;•准备了一些直角三角形的实际问题,供学生练习应用勾股定理解决问题;•准备了黑板和粉笔,以便进行板书。
六、教学过程本节课的教学过程将按照以下步骤展开:1. 导入通过一个实际生活中的问题引入勾股定理的概念,例如:小明要修理自行车,他发现后轮与前轮之间的距离无法满足要求,因此他需要测量后轮与前轮之间的距离。
请同学们思考如何测量这个距离?2. 引入勾股定理根据学生的思考和回答,引入勾股定理的概念:勾股定理是指在直角三角形中,直角边的平方等于两腰边平方和。
3. 探索勾股定理通过几个小组合作探索的问题,引导学生自己发现勾股定理的原理和规律。
例如,给出一个直角三角形的边长,让学生计算各边的平方并观察结果。
4. 讲解和总结勾股定理在学生自己探索的基础上,进行一些示范计算,以及对勾股定理的基本概念和原理进行讲解。
同时,总结勾股定理的应用方法和注意事项。
5. 应用勾股定理解决实际问题给出一些实际问题,要求学生运用勾股定理解决。
例如,计算一个直角三角形的斜边长,或者计算两个建筑物之间的距离等。
6. 提问和讨论通过提问和讨论,检查学生对勾股定理的理解和应用能力。
七、教学反思通过本节课的教学,学生对勾股定理的概念和原理有了更深入的理解,能够熟练运用勾股定理解决直角三角形的边长问题。
同时,通过实际问题的练习,学生对勾股定理的应用能力也有了提升。
不过,需要注意的是,在讲解勾股定理的过程中,应该尽量避免公式的机械记忆,而是注重理解和应用。
同时,鼓励学生进行多样化的思考和探索,以培养他们的创新能力和问题解决能力。
人教版数学八年级下册17.1《勾股定理》说课稿4
![人教版数学八年级下册17.1《勾股定理》说课稿4](https://img.taocdn.com/s3/m/ce40cf12ce84b9d528ea81c758f5f61fb73628e0.png)
人教版数学八年级下册17.1《勾股定理》说课稿4一. 教材分析《勾股定理》是人教版数学八年级下册第17.1节的内容,它是初中的重要几何定理之一。
本节课的主要内容是让学生通过探究、发现并证明勾股定理,理解并掌握勾股定理的内容和应用。
教材通过丰富的情境和实例,引导学生从实际问题中发现勾股定理,并通过几何画板等工具进行验证。
教材还提供了多种证明方法,让学生了解勾股定理的不同证明思路,培养学生的逻辑思维能力和创新意识。
二. 学情分析学生在学习本节课之前,已经掌握了相似三角形的性质、三角形的内角和定理等知识,具备了一定的几何基础。
但是,对于证明方法的掌握和运用还需要进一步的培养。
此外,学生对于抽象的几何证明可能还存在一定的困难,因此需要教师在教学中给予适当的引导和帮助。
三. 说教学目标1.知识与技能目标:让学生掌握勾股定理的内容和证明方法,能够运用勾股定理解决实际问题。
2.过程与方法目标:通过观察、操作、探究等活动,培养学生的几何直观能力和逻辑思维能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识和创新精神。
四. 说教学重难点1.教学重点:让学生掌握勾股定理的内容和证明方法。
2.教学难点:让学生理解和运用勾股定理的证明方法,解决实际问题。
五. 说教学方法与手段1.教学方法:采用问题驱动法、合作学习法、探究学习法等,引导学生主动参与课堂,提高学生的学习兴趣和积极性。
2.教学手段:利用多媒体课件、几何画板等工具,帮助学生直观地理解勾股定理的证明过程。
六. 说教学过程1.导入:通过展示直角三角形的实例,引导学生发现直角三角形边长之间的关系,激发学生的兴趣。
2.探究:让学生分组讨论,每组选择一种证明方法,利用几何画板等工具进行验证,并展示汇报。
3.证明:引导学生总结勾股定理的证明过程,理解证明方法的本质。
4.应用:让学生运用勾股定理解决实际问题,巩固所学知识。
5.总结:对本节课的内容进行总结,强调勾股定理的重要性和应用价值。
人教版八年级数学下册十七章勾股定理时说课稿
![人教版八年级数学下册十七章勾股定理时说课稿](https://img.taocdn.com/s3/m/7b828c439b89680203d825c5.png)
人教版八年级数学下册第十七章第一节《勾股定理第一课时》说课稿羊泉初级中学曹明一、教材分析(一)教材的地位与作用勾股定理揭示了直角三角形三边之间的一种美妙关系,它是数形结合的优美典范,在数学发展和现实世界中有着广泛的作用.学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解.(二)教学目标(1)知识与技能了解勾股定理的发现过程,掌握勾股定理的内容并会证明勾股定理;培养学生在实际生活中发现问题总结规律的意识和能力.(2)过程与方法在探索勾股定理的过程中,让学生经历“观察—猜想—验证”的数学思想,并体会数形结合和从特殊到一般的思想方法.(3)情感态度与价值观感受数学文化,激发学生学习的热情,体验合作学习获取成功的喜悦,渗透数形结合的思想.(三)重点、难点分析重点:探究并理解勾股定理难点:探索勾股定理的验证方法二、教法分析(1)教法:引导探索法、动态演示法(2)学法:探究发现法(3)教学准备:课前让学生准备方格纸;三、教学设计复习引入你对直角三角形已经有了哪些认识出示直角三角形,并友学生回答;复习与直角三角形有关的知识,便于开始本节课的学习;故事场景发现新知【探究活动1】地砖里的秘密毕达哥拉斯朋友家用地砖铺成的地面反映了直角三角形三边的某种数量关系.思考:(1)正方形A、B、C中的方格数目;(2)图中正方形A、B、C面积之间有什么关系(3)正方形A、B、C围成了什么图形出示毕达哥拉斯做客故事,提出问题.学生独立思考隐藏的规律,提出猜想.这样的设计难度小、起点低,能让所有学生在轻松的伟人故事中积极参与对数学问题的讨论和探索.合作交流探究新知【探究活动2】大胆猜想!其余的一般直角三角形也有这个性质吗(1)以斜边为边的正方形面积怎样求(2)三个正方形面积有什么关系(3)直角三角形三边长有什么关系(4)请大胆提出你的猜想.1.小组内共同探索计算A、B、C的面积后小组代表用多媒体投影展示本组猜想结果.2.教师用幻灯片直观演示,将探究活动扩展到更一般的情况.每组所画图形不同,但探究猜想结果相同,渗透从特殊到一般的数学思想.大胆猜想环节培养了学生的类比迁移能力.b a cBCA归纳小结提炼新知【总结】我们来描述定理! 【文字语言】直角三角形两条直角边的平方和等于斜边的平方. 【图形语言】1.引导学生归纳总结直角三角形三边关系,结合图形语言,从文字语言和符号语言两方面描述勾股定理.2.分析定理的变式结论.让学生从文字语言、符号语言、图形语言三个方面对勾股定理进行描述,培养学生数学语言的表达能力,归纳能力以及变式思维.【活动3】勾股世界勾股定理在西方被称为毕达哥拉斯定理,中国古代对这一数学定理的发现和应用,远比毕达哥拉斯早得多.中国最早的一部数学着作——《周髀算经》对勾股定理有具体的记载.播放图片介绍勾股定理的历史背景. 介绍勾股定理的历史背景,对学生进行爱国主义教育,激励学生强烈的民族自豪感和奋发向上的学习精神.学 以 致 用 巩 固 新 知【活动4】你会做吗1、求下列图中表示边的未知数x 、y 的值.2、直角?ABC 的两直角边a=5,b=12,c=_____3、已知:∠C =90°,a=6, a :b =3:4,求b 和c.1.学生分析已知条件,确定直角位置及已知边的位置,尝试应用勾股定理求第三边和有关面积问题.2.教师用几何画板演示运动的勾股树.第(1)题是基础题,第(2)题为变式题,让学生体会数形紧密结合,思考问题,激发学生喜欢数学,热爱数学. a 2+b 2=c 2四、教后反思本节课我针对八年级学生的知识结构和心理特征,选择引导探索法,由浅入深,由特殊到一般提出问题,学生在老师引导下自主探索,合作交流,学生是学习的主体,老师是学生学习活动的组织者、引导者、参与者.整个课堂我努力做到——贯穿一条线索:“补、割大正方形并计算面积”贯穿整个探索勾股定理的过程.突出转化思想,提高学生分析问题和解决问题的能力.渗透一个思想:“数无形时少直觉,形少数时难入微”,本节课从观察、猜想、归纳、验证最后到运用勾股定理的过程中无不渗透数形结合思想.传递一种情感:课堂中引入伟人故事,分享探究成果,欣赏优美图案,注重学生情感体验,传递数学之美,凸现探究之趣,构建有利于学生发展的生命课堂.本节课的不足之处:1.在探究补、割两种方法计算正方形的面积时占用时间较长,以至于做题巩固的时间较少;2.没有对直角边的平方和等于斜边的平方做重点强调,以至于学生只记住公式本身,有时候ab并非一定表示直角边;当然,数学问题如何设计更富有层次性和开放性,数学活动如何组织的更为有序而高效,这将是我今后不断努力的方向。
人教版数学八年级下册第十七章勾股定理说课稿
![人教版数学八年级下册第十七章勾股定理说课稿](https://img.taocdn.com/s3/m/9384e5a39fc3d5bbfd0a79563c1ec5da50e2d6b7.png)
(3)在解决直角三角形问题时,如何引导学生发现并运用勾股定理,是教学中的难点。
二、学情分析
(一)学生特点
本节课所面向的学生为八年级学生,他们正处于青春期,具有以下特点:首先,年龄特征上,他们好奇心强,思维活跃,具有一定的抽象思维能力,但仍然需要具体形象的支撑。其次,在认知水平上,学生已经掌握了平面几何的基本知识,具备了一定的逻辑推理和空间想象能力。在学习兴趣上,学生对新知识充满好奇,但可能对理论性较强的内容感到枯燥。在学习习惯上,学生可能习惯于机械记忆,缺乏深度思考和探究的习惯。
(二)新知讲授
在新知讲授阶段,我将按照以下步骤逐步呈现知识点:
1.首先介绍勾股定理的定义,通过直观的图形展示,让学生理解直角三角形两条直角边与斜边之间的关系。
2.接着,通过几何画板的动态演示,让学生观察直角三角形的变化,并引导学生发现无论三角形大小如何变化,勾股定理始终成立。
3.然后,我会提供几种不同的证明方法,包括几何拼贴法、代数法等,让学生在理解定理的同时,也了解不同的证明思路。
主要知识点包括:
1.勾股定理的定义及表述。
2.勾股定理的证明方法。
3.勾股定理的应用,包括解决直角三角形中的问题以及实际生活中的应用。
(二)教学目标
1.知识与技能目标:
(1)使学生掌握勾股定理的定义、表述及证明方法。
(2)培养学生运用勾股定理解决直角三角形中的问题,能够熟练运用勾股定理进行计算和证明。
板书的主要内容包括勾股定理的表述、证明步骤、应用案例以及相关的数学公式。风格上,我会使用简洁明了的文字和图表,以及不同颜色的粉笔来区分不同类别的内容,增强视觉效果。
板书在教学过程中的作用是提供结构化的信息,帮助学生理解和记忆。为确保板书清晰简洁,我会提前规划板书内容,避免过度拥挤,并在教学过程中适时擦拭不必要的部分,保持板书的整洁。同时,我会用箭头和编号来指示逻辑关系,帮助学生把握知识结构。
《勾股定理》说课稿【优秀6篇】
![《勾股定理》说课稿【优秀6篇】](https://img.taocdn.com/s3/m/4a956c46001ca300a6c30c22590102020740f284.png)
《勾股定理》说课稿【优秀6篇】《勾股定理》说课稿篇一各位专家领导:上午好!今天我说课的课题是《勾股定理》。
一、教材分析:(一)本节内容在全书和章节的地位。
这节课是九年制义务教育课程标准实验教科书(华东版),八年级第十九章第二节“勾股定理”第一课时。
勾股定理是学生在已经掌握了直角三角形有关性质的基础上进行学习的,它是直角三角形的一条非常重要的性质,是几何中最重要的定理之一,它揭示了一个三角形三条边之间的数量关系,它可以解决直角三角形的主要依据之一,在实际生活中用途很大。
教材在编写时注意培养学生的动手操作能力和观察分析问题的能力;通过实际分析,拼图等活动,使学生获得较为直观的印象;通过联系比较,理解勾股定理,以便于正确的进行运用。
(二)三维教学目标:1、知识与能力目标。
(1)理解并掌握勾股定理的内容和证明,能够灵活运用勾股定理及其计算;(2)通过观察分析,大胆猜想,并探索勾股定理,培养学生动手操作、合作交流、逻辑推理的能力。
2、过程与方法目标。
在探索勾股定理的过程中,让学生经历“观察-猜想-归纳-验证”的数学思想,并体会数形结合和从特殊到一般的思想方法。
3、情感态度与价值观。
通过介绍中国古代勾股方面的成就,激发学生热爱祖国和热爱祖国悠久文化的思想感情,培养学生的民族自豪感和钻研精神。
(三)教学重点、难点:1、教学重点:勾股定理的证明与运用2、教学难点:用面积法等方法证明勾股定理3、难点成因:对于勾股定理的得出,首先需要学生通过动手操作,在观察的基础上,大胆猜想数学结论,而这需要学生具备一定的分析、归纳的思维方法和运用数学的思想意识,但学生在这一方面的可预见性和耐挫折能力并不是很成熟,从而形成困难。
4、突破措施:(1)创设情景,激发思维:创设生动、启发性的问题情景,激发学生的问题冲突,让学生在感到“有趣”、“有意思”的状态下进入学习过程;(2)自主探索,敢于猜想:充分让自己动手操作,大胆猜想数学问题的结论,老师是整个活动的组织者,更是一位参入者,学生之间相互交流、协作,从而形成生动的课堂环境;(3)张扬个性,展示风采:实行“小组合作制”,各小组中自己推荐一人担任“发言人”,一人担任“书记员”,在讨论结束后,由小组的“发言人”汇报本小组的讨论结果,并可上台利用“多媒体视频展示台”展示本组的优秀作品,其他小组给予评价。
人教版数学八年级下册17.1《勾股定理的应用》(第2课时)说课稿
![人教版数学八年级下册17.1《勾股定理的应用》(第2课时)说课稿](https://img.taocdn.com/s3/m/785eb39fab00b52acfc789eb172ded630b1c98b8.png)
人教版数学八年级下册17.1《勾股定理的应用》(第2课时)说课稿一. 教材分析《勾股定理的应用》是人教版数学八年级下册第17.1节的内容,属于几何学的范畴。
本节内容是在学生已经掌握了勾股定理的基础上进行学习的,主要是让学生能够运用勾股定理解决实际问题。
教材通过引入古希腊数学家毕达哥拉斯的故事,让学生了解勾股定理的发现过程,进而引导学生运用勾股定理解决实际问题。
教材内容丰富,既有理论知识的讲解,又有实际问题的应用,能够激发学生的学习兴趣,提高学生的数学素养。
二. 学情分析学生在学习本节内容前,已经掌握了勾股定理的基本知识,能够熟练地运用勾股定理进行计算。
但是,对于如何将实际问题转化为数学问题,如何运用勾股定理解决实际问题,学生的掌握情况参差不齐。
因此,在教学过程中,我将会注重引导学生将实际问题转化为数学问题,培养学生运用勾股定理解决实际问题的能力。
三. 说教学目标1.知识与技能目标:让学生掌握勾股定理的应用,能够将实际问题转化为数学问题,运用勾股定理解决实际问题。
2.过程与方法目标:通过小组合作、讨论交流的方式,培养学生合作学习的能力和解决问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生积极思考、探索问题的习惯。
四. 说教学重难点1.教学重点:让学生掌握勾股定理的应用,能够将实际问题转化为数学问题,运用勾股定理解决实际问题。
2.教学难点:如何引导学生将实际问题转化为数学问题,如何运用勾股定理解决实际问题。
五. 说教学方法与手段在教学过程中,我将采用讲授法、提问法、小组合作法、讨论交流法等教学方法,结合多媒体课件、教学道具等教学手段,引导学生主动探究,提高学生的学习效果。
六. 说教学过程1.导入:通过回顾勾股定理的知识,引导学生进入本节内容的学习。
2.知识讲解:讲解勾股定理的应用,引导学生将实际问题转化为数学问题,运用勾股定理解决实际问题。
3.例题解析:分析并解析典型例题,让学生掌握解题思路和方法。
人教版初中数学八年级下册第十七章勾股定理17.1.1勾股定理说课稿
![人教版初中数学八年级下册第十七章勾股定理17.1.1勾股定理说课稿](https://img.taocdn.com/s3/m/9a6602e2bdeb19e8b8f67c1cfad6195f302be845.png)
3.教师评价:针对学生的表现,给予积极的反馈和鼓励,指出学生的不足之处,并提出改进建议。
(五)作业布置
课后作业布置如下:
1.基础作业:布置一定数量的基础习题,让学生巩固勾股定理的计算方法。
2.提高作业:设计一些拓展性题目,让学生运用勾股定理解决实际问题,提高学生的应用能力。
1.主要内容:左侧包括勾股定理的定义、勾股数;中间部分展示勾股定理的证明过程、例题及解题步骤;右侧部分呈现本节课的总结和勾股定理应用时的注意事项。
2.风格:板书采用简洁明了的字体,用不同颜色粉笔区分重点、难点和关键步骤,以增强视觉效果。
3.作用:板书在教学过程中的作用是引导学生关注教学重点,帮助学生理清知识结构,便于复习和回顾。
3.技术工具:电子白板、几何画板等,方便学生直观地观察和操作几何图形,提高课堂互动性。
(三)互动方式
为实现师生互动和生生互动,我计划设计以下环节:
1.师生互动:在课堂提问环节,教师引导学生思考问题,学生回答问题,教师给予反馈和指导。
2.生生互动:将学生分成小组,进行合作探究、讨论。在小组内,学生共同分析问题、解决问题,相互交流想法,达成共识。
2.小组讨论:组织学生进行小组讨论,共同解决实际问题,培养学生的团队协作能力和解决问题的能力。
3.实践活动:让学生分组测量学校周围建筑物中的直角三角形,计算其边长,并验证勾股定理。
(四)总结反馈
在总结反馈阶段,我将采取以下措施:
1.自我评价:让学生回顾本节课的学习内容,进行自我评价,总结自己在学习过程中的收获和不足。
在课程体系中,勾股定理的学习是在学生已经掌握了直角三角形的基本概念、三角形面积计算以及相似三角形的基础上展开的。通过本节课的学习,学生将对直角三角形有更深入的理解,为后续学习平面几何中与直角三角形相关的内容奠定基础。
人教版数学八年级下册17.1第1课时《勾股定理》说课稿
![人教版数学八年级下册17.1第1课时《勾股定理》说课稿](https://img.taocdn.com/s3/m/e9cfd05dcd1755270722192e453610661ed95ad9.png)
人教版数学八年级下册17.1第1课时《勾股定理》说课稿一. 教材分析《勾股定理》是人教版数学八年级下册17.1第1课时的重要内容。
这部分内容主要让学生了解并证明勾股定理,理解勾股定理在几何学中的重要性。
教材通过引入直角三角形和斜边的关系,引导学生探究并证明勾股定理。
二. 学情分析学生在学习本课时,已经掌握了实数、方程、不等式等基础知识,具备一定的逻辑思维和探究能力。
但对于证明勾股定理,可能需要一定的时间去理解和消化。
因此,在教学过程中,需要关注学生的学习情况,适时给予引导和帮助。
三. 说教学目标1.知识与技能:让学生掌握勾股定理的内容,学会用勾股定理解决实际问题。
2.过程与方法:通过探究、证明勾股定理,培养学生的逻辑思维和探究能力。
3.情感态度与价值观:激发学生对数学的兴趣,感受数学在生活中的应用。
四. 说教学重难点1.教学重点:掌握勾股定理的内容及其应用。
2.教学难点:理解并证明勾股定理。
五. 说教学方法与手段1.教学方法:采用问题驱动法、探究法、讲解法等。
2.教学手段:多媒体课件、黑板、粉笔等。
六. 说教学过程1.导入:通过一个实际问题,引出直角三角形和斜边的关系,激发学生的兴趣。
2.探究:引导学生分组讨论,探究勾股定理的证明方法。
3.讲解:讲解勾股定理的证明过程,解释勾股定理的意义和应用。
4.练习:让学生通过练习题,巩固对勾股定理的理解。
5.总结:对本节课的内容进行总结,强调勾股定理的重要性。
七. 说板书设计板书设计要简洁明了,突出勾股定理的关键信息。
主要包括:1.勾股定理的定义2.勾股定理的证明过程3.勾股定理的应用示例八. 说教学评价教学评价主要通过以下几个方面进行:1.学生对勾股定理的理解程度。
2.学生能否运用勾股定理解决实际问题。
3.学生在课堂中的参与程度和合作能力。
九. 说教学反思在教学过程中,要关注学生的学习情况,适时调整教学方法和节奏。
对于学生的反馈,要及时给予指导和鼓励。
在课后,要反思教学效果,查找不足,不断提高教学质量。
(完整版)八年级数学下册第十七章勾股定理说课稿(新版)新人教版
![(完整版)八年级数学下册第十七章勾股定理说课稿(新版)新人教版](https://img.taocdn.com/s3/m/70ab5f1b7c1cfad6185fa734.png)
勾股定理17.1 勾股定理授课稿(模版一)一、教材解析(一)教材所处的地位及作用:勾股定理是几何中几个重要定理之一,它揭穿的是直角三角形中三边的数目关系,它可以解决直角三角形中的计算问题,是解直角三角形的主要依据之一,在实质生活顶用途也很大。
它在数学的发展中起过重要的作用。
学生经过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。
(二)学情解析:前面,学生已具备一些平面几何的知识,可以进行一般的推理和论证,但怎样经过面积法(拼图法)证明勾股定理,学生对这类解决问题的门路还比较陌生,存在必然的难度,因此,我采纳多媒体等手段进行直观授课,让学生着手、动口、动脑,化难为易,深入浅出,让学生感觉学习知识的乐趣。
(三)授课目的:1、知识与能力:认识勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理;2、过程与方法:经历“察看—猜想—归纳—考证”的数学发现过程,发展知书达礼的推理能力,交流数学知识之间的内在联系,意会“数形联合”和“特别到一般”的思想方法。
3、感神情度与价值观:经过介绍中国古代研究勾股定理的成就,激发学生的爱国热忱,感觉数学文化,激发学生学习的热忱。
(三)授课重点、难点:授课重点:研究和掌握勾股定理;授课难点:用面积法(拼图法)证明勾股定理二、教法解析:针对八年级学生的知识结构和心理特色,本节课可选择指引研究法,由浅入深,由特别到一般地提出问题。
指引学生自主研究,合作交流,这类授课理念反应了时代精神,有益于提升学生的思想能力,能有效地激发学生的思想踊跃性。
三、学法解析 : 在教师的组织指引下,学生采纳自主研究、合作交流的商讨式学习方式 , 获取知识,掌握方法,借此培育学生着手、动脑、动口的能力,使学生真实成为学习的主人.四、授课过程设计:( 一 ) 回首交流:经过回首交流让学生复习直角三角形的有关性质,设疑其三边有何关系,为引入勾股定理确立基础。
(二)图片赏识:经过图片赏识, 感觉数学美 , 感觉勾股定理的文化价值. 以激发学生的学习欲念。
八年级数学人教版下册17.1.1勾股定理说课稿
![八年级数学人教版下册17.1.1勾股定理说课稿](https://img.taocdn.com/s3/m/3e9d2904dcccda38376baf1ffc4ffe473268fd73.png)
1.以生活实例导入:向学生展示一个直角三角形结构的实际例子,如房屋的斜屋顶与地面形成的直角三角形,提问学生如何计算斜边的长度。通过这个例子,让学生感受到勾股定理在实际生活中的应用,激发学习兴趣。
2.设置悬念:提出一个与勾股定理相关的问题,如“为什么直角三角形的两条直角边的平方和等于斜边的平方?”引发学生的好奇心,激发探究欲望。
我将采用的主要教学方法包括启发式教学、探究式教学和任务驱动教学。选择这些方法的理论依据如下:
1.启发式教学:通过提问、讨论等方式引导学生主动思考,激发学生的求知欲和好奇心,有助于培养学生的创新思维和问题解决能力。
2.探究式教学:鼓励学生通过观察、实验、验证等过程自主探究勾股定理,使学生在实践中发现规律,加深对知识的理解,提高学习效果。
3.利用多媒体展示:通过PPT或教学视频展示勾股定理的起源和发展历程,让学生了解我国古代数学的辉煌,增强民族自豪感。
(二)新知讲授
在新知讲授阶段,我将逐步呈现知识点,引导学生深入理解:
1.概念讲解:介绍勾股定理的概念,通过图示和实例让学生明白勾股定理的含义。
2.证明方法:引导学生通过观察、猜想、验证等方法,发现并理解勾股定理的证明过程,培养学生的逻辑思维能力。
3.技术工具:几何画板、数学软件等,帮助学生通过操作软件直观感受勾股定理,提高空间想象能力。
这些媒体资源在教学中的作用主要有:激发学生兴趣、提高教学效果、拓展学生知识面、培养学生空间想象能力。
(三)互动方式
我将设计以下师生互动和生生互动环节,以促进学生的参与和合作:
1.师生互动:在课堂教学中,通过提问、解答、示范等方式,引导学生积极参与课堂讨论,关注学生的学习状态,及时给予反馈。
【汇编】勾股定理说课稿3篇
![【汇编】勾股定理说课稿3篇](https://img.taocdn.com/s3/m/8114161a524de518974b7dc3.png)
勾股定理说课稿3篇勾股定理说课稿篇1一、说教材(一)教材分析本节内容选自人教版八年级数学下册第17章第二节,是在上节“勾股定理”之后,继续学习的一个直角三角形的判定定理,它是前面知识的继续和深化,勾股定理的逆定理是初中几何学习中的重要内容之一,是今后判断某三角形是直角三角形的重要方法之一,在以后的解题中,将有十分广泛的应用,同时在应用中渗透了利用代数计算的方法来证明几何问题的思想,为将来学习解析几何埋下了伏笔。
(二)教学目标根据数学课标的要求和教材的具体内容,结合学生实际我确定了本节课的教学目标。
知识技能:理解勾股定理的逆定理的证明方法并能证明勾股定理的逆定理。
掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一个三角形是不是直角三角形。
了解逆命题的概念,以及原命题为真时,它的逆命题不一定为真。
过程方法:1、通过对勾股定理的逆定理的探索,经历知识的发生、发展与形成的过程2、通过用三角形三边的数量关系来判断三角形的形状,体验数形结合方法的应用3、通过勾股定理的逆定理的证明,体会数与形结合方法在问题解决中的作用,并能运用勾股定理的逆定理解决相关问题。
情感态度:在探究勾股定理的逆定理的活动中,通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神(三)学情分析尽管已到初二下学期的学生知识增多,能力增强,但思维的局限性还很大,能力之间也有差距,而利用“构造法”证明勾股定理的逆定理学生第一次见到,它要求根据已知条件构造一个直角三角形,根据学生的智能状况,学生不容易想到,因此勾股定理的逆定理的证明又是本节的难点,而勾股定理逆定理的应用是本节重点重点:勾股定理逆定理的应用难点:勾股定理逆定理的证明二、说教法学法数学课程不仅注重知识、技能,以及情感意识和创造力的培养,同样注重社会实践和体验,教学要遵循以教师为主导,学生为主体的原则,因此我采用的教法学法如下:在教学中以小组合作,自主探索为形式,采用“提问引导法”,通过“提出疑问”来启发诱导学生,让学生自觉主动地去分析问题、解决问题,学生在操作过程中不断“发现问题——解决问题”,变学生“学会”为“会学”.这样不仅使学生学习目标明确,而且能够培养他们的合作精神和自主学习的能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版八年级数学下册第十七章第一节《勾股定理第一课时》说课稿
羊泉初级中学曹明
一、教材分析
(一)教材的地位与作用
勾股定理揭示了直角三角形三边之间的一种美妙关系,它是数形结合的优美典范,在数学发展和现实世界中有着广泛的作用.学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解.
(二)教学目标
(1)知识与技能
了解勾股定理的发现过程,掌握勾股定理的内容并会证明勾股定理;培养学生在实际生活中发现问题总结规律的意识和能力.
(2)过程与方法
在探索勾股定理的过程中,让学生经历“观察—猜想—验证”的数学思想,并体会数形结合和从特殊到一般的思想方法.
(3)情感态度与价值观
感受数学文化,激发学生学习的热情,体验合作学习获取成功的喜悦,渗透数形结合的思想.
(三)重点、难点分析
重点:探究并理解勾股定理
难点:探索勾股定理的验证方法
二、教法分析
(1)教法:引导探索法、动态演示法
(2)学法:探究发现法
(3)教学准备:课前让学生准备方格纸;
三、教学设计
复习
引入你对直角三角形已经有了哪些认识?
出示直角三角
形,并友学生回
答;
复习与直角三
角形有关的知识,
便于开始本节课的
学习;
故事场景
发现新知【探究活动1】地砖里的秘密?
毕达哥拉斯朋友家用地砖
铺成的地面反映了直角三角形
三边的某种数量关系.
思考:
(1)正方形A、B、C中的方格数目;
(2)图中正方形A、B、C面积之间有什么关系?
(3)正方形A、B、C围成了什么图形?
出示毕达哥拉
斯做客故事,提
出问题.学生独
立思考隐藏的
规律,提出猜
想.
这样的设计难
度小、起点低,能
让所有学生在轻松
的伟人故事中积极
参与对数学问题的
讨论和探索.
合作交流
探究新知【探究活动2】大胆猜想!
其余的一般直角三角形也有这个性质吗?
(1)以斜边为边的正方形面积怎样求?
(2)三个正方形面积有什么关系?
(3)直角三角形三边长有什么关系?
(4)请大胆提出你的猜想.
1.小组内共同
探索计算A、B、
C的面积后小
组代表用多媒
体投影展示本
组猜想结果.
2.教师用幻灯
片直观演示,将
探究活动扩展
到更一般的情
况.
每组所画图形不
同,但探究猜想结
果相同,渗透从特
殊到一般的数学思
想.大胆猜想环节培
养了学生的类比迁
移能力.
b a
c
B
C A
归纳小结
提炼新知
【总结】我们来描述定理! 【文字语言】
直角三角形两条直角边的平方和等于斜边的平方. 【图形语言】
1.引导学生归纳总结直角三角形三边关系,结合图形语言,从文字语言和符号语言两方面描述勾股定理.
2.分析定理的变式结论.
让学生从文字语言、符号语言、图形语言三个方面对勾股定理进行描述,培养学生数学语言的表达能力,归纳能力以及变式思维.
【活动3】勾股世界
勾股定理在西方被称为毕达哥拉斯定理,中国古代对这一数学定理的发现和应用,远比毕达哥拉斯早得多.中国最早的一部数学著作——《周髀算经》对勾股定理有具体的记载. 播放图片介绍
勾股定理的历
史背景.
介绍勾股定理的历史背景,对学
生进行爱国主义教
育,激励学生强烈
的民族自豪感和奋发向上的学习精神.
学 以 致 用 巩 固 新 知
【活动4】你会做吗?
1、求下列图中表示边的未知数x 、y 的值.
2、直角
ABC 的两直角边a=5,b=12,c=_____
3、已知:∠C =90°,a=6, a :b =3:4,求b 和c.
1.学生分析已知条件,确定直角位置及已知边的位置,尝试应用勾股定理求第三边和有关面积问题.
2.教师用几何画板演示运动的勾股树.
第(1)题是基础题,第(2)题为变式题,让学生体会数形紧密结合,思考问题,激发学生喜欢数学,热爱
数学. a 2+b 2=c 2
四、教后反思
本节课我针对八年级学生的知识结构和心理特征,选择引导探索法,由浅入深,由特殊到一般提出问题,学生在老师引导下自主探索,合作交流,学生是学习的主体,老师是学生学习活动的组织者、引导者、参与者.
整个课堂我努力做到——
贯穿一条线索:“补、割大正方形并计算面积”贯穿整个探索勾股定理的过程.突出转化思想,提高学生分析问题和解决问题的能力.
渗透一个思想:“数无形时少直觉,形少数时难入微”,本节课从观察、猜想、归纳、验证最后到运用勾股定理的过程中无不渗透数形结合思想.
传递一种情感:课堂中引入伟人故事,分享探究成果,欣赏优美图案,注重学生情感体验,传递数学之美,凸现探究之趣,构建有利于学生发展的生命课堂.
本节课的不足之处:1.在探究补、割两种方法计算正方形的面积时占用时间较长,以至于做题巩固的时间较少;2.没有对直角边的平方和等于斜边的平方做重点强调,以至于学生只记住公式本身,有时候ab并非一定表示直角边;
当然,数学问题如何设计更富有层次性和开放性,数学活动如何组织的更为有序而高效,这将是我今后不断努力的方向。
2015年3月23日。