河北省石家庄市2017-2018学年高三数学二模试卷(文科) Word版含解析

合集下载

【河北省石家庄市】2017届高三毕业班第二次模拟考试数学(文科)试卷-答案

【河北省石家庄市】2017届高三毕业班第二次模拟考试数学(文科)试卷-答案

2
a
a
g ' (x)>0 , g(x) 单调递增,即 f ' (x) 单调递增,
f ' (x)>0 , f (x) 单调递增, f (x)>0 ,所以 a>1 不成立. 2
综上所述: 0≤a≤1 . 2
22.解:(Ⅰ)设点 P 的坐标为 (,) ,
则由题意可得点 Q 的坐标为 (, π) , 3
又 AE EC , DE EC E AE 平面CDE ,
CD 平面CDE , AE CD ,又 CD AD ,
AD AE A ,CD 平面ADEF .
(Ⅱ)由(1)知 CD 平面ADEF , CD 平面ABCD ,
平面ABCD 平面ADEF ;
作 EO AD ,EO 平面ABCD , EO 3 ,
5
y

50+85+115+140+160 =110 , b 5
( xi
i 1 5
x)( yi (xi x)2
y) = 275 =27.5, 10
i 1
a= y bx=27.5 所以, y 关于 x 的回归方程为: yˆ 27.5x 27.5 .
将降雨量 x 6 代入回归方程得: yˆ 27.5 6 27.5 192.5 193 .
连接 AC,则VABCDEF VC-ADEF VF ABC
-1-/4
VC- ADEF

1 3
S ADEF
CD 1 1 (2 4) 32
344 3 ,
1 VF -ABC 3
S△ABC
OE 1 1 2 4 32
34 3, 3

(全优试卷)河北省石家庄市高三毕业班第二次模拟考试文数试题Word版含答案

(全优试卷)河北省石家庄市高三毕业班第二次模拟考试文数试题Word版含答案

2017届石家庄市高中毕业班第二次模拟考试数学(文科)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.函数y =ln(2)y x =-的定义域分别为M 、N ,则MN =( )A .(1,2]B .[1,2)C .(,1](2,)-∞+∞D .(2,)+∞2.若2iz i=+,则复数z 对应的点在( ) A .第一象限B .第二象限C .第三象限D .第四象限3.已知向量(1,)a m =,(,1)b m =,则“1m =”是“//a b ”成立的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件4.从编号为1,2,…,79,80的80件产品中,采用系统抽样的方法抽取容量为5的样本,若编号为10的产品在样本中,则该样本中产品的最大编号为( ) A .72B .73C .74D .755.已知角α(0360α︒≤<︒)终边上一点的坐标为(sin150,cos150)︒︒,则α=( ) A .150︒ B .135︒C .300︒D .60︒6.函数ln ||()||x x f x x =的大致图象是( )7.如图是计算11113531++++…的值的程序框图,则图中①②处应填写的语句分别是( )A .2n n =+,16?i >B .2n n =+,16?i ≥C .1n n =+,16i >?D .1n n =+,16?i ≥8.某几何体的三视图如图所示,则其体积为( )A .34π B .24π+ C .12π+ D .324π+ 9.实数x ,y 满足1|1|12x y x +≤≤-+时,目标函数z mx y =+的最大值等于5,则实数m的值为( ) A .1-B .12-C .2D .510.三棱锥S ABC -中,侧棱SA ⊥底面ABC ,5AB =,8BC =,60B ∠=︒,SA =,则该三棱锥的外接球的表面积为( )A .643π B .2563π C .4363π D 11.已知动点P 在椭圆2213627x y +=上,若点A 的坐标为(3,0),点M 满足||1AM =,0PM AM ⋅=,则||PM 的最小值是( )ABC .D .312.已知函数2|2ln |,0,()21,0x x f x x x x +>⎧=⎨--+≤⎩存在互不相等实数a ,b ,c ,d ,有()()()()f a f b f c f d m ====.现给出三个结论:(1)[1,2)m ∈; (2)314[2,1)a b c d ee e ---+++∈+--,其中e 为自然对数的底数;(3)关于x 的方程()f x x m =+恰有三个不等实根. 正确结论的个数为( ) A .0个B .1个C .2个D .3个第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.观察下列式子:213122+<,221151233++<,222111712344+++<,…,根据上述规律,第n 个不等式可能为 .14.已知函数()sin()f x x ωϕ=+(0ω>,0ϕπ<<)的图象如图所示,则(0)f 的值为 .15.双曲线22221x y a b-=(0a >,0b >)上一点M 关于渐进线的对称点恰为右焦点2F ,则该双曲线的离心率为 .16.在希腊数学家海伦的著作《测地术》中记载了著名的海伦公式,利用三角形的三条边长求三角形面积,若三角形的三边长为a ,b ,c ,其面积S =里1()2p a b c =++.已知在ABC ∆中,6BC =,2AB AC =,则ABC ∆面积的最大值为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知数列{}n a 满足1122(1)22n n a a na n ++++=-+…,*n N ∈.(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)若2211log log n n n b a a +=⋅,12n n T b b b =+++…,求证:对任意的*n N ∈,1n T <.18.在如图所示的多面体ABCDEF 中,ABCD 为直角梯形,//AB CD ,90DAB ∠=︒,四边形ADEF 为等腰梯形,//EF AD ,已知AE EC ⊥,2AB AF EF ===,4AD CD ==.(Ⅰ)求证:CD ⊥平面ADEF ; (Ⅱ)求多面体ABCDEF 的体积.19.天气预报是气象专家根据预测的气象资料和专家们的实际经验,经过分析推断得到的,在现实的生产生活中有着重要的意义.某快餐企业的营销部门经过对数据分析发现,企业经营情况与降雨天数和降雨量的大小有关.(Ⅰ)天气预报说,在今后的三天中,每一天降雨的概率均为40%,该营销部门通过设计模拟实验的方法研究三天中恰有两天降雨的概率,利用计算机产生0到9之间取整数值的随机数,并用1,2,3,4,表示下雨,其余6个数字表示不下雨,产生了20组随机数: 907 966 191 925 271 932 812 458 569 683 431 257 393 027 556 488 730 113 537 989 求由随机模拟的方法得到的概率值;(Ⅱ)经过数据分析,一天内降雨量的大小x (单位:毫米)与其出售的快餐份数y 成线性相关关系,该营销部门统计了降雨量与出售的快餐份数的数据如下:试建立y 关于x 的回归方程,为尽量满足顾客要求又不造成过多浪费,预测降雨量为6毫米时需要准备的快餐份数.(结果四舍五入保留整数)附注:回归方程y bx a =+中斜率和截距的最小二乘估计公式分别为:121()()()niii nii x x y y b x x ==--=-∑∑,a y bx =-20.已知圆C :222(1)x y r -+=(1r >),设A 为圆C 与x 轴负半轴的交点,过点A 作圆C 的弦AM ,并使弦AM 的中点恰好落在y 轴上.(Ⅰ)求点M 的轨迹E 的方程;(Ⅱ)延长MC 交曲线E 于点N ,曲线E 在点N 处的切线与直线AM 交于点B ,试判断以点B 为圆心,线段BC 长为半径的圆与直线MN 的位置关系,并证明你的结论. 21.已知函数1()(1)1xax f x a x e +=-+-,其中0a ≥. (Ⅰ)若1a =,求函数()y f x =的图象在点(1,(1))f 处的切线方程; (Ⅱ)若0x ≥,()0f x ≤恒成立,求a 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为cos a ρθ=(0a >),Q 为l 上一点,以OQ 为边作等边三角形OPQ ,且O 、P 、Q 三点按逆时针方向排列.(Ⅰ)当点Q 在l 上运动时,求点P 运动轨迹的直角坐标方程; (Ⅱ)若曲线C :222x y a +=,经过伸缩变换'2'x xy y =⎧⎨=⎩得到曲线'C ,试判断点P 的轨迹与曲线'C 是否有交点,如果有,请求出交点的直角坐标,没有则说明理由. 23.选修4-5:不等式选讲已知函数()2|1||1|f x x x =+--.(Ⅰ)求函数()f x 的图象与直线1y =围成的封闭图形的面积m ;(Ⅱ)在(Ⅰ)的条件下,若正数a 、b 满足2a b abm +=,求2a b +的最小值.2017届石家庄市高中毕业班第二次模拟考试试卷数学(文科)答案 一、选择题1-5:BAACC 6-10:BADBB 11、12:CC二、填空题13.22211121123(1)1n n n +++++<++…14.216.12三、解答题17. 解:(Ⅰ)当1n >时,1121212(1)222-1)(2)22n n nn a a na n a a n a n +-+++=-++++=-+①(②①-②得1(1)2(2)22n n n n na n n n +=---=⋅,2n n a =,当1n =时,12a =,所以2,*nn a n N =∈.(Ⅱ)因为2nn a =,2211111log log (1)1n n n b a a n n n n +===-⋅++.因此1111112231n T n n ⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭111n =-+, 所以n T 1<.18.(Ⅰ)证明:取AD 中点M ,连接EM ,AF =EF =DE =2,AD =4,可知EM =12AD ,∴AE ⊥DE , 又AE ⊥EC ,DEEC E = ∴AE ⊥平面CDE ,∵CD CDE ⊂平面 ,∴AE ⊥CD ,又CD ⊥AD ,AD AE A = ,∴CD ⊥平面ADEF .(Ⅱ)由(1)知 CD ⊥平面ADEF ,CD ⊂ 平面ABCD , ∴平面ABCD ⊥平面ADEF ;作EO ⊥AD,∴EO ⊥平面ABCD,EO 连接AC ,则ABCDEF C-ADEF F ABC V V V -=+111(24)4332C-ADEF ADEF V S CD ==⨯⨯+=11124332F-ABC ABC V S OE ==⨯⨯⨯=△, ∴ABCDEF V ==.19.解:(Ⅰ)上述20组随机数中恰好含有1,2,3,4中的两个数的有191 271 932 812 393 ,共5个,所以三天中恰有两天下雨的概率的近似值为51==204P .(Ⅱ)由题意可知1234535x ++++==,50+85+115+140+160=1105y =,51521()()275==27.510()iii ii x x y y b x x ==--=-∑∑, ==27.5a y bx -所以,y 关于x 的回归方程为:ˆ27.527.5yx =+. 将降雨量6x =代入回归方程得:ˆ27.5627.5192.5193y=⨯+=≈. 所以预测当降雨量为6毫米时需要准备的快餐份数为193份.20.解:(Ⅰ)设(,)M x y ,由题意可知,(1,0)A r -,AM 的中点(0,)2yD ,0x >, 因为(1,0)C ,(1,)2y DC =-,(,)2y DM x =. 在⊙C 中,因为CD DM ⊥,∴0DC DM ⋅=,所以204y x -=,即24y x =(0x >), 所以点M 的轨迹E 的方程为:24y x =(0x >).(Ⅱ) 设直线MN 的方程为1x my =+,11(,)M x y ,22(,)N x y ,直线BN 的方程为222()4y y k x y =-+,2214404x my y my y x=+⎧⇒--=⎨=⎩,可得12124,4y y m y y +==-, 11r x -=,则点A 1(,0)x -,所以直线AM 的方程为1122y y x y =+, 22222222()44044y y k x y ky y y ky y x ⎧=-+⎪⇒-+-=⎨⎪=⎩,0∆=,可得22k y =, 直线BN 的方程为2222y y x y =+,联立11222,22,2y y x y y y x y ⎧=+⎪⎪⎨⎪=+⎪⎩可得21111441,222B B y my x y m y y -=-===, 所以点(1,2)B m -,||BC =2d ===∴B e 与直线MN 相切.21. 解:(Ⅰ)当1=a 时,xex x f -+-=)1(1)(,当1=x 时,ex f 21)(-=, 1'(1)f e=,所以所求切线方程为:131y x e e =+-.(Ⅱ)首先xe a ax a xf --++-=)1()1()(',令其为)(x g ,则xe a ax x g --+-=)12()('.1)当12≤a 即210≤≤a 时,,0)('≤x g )(x g 单调递减,即)('x f 单调递减, 0)('≤x f ,)(x f 单调递减,0)(≤x f ,所以210≤≤a 成立;2)当21>a 时,0)12()('=-+-=-xe a ax x g 解得:a x 12-=,当)12,0(a x -∈时,,0)('>x g )(x g 单调递增,即)('x f 单调递增, 0)('>x f ,)(x f 单调递增,0)(>x f ,所以21>a 不成立. 综上所述:210≤≤a . 22. 解:(Ⅰ)设点P 的坐标为(,)ρθ, 则由题意可得点Q 的坐标为(,)3πρθ+,再由点Q 的横坐标等于a ,0a >, 可得cos()3a πρθ+=,可得1cos sin 2a ρθρθ-=, 故当点Q 在l 上运动时点P的直角坐标方程为20x a --=. (Ⅱ)曲线C :222x y a +=,全优试卷'2'x x y y =⎧⎨=⎩,即'2'x x y y ⎧=⎪⎨⎪=⎩,代入22''4x y a +=,即2224x y a +=, 联立点P 的轨迹方程,消去x得270y +=,0,0a >∴∆>有交点,坐标分别为2(,),(2,0)77a a a -. 23. 解:(Ⅰ)函数3,1,()21131,11,3, 1.x x f x x x x x x x --≤-⎧⎪=+--=+-<<⎨⎪+≥⎩它的图象如图所示:函数)(x f 的图象与直线1=y 的交点为(4,1)-、(0,1),故函数)(x f 的图象和直线1=y 围成的封闭图形的面积14362m =⨯⨯=. (Ⅱ)ab b a 62=+ ,621=+∴ab 844244)21)(2(=+≥++=++ab b a a b b a , 当且仅当ab b a 4=, 可得31,32==b a 时等号成立, b a 2+∴的最小值是34。

2017届石家庄市高中毕业班第二次模拟考试数学文科试卷和答案

2017届石家庄市高中毕业班第二次模拟考试数学文科试卷和答案

2016-2017学年度石家庄市第二次模拟考试数学文科一、选择题1-5BAACC 6-10 BADBB 11-12CC二、填空题13. 1n 12n )1(131211222++<+++++n 14.22 15.5 16.12三、解答题17. 解:(1) 当1n >时,1121212(1)222-1)(2)22n n n n a a na n a a n a n +-+++=-++++=-+①(②…………………2分 ① -②得1(1)2(2)22n n n n na n n n +=---=⋅,2n n a =,当1n =时,12a =,………………………4分 所以2nn a =,*n N ∈……………………5分(2)因为2n n a =,2211111log log (1)1n n n b a a n n n n +===-⋅++.……………7分 因此 1111112231n T n n ⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭………………9分 111n =-+……………………11分 所以n T 1<……………12分18:(1)证明取AD 中点M ,连接EM ,AF =EF =DE =2,AD =4,可知EM =12AD ,∴AE ⊥DE , ………………………………2分 又AE ⊥EC ,DE EC E = ∴AE ⊥平面CDE ,∵CD CDE ⊂平面 ,∴AE ⊥CD ,又CD ⊥AD , AD AE A = ,∴CD ⊥平面ADEF ;………………………………5分(2)由(1)知 CD ⊥平面ADEF ,CD ⊂ 平面ABCD ,作EO ⊥AD ,∴EO ⊥平面ABCD ,EO =3 ,………………………………7分 连接AC ,则ABCDEF C-ADEF F ABC V V V -=+…………………………9分111(24)3443332C-ADEF ADEF V S CD ==⨯⨯+⨯⨯=, 111432433323F-ABC ABC V S OE ==⨯⨯⨯⨯=△,………………………………11分 ∴4316343ABCDEF V =+=.………………………………12分19.(1)上述20组随机数中恰好含有1,2,3,4中的两个数的有191 271 932 812 393 ,共5个,所以三天中恰有两天下雨的概率的近似值为51==204P .………………………4分 (2)由题意可知1234535x ++++==, …………………………………………5分 50+85+115+140+160=1105y = …………………………………………………………6分 51521()()275==27.510()i ii ii x x y y b x x ==--=-∑∑,………………………………………………………8分 ==27.5a y bx -所以,y 关于x 的回归方程为:ˆ27.527.5y x =+. ………………10分将降雨量6x =代入回归方程得:ˆ27.5627.5192.5193y=⨯+=≈. 所以预测当降雨量为6毫米时需要准备的快餐份数为193份. ………………………12分20(Ⅰ)方法一:设M (x ,y ),由题意可知,A (1-r ,0),因为弦AM 的中点恰好落在y 轴上,所以x=r-1>0,即r=x+1, ………………2分所以222(1)(1)x y x -+=+,化简可得y 2=4x (x >0)所以,点M 的轨迹E 的方程为:y 2=4x (x >0)………………………4分方法二:设M (x ,y ),由题意可知,A (1-r ,0),AM 的中点,x >0, 因为C (1,0),,.………………………2分在⊙C 中,因为CD ⊥DM ,所以,, 所以. 所以,y 2=4x (x >0)所以,点M 的轨迹E 的方程为:y 2=4x (x >0)………………………4分 (Ⅱ) 设直线MN 的方程为1x my =+,11(,)M x y ,22(,)N x y ,直线BN 的方程为222()4y y k x y =-+ 2214404x my y my y x=+⎧⇒--=⎨=⎩,可得12124,4y y m y y +==-,…………………6分 11r x -=,则点A 1(,0)x -,所以直线AM 的方程为1122y y x y =+, 22222222()44044y y k x y ky y y ky y x ⎧=-+⎪⇒-+-=⎨⎪=⎩,0∆=,可得22k y =, 直线BN 的方程为2222y y x y =+,………………………8分 联立11222,22,2y y x y y y x y ⎧=+⎪⎪⎨⎪=+⎪⎩可得21111441,222B B y my x y m y y -=-===, 所以点B (-1,2m )………………………10分2||44BC m =+222244211d m m m ==+=++B ∴e 与直线MN 相切………………………12分21解:(1)当1=a 时,x e x x f -+-=)1(1)(,当1=x 时,ex f 21)(-=, 1'(1)f e=,所以所求切线方程为: ex e y 311-+=................................................5分(2)首先x e a ax a x f --++-=)1()1()(',令其为)(x g ,则x e a ax x g --+-=)12()('................................................7分1)当12≤a 即210≤≤a 时,,0)('≤x g )(x g 单调递减,即)('x f 单调递减, 0)('≤x f ,)(x f 单调递减,0)(≤x f ,所以210≤≤a 成立;.....................9分 2)当21>a 时,0)12()('=-+-=-x e a ax x g 解得:a x 12-=,当)12,0(a x -∈时, ,0)('>x g )(x g 单调递增,即)('x f 单调递增,0)('>x f ,)(x f 单调递增,0)(>x f ,所以21>a 不成立。

河北省石家庄市2017-2018学年高三第二次模拟考试文数试题Word版含解析

河北省石家庄市2017-2018学年高三第二次模拟考试文数试题Word版含解析

河北省石家庄市2017-2018 学年高三第二次模拟考试数学(文)试题一、选择题(本大题共12 个小题,每题 5 分,共 60 分. 在每题给出的四个选项中,只有一项为哪一项切合题目要求的. )1. 设会集A x x 2 ,会集 B x y3x ,则 A B()A.x x 2B.x x 2C. x x 3D.x x 3【答案】 B考点:会集的运算 .2. 设i是虚数单位,复数a i为纯虚数,则实数 a 的值为()1i.1A.1B. 1C D. 22【答案】 A【解析】试题解析:依据复数的运算有a i(a i )(1i ) a 1a 1 i, a i为纯虚数,即实部1i(1i)(1i )221i为零,因此有a10 a 1,故本题的正确选项为 A. 2考点:复数的运算.3. 设函数 f ( x) sin x x ,则 f ( x) ()A.既是奇函数又是减函数B.既是奇函数又是增函数C.是增函数且有零点D.是减函数且没有零点【答案】 A【解析】试题解析:第一函数的定义域为实数,又f ( x) sin( x) ( x)sin x x[sin x x] f ( x) ,因此函数为奇函数,由于f ( x) cos x 1 0 ,由导函数的性质可知函数在定义域上为减函数,存在独一零点x 0 ,因此本题正确选项为A.考点:函数的奇偶性与导函数的运用.4. p : xy 2 xy , q : 在 ABC 中,若 sin Asin B ,则 A B . 以下为真的是()A . pB.qC. p qD . p q【答案】 C考点:判断的真假及逻辑词语.2 cos x, x0, 4) 的值为(5. 已知 f ( x)1) 1, x则f ()f (x 0,3A . 1B. 1C.32D .52【答案】 B【解析】试题解析:由于4 0 ,因此 f ( 4) f (1) 1f ( 2) 2 ,当 x 0 时, f (x) 2 cos x , 3 333因此 f (2) 2 cos( 2)1 ,因此有f ( 4) f ( 2) 2 1,本题正确选项为 B.333 3考点:分段函数求函数的值 .6. 设 S n 为等差数列a n 的前 n 项和,若 a 11,公差 d 2, S n 1 S n 15 ,则 n 的值为( )A. 5B.6C.7D. 8【答案】 C【解析】试题解析:由于数列的前 n 项和 S n 与 a n 满足关系式 a n 1 S n 1 S n ,因此有 a n 1 15,又 a n为等差数列,因此1 2157,因此本题的正确选项为 C.an 1nn考点:等差数列前n 项和的性质 .7. 一个几何体的三视图以以以下图,则该几何体的体积为()A . 1B.1C.2433D . 1【答案】 B【解析】试题解析:有三视图可知,该几何体为四周体,其下表面为一等腰直角三角形,直角边为1, 此中一条与底面垂直的棱长为2 ,因此四周体的体积为 V1 底面积为 SSh23题的正确选项为 B.1,1, 故本3考点:三视图与几何体的体积.xy 2x y 的最小值为()8. 若实数 x, y 满足1,则 z94A .18B.4C. 4D .2 10【答案】 A考点:线性拘束.【方法点睛】对于线性规划问题,共有两种状况:1, 直线过定点时在可行域中旋转时的最大斜率, 2,直线斜率必但是在可行域中平移时的截距的最值. 可以再直角坐标系中画出可行域,此后在画出直线,经过观察求出待求量的最值;由于直线在可行域中的最值都是在围成可行域的极点处获得,因此也可以先求得可行域极点坐标,将这些坐标分别代入待求量的表达式中,从中选择最大值或最小值,本题中需要将含绝对值不等式转变为不等式组,在依据线性拘束条件来求目标函数的最值.9. 运转下边的程序框图,输出的结果是()A.7B. 4C. 5D.6【答案】 D考点:程序框图.10. 设 S n 是数列a n 的前 n 项和,且 a 1 1, a n 1S nSn 1,则使nS n 2 获得最大值时n 的10S n 21值为()A. 2B.5C.4D. 3【答案】 D【解析】试题解析: 由于a n 1 S n 1S n,因此有S n1S nS n 1S n1 11 ,即1为首S n 1S nS n项等于 1公差为 1 1 n1 的等差数列因此S n S n,则n2n( 1)21 n 1nS nnnn 2 1 10S n21 10(1)21 10( 1) 2n 2 10 101 nn n10 2 10, 当且仅当 n 10 时取等号,由于 n 为自然数,因此依据函10,由于 nnnn数的单调性可从与n10 相邻的两个整数中求最大值, n 3, S n1nS n 23 ,,3 1 10S n 219n 4, S n1 , nS n22 ,因此最大值为 3,此时 n3 ,故本题正确选项为 D.4 1 10S n 21319考点:数列的通项,重要不等式与数列的最值.11. 在正四棱锥 V ABCD 中(底面是正方形,侧棱均相等) , AB2,VA6 ,且该四棱锥可绕着 AB 作任意旋转, 旋转过程中 CD ∥ 平面 . 则正四棱锥 V ABCD 在平面内的正投影的面积的取值范围是(). [2,4]B. (2,4]C.[ 6,4]AD . [2,2 6]【答案】A【解析】试题解析:由题可知正四棱锥V ABCD在平面内的正投影图形为平面截 V ABCD所得横截面图形,此中平面是平行于CD的平面,四棱锥底面积为S1AB2 4 ,任意一个侧面的高为(6) 212 5 ,则侧面面积为S2 5 ,四棱锥的高为( 6)2(2) 2 2 ,所以过 V且垂直于底面的截面面积为S3 2 ,经解析可知四棱锥绕AB旋转过程当底面与平面平行时,投影面积最大,当底面与平面垂直时,投影面积最小,因此投影面积的取值范围为[ 2,4],故本题正确选项为 A.考点:投影.【思路点睛】解答本题要清楚平面与 AB 的关系,由于两者平行,因此可以直接把四棱锥底面ABCD看做平面,这样可以便于研究投影的面积,当四棱锥没有转动时,投影为底面正方形,当逆时针旋转且不超出时,投影由矩形变为三角形,此中三角形面积愈来愈小;2当旋转角度超出时,投影逐渐由三角形变为矩形,最后为正方形,因此只要求得中间三个2特其余投影面积,即可求得投影的取值范围.12. 已知实数p0 ,直线 4x 3 y 2 p 0 与抛物线y2 2 px 和圆(x p )2y2p2从上24到下的交点挨次为AC的值为()A,B, C,D ,则BDA.1B.5C.3 8168D.716【答案】 C考点:函数的图象.【思路点睛】本题主要观察函数图象的的交点间线段的比值问题. 第一要分别求得直线与两曲线的交点横坐标,即联立方程组,并解方程,即可求得交点横坐标. 依据横坐标的大小确立A, B, C , D 的横坐标,(也可经过两曲线的交点,来判断抛物线与圆的地点关系,从而确立A, B, C , D 的坐标)再利用相似三角形的性质,即可经过线段在水平方向上的投影比值来求得AC.BD第Ⅱ卷(非选择题共90 分)二、填空题(本大题共 4 小题,每题 5 分,满分20 分.)13. 已知双曲线x2y21的一条渐近线方程为y3x,则实数 m 的值为______. 2m m 4【答案】45【解析】试题解析:由于双曲线x2y2 1 的两条渐近线为 y b x,因此 x2y 21的渐近a2b2a2m m4线为y m 4x ,则有m4 3 m 4 . 2m2m5考点:双曲线的渐近线.14.将一枚硬币连续扔掷三次,它落地时出现“两次正面向上,一次正面向下” 的概率为 ______. 【答案】【解析】试题解析:抛出的硬币落地式正面向上与朝下的概率是相等的,设向上为p0.5 ,则朝下为q 1p0.5 ,扔掷三次,两次正面向上的概率为C32 p2 q30.475 .考点:独立事件的概率及组合的运用.15. 在Rt ABC 中,AB4, AC2,点P为斜边BC 上凑近点 B 的三均分点,点 O 为ABC 的外心,则 AP AO 的值为_____.【答案】 6考点:向量的运算.【思路点睛】依据向量的运算,分别求得AP,AO ,即可求得其数目积,第一依据向量垂直的性质有 AB AC 0 ,其次点 P 为斜边 BC 上凑近点 B 的三均分点,因此要求先求得BC ,才能进一步求得, BP而依据三角形外心是三角形中线的三均分点,及三角形中线为两邻边向量和的一半,即可求得向量 AO ,分别代入AP AO 即可求得数目积.16. 已知函数f ( x)x3 3x ,若过点M (2, t)可作曲线y f ( x) 的两条切线,则实数t 的值为______.【答案】6或 2【解析】试题解析: f ( x)x33x的导函数为 f ( x) 3x2 3 假设过点M (2, t )的切线斜率为k,则有k 3x023x033x0t,可得 2 x036x02 6 t 0 ,有两条切线,即x022x03 6 x02 6 t0 有两个不等的数根,可令 y 2x 3 6x 26t ,函数恰好有两个零点, y6x212x ,有函数的性可知函数存在两个极点x10, x2 2, 极分y16t , y2 t2,当且当极点零点函数才好有两个零点,因此有y1 6 t0或y2t 2 0 t1 6或t2 2 因此 t 的6或2 .考点:函数的运用,直的斜率.【方法点睛】某点可做函数象的切,可依据函数的性,即函数等于切的斜率,求得切的斜率,可通两点式来求得切的斜率,所求的两个斜率相等即可建立有关切点横坐的方程,中明有两条切,即有两个切点,也就是方程有两个不等的数解,再利用函数的零点个数与函数的性(函数性,极点)即可求得t 的.三、解答(本大共 6 小,共70 分 . 解答写出文字明、明程或演算步. )17.(本小分 12 分)在ABC 中, a、 b、 c 分是角 A、 B、 C 所的,且足a3b cosC .(Ⅰ)求tanC的;tan B(Ⅱ)若 a 3, tan A 3 ,求ABC 的面.【答案】(Ⅰ) 2 ;(Ⅱ)3.a b c2R可得:解析:( I )由正弦定理sin B sin Csin A2R sin A=32R sin B cosC⋯⋯⋯⋯⋯⋯⋯ 1 分A B C sin A sin( B C)=3sin B cosC ,-------------------------3分即 sin B cosC cos B sin C =3sin B cosCcos B sin C =2sin B cosC cos B sin C =2故tan C=2.-------------------------sin B cosC5分tan B( II )(法一)由A B C得 tan(B C )tan(A) 3 ,即tan B tanC3,将tan C 2 tan B代入得:3t Ba n3,tan B tan C2211t Ba n-------------------------7分解得 tan B1或 tan B 1,2依据 tan C 2 tan B 得 tan C、tan B 同正,因此 tan B1, tanC 2 .⋯⋯⋯⋯⋯⋯⋯⋯ 8 分tan A 3 ,可得 sin B2,sin C25,sin A310 ,2510代入正弦定理可得3=b,b 5 ,-------------------------10分3102102因此 S ABC 1ab sin C1 3 5253.-------------------------12分225(法二)由 A B C得tan(B C )tan(A)3,即tan B tanC3,将tan C 2 tan B代入得:3t Ba n3,tan B tan C2211t Ba n-------------------------7分解得 tan B1或 tan B 1,依据 tan C 2 tan B 得 tan C、tan B 同正,2因此 tan B1, tanC 2 .⋯⋯⋯⋯⋯⋯⋯⋯⋯8分又因 a3b cosC 3 因此 b cosC 1 ,ab cosC3ab cosC tan C 6.-------------------------10分SABC 1ab sin C 1 6 3 .-------------------------12分22考点:正弦定理的运用,三角函数的恒等.18.(本小分 12 分)了某地区成年人血液的一指,随机抽取了成年男性、女性各10人成的一个本,他的血液指行了,获得了以下茎叶. 依据医学知,我此指大于40为偏高,反之即为正常 .(Ⅰ)依据上述样本数据研究此项血液指标与性其余关系,完成以下2 2 列联表,并判断能否在犯错误的概率不超出 0.10 的前提下以为此项血液指标与性别有关系?正常偏高合计男性女性合计(Ⅱ)现从该样本中此项血液指标偏高的人中随机抽取 2 人去做其余检测,求男性和女性被抽到的概率 .参照数据:P(K 2k0 )k0(参照公式:K2n(ad bc) 2,此中 n a b c d )(a b)(c d )(a c)(b d )【答案】( I )列联表见解析,能犯错误的概率不超出0.10 的前提下以为此项血液指标与性别有关系;( II )1 . 3【解析】试题解析:( I )由茎叶图可得男性数据5,7,19,22,23,24,25,36,37,45 ,女性数据2,13,14,16,21,42,44,46,48,53 可知正常数据男性为9 ,女性为 5 ,将列表数据代入K2=n( ad bc)22与 2.706 比,可知在犯的概率不超求,并用k(a b)(c d )(a c)(b d )的前提下此血液指与性有关系;( II )血液指偏高的人中间有男性1人,女性 5 人,分列出所抽取两人的可能事件共有15 种,而有男性的事件 5 种,因此抽到男性与女性的概率1 . 3解析:( I )由茎叶可得二列表正常偏高合男性9110女性5510合14620⋯⋯⋯⋯⋯⋯⋯ 4 分(填一个数,扣 2 分,两个以上扣 4 分)n( ad bc)2= 20(9552K 2 =)1(a b)(c d )(a c)(b d )1010146因此能在犯的概率不超的前提下此血液指与性有关系 .⋯⋯⋯⋯⋯⋯ 6 分考点:茎叶与概率的合运用.19.(本小分 12 分)如,四棱P ABCD 的底面 ABCD 矩形, AB 2 2 , BC 2 ,点P在底面上的射影在 AC 上,E, F 分是AB,BC的中点.(Ⅰ)明:DE平面PAC;(Ⅱ)在 PC 上能否存在点M ,使得 FM ∥平面 PDE ?若存在,求出PM的;若不PC存在,明原由 .【答案】(Ⅰ)明解析;(Ⅱ)存在,原由解析.解析:( I )在矩形ABCD中,AB : BC 2 :1,且E是AB的中点,∴ tan ∠ ADE = tan ∠CAB 1, ⋯⋯⋯⋯⋯⋯ 1 分2∴∠ ADE =∠CAB,∵∠CAB∠ DAC90, ∴∠ADE∠ DAC90, 即AC ⊥DE .⋯⋯⋯⋯ 3 分由可知面PAC面 ABCD,且交AC ,∴DE面 PAC. ⋯⋯⋯⋯ 5 分PMDGHCFAEB( II)作DC 的中点G ,GC 的中点H,GB 、 HF . ⋯⋯⋯⋯⋯6 分∵DG ∥EB ,且DGEB∴四 形EBGD平行四 形,∴DE ∥GB∵ F 是 BC 的中点, H 是GC 的中点,∴ HF ∥GB ,∴ HF ∥ DE .⋯⋯⋯⋯ 8分作H 作HM ∥PD 交PC 于M , FM ,∵ HF ∥ DE , HM ∥ PD ,∴平面 HMF ∥平面 PDE ,∴ FM ∥平面 PDE . ⋯⋯⋯ 10 分由 HM ∥ PD 可知:∴PMDH3 ⋯⋯⋯⋯ 12 分MCHC考点:直 与平面的垂直(平行)的性 与判断.20. (本小 分 12 分)已知 E :x 2y 2 1( a b 0) 的左、右焦点分F 1、 F 2 , D 上任意一点,a 2b 2且DF 1 DF 2的最大a 2.4(Ⅰ)求E 的离心率;(Ⅱ)已知 的上 点 A(0,1) , 直 l : ykx m(m 1) 与 E 交于不一样样的两点B 、C ,且AB AC , 明: 直 l 定点,并求出 定点坐 .【答案】( I ) e3 3 ) .;( II ) 明 解析, (0,25解析:( I )2DF 1 DF 2 ( cx 0 , y 0 )(c x 0 , y 0 )x 02c2y 02c2 x 02b 2c 2 ,⋯⋯⋯ 2 分a因 0 x 02 a 2 ,因此当 x 02 a 2 , DF 1DF 2 得最大 b 2 . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3分因此 b 2a 2 , 故离心率 e 3⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分42( II)由 意知 b1,可得 方程 :x 2 y 21,4B( x 1, y 1 )C (x 2 , y 2 )由y kx m,得 (1 4k 2 ) x 2 8kmx 4(m 2 1) 0 ,x 2 4 y 24x 1 x 28kmx2 , x 1 x 24(m 2 1)⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分1 4k1 4k 2由 AB AC 0 得: x 1x 2 ( y 1 1)(y 2 1) 0即 (1k 2 ) x 1 x 2 k(m 1)(x 1x 2 ) (m 1)2 0 ,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 8 分将 达定理代入化 可得:m3 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10 分5因此 直 l 的方程 : y kx3,即直 恒 定点 (0,312 分) ⋯⋯⋯⋯⋯ 5 5河北省石家庄市2017-2018学年高三第二次模拟考试文数试题Word版含解析考点:的离心率,向量的运算,函数象的交点.21.(本小分 12 分)函数 f ( x) (e x 1)(x a), e 自然数的底数.(Ⅰ)当 a 1 ,函数 y f ( x) 在点 (1, f (1)) 的切l,明:除切点(1, f (1)) 外,函数 y f ( x) 的像恒在切 l 的上方;(Ⅱ)当 a0 ,明: f ( x) x ln x10 . e【答案】( I )明解析;( II )明解析 .【解析】解析:( I )当a 1 ,f ( x)(e x1)( x 1) , f (x) (e x1) e x ( x 1) xe x1,可求得点 (1, f (1)) 及点切的斜率,获得切的方程,函数象在切上方,即(e x1)( x 1) ( x 1)(e 1) 因此只要明(e x1)( x 1) (x 1)(e 1) 在x 1 恒建立,1数象在切上方;(II)明f ( x) x ln x 0建立,即明e(e x1) x x ln x10 恒建立,构造两函数p(x) (e x1)x,q( x)x ln x1,有e ep(x) q( x) 恒建立,利用函数的性分求得p( x),q( x) 在 x0 的最小,最大,即可明 p( x)q( x) 建立,从而得 (e x1) x x ln x10建立.e解析:(Ⅰ)当 a 1 ,f ( x)(e x 1)(x1),f (1)0 ,f(1) e1因此在 (1, f (1))的切方程是y(e1)(x 1) ⋯⋯⋯⋯2分所等价于 (e x 1)(x1)(e1)(x1),( x1) ⋯⋯⋯⋯3分即(x)(1)0,(1)e e x x当 x 1 ,x0,10,(x)(1)0e e x e e x当 x1x0,10,(x)(1)0e e x e xe得!⋯⋯⋯⋯ 5 分考点:函数的单调性,最值,导函数的运用.【思路点睛】证明 f ( x) 的图象素来切线的上方,即要证明函数的值素来大于也许等于切线的函数值,因此可由函数 f ( x) 减去切线方程构成一个新的函数,证明该函数的最小值为非负即可 . 在此要注意: f (x) 图象在切线上方,其实不表示函数在切点处有最小值;对于不等式的证明,可以观察不等式形式,构造两个新的函数,从而将不等式恒建立问题转变为两个函数最值的大小问题.请考生在第22、 23、 24 三题中任选一题作答,假如多做,则按所做的第一题记分. 解答时请写清题号 .22.(本小题满分 10 分)选修 4-1 :几何证明选讲如图, RT ABC 内接于⊙O, C 90 ,弦BF交线段AC于E,E为AC的中点,在点 A 处作圆的切线与线段 OE 的延长线交于 D ,连接 DF .(Ⅰ)求证:DE EO FE EB ;(Ⅱ)若CEB 45 ,⊙O的半径 r 为 2 5 ,求切线AD的长.【答案】 (I)明解析;(II)4 5 .【解析】解析:(I )由订交弦定理有EF EB AE EC ,又E中点,因此FE EB AE 2,只要明AE2DE EO 即可得 DE EO FE EB 建立,在直角三角形ADO 中,由射影定理即可得 AE 2DE EO ;(II)CEB45 ,E AC的中点,可知 AC2BC ,由半径 r 2 5 ,即可求得BC 4 ,从而求得AE, OE 在合AE2DE EO 求得DE,利用勾股定理即可求得AD .解析:( I )明:在O 中,弦 AC、 BF 订交于E,FE EB AE EC,又 E AC的中点,因此FE EB AE2,-------------------------2分又因 OA AD,OE AE ,依据射影定理可得AE 2DE EO ,-------------------------4分DE EO FE EB,------------------------5分( II )因AB直径,因此C=900,又因CBE 45o,因此BCE 等腰直角三角形.⋯⋯⋯⋯⋯⋯ 6 分AC 2BC,依据勾股定理得 AC2BC 25BC280,解得BC 4 ,-------------------8分因此 AE4, OE2,由(I)得 AE2DE EO 因此 DE8,因此 AD AE2DE 2428245 .------------------------10分考点:射影定理,勾股定理,订交弦的性.23.(本小分 10 分)修 4-4 :坐系与参数方程在极坐系中,曲C1的极坐方程cos2 3 sin,以极点 O 坐原点,极x 非半C 2x 2 cos,建立平面直角坐系,曲的参数方程2 sin ( 为参数).y(Ⅰ)求曲C1的直角坐方程;(Ⅱ)若3,曲 C 2上点P ,点P 作C2的切与曲C1订交于A, B两点的,求段AB中点M与点P 之的距离.【答案】( I )x23y ;(II) 3 .【解析】解析:( I )由cos23sin ,得2 cos23sin,⋯⋯⋯⋯⋯⋯ 2 分曲 C1的直角坐方程x23y ,-----------------------------------4分(II )将=代入 C2x2cos :2sin3y得 P(1,3) ,由题意可知切线AB 的倾斜角为5,--------------------------6 6分x 1 3 t设切线 AB的参数方程为2( t 为参数),1y3t2代入x23y 得:(1 3 t )23( 31t ) ,22即3t 2 3 3t 2 0 ,--------------------------8分42设方程的两根为t1和 t2可得:t1t2 2 3 ,因此 x M 1[ 23(t1t2 )]1 222112因此 MP 3 --------------------------10分32考点:极坐标系,参数方程的运用.2x2y 2【思路点睛】直角坐标系与极坐标系转变时满足关系式tan y,代入极坐标系方程,x进行化简单可求得直角坐标系方程;对于直线上两点间距离,可以先求得两点横坐标(也许纵坐标)间的差值,再利用三角函数来求得两点间的距离,本题中利用了参数法直接求得A, B 两点的坐标关系,从而获得中点M 的坐标.24.(本小题满分 10 分)选修 4-5 :不等式选讲已知实数 a0, b 0,函数 f ( x) x a x b 的最大值为 3 .(Ⅰ)求 a b 的值;(Ⅱ)设函数g x x2ax b,若对于x a,均有g(x) f ( x),求 a 的取值范围.( )【答案】(I )3;(II )1a 3 . 2河北省石家庄市2017-2018学年高三第二次模拟考试文数试题Word版含解析【解析】( II)当x a时, f ( x)| x a || xb | =x a ( x )b,ab ---------------------6分对于 x a ,使得g( x) f ( x) 等价于x a , g max ( x) 3 建立,g(x) 的对称轴为x aa ,2g ( x) 在 x [ a,) 为减函数,g(x) 的最大值为g( a)a2a2b2a2 a 3 ,--------------------------8分2a2 a 3 3 ,即 2a2a0 ,解得a0 或 a1,3,因此12又由于 a0, b0, a b a 3 .--------------------------10分2考点:绝对值不等式的应用,函数的单调性与最值.。

【考试】河北省石家庄市2017届高三毕业班第二次模拟考试文数试题Word版含答案

【考试】河北省石家庄市2017届高三毕业班第二次模拟考试文数试题Word版含答案

【关键字】考试2017届石家庄市高中毕业班第二次模拟考试数学(文科)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.函数与的定义域分别为、,则()A. B.C.D.2.若,则复数对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限3.已知向量,,则“”是“”成立的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.从编号为1,2,…,79,80的80件产品中,采用系统抽样的方法抽取容量为5的样本,若编号为10的产品在样本中,则该样本中产品的最大编号为()A.72 B.73 C.74 D.755.已知角()终边上一点的坐标为,则()A. B.C.D.6.函数的大致图象是()7.如图是计算的值的程序框图,则图中①②处应填写的语句分别是()A., B.,C., D.,8.某几何体的三视图如图所示,则其体积为()A. B.C.D.9.实数,满足时,目标函数的最大值等于5,则实数的值为()A. B.C.D.10.三棱锥中,侧棱底面,,,,,则该三棱锥的外接球的表面积为()A. B.C.D.11.已知动点在椭圆上,若点的坐标为,点满足,,则的最小值是()A. B.C.D.12.已知函数存在互不相等实数,,,,有.现给出三个结论:(1);(2),其中为自然对数的底数;(3)关于的方程恰有三个不等实根.正确结论的个数为()A.0个B.1个C.2个D.3个第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.观察下列式子:,,,…,根据上述规律,第个不等式可能为.14.已知函数(,)的图象如图所示,则的值为.15.双曲线(,)上一点关于渐进线的对称点恰为右焦点,则该双曲线的离心率为.16.在希腊数学家海伦的著作《测地术》中记载了著名的海伦公式,利用三角形的三条边长求三角形面积,若三角形的三边长为,,,其面积,这里.已知在中,,,则面积的最大值为.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知数列满足,.(Ⅰ)求数列的通项公式;(Ⅱ)若,,求证:对任意的,.18.在如图所示的多面体中,为直角梯形,,,四边形为等腰梯形,,已知,,.(Ⅰ)求证:平面;(Ⅱ)求多面体的体积.19.天气预报是气象专家根据预测的气象资料和专家们的实际经验,经过分析推断得到的,在现实的生产生活中有着重要的意义.某快餐企业的营销部门经过对数据分析发现,企业经营情况与降雨天数和降雨量的大小有关.(Ⅰ)天气预报说,在今后的三天中,每一天降雨的概率均为,该营销部门通过设计模拟实验的方法研究三天中恰有两天降雨的概率,利用计算机产生0到9之间取整数值的随机数,并用1,2,3,4,表示下雨,其余6个数字表示不下雨,产生了20组随机数:907 966 191 925 271 932 812 458 569 683431 257 393 027 556 488 730 113 537 989求由随机模拟的方法得到的概率值;(Ⅱ)经过数据分析,一天内降雨量的大小(单位:毫米)与其出售的快餐份数成线性相关关系,该营销部门统计了降雨量与出售的快餐份数的数据如下:试建立y 关于x 的回归方程,为尽量满足顾客要求又不造成过多浪费,预测降雨量为6毫米时需要准备的快餐份数.(结果四舍五入保留整数)附注:回归方程y bx a =+中斜率和截距的最小二乘估计公式分别为:121()()()niii nii x x y y b x x ==--=-∑∑,a y bx =-20.已知圆C :222(1)x y r -+=(1r >),设A 为圆C 与x 轴负半轴的交点,过点A 作圆C 的弦AM ,并使弦AM 的中点恰好落在y 轴上.(Ⅰ)求点M 的轨迹E 的方程;(Ⅱ)延长MC 交曲线E 于点N ,曲线E 在点N 处的切线与直线AM 交于点B ,试判断以点B 为圆心,线段BC 长为半径的圆与直线MN 的位置关系,并证明你的结论. 21.已知函数1()(1)1xax f x a x e+=-+-,其中0a ≥. (Ⅰ)若1a =,求函数()y f x =的图象在点(1,(1))f 处的切线方程; (Ⅱ)若0x ≥,()0f x ≤恒成立,求a 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为cos a ρθ=(0a >),Q 为l 上一点,以OQ 为边作等边三角形OPQ ,且O 、P 、Q 三点按逆时针方向排列.(Ⅰ)当点Q 在l 上运动时,求点P 运动轨迹的直角坐标方程;(Ⅱ)若曲线C :222x y a +=,经过伸缩变换'2'x xy y=⎧⎨=⎩得到曲线'C ,试判断点P 的轨迹与曲线'C 是否有交点,如果有,请求出交点的直角坐标,没有则说明理由. 23.选修4-5:不等式选讲已知函数()2|1||1|f x x x =+--.(Ⅰ)求函数()f x 的图象与直线1y =围成的封闭图形的面积m ;(Ⅱ)在(Ⅰ)的条件下,若正数a 、b 满足2a b abm +=,求2a b +的最小值.2017届石家庄市高中毕业班第二次模拟考试试卷数学(文科)答案 一、选择题1-5:BAACC 6-10:BADBB 11、12:CC二、填空题13.22211121123(1)1n n n +++++<++…16.12三、解答题17. 解:(Ⅰ)当1n >时, ①-②得1(1)2(2)22n n n n na n n n +=---=⋅,2n n a =,当1n =时,12a =,所以2,*nn a n N =∈.(Ⅱ)因为2nn a =,2211111log log (1)1n n n b a a n n n n +===-⋅++.因此1111112231n T n n ⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭111n =-+, 所以n T 1<.18.(Ⅰ)证明:取AD 中点M ,连接EM ,AF =EF =DE =2,AD =4,可知EM =12AD ,∴AE ⊥DE , 又AE ⊥EC ,DEEC E = ∴AE ⊥平面CDE ,∵CD CDE ⊂平面 ,∴AE ⊥CD ,又CD ⊥AD ,AD AE A = ,∴CD ⊥平面ADEF .(Ⅱ)由(1)知 CD ⊥平面ADEF ,CD ⊂ 平面ABCD , ∴平面ABCD ⊥平面ADEF ;作EO ⊥AD ,∴EO ⊥平面ABCD ,EO连接AC ,则ABCDEF C-ADEF F ABC V V V -=+111(24)4332C-ADEF ADEF V S CD ==⨯⨯+= 11124332F-ABC ABC VS OE ==⨯⨯⨯=△, ∴ABCDEF V ==. 19.解:(Ⅰ)上述20组随机数中恰好含有1,2,3,4中的两个数的有191 271 932 812 393 ,共5个,所以三天中恰有两天下雨的概率的近似值为51==204P . (Ⅱ)由题意可知1234535x ++++==,50+85+115+140+160=1105y =,51521()()275==27.510()iii ii x x y y b x x ==--=-∑∑, ==27.5a y bx -所以,y 关于x 的回归方程为:ˆ27.527.5yx =+. 将降雨量6x =代入回归方程得:ˆ27.5627.5192.5193y=⨯+=≈. 所以预测当降雨量为6毫米时需要准备的快餐份数为193份.20.解:(Ⅰ)设(,)M x y ,由题意可知,(1,0)A r -,AM 的中点(0,)2yD ,0x >, 因为(1,0)C ,(1,)2y DC =-,(,)2y DM x =. 在⊙C 中,因为CD DM ⊥,∴0DC DM ⋅=,所以204y x -=,即24y x =(0x >), 所以点M 的轨迹E 的方程为:24y x =(0x >).(Ⅱ) 设直线MN 的方程为1x my =+,11(,)M x y ,22(,)N x y ,直线BN 的方程为222()4y y k x y =-+,2214404x my y my y x=+⎧⇒--=⎨=⎩,可得12124,4y y m y y +==-, 11r x -=,则点A 1(,0)x -,所以直线AM 的方程为1122y y x y =+, 22222222()44044y y k x y ky y y ky y x ⎧=-+⎪⇒-+-=⎨⎪=⎩,0∆=,可得22k y =, 直线BN 的方程为2222y y x y =+, 联立11222,22,2y y x y y y x y ⎧=+⎪⎪⎨⎪=+⎪⎩可得21111441,222B B y my x y m y y -=-===, 所以点(1,2)B m -,||BC =2d ===∴B 与直线MN 相切.21. 解:(Ⅰ)当1=a 时,xe x xf -+-=)1(1)(,当1=x 时,ex f 21)(-=, 1'(1)f e=,所以所求切线方程为:131y x e e =+-.(Ⅱ)首先xe a ax a xf --++-=)1()1()(',令其为)(x g ,则xe a ax x g --+-=)12()('.1)当12≤a 即210≤≤a 时,,0)('≤x g )(x g 单调递减,即)('x f 单调递减, 0)('≤x f ,)(x f 单调递减,0)(≤x f ,所以210≤≤a 成立;2)当21>a 时,0)12()('=-+-=-xe a ax x g 解得:a x 12-=,当)12,0(a x -∈时,,0)('>x g )(x g 单调递增,即)('x f 单调递增, 0)('>x f ,)(x f 单调递增,0)(>x f ,所以21>a 不成立.综上所述:210≤≤a . 22. 解:(Ⅰ)设点P 的坐标为(,)ρθ, 则由题意可得点Q 的坐标为(,)3πρθ+,再由点Q 的横坐标等于a ,0a >, 可得cos()3a πρθ+=,可得1cos sin 2a ρθρθ-=, 故当点Q 在l 上运动时点P的直角坐标方程为20x a --=. (Ⅱ)曲线C :222x y a +=,'2'x x y y =⎧⎨=⎩,即'2'x x y y ⎧=⎪⎨⎪=⎩,代入22''4x y a +=,即2224x y a +=, 联立点P 的轨迹方程,消去x得270y +=,0,0a >∴∆>有交点,坐标分别为2(,),(2,0)77a a a -. 23. 解:(Ⅰ)函数3,1,()21131,11,3, 1.x x f x x x x x x x --≤-⎧⎪=+--=+-<<⎨⎪+≥⎩它的图象如图所示:函数)(x f 的图象与直线1=y 的交点为(4,1)-、(0,1), 故函数)(x f 的图象和直线1=y 围成的封闭图形的面积14362m =⨯⨯=. (Ⅱ)ab b a 62=+ ,621=+∴ab 844244)21)(2(=+≥++=++a bb a a b b a ,当且仅当a bb a 4=,可得31,32==b a 时等号成立,b a 2+∴的最小值是34此文档是由网络收集并进行重新排版整理.word 可编辑版本!。

石家庄市2018届高三教学质量检测(二)文数试题附答案

石家庄市2018届高三教学质量检测(二)文数试题附答案

12.已知函数()()ln 1x f x x e =++图象上三个不同点,,A B C 的 横坐标成公差为 1 的等差数列,则 ABC △面积的最大值为 ( ) A.() 2 1ln 4e e + B.()() 2 2 21ln 1e e ++ D.
二、填空题(每题 5 分,满分 20 分,将答案填在答题纸上) 13.口袋中有形状和大小完全相同的五个球,编号分别为 1,2, 3,4,5,若从中一次随机摸出两个球,则摸出的两个球的编号 之和大于 6 的概率为_____________. 14.设变量,x y 满足约束条件 30 320 x x y y -≤?? +≥??-≤?
A.必要不充分条件 B.充要条件 C.既不充分也不必要条件 D.充分不必要条件 5.我国魏晋期间的伟大的数学家刘徽,是最 早提出用逻辑推理 的方式来论证数学命题的人,他创立了“割 圆术”,得到了著 名的“徽率”,即圆周率精确到小数点后两 位的近似值 3.14, 如图就是利用“割圆术”的思想设计的一个 程序框图,则输出 的 n 值为( ) ( 参 考 数 据 : sin150.2588= ° , sin7.50.1305= ° , sin3.750.0654=°) B.36 6.若两个非零向量 a ,b 满足 2a b a b b +=-=,则向量 a b + 与 a 的夹角为( ) A. 3 π
14.3 1513 (,)24- 16.
三、解答题(解答题仅提供一种解答,其他解答请参照此评分标 准酌情给分) 17、 解:(1)在△ABC 中 33sin sin sin tan tan 2cos sin cos cos cos c C A B ABaBABAB =+∴=+ 分 sin cos +sin cos cos cos A B B A AB = …………………4 分

2018年河北省石家庄市高考数学二模试卷(文科)(解析版)

2018年河北省石家庄市高考数学二模试卷(文科)(解析版)

2018年河北省石家庄市高考数学二模试卷(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|y=log2(x﹣2)},B={x|﹣3<x<3,x∈R},则A∩B=()A.(2,3)B.[2,3)C.(3,+∞)D.(2,+∞)2.(5分)若复数z满足z(1﹣i)=2i,其中i为虚数单位,则共轭复数=()A.1+i B.1﹣i C.﹣1﹣i D.﹣1+i3.(5分)已知命题p:1<x<3,q:3x>1,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.(5分)函数f(x)=的图象大致为()A.B.C.D.5.(5分)已知双曲线(a>0,b>0)与椭圆有共同焦点,且双曲线的一条渐近线方程为,则该双曲线的方程为()A.B.C.D.6.(5分)三国时期吴国的数学家创造了一副“勾股圆方图”,用数形结合的方法给出了勾股定理的详细证明,如图所示“勾股圆方图”中由四个全等的正三角形(直角边长之比为)围成的一个大正方形,中间部分是一个小正方形,如果在大正方形内随机取一点,则此点取自中间的小正方形部分的概率是()A.B.C.D.7.(5分)执行如图所示的程序框图,则输出的S值为()A.B.C.D.8.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某四面体的三视图,则该四面体的体积为()A.B.C.D.29.(5分)将函数f(x)=2sin x图象上各点的横坐标缩短到原来的,纵坐标不变,然后向左平移个单位长度,得到y=g(x)图象,若关于x的方程g(x)=a在上有两个不相等的实根,则实数a的取值范围是()A.[﹣2,2]B.[﹣2,2)C.[1,2)D.[﹣1,2)10.(5分)若函数f(x),g(x)分别是定义在R上的偶函数,奇函数,且满足f(x)+2g (x)=e x,则()A.f(﹣2)<f(﹣3)<g(﹣1)B.g(﹣1)<f(﹣3)<f(﹣2)C.f(﹣2)<g(﹣1)<f(﹣3)D.g(﹣1)<f(﹣2)<f(﹣3)11.(5分)已知F1,F2分别为椭圆+=1(a>b>0)的左、右焦点,点P是椭圆上位于第一象限内的点,延长PF2交椭圆于点Q,若PF1⊥PQ且|PF1|=|PQ|,则椭圆的离心率为()A.2B.C.D.12.(5分)定义在(0,+∞)上的函数f(x)满足xf'(x)lnx+f(x)>0(其中f'(x)为f (x)的导函数),若a>1>b>0,则下列各式成立的是()A.a f(a)>b f(b)>1B.a f(a)<b f(b)<1C.a f(a)<1<b f(b)D.a f(a)>1>b f(b)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)已知向量与的夹角是,,,则向量与的夹角为.14.(5分)设等差数列{a n}的前n项和为S n,若a6=6,S15=15,则公差d=.15.(5分)设变量x,y满足约束条件,则(x﹣1)2+y2的取值范围是.16.(5分)三棱锥P﹣ABC中,P A,PB,PC两两成60°,且P A=1,PB=PC=2,则该三棱锥外接球的表面积为.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)在△ABC中,内角A、B、C的对边分别为a、b、c,且a cos B+b sin A=c.(1)求角A的大小;(2)若,△ABC的面积为,求b+c的值.18.(12分)2022年北京冬奥会的申办成功与“3亿人上冰雪”口号的提出,将冰雪这个冷项目迅速炒“热”.北京某综合大学计划在一年级开设冰球课程,为了解学生对冰球运动的兴趣,随机从该校一年级学生中抽取了100人进行调查,其中女生中对冰球运动有兴趣的占,而男生有10人表示对冰球运动没有兴趣额.(1)完成2×2列联表,并回答能否有90%的把握认为“对冰球是否有兴趣与性别有关”?(2)已知在被调查的女生中有5名数学系的学生,其中3名对冰球有兴趣,现在从这5名学生中随机抽取3人,求至少有2人对冰球有兴趣的概率.附表:19.(12分)如图,在四棱锥P﹣ABCD中,底面ABCD为矩形,平面PBC⊥平面ABCD,PB⊥PD.(1)证明:平面P AB⊥平面PCD;(2)若PB=PC,E为棱CD的中点,∠PEA=90°,BC=2,求四面体A﹣PED的体积.20.(12分)已知点,直线l:,P为平面上的动点,过点P作直线l的垂线,垂足为H,且满足.(1)求动点P的轨迹C的方程;(2)过点F作直线l'与轨迹C交于A,B两点,M为直线l上一点,且满足MA⊥MB,若△MAB的面积为,求直线l'的方程.21.(12分)已知函数.(1)求函数f(x)的单调区间;(2)记函数y=f(x)的极值点为x=x0,若f(x1)=f(x2),且x1<x2,求证:.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(10分)在平面直角坐标系xOy中,曲线C1的方程为x2+y2=4,直线l的参数方程(t为参数),若将曲线C1上的点的横坐标不变,纵坐标变为原来的倍,得曲线C2.(1)写出曲线C2的参数方程;(2)设点,直线l与曲线C2的两个交点分别为A,B,求的值.[选修4-5:不等式选讲]23.已知函数f(x)=|3x+1|+|3x﹣1|,M为不等式f(x)<6的解集.(1)求集合M;(2)若a,b∈M,求证:|ab+1|>|a+b|.2018年河北省石家庄市高考数学二模试卷(文科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|y=log2(x﹣2)},B={x|﹣3<x<3,x∈R},则A∩B=()A.(2,3)B.[2,3)C.(3,+∞)D.(2,+∞)【解答】解:A={x|x>2},且B={x|﹣3<x<3,x∈R};∴A∩B=(2,3).故选:A.2.(5分)若复数z满足z(1﹣i)=2i,其中i为虚数单位,则共轭复数=()A.1+i B.1﹣i C.﹣1﹣i D.﹣1+i【解答】解:由z(1﹣i)=2i,得z=,∴,故选:C.3.(5分)已知命题p:1<x<3,q:3x>1,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解答】解:q:3x>1,可得x>0,又命题p:1<x<3,∴p是q的充分不必要条件.故选:A.4.(5分)函数f(x)=的图象大致为()A.B.C.D.【解答】解:此函数是一个奇函数,故可排除C,D两个选项;又当自变量从原点左侧趋近于原点时,函数值为负,图象在X轴下方,当自变量从原点右侧趋近于原点时,函数值为正,图象在x轴上方,故可排除B,A选项符合,故选:A.5.(5分)已知双曲线(a>0,b>0)与椭圆有共同焦点,且双曲线的一条渐近线方程为,则该双曲线的方程为()A.B.C.D.【解答】解:曲线(a>0,b>0)的一条渐近线方程为,可得,①,椭圆的焦点为(±2,0),可得c=2,即a2+b2=8,②由①②可得a=,b=,则双曲线的方程为.故选:D.6.(5分)三国时期吴国的数学家创造了一副“勾股圆方图”,用数形结合的方法给出了勾股定理的详细证明,如图所示“勾股圆方图”中由四个全等的正三角形(直角边长之比为)围成的一个大正方形,中间部分是一个小正方形,如果在大正方形内随机取一点,则此点取自中间的小正方形部分的概率是()A.B.C.D.【解答】解:设每一个直角三角形的较短直角边长为1,则大正方形的边长为2,总面积为4,而阴影区域的边长为﹣1,面积为4﹣2,则在大正方形内随机取一点,则此点取自中间的小正方形部分的概率是P=,故选:C.7.(5分)执行如图所示的程序框图,则输出的S值为()A.B.C.D.【解答】解:由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量S=++…+=1﹣+﹣+…+﹣=的值,由退出循环的条件为n>50,故最后一次进行循环的循环变量的值:k=n=50,故输出的S值为,故选:B.8.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某四面体的三视图,则该四面体的体积为()A.B.C.D.2【解答】解:由已知可得该几何体是一个以俯视图为底面的三棱锥,三棱锥的原题侧棱与底面的一个顶点垂直,其体积V=×(×1×2)×2=,故选:B.9.(5分)将函数f(x)=2sin x图象上各点的横坐标缩短到原来的,纵坐标不变,然后向左平移个单位长度,得到y=g(x)图象,若关于x的方程g(x)=a在上有两个不相等的实根,则实数a的取值范围是()A.[﹣2,2]B.[﹣2,2)C.[1,2)D.[﹣1,2)【解答】解:将函数f(x)=2sin x图象上各点的横坐标缩短到原来的,纵坐标不变,得到y=2sin2x,然后向左平移个单位长度,得到y=g(x)图象,z即g(x)=2sin2(x+)=2sin(2x+),∵﹣≤x≤,∴﹣≤2x≤,∴﹣≤2x+≤,当2x+=时,g(x)=2sin=2×=1,函数的最大值为g(x)=2,要使g(x)=a在上有两个不相等的实根,则1≤a<2,即实数a的取值范围是[1,2),故选:C.10.(5分)若函数f(x),g(x)分别是定义在R上的偶函数,奇函数,且满足f(x)+2g (x)=e x,则()A.f(﹣2)<f(﹣3)<g(﹣1)B.g(﹣1)<f(﹣3)<f(﹣2)C.f(﹣2)<g(﹣1)<f(﹣3)D.g(﹣1)<f(﹣2)<f(﹣3)【解答】解:函数f(x),g(x)分别是定义在R上的偶函数,奇函数,且满足f(x)+2g(x)=e x,可得f(﹣x)+2g(﹣x)=e﹣x,即有f(x)﹣2g(x)=e﹣x,解得f(x)=(e x+e﹣x),g(x)=(e x﹣e﹣x),可得g(﹣1)=(﹣e)<0,f(﹣2)=(e﹣2+e2)>0,f(﹣3)=(e﹣3+e3)>0,f(﹣2)﹣f(﹣3)=(e﹣1)(e﹣3﹣e2)<0,即有g(﹣1)<f(﹣2)<f(﹣3),故选:D.11.(5分)已知F1,F2分别为椭圆+=1(a>b>0)的左、右焦点,点P是椭圆上位于第一象限内的点,延长PF2交椭圆于点Q,若PF1⊥PQ且|PF1|=|PQ|,则椭圆的离心率为()A.2B.C.D.【解答】解:PF1⊥PQ且|PF1|=|PQ|,可得△PQF1为等腰直角三角形,设|PF1|=t,|QF1|=m,由椭圆的定义可得|PF2|=2a﹣t,|QF2|=2a﹣m,即有t=4a﹣t﹣m,m=t,则t=2(2﹣)a,在直角三角形PF1F2中,可得t2+(2a﹣t)2=4c2,4(6﹣4)a2+(12﹣8)a2=4c2,化为c2=(9﹣6)a2,可得e==﹣.故选:D.12.(5分)定义在(0,+∞)上的函数f(x)满足xf'(x)lnx+f(x)>0(其中f'(x)为f (x)的导函数),若a>1>b>0,则下列各式成立的是()A.a f(a)>b f(b)>1B.a f(a)<b f(b)<1C.a f(a)<1<b f(b)D.a f(a)>1>b f(b)【解答】解:令g(x)=f(x)lnx,x>0,∴g′(x)=f′(x)lnx+=>0恒成立,∴g(x)在(0,+∞)上单调的递增,∵a>1>b>0,∴g(a)>g(1)>g(b),∴f(a)lna>f(1)ln1>f(b)lnb,∴f(a)lna>0>f(b)lnb,∵lna>0,lnb<0,∴f(a)>0,f(b)>0,∴a f(a)>a0=1,b f(b)<b0=1,∴a f(a)>1>b f(b)故选:D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)已知向量与的夹角是,,,则向量与的夹角为.【解答】解:;∴×=,=;∴;∴=;∴向量与的夹角为.故答案为:.14.(5分)设等差数列{a n}的前n项和为S n,若a6=6,S15=15,则公差d=.【解答】解:∵a6=6,S15=15,∴a1+5d=6,15a1+d=15,∴d=﹣.故答案为:﹣.15.(5分)设变量x,y满足约束条件,则(x﹣1)2+y2的取值范围是.【解答】解:由变量x,y满足约束条件作出可行域如图,联立,解得A(5,﹣1).z=(x﹣1)2+y2可看作可行域内的点到(1,0)的距离的平方,从而有z min=()2=,z max=52+(﹣1)2=26,∴z∈.故答案为:.16.(5分)三棱锥P﹣ABC中,P A,PB,PC两两成60°,且P A=1,PB=PC=2,则该三棱锥外接球的表面积为.【解答】解:∵三棱锥P﹣ABC中,P A,PB,PC两两成60°,且P A=1,PB=PC=2,∴AB=AC==,BC=2,∴P A2+AB2=PB2,P A2+AC2=PC2,∴P A⊥AB,P A⊥AC,又AB∩AC=A,∴P A⊥平面ABC,取BC中点D,连结AD,则AD==,设该三棱锥外接球的球心为O,连结OP、OA、OB,则OP=OA=OB=R,过O作OE⊥平面ABC,交AD于E,过O作OF⊥AP,交AP于F,设OE=h,AE=x,则OF=x,PF=1﹣h,DE=,∴R2=OP2=OA2=OB2,∴R2=(1﹣h)2+x2=x2+h2=,解得h=,x=,R2=,∴该三棱锥外接球的表面积为S=4πR2=4=.故答案为:.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)在△ABC中,内角A、B、C的对边分别为a、b、c,且a cos B+b sin A=c.(1)求角A的大小;(2)若,△ABC的面积为,求b+c的值.【解答】解:(1)△ABC中,a cos B+b sin A=c,由正弦定理得:sin A cos B+sin B sin A=sin C,又sin C=sin(A+B)=sin A cos B+cos A sin B,∴sin B sin A=cos A sin B,又sin B≠0,∴sin A=cos A,又A∈(0,π),∴tan A=1,A=;(2)由S△ABC=bc sin A=bc=,解得bc=2﹣;又a2=b2+c2﹣2bc cos A,∴2=b2+c2﹣bc=(b+c)2﹣(2+)bc,∴(b+c)2=2+(2+)bc=2+(2+)(2﹣)=4,∴b+c=2.18.(12分)2022年北京冬奥会的申办成功与“3亿人上冰雪”口号的提出,将冰雪这个冷项目迅速炒“热”.北京某综合大学计划在一年级开设冰球课程,为了解学生对冰球运动的兴趣,随机从该校一年级学生中抽取了100人进行调查,其中女生中对冰球运动有兴趣的占,而男生有10人表示对冰球运动没有兴趣额.(1)完成2×2列联表,并回答能否有90%的把握认为“对冰球是否有兴趣与性别有关”?(2)已知在被调查的女生中有5名数学系的学生,其中3名对冰球有兴趣,现在从这5名学生中随机抽取3人,求至少有2人对冰球有兴趣的概率.附表:【解答】解:(1)根据已知数据得到如下列联表根据列联表中的数据,得到K2==≈3.030∵3.030>2.706所以有90%的把握认为“对冰球是否有兴趣与性别有关”.(2)记5人中对冰球有兴趣的3人为A、B、C,对冰球没有兴趣的2人为m、n,则从这5人中随机抽取3人,共有(A,m,n)(B,m,n)(C,m,n)(A、B、m)(A、B、n)(B、C、m)(B、C、n)(A、C、m)(A、C、n)(A、B、C)10种情况,其中3人都对冰球有兴趣的情况有(A、B、C)1种,2人对冰球有兴趣的情况有(A、B、m)(A、B、n)(B、C、m)(B、C、n)(A、C、m)(A、C、n)6种,所以至少2人对冰球有兴趣的情况有7种,因此,所求事件的概率.19.(12分)如图,在四棱锥P﹣ABCD中,底面ABCD为矩形,平面PBC⊥平面ABCD,PB⊥PD.(1)证明:平面P AB⊥平面PCD;(2)若PB=PC,E为棱CD的中点,∠PEA=90°,BC=2,求四面体A﹣PED的体积.【解答】(1)证明:∵四边形ABCD是矩形,∴CD⊥BC.∵平面PBC⊥平面ABCD,平面PBC∩平面ABCD=BC,CD⊂平面ABCD,∴CD⊥平面PBC,则CD⊥PB.∵PB⊥PD,CD∩PD=D,CD、PD⊂平面PCD,∴PB⊥平面PCD.∵PB⊂平面P AB,∴平面P AB⊥平面PCD;(2)解:取BC的中点O,连接OP、OE.∵PB⊥平面PCD,∴PB⊥PC,∴,∵PB=PC,∴PO⊥BC.∵平面PBC⊥平面ABCD,平面PBC∩平面ABCD=BC,PO⊂平面PBC,∴PO⊥平面ABCD,∵AE⊂平面ABCD,∴PO⊥AE.∵∠PEA=90°,∴PE⊥AE.∵PO∩PE=P,∴AE⊥平面POE,则AE⊥OE.∵∠C=∠D=90°,∴∠OEC=∠EAD,∴Rt△OCE~Rt△EDA,则.∵OC=1,AD=2,CE=ED,∴,∴=.20.(12分)已知点,直线l:,P为平面上的动点,过点P作直线l的垂线,垂足为H,且满足.(1)求动点P的轨迹C的方程;(2)过点F作直线l'与轨迹C交于A,B两点,M为直线l上一点,且满足MA⊥MB,若△MAB的面积为,求直线l'的方程.【解答】解:(1)设P(x,y),则,∴,(﹣x,﹣y),+=(﹣x,﹣2y),∵,∴x2﹣2y=0,即轨迹C的方程为x2=2y.(II)显然直线l′的斜率存在,设l′的方程为y=kx+,由,消去y可得:x2﹣2kx﹣1=0,设A、B的坐标分别为(x1,y1)、(x2,y2),M(t,﹣),∴x1+x2=2k,x1x2=﹣1,∴=(x1﹣t,y1+),=(x2﹣t,y2+),∵MA⊥MB,∴,即(x1﹣t)(x2﹣t)+(y1+))+(y2+)=0,∴x1x2﹣(x1+x2)t+t2+(kx1+1)(kx2+1)=0,∴﹣1﹣2kt+t2﹣k2+2k2+1=0,即t2﹣2kt+k2=0,∴t=k,即M(k,﹣),∴|AB|==2(1+k2),∴M(k,﹣)到直线l′的距离d==,∴S△MAB=|AB|d=(1+k2)=2,解得k=±1,∴直线l′的方程为x+y+或x﹣y+=0.21.(12分)已知函数.(1)求函数f(x)的单调区间;(2)记函数y=f(x)的极值点为x=x0,若f(x1)=f(x2),且x1<x2,求证:.【解答】解:(1),令f'(x)=0,则x=1,当x∈(﹣∞,1)时,f′(x)>0,当x∈(1,+∞)时,f′(x)<0,则函数f(x)的增区间为(﹣∞,1),减区间为(1,+∞).(2)由可得f'(x)=(1﹣x)e﹣x=0,所以y=f(x)的极值点为x0=1.于是,等价于2x1+x2>e,由f(x1)=f(x2)得且0<x1<1<x2.由整理得,lnx1﹣x1=lnx2﹣x2,即lnx1﹣lnx2=x1﹣x2.等价于(2x1+x2)(lnx1﹣lnx2)<e(x1﹣x2),①令,则0<t<1.式①整理得(2t+1)lnt<e(t﹣1),其中0<t<1.设g(t)=(2t+1)lnt﹣e(t﹣1),0<t<1.只需证明当0<t<1时,g(t)max<0.又,设h(t)=,则当时,h'(t)<0,h(t)在上单调递减;当时,h'(t)>0,h(t)在上单调递增.所以,;注意到,,g'(1)=3﹣e>0,所以,存在,使得g'(t1)=g'(t2)=0,注意到,,而,所以.于是,由g'(t)>0可得或t2<t<1;由g'(t)<0可得,g(t)在上单调递增,在上单调递减.于是,,注意到,g(1)=0,,所以,g(t)max<0,也即(2t+1)lnt<e(t﹣1),其中0<t<1.于是,.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(10分)在平面直角坐标系xOy中,曲线C1的方程为x2+y2=4,直线l的参数方程(t为参数),若将曲线C1上的点的横坐标不变,纵坐标变为原来的倍,得曲线C2.(1)写出曲线C2的参数方程;(2)设点,直线l与曲线C2的两个交点分别为A,B,求的值.【解答】解:(1)∵曲线C1的方程为x2+y2=4,直线l的参数方程(t为参数),若将曲线C1上的点的横坐标不变,纵坐标变为原来的倍,得曲线C2.∴曲线C2的直角坐标方程为,整理得,∴曲线C2的参数方程(θ为参数).(2)将直线l的参数方程化为标准形式为(t'为参数),将参数方程代入,得,整理得.∴,,∴.[选修4-5:不等式选讲]23.已知函数f(x)=|3x+1|+|3x﹣1|,M为不等式f(x)<6的解集.(1)求集合M;(2)若a,b∈M,求证:|ab+1|>|a+b|.【解答】解:(1)f(x)=|3x+1|+|3x﹣1|<6当时,f(x)=﹣3x﹣1﹣3x+1=﹣6x,由﹣6x<6解得x>﹣1,∴;当时,f(x)=3x+1﹣3x+1=2,2<6恒成立,∴;当时,f(x)=3x+1+3x﹣1=6x由6x<6解得x<1,∴综上,f(x)<6的解集M={x|﹣1<x<1};证明:(2)(ab+1)2﹣(a+b)2=a2b2+2ab+1﹣(a2+b2+2ab)=a2b2﹣a2﹣b2+1=(a2﹣1)(b2﹣1)由a,b∈M得|a|<1,|b|<1,∴a2﹣1<0,b2﹣1<0,∴(a2﹣1)(b2﹣1)>0,∴|ab+1|>|a+b|.。

石家庄市17-18届高三毕业班模拟考试数学文科试题(二)含答案

石家庄市17-18届高三毕业班模拟考试数学文科试题(二)含答案

石家庄市2018届高中毕业班模拟考试(二) 文科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合{}2|log (2)A x y x ==-,{}|33,B x x x R =-<<∈,则A B =( )A .(2,3)B .[2,3)C .(3,)+∞D .(2,)+∞2.若复数z 满足(1)2z i i -=,其中i 为虚数单位,则共轭复数z =( ) A .1i + B .1i - C .1i --D .1i -+3.已知命题p :13x <<,q :31x>,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.函数2sin ()1xf x x =+的部分图像可能是( )5.已知双曲线22221x y a b -=(0a >,0b >)与椭圆221124x y +=有共同焦点,且双曲线的一条渐近线方程为y =,则该双曲线的方程为( )A .221412x y -=B .221124x y -=C .22162x y -=D .22126x y -=6.三国时期吴国的数学家创造了一副“勾股圆方图”,用数形结合的方法给出了勾股定理的详细证明,如图所示“勾股圆方图”中由四个全等的正三角形(直角边长之比为1:一个小正方形,如果在大正方形内随机取一点,则此点取自中间的小正方形部分的概率是( )A. B. C.1 D.17.执行如图所示的程序框图,则输出的S 值为( )A.4849B.5051C.4951D.49508.如图,网格纸上小正方形的边长为1,粗实线画出的是某四面体的三视图,则该四面体的体积为()A.83B.23C.43D.29.将函数()2sinf x x=图象上各点的横坐标缩短到原来的12,纵坐标不变,然后向左平移6π个单位长度,得到()y g x=图象,若关于x的方程()g x a=在,44ππ⎡⎤-⎢⎥⎣⎦上有两个不相等的实根,则实数a的取值范围是()A.[]2,2-B.[2,2)-C.[1,2)D.[1,2)-10.若函数()f x,()g x分别是定义在R上的偶函数,奇函数,且满足()2()xf xg x e+=,则()A .(2)(3)(1)f f g -<-<-B .(1)(3)(2)g f f -<-<-C .(2)(1)(3)f g f -<-<-D .(1)(2)(3)g f f -<-<-11.已知1F ,2F 分别为椭圆22221(0)x y a b a b +=>>的左、右焦点,点P 是椭圆上位于第一象限内的点,延长2PF 交椭圆于点Q ,若1PF PQ ⊥,且1||||PF PQ =,则椭圆的离心率为( )A.2BC1 D12.定义在(0,)+∞上的函数()f x 满足'()l n ()0x f x x f x +>(其中'()f x 为()f x 的导函数),若10a b >>>,则下列各式成立的是( )A .()()1f a f b ab >> B .()()1f a f b a b <<C .()()1f a f b a b << D .()()1f a f b a b >>第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知向量a 与b 的夹角是3π,||1a =,1||2b =,则向量2a b -与a 的夹角为 . 14.设等差数列{}n a 的前n 项和为n S ,若66a =,1515S =,则公差d = .15.设变量x ,y 满足约束条件4,326,1,x y x y y +≤⎧⎪-≥⎨⎪≥-⎩则22(1)x y -+的取值范围是 .16.三棱锥P ABC -中,PA ,PB ,PC 两两成60︒,且1PA =,2PB PC ==,则该三棱锥外接球的表面积为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.在ABC ∆中,内角A 、B 、C 的对边分别为a 、b 、c ,且cos sin a B b A c +=. (1)求角A 的大小;(2)若a =ABC ∆的面积为,求b c +的值.18.2022年北京冬奥会的申办成功与“3亿人上冰雪”口号的提出,将冰雪这个冷项目迅速炒“热”.北京某综合大学计划在一年级开设冰球课程,为了解学生对冰球运动的兴趣,随机从该校一年级学生中抽取了100人进行调查,其中女生中对冰球运动有兴趣的占23,而男生有10人表示对冰球运动没有兴趣额.(1)完成22⨯列联表,并回答能否有90%的把握认为“对冰球是否有兴趣与性别有关”?有兴趣 没兴趣 合计 男55女合计(2)已知在被调查的女生中有5名数学系的学生,其中3名对冰球有兴趣,现在从这5名学生中随机抽取3人,求至少有2人对冰球有兴趣的概率. 附表:20()P K k ≥0.150 0.100 0.050 0.025 0.0100k2.072 2.7063.841 5.024 6.63522()()()()()n ad bc K a b c d a c b d -=++++19.如图,在四棱锥P ABCD -中,底面ABCD 为矩形,平面PBC ⊥平面ABCD ,PB PD ⊥.(1)证明:平面PAB ⊥平面PCD ;(2)若PB PC =,E 为棱CD 的中点,90PEA ∠=︒,2BC =,求四面体A PED -的体积.20.已知点1(0,)2F ,直线l :12y =-,P 为平面上的动点,过点P 作直线l 的垂线,垂足为H ,且满足()0HF PH PF ⋅+=.(1)求动点P 的轨迹C 的方程;(2)过点F 作直线'l 与轨迹C 交于A ,B 两点,M 为直线l 上一点,且满足MA MB ⊥,若MAB ∆的面积为'l 的方程.21.已知函数()x xf x e =.(1)求函数()f x 的单调区间;(2)记函数()y f x =的极值点为0x x =,若12()()f x f x =,且12x x <,求证:0122x x x e +>请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,曲线1C 的方程为224x y +=,直线l的参数方程2,x t y =--⎧⎪⎨=⎪⎩(t 为参数),若将曲线1C 上的点的横坐标不变,纵坐标变为原来的32倍,得曲线2C .(1)写出曲线2C 的参数方程;(2)设点(P -,直线l 与曲线2C 的两个交点分别为A ,B ,求11||||PA PB +的值.23.选修4-5:不等式选讲已知函数()|31||31|f x x x =++-,M 为不等式()6f x <的解集. (1)求集合M ;(2)若a ,b M ∈,求证:|1|||ab a b +>+.石家庄市2018届高中毕业班模拟考试(二)文科数学答案 一、选择题1-5:ACAAD 6-10:CBBCD 11、12:DD 二、填空题13.3π 14.52- 15.9,1713⎡⎤⎢⎥⎣⎦ 16.112π 三、解答题17.解:(1)由已知及正弦定理得:sin cos sin sin sin A B B A C +=,sin sin()sin cos cos sin C A B A B A B =+=+sin in cos sin Bs A A B ∴=,sin 0sin cos B A A≠∴=(0,)4A A ππ∈∴=(2)1sin 22ABCSbc A bc ====又22222cos 2()(2a b c bc A b c bc =+-∴=+- 所以,2()4, 2.b c b c +=+=. 18.解:(1)根据已知数据得到如下列联表根据列联表中的数据,得到所以有90%的把握认为“对冰球是否有兴趣与性别有关”.(2)记5人中对冰球有兴趣的3人为A 、B 、C ,对冰球没有兴趣的2人为m 、n ,则从这5人中随机抽取3人,共有(A ,m ,n )(B ,m ,n )(C ,m ,n )(A 、B 、m )(A 、B 、n )(B 、C 、m )(B 、C 、n )(A 、C 、m )(A 、C 、n )(A 、B 、C )10种情况,其中3人都对冰球有兴趣的情况有(A 、B 、C )1种,2人对冰球有兴趣的情况有(A 、B 、m )(A 、B 、n )(B 、C 、m )(B 、C 、n )(A 、C 、m )(A 、C 、n )6种, 所以至少2人对冰球有兴趣的情况有7种,因此,所求事件的概率710p =.19.(Ⅰ)证明:∵四边形ABCD 是矩形,∴CD ⊥BC.∵平面PBC ⊥平面ABCD ,平面PBC ∩平面ABCD=BC ,CD ⊂平面ABCD , ∴CD ⊥平面PBC ,∴CD ⊥PB.∵PB ⊥PD ,CD ∩PD=D ,CD 、PD ⊂平面PCD ,∴PB ⊥平面PCD. ∵PB ⊂平面PAB ,∴平面PAB ⊥平面PCD. (Ⅱ)取BC 的中点O ,连接OP 、OE. ∵PB ⊥平面PCD ,∴PB PC ⊥,∴112OP BC ==,∵PB PC =,∴PO BC⊥.∵平面PBC ⊥平面ABCD ,平面PBC ∩平面ABCD=BC ,PO ⊂平面PBC , ∴PO ⊥平面ABCD ,∵AE ⊂平面ABCD,∴PO ⊥AE.∵∠PEA=90O, ∴PE ⊥AE. ∵PO ∩PE=P ,∴AE⊥平面POE ,∴AE ⊥OE.∵∠C=∠D=90O, ∴∠OEC=∠EAD, ∴Rt OCERt EDA ∆∆,∴OC CEED AD =.∵1OC =,2AD =,CE ED =,∴CE ED ==111332A PED P AED AED V V S OP AD ED OP --==⋅=⨯⋅⋅112132=⨯⨯=.20.解:(1)设(,)P x y ,则1(,)2H x -,1(,1),(0,),2HF x PH y ∴=-=-- 1(,)2PF x y =--,(,2)PH PF x y +=--,()0HF PH PF +=,220x y ∴-=,即轨迹C 的方程为22x y =.(II )法一:显然直线l '的斜率存在,设l '的方程为12y kx =+,由2122y kx x y ⎧=+⎪⎨⎪=⎩,消去y 可得:2210x kx --=,设1122(,),(,)A x y B x y ,1(,)2M t -,121221x x k x x +=⎧∴⎨⋅=-⎩, 112211(,),(,)22MA x t y MB x t y =-+=-+MA MB ⊥,0MA MB ∴=,即121211()()()()022x t x t y y --+++=2121212()(1)(1)0x x x x t t kx kx ∴-+++++=, 22212210kt t k k ∴--+-++=,即2220t kt k -+=∴2()0t k -=,t k ∴=,即1(,)2M k -,∴212|||2(1)AB x x k =-==+,∴1(,)2M k -到直线l '的距离2d ==,3221||(1)2MABS AB d k ∆==+=,解得1k =±,∴直线l '的方程为102x y +-=或102x y -+=.PCB AEDO法2:(Ⅱ)设1122(,),(,)A x y B x y ,AB 的中点为()00,y x E则211121212120212222()()2()2AB x y y y x x x x y y x k x x x y ⎧=-⎪⇒-+=-⇒==⎨-=⎪⎩直线'l 的方程为012y x x =+,过点A,B 分别作1111B 于,于l BB A l AA ⊥⊥,因为,⊥MA MB E 为AB 的中点,所以在Rt AMB 中,11111||||(||||)(||||)222==+=+EM AB AF BF AA BB故EM 是直角梯形11A B BA 的中位线,可得⊥EM l ,从而01(,)2M x - 点M 到直线'l的距离为:2d ==因为E 点在直线'l 上,所以有20012y x =+,从而21200||1212(1)AB y y y x =++=+=+由2011||2(22MABSAB d x ==⨯+=01x =± 所以直线'l 的方程为12y x =+或12y x =-+. 21.解:(1)'21()()x x x xe xe xf x e e --==,令'()0f x =,则1x =, 当(,1)x ∈-∞时,'()0f x >,当(1,)x ∈+∞时,'()0f x <, 则函数()f x 的增区间为(,1)-∞,减区间为(1,)+∞.(2)由可得()()10x f x x -'=-=e ,所以()y f x =的极值点为01x =.于是,0122x x x +>e 等价于122x x +>e ,由()()12f x f x =得1212x x x x --=e e 且1201x x <<<.由1212x x x x --=e e 整理得,1122ln ln x x x x -=-,即1212ln ln x x x x -=-.等价于()()()1212122ln ln x x x x x x +-<-e ,① 令12x t x =,则01t <<.式①整理得()()21ln 1t t t +<-e ,其中01t <<.设()()()21ln 1g t t t t =+--e ,01t <<. 只需证明当01t <<时,()max 0g t <.又()12ln 2g t t t '=++-e ,设()h t =()12ln 2g t t t '=++-e,则()222121t h t t t t -'=-=当10,2t 骣÷çÎ÷ç÷ç桫时,()0h t '<,()h t 在10,2骣÷ç÷çç÷桫上单调递减;当1,12t 骣÷çÎ÷ç÷ç桫时,()0h t '>,()h t 在1,12骣÷ç÷ç÷ç桫上单调递增.所以,()min 142ln 202g t g ⎛⎫''==--< ⎪⎝⎭e ;注意到,()222212ln 220g e e e e e ---'=++-=-->e ,()130g '=->e ,所以,存在12110,,,122t t ⎛⎫⎛⎫∈∈ ⎪ ⎪⎝⎭⎝⎭,使得()()120g t g t ⅱ==, 注意到,10g ⎛⎫'= ⎪⎝⎭e ,而110,e 2骣÷çÎ÷ç÷ç桫,所以11t e =. 于是,由()0g t ¢>可得10e t <<或21t t <<;由()0g t ¢<可得21e t t <<. ()g t 在()210,,,1t ⎛⎫ ⎪⎝⎭e 上单调递增,在21,t ⎛⎫⎪⎝⎭e上单调递减.于是,()(){}max 1max ,1g t g g ⎛⎫= ⎪⎝⎭e ,注意到,()10g =,1220g ⎛⎫=--< ⎪⎝⎭e e e ,所以,()max 0g t <,也即()()21ln 1t t t +<-e ,其中01t <<.于是,0122x x x +>e .22解:(1)若将曲线1C 上的点的纵坐标变为原来的23,则曲线2C 的直角坐标方程为222()43x y +=,整理得22149x y+=,∴曲线2C 的参数方程2cos ,3sin x y θθ=⎧⎨=⎩(θ为参数).(2)将直线l的参数方程化为标准形式为''1222x t y ⎧=--⎪⎪⎨⎪=⎪⎩(t '为参数),将参数方程带入22149x y +=得221(2))22149t ''--+=整理得27()183604t t ''++=. 12727PA PB t t ''+=+=,121447PA PB t t ''==,72111714427PA PB PA PB PA PB++===.23.解:(1)()31316f x x x =++-<当13x <-时,()31316f x x x x =---+=-,由66x -<解得1x >-,113x ∴-<<-;当1133x -≤≤时,()31312f x x x =+-+=,26<恒成立,1133x ∴-≤≤; 当13x >时,()31316f x x x x =++-=由66x <解得1x <,113x ∴<<综上,()6f x <的解集{}11M x x =-<<(2)()()222222121(2)ab a b a b ab a b ab +-+=++-++22221a b a b =--+22(1)(1)a b =--由,a b M ∈得1,1a b <<2210,10a b ∴-<-<22(1)(1)0a b ∴--> 1ab a b∴+>+.。

2017届河北省石家庄市高三质检(二) 文科数学试题及答案

2017届河北省石家庄市高三质检(二) 文科数学试题及答案

2017年石家庄市高中毕业班复习教学质量检测(二)高三数学(文科答案) 一、 选择题:1-5CCDCA 6-10DACCB 11-12DC 二、 填空题:13. 6 14. - 15. 9(2,2015)_______ 三、解答题:(解答题按步骤给分,本答案只给出一或两种答案,学生除标准答案的其他解法,参照标准酌情设定,且只给整数分) 17.解:(1)由正弦定理得(2sin sin )cos sin cos 0,C A B B A --= ……………………………………2分2sin cos sin()0,sin (2cos 1)0C B A B C B ∴-+=∴-=…………4分1sin 0,cos ,23C B B π≠∴=∴=……………………………………6分(2)22222cos ()22cos b a c ac B a c ac ac B =+-=+--…………………………8分7,13,3b ac B π=+== 40ac ∴=………………………………10分1sin 2S ac B ∴==12分18. 解:(Ⅰ)由已知,100位顾客中购物款不低于100元的顾客有103010060%n ++=⨯,20n =;…………………………………2分()1002030201020m =-+++=.……………………3分该商场每日应准备纪念品的数量大约为6050003000100⨯=.………………5分 (II )设购物款为a 元当[50,100)a ∈时,顾客有500020%=1000⨯人, 当[100,150)a ∈时,顾客有500030%=1500⨯人, 当[150,200)a ∈时,顾客有500020%=1000⨯人,当[200,)a ∈+∞时,顾客有500010%=500⨯人,…………………………7分 所以估计日均让利为756%1000+1258%150017510%100030500⨯⨯⨯⨯+⨯⨯+⨯…………10分52000=元……………12分19. 解:(1)取AB 中点Q ,连接MQ 、NQ ,∵AN=BN ∴AB NQ ⊥, ……………2分 ∵⊥PA 面ABC ,∴AB PA ⊥,又PA MQ ∥ ∴AB MQ ⊥,………………4分 所以AB ⊥平面MNQ ,又MN ⊂平面MNQ ∴AB ⊥MN ………………6分(2)设点P 到平面NMA 的距离为h , ∵M 为PB 的中点,∴PAM △S =4121PAB =△S 又AB NQ ⊥,PA NQ ⊥,∴B PA NQ 面⊥, ∵︒=∠30AB C ∴63=NQ ……………………………7分 又3322=+=MQ NQ MN ,33=AN ,22=AM , (9)分可得△NMA 边AM 上的高为1230, ∴241512302221=⋅⋅=NMA S △………………10分 由PAM N NMA P V V --= 得 =⋅⋅h S NMA △31NQ S PAM ⋅⋅△31 ∴55=h ……………………12分 20.解:(Ⅰ)设动圆圆心坐标为(,)C x y ,根据题意得=,……………………2分化简得24x y =. …………4分(Ⅱ)解法一:设直线PQ 的方程为y kx b =+,由24x y y kx bìï=ïíï=+ïî消去y 得2440x kx b --= 设1122(,),(,)P x y Q x y ,则121244x x k x x bì+=ïïíï=-ïî,且21616k b D =+……………6分以点P 为切点的切线的斜率为1112y x ¢=,其切线方程为1111()2y y x x x -=- 即2111124y x x x =- 同理过点Q 的切线的方程为2221124y x x x =- 设两条切线的交点为(,)A A A x y 在直线20x y --=上,12x x ¹Q ,解得1212224A A x x x k x x y b ì+ïï==ïïïíïï==-ïïïî,即(2,)A k b - 则:220k b +-=,即22b k =-……………………………………8分 代入222161616323216(1)160k b k k k D =+=+-=-+>12||||PQ x x \=-=(2,)A k b -到直线PQ的距离为2d =…………………………10分32221||4||4()2APQS PQ d k b k b D \=?+=+3322224(22)4[(1)1]k k k =-+=-+\当1k =时,APQ S D 最小,其最小值为4,此时点A 的坐标为(2,0). …………12分解法二:设00(,)A x y 在直线20x y --=上,点1122(,),(,)P x y Q x y 在抛物线24x y =上,则以点P 为切点的切线的斜率为1112y x ¢=,其切线方程为1111()2y y x x x -=- 即1112y x x y =- 同理以点Q 为切点的方程为2212y x x y =-…………………………6分 设两条切线的均过点00(,)A x y ,则010101011212y x x y y x x y ìïï=-ïïíïï=-ïïïî,\点,P Q 的坐标均满足方程0012y xx y =-,即直线PQ 的方程为:0012y x x y =-……………8分 代入抛物线方程24x y =消去y 可得:200240x x x y -+=12|||PQ x x \=-=00(,)A x y 到直线PQ的距离为2001|2|x y d -=………………10分32220000111|||4|(4)222APQS PQ d x y x y D \=?-=-33222200011(48)[(2)4]22x x x =-+=-+ \当02x =时,APQ S D 最小,其最小值为4,此时点A 的坐标为(2,0).…………12分21.解:(Ⅰ)依题意1(),f x a x '=+1()202f a '=+=,则2,a =-………………2分经检验,2a =-满足题意.…………………4分 (Ⅱ)由(Ⅰ)知()ln 22,f x x x =-+则2()ln ,F x x x x λ=--2121'()21x x F x x x xλλ--=---=.………………………6分令2()21t x x x λ=--。

河北省石家庄市2017届高考数学二模试卷(文科)+Word版含解析

河北省石家庄市2017届高考数学二模试卷(文科)+Word版含解析

2017年河北省石家庄市高考数学二模试卷(文科)一、选择题本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设U=R,A={﹣2,﹣1,0,1,2},B={x|x≥1},则A∩∁U B=()A.{1,2}B.{﹣1,0,1}C.{﹣2,﹣1,0}D.{﹣2,﹣1,0,1}2.在复平面中,复数对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限3.“x>1”是“x2+2x>0”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件4.若sin(π﹣α)=,且≤α≤π,则cosα=()A.B.﹣C.﹣D.5.执行如图的程序框图,则输出K的值为()A.98 B.99 C.100 D.1016.李冶(1192﹣1279),真定栾城(今属河北石家庄市)人,金元时期的数学家、诗人、晚年在封龙山隐居讲学,数学著作多部,其中《益古演段》主要研究平面图形问题:求圆的直径,正方形的边长等,其中一问:现有正方形方田一块,内部有一个圆形水池,其中水池的边缘与方田四边之间的面积为13.75亩,若方田的四边到水池的最近距离均为二十步,则圆池直径和方田的边长分别是(注:240平方步为1亩,圆周率按3近似计算)()A.10步、50步B.20步、60步C.30步、70步D.40步、80步7.某几何体的三视图如图所示,则该几何体的体积是()A.16 B.20 C.52 D.608.已知函数f(x)=sin(2x+)+cos2x,则f(x)的一个单调递减区间是()A.[,] B.[﹣,]C.[﹣,]D.[﹣,] 9.四棱锥P﹣ABCD的底面ABCD是边长为6的正方形,且PA=PB=PC=PD,若一个半径为1的球与此四棱锥所有面都相切,则该四棱锥的高是()A.6 B.5 C.D.10.若x,y满足约束条件,则z=的最小值为()A.﹣2 B.﹣ C.﹣D.11.已知函数f(x)=,若f(﹣a)+f(a)≤2f(1),则实数a的取值范围是()A.(﹣∞,﹣1]∪[1,+∞)B.[﹣1,0]C.[0,1]D.[﹣1,1]12.已知双曲线﹣=1(a>0,b>0)的左、右焦点分别为F1、F2,过点F1且垂直于x轴的直线与该双曲线的左支交于A、B两点,AF2、BF2分别交y轴于P、Q两点,若△PQF2的周长为12,则ab取得最大值时该双曲线的离心率为()A.B.C.2 D.二、填空题:本大题共4小题,每小题5分,共20分13.设样本数据x1,x2,…,x2017的方差是4,若y i=2x i﹣1(i=1,2,…,2017),则y1,y2,…y2017的方差为.14.等比数列{a n}中,若a1=﹣2,a5=﹣4,则a3=.15.在△ABC中,角A、B、C的对边分别为a,b,c,若a=,b=2,B=45°,tanA•tanC >1,则角C的大小为.16.非零向量,的夹角为,且满足||=λ||(λ>0),向量组,,由一个和两个排列而成,向量组,,由两个和一个排列而成,若•+•+•所有可能值中的最小值为42,则λ=.三、解答题:本大题共5小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(12分)已知等差数列{a n}的前n项和为S n,若S m﹣1=﹣4,S m=0,S m+2=14(m≥2,且m∈N*)(Ⅰ)求m的值;(Ⅱ)若数列{b n}满足=log2b n(n∈N+),求数列{(a n+6)•b n}的前n项和.18.(12分)如图,三棱柱ABC﹣DEF中,侧面ABED是边长为2的菱形,且∠ABE=,BC=,点F在平面ABED内的正投影为G,且G在AE上,FG=,点M在线段CF上,且CM=CF.(1)证明:直线GM∥平面DEF;(2)求三棱锥M﹣DEF的体积.19.(12分)交强险是车主必须为机动车购买的险种.若普通6座以下私家车投保交强险第一年的费用(基准保费)统一为a元,在下一年续保时,实行的是费率浮动机制,保费与上一年度车辆发生道路交通事故的情况相联系,发生交通事故的次数越多,费率也就越高,具体浮动情况如表:某机构为了研究某一品牌普通6座以下私家车的投保情况,随机抽取了60辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:(Ⅰ)求一辆普通6座以下私家车在第四年续保时保费高于基本保费的频率;(Ⅱ)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车.假设购进一辆事故车亏损5000元,一辆非事故车盈利10000元,且各种投保类型车的频率与上述机构调查的频率一致,完成下列问题:①若该销售商店内有六辆(车龄已满三年)该品牌二手车,某顾客欲在店内随机挑选两辆车,求这两辆车中恰好有一辆为事故车的概率;②若该销售商一次购进120辆(车龄已满三年)该品牌二手车,求一辆车盈利的平均值.20.(12分)已知椭圆C: +=1(a>b>0)的左、右顶点分别为A、B,且长轴长为8,T为椭圆上一点,直线TA、TB的斜率之积为﹣.(Ⅰ)求椭圆C的方程;(Ⅱ)设O为原点,过点M(0,2)的动直线与椭圆C交于P、Q两点,求•+•的取值范围.21.(12分)已知函数f(x)=mlnx,g(x)=(x>0).(Ⅰ)当m=1时,求曲线y=f(x)•g(x)在x=1处的切线方程;(Ⅱ)讨论函数F(x)=f(x)﹣g(x)在(0,+∞)上的单调性.四、请考生在22-23两题中,任选一题作答,如果多做,则按所做的第一题记分.22.(10分)在平面直角坐标系xOy中,曲线C的参数方程为(a >0,β为参数),以O为极点,x轴的正半轴为极轴,建立极坐标系,直线l的极坐标方程ρcos(θ﹣)=.(Ⅰ)若曲线C与l只有一个公共点,求a的值;(Ⅱ)A,B为曲线C上的两点,且∠AOB=,求△OAB的面积最大值.23.设函数f(x)=|x﹣1|﹣|2x+1|的最大值为m.(Ⅰ)作出函数f(x)的图象;(Ⅱ)若a2+2c2+3b2=m,求ab+2bc的最大值.2017年河北省石家庄市高考数学二模试卷(文科)参考答案与试题解析一、选择题本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设U=R,A={﹣2,﹣1,0,1,2},B={x|x≥1},则A∩∁U B=()A.{1,2}B.{﹣1,0,1}C.{﹣2,﹣1,0}D.{﹣2,﹣1,0,1}【考点】1H:交、并、补集的混合运算.【分析】根据补集与交集的定义,写出∁U B与A∩∁U B即可.【解答】解:因为全集U=R,集合B={x|x≥1},所以∁U B={x|x<1}=(﹣∞,1),且集合A={﹣2,﹣1,0,1,2},所以A∩∁U B={﹣2,﹣1,0}故选:C【点评】本题考查了集合的定义与计算问题,是基础题目.2.在复平面中,复数对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】A5:复数代数形式的乘除运算;A4:复数的代数表示法及其几何意义.【分析】利用复数代数形式的乘除运算化简,求出复数对应的点的坐标得答案.【解答】解:∵=,∴复数对应的点的坐标为(),在第四象限.故选:D.【点评】本题考查复数代数形式的乘除运算,考查了复数的代数表示法及其几何意义,是基础题.3.“x>1”是“x2+2x>0”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【考点】2L:必要条件、充分条件与充要条件的判断.【分析】分别讨论能否由x>1推出x2+2x>0,能否由x2+2x>0推出x>1,即可得到正确答案.【解答】解:当x>1时,x2+2x>0成立,所以充分条件成立当x2+2x>0时,x<﹣1或x>0,所以必要条件不成立故选A.【点评】本题考查充分条件、必要条件的判定,间接考查一元二次不等式的解法,属简单题.4.若sin(π﹣α)=,且≤α≤π,则cosα=()A.B.﹣C.﹣D.【考点】GH:同角三角函数基本关系的运用.【分析】根据三角函数在各个象限中的符号,利用同角三角函数的基本关系,求得cosα的值.【解答】解:∵sin(π﹣α)=sinα=,且≤α≤π,则cosα=﹣=﹣,故选:B.【点评】本题主要考查同角三角函数的基本关系的应用,属于基础题.5.执行如图的程序框图,则输出K的值为()A.98 B.99 C.100 D.101【考点】EF:程序框图.【分析】模拟程序的运行,依次写出每次循环得到的K,S的值,观察规律,可得当K=99,S=2,满足条件S≥2,退出循环,输出K的值为99,从而得解.【解答】解:模拟程序的运行,可得K=1,S=0S=lg2不满足条件S≥2,执行循环体,K=2,S=lg2+lg=lg3不满足条件S≥2,执行循环体,K=3,S=lg3+lg=lg4…观察规律,可得:不满足条件S≥2,执行循环体,K=99,S=lg99+lg=lg100=2满足条件S≥2,退出循环,输出K的值为99.故选:B.【点评】本题主要考查了循环结构的程序框图,正确判断退出循环的条件是解题的关键,属于基础题.6.李冶(1192﹣1279),真定栾城(今属河北石家庄市)人,金元时期的数学家、诗人、晚年在封龙山隐居讲学,数学著作多部,其中《益古演段》主要研究平面图形问题:求圆的直径,正方形的边长等,其中一问:现有正方形方田一块,内部有一个圆形水池,其中水池的边缘与方田四边之间的面积为13.75亩,若方田的四边到水池的最近距离均为二十步,则圆池直径和方田的边长分别是(注:240平方步为1亩,圆周率按3近似计算)()A.10步、50步B.20步、60步C.30步、70步D.40步、80步【考点】HT:三角形中的几何计算.【分析】根据水池的边缘与方田四边之间的面积为13.75亩,即方田面积减去水池面积为13.75亩,方田的四边到水池的最近距离均为二十步,设圆池直径为m,方田边长为40步+m.从而建立关系求解即可.【解答】解:由题意,设圆池直径为m,方田边长为40步+m.方田面积减去水池面积为13.75亩,∴(40+m)2﹣=13.75×240.解得:m=20.即圆池直径20步那么:方田边长为40步+20步=60步.故选B.【点评】本题考查了对题意的理解和关系式的建立.读懂题意是关键,属于基础题.7.某几何体的三视图如图所示,则该几何体的体积是()A.16 B.20 C.52 D.60【考点】L!:由三视图求面积、体积.【分析】由三视图得到几何体为三棱柱与三棱锥的组合体,根据图中数据,计算体积即可.【解答】解:由题意,几何体为三棱柱与三棱锥的组合体,如图体积为=20;故选B.【点评】本题考查了由几何体的三视图求几何体的体积;关键是正确还原几何体,利用三视图的数据求体积.8.已知函数f(x)=sin(2x+)+cos2x,则f(x)的一个单调递减区间是()A.[,] B.[﹣,]C.[﹣,]D.[﹣,]【考点】H2:正弦函数的图象.【分析】利用两角和与差和辅助角公式化简,结合三角函数的图象及性质求解即可.【解答】解:函数f(x)=sin(2x+)+cos2x,化简可得:f(x)=sin2x+cos2x=sin(2x+),由(k∈Z).解得:≤x≤(k∈Z).则f(x)的单调递减区间为[,](k∈Z)∴f(x)的一个单调递减区间为[,].故选:A.【点评】本题主要考查对三角函数的化简能力和三角函数的图象和性质的运用,利用三角函数公式将函数进行化简是解决本题的关键.属于中档题.9.四棱锥P﹣ABCD的底面ABCD是边长为6的正方形,且PA=PB=PC=PD,若一个半径为1的球与此四棱锥所有面都相切,则该四棱锥的高是()A.6 B.5 C.D.【考点】L3:棱锥的结构特征.【分析】由球的球心在四棱锥P﹣的高上,把空间问题平面化,作出过正四棱锥的高作组合体的轴截面,利用平面几何知识即可求出高.【解答】解:由题意,四棱锥P﹣ABCD是正四棱锥,球的球心O在四棱锥的高PH上;过正四棱锥的高作组合体的轴截面如图所示:其中PE,PF是斜高,A为球面与侧面的切点,设PH=h,由几何体可知,RT△PAO∽RT△PHF,∴=,即=,解得h=.故选:D.【点评】本题主要考查了球内切多面体、几何体的结构特征,把空间问题平面化,是解题的关键.10.若x,y满足约束条件,则z=的最小值为()A.﹣2 B.﹣ C.﹣D.【考点】7C:简单线性规划.【分析】由约束条件作出可行域,由z=的几何意义,即可行域内的动点与定点P(﹣3,2)连线的斜率,结合直线与圆的位置关系求得答案.【解答】解:由约束条件作出可行域如图,z=的几何意义为可行域内的动点与定点P(﹣3,2)连线的斜率.设过P的圆的切线的斜率为k,则切线方程为y﹣2=k(x+3),即kx﹣y+3k+2=0.由,解得k=0或k=﹣.∴z=的最小值为﹣.故选;C.【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法和数学转化思想方法,是中档题.11.已知函数f(x)=,若f(﹣a)+f(a)≤2f(1),则实数a的取值范围是()A.(﹣∞,﹣1]∪[1,+∞)B.[﹣1,0]C.[0,1]D.[﹣1,1]【考点】5B:分段函数的应用.【分析】判断f(x)为偶函数,运用导数判断f(x)在[0,+∞)的单调性,则f(﹣a)+f(a)≤2f(1)转化为|a|≤1,解不等式即可得到a的范围.【解答】解:函数f(x)=,将x换为﹣x,函数值不变,即有f(x)图象关于y轴对称,即f(x)为偶函数,有f(﹣x)=f(x),当x≥0时,f(x)=xln(1+x)+x2的导数为f′(x)=ln(1+x)++2x≥0,则f(x)在[0,+∞)递增,f(﹣a)+f(a)≤2f(1),即为2f(a)≤2f(1),可得f(|a|))≤f(1),可得|a|≤1,解得﹣1≤a≤1.故选:D.【点评】本题考查函数的奇偶性和单调性的应用:解不等式,注意运用导数判断单调性,考查化简整理的运算能力,属于中档题.12.已知双曲线﹣=1(a>0,b>0)的左、右焦点分别为F1、F2,过点F1且垂直于x轴的直线与该双曲线的左支交于A、B两点,AF2、BF2分别交y轴于P、Q两点,若△PQF2的周长为12,则ab取得最大值时该双曲线的离心率为()A.B.C.2 D.【考点】KC:双曲线的简单性质.【分析】由题意,△ABF2的周长为24,利用双曲线的定义,可得=24﹣4a,进而转化,利用导数的方法,即可得出结论.【解答】解:由题意,△ABF2的周长为24,∵|AF2|+|BF2|+|AB|=24,∵|AF2|+|BF2|﹣|AB|=4a,|AB|=,∴=24﹣4a,∴b2=a(6﹣a),∴y=a2b2=a3(6﹣a),∴y′=2a2(9﹣2a),0<a<4.5,y′>0,a>4.5,y′<0,∴a=4.5时,y=a2b2取得最大值,此时ab取得最大值,b=,∴c=3,∴e==,故选:D.【点评】本题考查双曲线的定义,考查导数知识的运用,考查学生分析解决问题的能力,知识综合性强.二、填空题:本大题共4小题,每小题5分,共20分13.设样本数据x1,x2,…,x2017的方差是4,若y i=2x i﹣1(i=1,2,…,2017),则y1,y2,…y2017的方差为16.【考点】BC:极差、方差与标准差.【分析】根据题意,设数据x1,x2,…,x2017的平均数为,由方差公式可得=[(x1﹣)2+(x2﹣)2+(x3﹣)2+…+(x2017﹣)2]=4,进而对于数据y i=2x i ﹣1,可以求出其平均数,进而由方差公式计算可得答案.【解答】解:根据题意,设样本数据x1,x2,…,x2017的平均数为,又由其方差为4,则有= [(x1﹣)2+(x2﹣)2+(x3﹣)2+…+(x2017﹣)2]=4,对于数据y i=2x i﹣1(i=1,2,…,2017),其平均数=(y1+y2+…+y2017)=[(2x1﹣1)+(2x2﹣1)+…+(2x2017﹣1)]=2﹣1,其方差= [(y1﹣)2+(y2﹣)2+(y3﹣)2+…+(y2017﹣)2]= [(x1﹣)2+(x2﹣)2+(x3﹣)2+…+(x2017﹣)2]=16,故答案为:16.【点评】本题考查数据的方差计算,关键是掌握方差的计算公式.14.等比数列{a n}中,若a1=﹣2,a5=﹣4,则a3=.【考点】88:等比数列的通项公式.【分析】由题意,{a n}是等比数列,a1=﹣2,设出公比q,表示出a5=﹣4,建立关系,求q,可得a3的值【解答】解:由题意,{a n}是等比数列,a1=﹣2,设公比为q,∵a5=﹣4,即﹣2×q4=﹣4,可得:q4=2,则那么a3=故答案为.【点评】本题考查等比数列的第3项的求法,是基础题,解题时要认真审题,注意等比数列的性质的合理运用15.在△ABC中,角A、B、C的对边分别为a,b,c,若a=,b=2,B=45°,tanA•tanC >1,则角C的大小为75°.【考点】GR:两角和与差的正切函数.【分析】由条件利用正弦定理求得sinA的值,可得A的值,再利用三角形内角和公式求得C的值.【解答】解:△ABC中,∵a=,b=2,B=45°,tanA•tanC>1,∴A、C都是锐角,由正弦定理可得==,∴sinA=,∴A=60°.故C=180°﹣A﹣B=75°,故答案为:75°.【点评】本题主要考查正弦定理,三角形内角和公式,属于基础题.16.非零向量,的夹角为,且满足||=λ||(λ>0),向量组,,由一个和两个排列而成,向量组,,由两个和一个排列而成,若•+•+•所有可能值中的最小值为42,则λ=.【考点】9R:平面向量数量积的运算;9S:数量积表示两个向量的夹角.【分析】列出向量组的所有排列,计算所有可能的值,根据最小值列出不等式组解出.【解答】解:=||×λ||×cos=2,=λ22,向量组,,共有3种情况,即(,,),(),(),向量组,,共有3种情况,即(),(),(,),∴•+•+•所有可能值有2种情况,即++=(λ2+λ+1),3=,∵•+•+•所有可能值中的最小值为42,∴或.解得λ=.故答案为.【点评】本题考查了平面向量的数量积运算,属于中档题.三、解答题:本大题共5小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(12分)(2017•晋中一模)已知等差数列{a n}的前n项和为S n,若S m﹣1=﹣4,S m=0,S m+2=14(m≥2,且m∈N*)(Ⅰ)求m的值;(Ⅱ)若数列{b n}满足=log2b n(n∈N+),求数列{(a n+6)•b n}的前n项和.【考点】8E:数列的求和;8H:数列递推式.【分析】(I)计算a m,a m+1+a m+2,利用等差数列的性质计算公差d,再代入求和公式计算m;(II)求出a n,b n,得出数列{(a n+6)•b n}的通项公式,利用错位相减法计算.【解答】解:(Ⅰ)∵S m﹣1=﹣4,S m=0,S m+2=14,∴a m=S m﹣S m﹣1=4,a m+1+a m+2=S m+2﹣S m=14,设数列{a n}的公差为d,则2a m+3d=14,∴d=2.∵S m=×m=0,∴a1=﹣a m=﹣4,∴a m=﹣4+2(m﹣1)=4,解得m=5.(Ⅱ)由(Ⅰ)知a n=﹣4+2(n﹣1)=2n﹣6,∴n﹣3=log2b n,即b n=2n﹣3.∴(a n+6)•b n=2n•2n﹣3=n•2n﹣2.设数列{(a n+6)•b n}的前n项和为T n,∴T n=1×+2×1+3×2+…+…n•2n﹣2,①∴2T n=1×1+2×2+3×22+…+n•2n﹣1,②①﹣②,得﹣T n=+1+2+…+2n﹣2﹣n•2n﹣1=﹣n•2n﹣1=(1﹣n)•2n﹣1﹣.∴T n=(n﹣1)•2n﹣1+.【点评】本题考查了等差数列,等比数列的性质,数列求和,属于中档题.18.(12分)(2017•晋中一模)如图,三棱柱ABC﹣DEF中,侧面ABED是边长为2的菱形,且∠ABE=,BC=,点F在平面ABED内的正投影为G,且G在AE上,FG=,点M在线段CF上,且CM=CF.(1)证明:直线GM∥平面DEF;(2)求三棱锥M﹣DEF的体积.【考点】LF:棱柱、棱锥、棱台的体积;LS:直线与平面平行的判定.【分析】(1)由已知可得AE=2,求解直角三角形可得EG=,则AG:HG=1:3,过G作SH∥AD,交AB于S,交DE于H,则SG:GH=1:3,再由已知可得CM:MF=1:3,得到MG∥FH,由线面平行的判定可得直线GM∥平面DEF;(2)设过MG且平行于平面DEF的平面交三棱柱于MNK,得三棱柱DEF﹣MNK,,由等积法求得三棱锥M﹣DEF的体积.可得=V M﹣NEK【解答】(1)证明:如图,∵面ABED是边长为2的菱形,且∠ABE=,∴△ABE为正三角形,且AE=2,∵FG⊥GE,FG=,EF=BC=,∴EG=,则AG:HG=1:3,过G作SH∥AD,交AB于S,交DE于H,则SG:GH=1:3,连接CS、FH,∵CM=CF,∴CM:MF=1:3,∴MG∥FH,又FH⊂平面DEF,MG⊄平面DEF,∴直线GM∥平面DEF;(2)解:设过MG且平行于平面DEF的平面交三棱柱于MNK,得三棱柱DEF﹣MNK,可得=V M,﹣NEK∵NK=2,NE=,∴.则.【点评】本题考查线面平行的判定,考查了空间想象能力和思维能力,训练了利用等积法求多面体的体积,是中档题.19.(12分)(2017•晋中一模)交强险是车主必须为机动车购买的险种.若普通6座以下私家车投保交强险第一年的费用(基准保费)统一为a元,在下一年续保时,实行的是费率浮动机制,保费与上一年度车辆发生道路交通事故的情况相联系,发生交通事故的次数越多,费率也就越高,具体浮动情况如表:某机构为了研究某一品牌普通6座以下私家车的投保情况,随机抽取了60辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:(Ⅰ)求一辆普通6座以下私家车在第四年续保时保费高于基本保费的频率;(Ⅱ)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车.假设购进一辆事故车亏损5000元,一辆非事故车盈利10000元,且各种投保类型车的频率与上述机构调查的频率一致,完成下列问题:①若该销售商店内有六辆(车龄已满三年)该品牌二手车,某顾客欲在店内随机挑选两辆车,求这两辆车中恰好有一辆为事故车的概率;②若该销售商一次购进120辆(车龄已满三年)该品牌二手车,求一辆车盈利的平均值.【考点】CC:列举法计算基本事件数及事件发生的概率.【分析】解:(Ⅰ)利用等可能事件概率计算公式,能求出一辆普通6座以下私家车第四年续保时保费高于基本保费的概率.(Ⅱ)①由统计数据可知,该销售商店内的六辆该品牌车龄已满三年的二手车有两辆事故车,设为b1,b2,四辆非事故车设为a1,a2,a3,a4.利用列举法求出从六辆车中随机挑选两辆车的基本事件总和其中两辆车恰好有一辆事故车包含的基本事件个数,由此能求出该顾客在店内随机挑选的两辆车恰好有一辆事故车的概率.②由统计数据可知,该销售商一次购进120辆该品牌车龄已满三年的二手车有事故车40辆,非事故车80辆,由此能求出一辆车盈利的平均值.【解答】解:(Ⅰ)一辆普通6座以下私家车第四年续保时保费高于基本保费的频率为p=.…(4分)(Ⅱ)①由统计数据可知,该销售商店内的六辆该品牌车龄已满三年的二手车有两辆事故车,设为b1,b2,四辆非事故车设为a1,a2,a3,a4.从六辆车中随机挑选两辆车共有(b1,b2),(b1,a1),(b1,a2),(b1,a3),(b1,a4),(b2,a1),(b2,a2),(b2,a3),(b2,a4),(a1,a2),(a1,a3),(a1,a4),(a2,a3),(a2,a4),(a3,a4),总共15种情况.…(6分)其中两辆车恰好有一辆事故车共有(b1,a1),(b1,a2),(b1,a3),(b1,a4),(b2,a1),(b2,a2),(b2,a3),(b2,a4),总共8种情况.所以该顾客在店内随机挑选的两辆车恰好有一辆事故车的概率为p=.…(8分)②由统计数据可知,该销售商一次购进120辆该品牌车龄已满三年的二手车有事故车40辆,非事故车80辆,…(10分)所以一辆车盈利的平均值为 [(﹣5000)×40+10000×80]=5000元.…(12分)【点评】本题考查概率的求法及应用,考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式、列举法的合理运用.20.(12分)(2017•晋中一模)已知椭圆C: +=1(a>b>0)的左、右顶点分别为A、B,且长轴长为8,T为椭圆上一点,直线TA、TB的斜率之积为﹣.(Ⅰ)求椭圆C的方程;(Ⅱ)设O为原点,过点M(0,2)的动直线与椭圆C交于P、Q两点,求•+•的取值范围.【考点】KL:直线与椭圆的位置关系.【分析】(Ⅰ)求得直线TA,TB的斜率,由•=﹣,即可求得椭圆C 的方程;(Ⅱ)设直线PQ方程,代入椭圆方程,利用韦达定理及向量数量积的坐标,求函数的单调性,即可求得•+•的取值范围.【解答】解:(Ⅰ)设T(x,y),则直线TA的斜率为k1=,直线TB的斜率为k2=,.…(2分)于是由k1k2=﹣,得•=﹣,整理得;…(4分)(Ⅱ)当直线PQ的斜率存在时,设直线PQ的方程为y=kx+2,点P,Q的坐标分别为(x1,y1),(x2,y2),直线PQ与椭圆方程联立,得(4k2+3)x2+16kx﹣32=0.所以,x1+x2=﹣,x1x2=﹣.…(6分)从而•+•=x1x2+y1y2+[x1x2+(y1﹣2)(y2﹣2)],=2(1+k2)x1x2+2k(x1+x2)+4==﹣20+.…(8分)﹣20<•+•≤﹣,…(10分)当直线PQ斜率不存在时•+•的值为﹣20,综上所述•+•的取值范围为[﹣20,﹣].…(12分)【点评】本题考查椭圆方程的求法,直线与椭圆的位置关系,考查韦达定理及向量数量积的坐标运算,函数单调性及最值与椭圆的综合应用,属于中档题.21.(12分)(2017•晋中一模)已知函数f(x)=mlnx,g(x)=(x>0).(Ⅰ)当m=1时,求曲线y=f(x)•g(x)在x=1处的切线方程;(Ⅱ)讨论函数F(x)=f(x)﹣g(x)在(0,+∞)上的单调性.【考点】6E:利用导数求闭区间上函数的最值;6B:利用导数研究函数的单调性.【分析】(I)利用导数的运算法则可得切线的斜率,利用点斜式即可得出.(Ⅱ)f′(x)=,g′(x)=,F′(x)=f′(x)﹣g′(x)=﹣=,对m分类讨论,利用导数研究函数的单调性即可得出.【解答】解:(Ⅰ)当m=1时,曲线y=f(x)g(x)=.y′==,…(2分)x=1时,切线的斜率为,又切线过点(1,0).所以切线方程为y=(x﹣1),化为:x﹣2y﹣1=0.…(4分)(Ⅱ)f′(x)=,g′(x)=,F′(x)=f′(x)﹣g′(x)=﹣=,当m≤0时,F′(x)<0,函数F(x)在(0,+∞)上单调递减;…(6分)当m>0时,令k(x)=mx2+(2m﹣1)x+m,△=(2m﹣1)2﹣4m2=1﹣4m,当△≤0时,即m≥,k(x)≥0,此时F′(x)≥0,函数F(x)在(0,+∞)上单调递增;…(8分)当△>0时,即,方程mx2+(2m﹣1)x+m=0有两个不等实根x1<x2,(x1=,x2=).∴x1+x2==﹣2>2,x1•x2=1,…(10分)所以0<x1<1<x2,此时,函数F(x)在(0,x1),(x2,+∞)上单调递增;在(x1,x2)上单调递减综上所述,当m≤0时,F(x)的单减区间是(0,+∞);当时,F(x)的单减区间是(x1,x2),单增区间是(0,x1),(x2,+∞)上单调递增;当时,F(x)单增区间是(0,+∞).…(12分)【点评】本题考查了利用导数研究函数的单调性、切线的斜率、一元二次方程的实数根与判别式的关系,考查了推理能力与计算能力,属于难题.四、请考生在22-23两题中,任选一题作答,如果多做,则按所做的第一题记分.22.(10分)(2017•晋中一模)在平面直角坐标系xOy中,曲线C的参数方程为(a>0,β为参数),以O为极点,x轴的正半轴为极轴,建立极坐标系,直线l的极坐标方程ρcos(θ﹣)=.(Ⅰ)若曲线C与l只有一个公共点,求a的值;(Ⅱ)A,B为曲线C上的两点,且∠AOB=,求△OAB的面积最大值.【考点】QH:参数方程化成普通方程;Q4:简单曲线的极坐标方程.【分析】(Ⅰ)根据sin2β+cos2β=1消去β为参数可得曲线C的普通方程,根据ρcosθ=x,ρsinθ=y,ρ2=x2+y2,直线l的极坐标方程化为普通方程,曲线C与l只有一个公共点,即圆心到直线的距离等于半径,可得a的值.(Ⅱ)利用极坐标方程的几何意义求解即可.【解答】(Ⅰ)曲线C是以(a,0)为圆心,以a为半径的圆;直线l的直角坐标方程为由直线l与圆C只有一个公共点,则可得解得:a=﹣3(舍)或a=1所以:a=1.(Ⅱ)由题意,曲线C的极坐标方程为ρ=2acosθ(a>0)设A的极角为θ,B的极角为则:==∵cos=所以当时,取得最大值∴△OAB的面积最大值为.解法二:因为曲线C是以(a,0)为圆心,以a为半径的圆,且由正弦定理得:,所以|AB=由余弦定理得:|AB2=3a2=|0A|2+|OB|2﹣|OA||OB|≥|OA||OB|则:≤×=.∴△OAB的面积最大值为.【点评】本题考查参数方程、极坐标方程、普通方程的互化,以及应用,属于中档题23.(2017•石家庄二模)设函数f(x)=|x﹣1|﹣|2x+1|的最大值为m.(Ⅰ)作出函数f(x)的图象;(Ⅱ)若a2+2c2+3b2=m,求ab+2bc的最大值.【考点】R5:绝对值不等式的解法;R4:绝对值三角不等式.【分析】(Ⅰ)利用分段函数,化简函数的解析式,从而作函数的图象,结合图象,求得函数的最大值m.(Ⅱ)由题意可得a2+2c2+3b2=m==(a2+b2)+2(c2+b2),利用基本不等式求它的最值.【解答】解:(Ⅰ)函数f(x)=|x﹣1|﹣|2x+1|=,画出图象如图,(Ⅱ)由(Ⅰ)知,当x=﹣时,函数f (x )取得最大值为m=.∵a 2+2c 2+3b 2=m==(a 2+b 2)+2(c 2+b 2)≥2ab +4bc ,∴ab +2bc ≤,当且仅当a=b=c=1时,取等号,故ab +2bc 的最大值为.【点评】本题主要考查分段函数的应用,作函数的图象,利用基本不等式求函数的最值,属于中档题.。

石家庄市2018届高三第二次模拟考试数学(文科)试题含答案

石家庄市2018届高三第二次模拟考试数学(文科)试题含答案

石家庄市2017-2018学年高中毕业班第二次模拟考试试题文科数学答案一. 选择题:1-5 ACAAD 6-10CBBCD 11-12DD二.填空题:13. 3π 14. 52- 15. 9,1713⎡⎤⎢⎥⎣⎦16. 112π 三、解答题17.解:(Ⅰ)由已知及正弦定理得:sin cos sin sin sin A B B A C +=sin sin()sin cos cos sin C A B A B A B =+=+ …………………………….(2分)sin in cos sin Bs A A B ∴= ………………………………………………….(4分)sin 0sin cos B A A ≠∴=(0,)4A A ππ∈∴= ………………………………………………….(6分)(Ⅱ)11sin 2422ABC S bc A bc bc ===∴=-………………………………………………….(8分)又22222cos 2()(2a b c bc Ab c bc =+-∴=+-+………………………………………………….(10分) 所以,2()4, 2.b c b c +=+=……………………………………………….(12分)...........................................2分根据列联表中的数据,得到.............................4分所以有90%的把握认为“对冰球是否有兴趣与性别有关”。

..............................6分(Ⅱ)记5人中对冰球有兴趣的3人为A 、B 、C ,对冰球没有兴趣的2人为m 、n ,则从这5人中随机抽取3人,共有(A ,m ,n )(B ,m ,n )(C ,m ,n )(A 、B 、m )(A 、B 、n )(B 、C 、m )(B 、C 、n )(A 、C 、m )(A 、C 、n )(A 、B 、C )10种情况,.............................8分其中3人都对冰球有兴趣的情况有(A 、B 、C )1种,2人对冰球有兴趣的情况有(A 、B 、m )(A 、B 、n )(B 、C 、m )(B 、C 、n )(A 、C 、m )(A 、C 、n )6种,........................10分所以至少2人对冰球有兴趣的情况有7种, 因此,所求事件的概率710p =. ...............................12分19.(Ⅰ)证明:∵四边形ABCD 是矩形,∴CD ⊥BC .∵平面PBC ⊥平面ABCD ,平面PBC ∩平面ABCD =BC ,CD ⊂平面ABCD ,∴CD ⊥平面PBC ,∴CD ⊥PB . ┈┈┈┈┈2分∵PB ⊥PD ,CD ∩PD =D ,CD 、PD ⊂平面PCD ,∴PB ⊥平面PCD .∵PB ⊂平面P AB ,∴平面P AB ⊥平面PCD . ┈┈┈┈┈5分(Ⅱ)取BC 的中点O ,连接OP 、OE .∵PB ⊥平面PCD ,∴PB ⊥ PC ,∴OP =BC 21=1. ┈┈┈┈┈6分 ∵PB=PC ,∴PO ⊥BC.∵平面PBC ⊥平面ABCD ,平面PBC ∩平面ABCD =BC ,PO ⊂平面PBC ,∴PO ⊥平面ABCD ,∵AE ⊂平面ABCD ,∴PO ⊥AE .∵∠PEA =90O , ∴PE ⊥AE .∵PO ∩PE=P ,∴AE ⊥平面POE ,∴AE ⊥OE . ┈┈┈┈┈8分∵∠C=∠D =90O , ∴∠OEC =∠EAD ,∴Rt ∆OCE ∽Rt ∆EDA ,∴.ADCE ED OC = ∵OC =1,AD =2,CE =ED ,∴CE =ED =2,∴OP ED AD OP S V V AED AED P PED A ⋅⋅⨯=⋅==--213131 ┈┈┈┈┈11分 321222131=⨯⨯⨯⨯=┈┈┈┈┈12分P C B A E D O20.解:(1)设(,)P x y ,则1(,)2H x -,1(,1),(0,),2HF x PH y ∴=-=-- 1(,)2PF x y =-- ,(,2)PH PF x y +=-- , ..............................2分()0HF PH PF += ,220x y ∴-=,即轨迹C 的方程为22x y =. ...............4分(II )法一:显然直线l '的斜率存在,设l '的方程为12y kx =+, 由2122y kx x y ⎧=+⎪⎨⎪=⎩,消去y 可得:2210x kx --=,设1122(,),(,)A x y B x y ,1(,)2M t -,121221x x k x x +=⎧∴⎨⋅=-⎩,..............................6分 112211(,),(,)22MA x t y MB x t y =-+=-+ MA MB ⊥ ,0MA MB ∴= , 即121211()()()()022x t x t y y --+++=2121212()(1)(1)0x x x x t t kx kx ∴-+++++=, 22212210kt t k k ∴--+-++=,即2220t kt k -+=∴2()0t k -=,t k ∴=,即1(,)2M k -, ..............................8分∴212||||2(1)AB x x k =-==+, ∴1(,)2M k -到直线l '的距离2d ==..............................10分3221||(1)2MAB S AB d k ∆==+=,解得1k =±, ∴直线l '的方程为102x y +-=或102x y -+=...............................12分 法2:(Ⅱ)设1122(,),(,)A x y B x y ,AB 的中点为()00,y x E 则211121212120212222()()2()2AB x y y y x x x x y y x k x x x y ⎧=-⎪⇒-+=-⇒==⎨-=⎪⎩ 直线'l 的方程为012y x x =+, .............................6分 过点A,B 分别作1111B 于,于l BB A l AA ⊥⊥,因为,⊥MA MB E 为AB 的中点,所以在Rt AMB 中,11111||||(||||)(||||)222==+=+EM AB AF BF AA BB 故EM 是直角梯形11A B BA 的中位线,可得⊥EM l ,从而01(,)2M x -........................8分 点M 到直线'l的距离为:2d ==因为E 点在直线'l 上,所以有20012y x =+,从而21200||1212(1)AB y y y x =++=+=+ ..............................10分由2011||2(22MAB S AB d x ==⨯+= 01x =±所以直线'l 的方程为12y x =+或12y x =-+ ..............................12分21. 【解析】(Ⅰ)'21()()x x x x e xe x f x e e --==,令'()0f x =,则1x =,..........................2分 当(,1)x ∈-∞时,'()0f x >,当(1,)x ∈+∞时,'()0f x <,则函数()f x 的增区间为(-∞,1),减区间为(1,+∞). ..........................4分 (Ⅱ)由可得()()1e 0x f x x -¢=-=,所以()y f x =的极值点为01x =. 于是,0122e x x x +>等价于122e x x +>,由()()12f x f x =得1212e e x x x x --=且1201x x <<<.由1212e e x x x x --=整理得,1122ln ln x x x x -=-,即1212ln ln x x x x -=-. 等价于()()()1212122ln ln e x x x x x x +-<-,①.........................6分 令12x t x =,则01t <<.式①整理得()()21ln e 1t t t +<-,其中01t <<.设()()()21ln e 1g t t t t =+--,01t <<.只需证明当01t <<时,()max 0g t <.又()12ln 2e g t t t ¢=++-,设()=t h ()12ln 2e g t t t ¢=++-, 则()221212t t t t t h -=-=' 当10,2t 骣÷çÎ÷ç÷ç桫时,()0<'t h ,()t h 在10,2骣÷ç÷ç÷ç桫上单调递减; 当1,12t 骣÷çÎ÷ç÷ç桫时,()0>'t h ,()t h 在1,12骣÷ç÷ç÷ç桫上单调递增. 所以,()min 142ln 2e 02g t g 骣÷çⅱ==--<÷ç÷ç桫;..........................8分 注意到,()22221e 2ln e 2e e 2e 0e g ---¢=++-=-->,()13e 0g ¢=->,所以,存在12110,,,122t t 骣骣鼢珑挝鼢珑鼢珑鼢桫桫,使得()()120g t g t ⅱ==, 注意到,10e g 骣÷ç¢=÷ç÷ç÷桫,而110,e 2骣÷çÎ÷ç÷ç÷桫,所以e 1t 1=.于是,由()0g t ¢>可得10e t <<或21t t <<;由()0g t ¢<可得21et t <<. ()g t 在()210,,,1e t 骣÷ç÷ç÷ç桫上单调递增,在21,e t 骣÷ç÷ç÷ç桫上单调递减. ..........................10分于是,()()max 1max ,1e g t g g 戽鳇镲镲÷ç=÷睚ç÷ç镲桫镲铪,注意到,()10g =,12e 20e e g 骣÷ç=--<÷ç÷ç桫, 所以,()max 0g t <,也即()()21ln e 1t t t +<-,其中01t <<. 于是,0122e x x x +>. ..........................12分(二)选考题:22解:(1)若将曲线1C 上的点的纵坐标变为原来的23,则曲线2C 的直角坐标方程为4)32(22=+y x ,............................2分整理得19422=+yx ,∴曲线2C 的参数方程.........................5分(2)将直线l 的参数方程化为标准形式为''1222x t y ⎧=--⎪⎪⎨⎪=⎪⎩ (t '为参数),将参数方程带入19422=+yx 得19)2333(4)212(22='++'--t t 整理得03618)(472=+'+'t t ........................7分 77221='+'=+t t PB PA ,714421=''=t t PB PA ....................8分 21714477211==+=+PBPA PB PA PB PA ..............................10分 23.解:(1)61313)(<-++=x x x f 当31-<x 时,x x x x f 61313)(-=+---=,由66x -<解得1x >- 311-<<-∴x ...........................1分当3131≤≤-x 时,21313)(=+-+=x x x f ,62<恒成立 。

河北省石家庄市2017届高三复习教学质量检测(二)(文数)

河北省石家庄市2017届高三复习教学质量检测(二)(文数)

河北省石家庄市2017届高三复习教学质量检测(二)数学(文科)本试卷共23小题, 满分150分。

考试用时120分钟。

注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效.第Ⅰ卷(选择题,共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设{}{},2,1,0,1,2,|1U R A B x x ==--=≥,则U A C B = ( )A .{}1,2B .{}1,0,1-C .{}2,1,0--D .{}2,1,0,1-- 2.在复平面中,复数()2111i ++对应的点在 ( )A .第一象限B .第二象限C .第三象限D .第四象限 3.“1x >”是“220x x +>”的( )A .充分不必要条件B .必要不充分条件C .充要条件D . 即不充分也不必要条件 4.若()1sin 3πα-=,且2παπ≤≤,则cos α= ( )A B . C. D 5.执行下面的程序框图,则输出K 的值为 ( ) A .98 B .99 C. 100 D .1016.李冶(1192--1279 ),真定栾城(今属河北石家庄市)人,金元时期的数学家、诗人,晚年在封龙山隐居讲学,数学著作多部,其中《益古演段》主要研究平面图形问题:求圆的直径、正方形的边长等.其中一问:现有正方形方田一块,内部有一个圆形水池,其中水池的边缘与方田四边之间的面积为13.75亩,若方田的四边到水池的最近距离均为二十步,则圆池直径和方田的边长分别是(注:240平方步为1亩,圆周率按3近似计算)( )A .10步,50步B .20步,60步 C. 30步,70步 D .40步,80步7.某几何体的三视图如图所示,则该几何体的体积是 ( ) A . 16 B .20 C. 52 D .60 8. 已知函数()sin 2cos 26f x x x π⎛⎫=++ ⎪⎝⎭,则()f x 的一个单调递减区间是( ) A .7,1212ππ⎡⎤⎢⎥⎣⎦ B .5,1212ππ⎡⎤-⎢⎥⎣⎦C. 2,33ππ⎡⎤-⎢⎥⎣⎦ D .5,66ππ⎡⎤-⎢⎥⎣⎦9.四棱锥P ABCD -的底面ABCD 是边长为6的正方形,且PA PB PC PD ===,若一个半径为1的球与此四棱锥所有面都相切,则该四棱锥的高是( ) A .6 B .5 C.92 D .9410.若,x y 满足约束条件22004x y x y x y +≤⎧⎪-≤⎨⎪+≤⎩,则23y z x -=+的最小值为 ( )A .-2B .23-C. 125- D.4711.已知函数()()()22ln 1,0ln 1,0x x x x f x x x x x ⎧++≥⎪=⎨--+<⎪⎩,若()()()21f a f a f -+≤,则实数a 的取值范围是( )A .(][),11,-∞-+∞B .[]1,0- C. []0,1 D .[]1,1-12.已知双曲线()222210,0x y a b a b-=>>的左、右焦点分别为12F F 、,过点1F 且垂直于x 轴的直线与该双曲线的左支交于A B 、两点,22AF BF 、分别交y 轴于P Q 、两点,若2PQF ∆的周长为12,则ab 取得最大值时双曲线的离心率为( ) ABC.3 D.2第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题5分,满分20分.13.设样本数据122017,,,x x x 的方差是4,若()11,2,,2017i i y x i =-= ,则122017,,,y y y 的方差为 .14.等比数列{}n a 中,若152,4a a =-=-,则3a = .15.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,若02,45,ta n ta n 1a b B A C ===> ,1tan tan >⋅C A ,则角C 的大小为 . 16.非零向量,m n 的夹角为3π,且满足()0n m λλ=>,向量组123,,x x x 由一个m 和两个n 排列而成,向量组123,,y y y 由两个m 和一个n 排列而成,若332211y x y x y x ⋅+⋅+⋅所有可能值中的最小值为24m ,则λ= .三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知等差数列{}n a 的前n 项和为n S ,若()*124,0,142,m m m S S S m m N -+=-==≥∈且.(1)求m 的值; (2)若数列{}n b 满足()*2log 2nn a b n N =∈,求数列{}n n b a ⋅+)(6的前n 项和. 18.(本小题满分12分)如图,三棱柱ABC DEF -中,侧面ABED 是边长为2的菱形,且,3ABE BC π∠==点F 在平面ABED 内的正投影为G ,且G 在AE 上,FG ,点M 在线段CF 上,且14CM CF =.(1)证明:直线//GM 平面DEF ; (2)求三棱锥M DEF -的体积.19.(本小题满分12分)交强险是车主必须为机动车购买的险种,若普通6座以下私家车投保交强险第一年的费用(基准保费)统一为a 元,在下一年续保时,实行的是费率浮动机制,保费与上一年度车辆发生道同型号私家车的下一年续保时的情况,统计得到了下面的表格:(1)求一辆普通6座以下私家车在第四年续保时保费高于基本保费的频率;(2)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车.假设购进一辆事故车亏损5000元,一辆非事故车盈利10000元.且各种投保类型车的频率与上述机构调查的频率一致,完成下列问题:①若该销售商店内有六辆(车龄已满三年)该品牌二手车,某顾客欲在店内随机挑选两辆车,求这两辆车恰好有一辆为事故车的概率;②若该销售商一次购进120辆(车龄已满三年)该品牌二手车,求一辆车盈利的平均值. 20.(本小题满分12分)已知椭圆()2222:10x y C a b a b+=>>的左、右顶点分别为A B 、,且长轴长为8,T 为椭圆上一点,直线TA TB 、的斜率之积为34-. (1)求椭圆C 的方程;(2)设O 为原点,过点()0,2M 的动直线与椭圆C 交于P 、Q 两点,求MQ MP OQ OP ⋅+⋅的取值范围.21.(本小题满分12分)已知函数()()()ln ,01xf x m xg x x x ==>+. (1)当1m =时,求曲线)()(x g x f y ⋅=在1x =处的切线方程; (2)讨论函数()()()F x f x g x =-在()0,+∞上的单调性.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,曲线C 的参数方程为cos sin x a a y a ββ=+⎧⎨=⎩(0,a β>为参数).以O 为极点,x 轴的正半轴为极轴,建立极坐标系,直线l 的极坐标方程3cos 32πρθ⎛⎫-= ⎪⎝⎭. (1)若曲线C 与l 只有一个公共点,求a 的值; (2),A B 为曲线C 上的两点,且3AOB π∠=,求OAB ∆的面积最大值.23.选修4-5:不等式选讲设函数()121f x x x =--+的最大值为m . (1)作出函数()f x 的图象;(2)若22223a c b m ++=,求2ab bc +的最大值.数学(文科)参考答案1-5CDABB 6-10BBADC 11-12DC13. 414. - 15 .75︒ 16.8317.解:(Ⅰ)由已知得14m m m a S S -=-=,…………………1分 且12214m m m m a a S S ++++=-=,设数列{}n a 的公差为d ,则有2314m a d +=, ∴2d = ………………3分由0m S =,得()11202m m ma -+⨯=,即11a m =-, ∴()11214m a a m m =+-⨯=-= ∴5m =.……………5分(Ⅱ)由(Ⅰ)知14a =-,2d =,∴26n a n =-∴23log n n b -=,得32n n b -=.………………7分∴()326222n n n n a b n n --+⋅=⨯=⨯.设数列(){}6nn ab +⋅的前n 项和为n T∴()10321222122n n n T n n ---=⨯+⨯++-⨯+⨯L ①()012121222122n n n T n n --=⨯+⨯++-⨯+⨯L ②………………8分①-②,得10212222n n n T n ----=+++-⨯L ………………10分()11212212n n n ---=-⨯-111222n n n --=--⨯∴()()11122n n T n n -*=-⋅+∈N ……………12分18.解析:(Ⅰ)证明:因为点F 在平面ABED 内的正投影为G 则,FG ABED FG GE ⊥⊥面,又因为BC EF =,FG 32GE ∴=…………………2分 其中ABED 是边长为2的菱形,且3ABE π∠=122AE AG ∴==,则过G 点作//GH AD DE H 交于点,并连接FH 3,2GH GE GH AD AE =∴=,且由14CM CF =得32MF GH ==………………4分 易证 ////GH AD MF //GHFM MG FH ∴为平行四边形,即 又因为,//GM DEF GM DEF ⊄∴面面.…………………6分 (Ⅱ)由上问//GM DEF 面,则有M DEF G DEF V V --=……………8分又因为11333344G DEF F DEG DEG DAE V V FG S FG S --∆∆==⋅=⋅=……………10分34M DEF V -∴=………………12分19.解:(Ⅰ)一辆普通6座以下私家车第四年续保时保费高于基本保费的频率为3160515=+. ……………………4分,设为1b ,2b ,四辆非事故车设为1a ,2a ,3a ,4a .从六辆车中随机挑选两辆车共有(1b ,2b ),(1b ,1a ),(1b ,2a ),(1b ,3a ),(1b ,4a ),(2b ,1a ),(2b ,2a ),(2b ,3a ),(2b ,4a ),(1a ,2a ),(1a ,3a ),(1a ,4a ),(2a ,3a ),(2a ,4a ),(3a ,4a ),总共15种情况。

河北省石家庄市第二中学2017-2018学年高三9月月考数学(文)试题 Word版含答案

河北省石家庄市第二中学2017-2018学年高三9月月考数学(文)试题 Word版含答案

2017-2018学年文科数学试题一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1.已知}168421{,,,,=A ,}log |{2A x x y y B ∈==,,则=B A ( ) A .}21{, B .}842{,, C .}421{,, D .}8421{,,,2. 已知m 是平面α的一条斜线,点α∉A ,l 为过点A 的一条动直线,那么下列情形可能出现的是( )A .m l //,α⊥lB .m l ⊥,α⊥lC .m l ⊥,α//lD .m l //,α//l 3. 函数3121)(++-=x x f x的定义域为( ) A .]0,3(- B .]1,3(- C .]0,3()3,(---∞ D .]1,3()3,(---∞ 4. 已知函数1)62sin(2)(--=πx x f ,则下列结论中错误的是( )A .函数)(x f 的最小正周期为πB .函数)(x f 的图象关于直线3π=x 对称C .函数)(x f 在区间]4,0[π上是增函数D .函数)(x f 的图象可由12sin 2)(-=x x g 的图象向右平移6π个单位得到 5. 函数xxy ln =的最大值为( ) A .1-e B .e C .2e D .310 6. 某几何体的三视图如图所示,则该几何体的表面积为( )A .72B .80C .86D .927.等比数列}{n a 的各项均为正数,且187465=+a a a a ,则=+++1032313log log log a a a ( )A .12B .10C .8D .5log 23+8. 在ABC ∆中,内角C B A ,,的对边分别为c b a ,,,若b A B c C B a 21cos sin cos sin =+,且b a >,则B ∠等于( ) A .6π B .3πC .32π D .65π 9. 已知直线l :05=--ky x 与圆O :1022=+y x 交于两点B A 、,且0=⋅,则=k ( )A .2B .2±C .2±D .2 10. 已知函数xx x x f ||ln )(2-=,则函数)(x f y =的大致图象为( )11.在平行四边形ABCD 中,BD AB ⊥,12422=+BD AB ,将此平行四边形沿BD 折成直二面角,则三棱锥BCD A -外接球的表面积为( ) A .2πB .πC .π2D .π412. 函数21ln 21--+=xx x y 的零点所在的区间为( ) A .)1,1(eB .)2,1(C .),2(eD .)3,(e二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 如果一个水平放置的斜二测直观图是一个底角为45,腰和上底均为1的等腰梯形,那么原平面图形的面积是 .14. 设变量y x ,满足不等式组⎪⎩⎪⎨⎧≥≤+-≤-+103304x y x y x ,则2|4|--=y x z 的取值范围是 .15. 设n S 为等差数列}{n a 的前n 项和,已知61131=++a a a ,则=9S . 16. 已知圆C :1)4()3(22=-+-y x 和两点)0,(m A -,)0)(0,(>m m B ,若圆C 上不存在点P ,使得APB ∠为直角,则实数m 的取值范围是 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. (本小题满分10分)ABC ∆的内角C B A ,,的对边分别为c b a ,,,B b C a C c A a sin sin 2sin sin +=+.(1)求B ; (2)若125π=A ,2=b ,求a 和c . 18. (本小题满分12分)设n S 是数列}{n a 的前n 项和,已知21=a ,则21+=+n n S a . (1)求数列}{n a 的通项公式;(2)令n n a n b ⋅-=)12(,求数列}{n b 的前n 项和n T . 19. (本小题满分12分)如图,在三棱柱111C B A ABC -中,⊥1AA 平面ABC ,ABC ∆为正三角形,61==AB AA ,点D 为AC 的中点.(1)求证:平面⊥D BC 1平面11A ACC ; (2)求三棱锥D BC C 1-的体积. 20. (本小题满分12分)已知圆O :422=+y x 和点),1(a M .(1)若过点M 有且只有一条直线与圆O 相切,求实数a 的值,并求出切线方程;(2)若2=a ,过点M 的圆的两条弦BD AC 、互相垂直,求||||BD AC +的最大值.21. (本小题满分12分)如图,在四棱锥ABCD P -中,已知1=AB ,2=BC ,4=CD ,CD AB //,CD BC ⊥,平面⊥PAB 平面ABCD ,AB PA ⊥. (1)求证:⊥BD 平面PAC ;(2)已知F 点在棱PD 上,且//PB 平面FAC ,若5=PA ,求三棱锥FAC D -的体积FAC D V -.22. (本小题满分12分) 设函数2)(--=ax e x f x. (1)求)(x f 的单调区间;(2)若1=a ,k 为整数,且当0>x 时,01)(')(>++-x x f k x ,求k 的最大值.文科数学参考答案二、填空题:本大题共4小题,每小题5分,共20分. 13.22+; 14.]23,427[;15.18; 16.),6()4,0(+∞三、解答题:本大题共6个题,共70分. 17.(Ⅰ)由已知,根据正弦定理得222a c b +=+.由余弦定理得2222cos b a c ac B =+-,故222cos 2a c b B ac +-===, 所以4B π=. (Ⅱ)由512A π=,得sin sin sin cos cos sin 6464644A ππππππ⎛⎫=+=+=⎪⎝⎭18.(Ⅰ)当2n ≥时,12n n a S +=+得12n n a S -=+ 两式相减得 1n n n a a a +-= ∴12n n a a +=∴12n n a a += 当1n =时,12a =,2124a S =+=,212aa = ∴{}n a 以12a =为首项,公比为2的等比数列∴1222n n n a -=⋅=(Ⅱ)由(Ⅰ)得()212n n b n =-⋅ ∴()23123252212n n T n =⨯+⨯+⨯++-⨯ ①()23412123252212n n T n +=⨯+⨯+⨯++-⨯ ②①—②得()23112222222212n n n T n +-=⨯+⨯+⨯++⨯--⋅()()23122222212n n n +=++++--⨯()()114122221212n n n -+-=+⨯--⨯-()16232n n +=-+- ∴()16232n n T n +=+-⋅19.(Ⅰ)证明:因为1AA ⊥底面ABC ,所以1AA BD ⊥ 因为底面ABC 正三角形,D 是AC 的中点,所以BD AC ⊥ 因为A AC AA =⋂1,所以BD ⊥平面11ACC A因为平面BD ⊂平面1BC D ,所以平面1BC D ⊥平面11ACC A(Ⅱ)由(Ⅰ)知ABC ∆中,BD AC ⊥,sin 60BD BC =︒=所以132BCD S ∆=⨯⨯=所以11163C BC D C CBD V V --=== 20.解 (1)由条件知点M 在圆O 上,所以1+a 2=4,则a =± 3.当a =3时,点M 为(1,3),k OM =3,k 切=-33, 此时切线方程为y -3=-33(x -1).即x +3y -4=0, 当a =-3时,点M 为(1,-3),k OM =-3,k 切=33. 此时切线方程为y +3=33(x -1).即x -3y -4=0. 所以所求的切线方程为x +3y -4=0或x -3y -4=0. (2)设O 到直线AC ,BD 的距离分别为d 1,d 2(d 1,d 2≥0), 则d 21+d 22=OM 2=3.又有|AC |=24-d 21,|BD |=24-d 22, 所以|AC |+|BD |=24-d 21+24-d 22.则(|AC |+|BD |)2=4×(4-d 21+4-d 22+24-d 21·4-d 22) =4×[5+216-4(d 21+d 22)+d 21d 22]=4×(5+24+d 21d 22).因为2d 1d 2≤d 21+d 22=3,所以d 21d 22≤94,当且仅当d 1=d 2=62时取等号,所以4+d 21d 22≤52, 所以(|AC |+|BD |)2≤4×(5+2×52)=40.所以|AC |+|BD |≤210,即|AC |+|BD |的最大值为210.21. (1)AB ABC D PAB ABC D PAB =⋂⊥平面,平面平面平面ABCD PA PAB PA AB PA 平面,平面⊥∴⊂⊥,O BD AC BD PA ABCD BD =⋂⊥⊂连结,平面, ,4,2,1,,//===⊥CD BC AB CD BC CD ABACB BDC ∠=∠,090=∠+∠=∠+∠∴CBD BDC CBD ACB则A PA AC BD AC =⋂⊥ ,,PAC BD 平面⊥∴(2)作FO MO M AD FM ,,连接于⊥由(1)知:ABCD PAD 平面平面⊥,平面平面PAD ABCD AD ⋂= ,//平面,FM ADC FM PA ∴⊥//平面,平面,平面平面PB FAC PB PBD PBD FAC FO ⊂=PAB FMO PB FO 平面平面//,//∴∴54,//===∴DB DO DA DM PA FM AB MO ,又4,5=∴=FM PA316==∴--DAC F FAC D V V 22. (Ⅰ) 解:()x f 的定义域为R ,()a e x f x-=';若0≤a ,则()0>'x f 恒成立,所以()x f 在R 总是增函数若0>a ,令()0>'x f ,求得a x ln >,所以()x f 的单增区间是()∞+,ln a ; 令()0<'x f , 求得 a x ln <,所以()x f 的单减区间是()aln ,∞-(Ⅱ) 把()⎩⎨⎧-='=ae xf a x1 代入()()01>++'-x x f k x 得:()()011>++--x e k x x, 因为0>x ,所以01>-xe ,所以()()11-->--x e k x x ,11--->-xe x k x ,11-+<-x e x x k ,所以:(*))0(11>+-+<x x e x k x令()x e x x g x +-+=11,则()()()212---='x x x e x e e x g ,由(Ⅰ)知:()()2--=x e x h x 在()∞+,0 单调递增,而()()⎩⎨⎧><0201h h ,所以()x h 在()∞+,0上存在唯一零点α,且()2,1∈α;故()x g '在()∞+,0上也存在唯一零点且为α,当()α,0∈x 时, ()0<'x g ,当()∞+∈,αx 时,()0>'x g ,所以在()∞+,0上,()()αg x g =min ;由()0='αg 得:2+=ααe ,所以()1+=ααg ,所以()()3,2∈αg ,由于(*)式等价于()αg k <,所以整数的最大值为2。

石家庄市2018年高三质检二文科数学试卷含答案

石家庄市2018年高三质检二文科数学试卷含答案

直线 AP 的方程为 y y1
同理直线 BP 方程为 y
x2 1 2 x x2 2 4
x x2 x0 1 2k 2 设 P( x0 , y 0 ) ,联立 AP 与 BP 直线方程解得 ,即 P(2k ,1) y x1 x 2 1 0 4
S ABC S A1B1C1
7 , 2
…………9 分
设点 B 到平面 A1 B1C1 的距离为 h 由 VB A1B1C1 VA1 BB1C1 VABB1C1 得
1 7 1 1 3 h 22 1 .…………11 分 3 2 3 2 2
h
20
2 21 2 21 . .…………12 分 点 B 到平面 A1 B1C1 的距离为 7 7
i 1 i i
n
( x x ) ( y y )
2 i 1 i i 1 i
n
n
得r
2
74.5 74.5 0.995 18.44 4.06 74.8664
„„„„„„3 分 因为 y 与 x 的相关系数近似为 0.995,说明 y 与 x 的线性相关性很强,从而可以用回归模型拟合 y 与 x 的 的关系.(需要突出“很强” , “一般”或“较弱”不给分)„„„„„5 分
综上:三角形 PAB 面积最小值为 4,此时直线 L 的方程为 y 1 。 „„„„„ 12 分 21 解: (1) f ' ( x) 2(ln x 1 ) ,令其为 g ( x) ,则 g ' ( x) 2( 递增,„„„„„„„„„2 分 而 f ' (1) 0 , 则在区间 (0,1) 上, f ' ( x) 0 , 函数 f ( x) 单调递减; 在区间 (1,) 上 f ' ( x) 0 , 函数 f ( x) 单调递增 . ………………4 分

2018石家庄市高三数学文科模拟考试题二带答案

2018石家庄市高三数学文科模拟考试题二带答案



22.


4-4
:


















线





线





(



),



线



八、、

















线
-
(
1
)



线





(
2
)


八、、

线


线





八、、






.2
3.


4-5
:
















.
(
1
)



(

n
)
(
A

B

C
)
10




/、

3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017-2018学年河北省石家庄市高考数学二模试卷(文科)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合M={﹣1,0,1,2,3},N={﹣2,0},则下列结论正确的是()A.N⊆M B.M∩N=N C.M∪N=M D.M∩N={0}2.下列四个函数中,既是奇函数又在定义域上单调递增的是()A.y=x﹣1 B.y=tanx C.y=x3D.y=log2x3.已知复数z满足(1﹣i)z=i2015(其中i为虚数单位),则的虚部为()A.B.﹣C.i D.﹣i4.数列{a n}为等差数列,且a1+a7+a13=4,则a2+a12的值为()A.B.C.2 D.45.设变量x,y满足约束条件:.则目标函数z=2x+3y的最小值为()A.6 B.7 C.8 D.236.投掷两枚骰子,则点数之和是6的概率为()A.B.C.D.7.在平面直角坐标系中,角α的顶点与原点重合,始边与x轴的非负半轴重合,终边过点P (﹣,﹣1),则sin(2α﹣)=()A.B.﹣C.D.﹣8.某几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.49.执行如图的程序框图,如果输入的N=4,那么输出的S=()A.1+++B.1+++C.1++++D.1++++10.在四面体S﹣ABC中,SA⊥平面ABC,∠BAC=120°,SA=AC=2,AB=1,则该四面体的外接球的表面积为()A.11π B.7πC.D.11.已知F是抛物线x2=4y的焦点,直线y=kx﹣1与该抛物线交于第一象限内的零点A,B,若|AF|=3|FB|,则k的值是()A.B.C.D.12.已知函数f(x)=,设方程f(x)=2的根从小到大依次为x1,x2,…x n,…,n∈N*,则数列{f(x n)}的前n项和为()A.n2B.n2+n C.2n﹣1 D.2n+1﹣1二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上.. 13.已知向量=(2,1),=(x,﹣1),且﹣与共线,则x的值为.14.函数f(x)=sin2x﹣4sinxcos3x(x∈R)的最小正周期为.15.已知条件p:x2﹣3x﹣4≤0;条件q:x2﹣6x+9﹣m2≤0,若¬q是¬p的充分不必要条件,则实数m的取值范围是.16.设点P、Q分别是曲线y=xe﹣x(e是自然对数的底数)和直线y=x+3上的动点,则P、Q两点间距离的最小值为.三、解答题:本大题共5小题,满分60分,解答应写出文字说明、证明过程或演算步骤17.在△ABC中,角A,B,C的对边分别为a,b,c,且满足bcosA=(2c+a)cos(π﹣B)(1)求角B的大小;(2)若b=4,△ABC的面积为,求a+c的值.18.4月23人是“世界读书日”,某中学在此期间开展了一系列的读书教育活动,为了解本校学生课外阅读情况,学校随机抽取了100名学生对其课外阅读时间进行调查,下面是根据调查结果绘制的学生日均课外阅读时间(单位:分钟)的频率分布直方图,若将日均课外阅读时间不低于60分钟的学生称为“读书谜”,低于60分钟的学生称为“非读书谜”(1)求x的值并估计全校3000名学生中读书谜大概有多少?(经频率视为频率)(2)根据已知条件完成下面2×2的列联表,并据此判断是否有99%的把握认为“读书谜”与性别有关?附:K2=n=a+b+c+d19.已知PA⊥平面ABCD,CD⊥AD,BA⊥AD,CD=AD=AP=4,AB=2.(1)求证:CD⊥平面ADP;(2)若M为线段PC上的点,当BM⊥PC时,求三棱锥B﹣APM的体积.20.已知椭圆C:+=1(a>b>0)经过点(1,),离心率为.(1)求椭圆C的方程;(2)不垂直与坐标轴的直线l与椭圆C交于A,B两点,以AB为直径的圆过原点,且线段AB 的垂直平分线交y轴于点P(0,﹣),求直线l的方程.21.已知函数f(x)=e x﹣x﹣2(e是自然对数的底数).(1)求函数f(x)的图象在点A(0,﹣1)处的切线方程;(2)若k为整数,且当x>0时,(x﹣k+1)f′(x)+x+1>0恒成立,其中f′(x)为f(x)的导函数,求k的最大值.四、选修4-1:几何证明选讲22.如图:⊙O的直径AB的延长线于弦CD的延长线相交于点P,E为⊙O上一点,=,DE交AB于点F.(1)求证:O,C,D,F四点共圆;(2)求证:PF•PO=PA•PB.五、选修4-4:坐标系与参数方程23.在平面直角坐标系xOy中,直l的参数方程(t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为:ρ=4cosθ.(1)直线l的参数方程化为极坐标方程;(2)求直线l的曲线C交点的极坐标(ρ≥0,0≤θ<2π)六、选修4-5:不等式选讲24.设函数f(x)=|2x﹣a|+|2x+1|(a>0),g(x)=x+2.(1)当a=1时,求不等式f(x)≤g(x)的解集;(2)若f(x)≥g(x)恒成立,求实数a的取值范围.2015年河北省石家庄市高考数学二模试卷(文科)参考答案与试题解析一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合M={﹣1,0,1,2,3},N={﹣2,0},则下列结论正确的是()A.N⊆M B.M∩N=N C.M∪N=M D.M∩N={0}考点:交集及其运算.专题:集合.分析:利用已知条件求出结合的交集,判断即可.解答:解:集合M={﹣1,0,1,2,3},N={﹣2,0},M∩N={﹣1,0,1,2,3}∩{﹣2,0}={0}.故选:D.点评:本题考查集合的交集的求法,考查计算能力.2.下列四个函数中,既是奇函数又在定义域上单调递增的是()A.y=x﹣1 B.y=tanx C.y=x3D.y=log2x考点:奇偶性与单调性的综合.专题:综合题;函数的性质及应用.分析:根据函数的奇偶性、单调性逐项判断即可.解答:解:y=x﹣1非奇非偶函数,故排除A;y=tanx为奇函数,但在定义域内不单调,故排除B;y=log2x单调递增,但为非奇非偶函数,故排除D;令f(x)=x3,定义域为R,关于原点对称,且f(﹣x)=(﹣x)3=﹣x3=﹣f(x),所以f(x)为奇函数,又f(x)在定义域R上递增,故选C.点评:本题考查函数的奇偶性、单调性的判断,属基础题,定义是解决该类问题的基本方法,应熟练掌握.3.已知复数z满足(1﹣i)z=i2015(其中i为虚数单位),则的虚部为()A.B.﹣C.i D.﹣i考点:复数代数形式的乘除运算;复数的基本概念.专题:数系的扩充和复数.分析:利用复数的运算法则、共轭复数、虚部的定义即可得出.解答:解:∵i4=1,∴i2015=(i4)503•i3=﹣i,∴(1﹣i)z=i2015=﹣i,∴==,∴=,则的虚部为.故选:A.点评:本题考查了复数的运算法则、共轭复数、虚部的定义,属于基础题.4.数列{a n}为等差数列,且a1+a7+a13=4,则a2+a12的值为()A.B.C.2 D.4考点:等比数列的通项公式;等差数列的通项公式.专题:等差数列与等比数列.分析:由等差数列的性质结合已知求得,进一步利用等差数列的性质求得a2+a12的值.解答:解:∵数列{a n}为等差数列,且a1+a7+a13=4,∴3a7=4,,则a2+a12=.故选:B.点评:本题考查等差数列的通项公式,考查等差数列的性质,是基础的计算题.5.设变量x,y满足约束条件:.则目标函数z=2x+3y的最小值为()A.6 B.7 C.8 D.23考点:简单线性规划.专题:计算题;不等式的解法及应用.分析:作出题中不等式组表示的平面区域,得如图的△ABC及其内部,再将目标函数z=2x+3y 对应的直线进行平移,可得当x=2,y=1时,z=2x+3y取得最小值为7.解答:解:作出不等式组表示的平面区域,得到如图的△ABC及其内部,其中A(2,1),B(1,2),C(4,5)设z=F(x,y)=2x+3y,将直线l:z=2x+3y进行平移,当l经过点A时,目标函数z达到最小值∴z最小值=F(2,1)=7故选:B点评:本题给出二元一次不等式组,求目标函数z=2x+3y的最小值,着重考查了二元一次不等式组表示的平面区域和简单的线性规划等知识,属于基础题.6.投掷两枚骰子,则点数之和是6的概率为()A.B.C.D.考点:古典概型及其概率计算公式.专题:概率与统计.分析:利用乘法原理计算出所有情况数,列举出有(1,5)(2,4)(3,3)(4,2),(5,1)共有5种结果,再看点数之和为6的情况数,最后计算出所得的点数之和为6的占所有情况数的多少即可.解答:解:由题意知,本题是一个古典概型,试验发生包含的事件是同时掷两枚骰子,共有6×6=36种结果,而满足条件的事件是两个点数之和是6,列举出有(1,5)(2,4)(3,3)(4,2),(5,1)共有5种结果,根据古典概型概率公式得到P=,故选:A.点评:本题根据古典概型及其概率计算公式,考查用列表法的方法解决概率问题;得到点数之和为6的情况数是解决本题的关键,属于基础题.7.在平面直角坐标系中,角α的顶点与原点重合,始边与x轴的非负半轴重合,终边过点P (﹣,﹣1),则sin(2α﹣)=()A.B.﹣C.D.﹣考点:任意角的三角函数的定义.专题:计算题;三角函数的求值.分析:利用三角函数的定义确定α,再代入计算即可.解答:解:∵角α的终边过点P(﹣,﹣1),∴α=+2kπ,∴sin(2α﹣)=sin(4kπ+﹣)=﹣,故选:D.点评:本题考查求三角函数值,涉及三角函数的定义和特殊角的三角函数,属基础题.8.某几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.4考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:根据三视图得出几何体的直观图,得出几何性质,根据组合体得出体积.解答:解:根据三视图可判断:几何体如图,A1B1⊥A1C1,AA1⊥面ABC,AB=AC=CC1=2,CE=1直三棱柱上部分截掉一个三棱锥,该几何体的体积为V﹣V E﹣ABC==4=故选:A点评:本题考查了空间几何体的性质,三视图的运用,考查了空间想象能力,计算能力,属于中档题.9.执行如图的程序框图,如果输入的N=4,那么输出的S=()A.1+++B.1+++C.1++++D.1++++考点:程序框图.专题:图表型.分析:由程序中的变量、各语句的作用,结合流程图所给的顺序可知当条件满足时,用S+的值代替S得到新的S,并用k+1代替k,直到条件不能满足时输出最后算出的S值,由此即可得到本题答案.解答:解:根据题意,可知该按以下步骤运行第一次:S=1,第二次:S=1+,第三次:S=1++,第四次:S=1+++.此时k=5时,符合k>N=4,输出S的值.∴S=1+++故选B.点评:本题主要考查了直到型循环结构,循环结构有两种形式:当型循环结构和直到型循环结构,以及表格法的运用,属于基础题.10.在四面体S﹣ABC中,SA⊥平面ABC,∠BAC=120°,SA=AC=2,AB=1,则该四面体的外接球的表面积为()A.11π B.7πC.D.考点:球的体积和表面积;球内接多面体.专题:空间位置关系与距离.分析:求出BC,利用正弦定理可得△ABC外接圆的半径,从而可求该三棱锥的外接球的半径,即可求出三棱锥的外接球表面积.解答:解:∵AC=2,AB=1,∠BAC=120°,∴BC==,∴三角形ABC的外接圆半径为r,2r=,r=,∵SA⊥平面ABC,SA=2,由于三角形OSA为等腰三角形,则有该三棱锥的外接球的半径R═=,∴该三棱锥的外接球的表面积为S=4πR2=4π×()2=.故选:D.点评:本题考查三棱锥的外接球表面积,考查直线和平面的位置关系,确定三棱锥的外接球的半径是关键.11.已知F是抛物线x2=4y的焦点,直线y=kx﹣1与该抛物线交于第一象限内的零点A,B,若|AF|=3|FB|,则k的值是()A.B.C.D.考点:直线与圆锥曲线的关系.专题:方程思想;圆锥曲线的定义、性质与方程.分析:根据抛物线方程求出准线方程与焦点坐标,利用抛物线的定义表示出|AF|与|FB|,再利用直线与抛物线方程组成方程组,结合根与系数的关系,求出k的值即可.解答:解:∵抛物线方程为x2=4y,∴p=2,准线方程为y=﹣1,焦点坐标为F(0,1);设点A(x1,y1),B(x2,y2),则|AF|=y1+=y1+1,|FB|=y2+=y2+1;∵|AF|=3|FB|,∴y1+1=3(y2+1),即y1=3y2+2;联立方程组,消去x,得y2+(2﹣4k2)y+1=0,由根与系数的关系得,y1+y2=4k2﹣2,即(3y2+2)+y2=4k2﹣2,解得y2=k2﹣1;代入直线方程y=kx﹣1中,得x2=k,再把x2、y2代入抛物线方程x2=4y中,得k2=4k2﹣4,解得k=,或k=﹣(不符合题意,应舍去),∴k=.故选:D.点评:本题考查了抛物线的标准方程与几何性质的应用问题,也考查了直线与抛物线的综合应用问题,考查了方程思想的应用问题,是综合性题目.12.已知函数f(x)=,设方程f(x)=2的根从小到大依次为x1,x2,…x n,…,n∈N*,则数列{f(x n)}的前n项和为()A.n2B.n2+n C.2n﹣1 D.2n+1﹣1考点:数列与函数的综合;分段函数的应用;数列的求和.专题:综合题;函数的性质及应用.分析:作出函数f(x)=的图象,可得数列{f(x n)}从小到大依次为1,2,4,…,组成以1为首项,2为公比的等比数列,即可求出数列{f(x n)}的前n项和.解答:解:函数f(x)=的图象如图所示,x=1时,f(x)=1,x=3时,f(x)=2,x=5时,f(x)=4,所以方程f(x)=2的根从小到大依次为1,3,5,…,数列{f(x n)}从小到大依次为1,2,4,…,组成以1为首项,2为公比的等比数列,所以数列{f(x n)}的前n项和为=2n﹣1,故选:C.点评:本题考查方程根,考查数列的求和,考查学生分析解决问题的能力,正确作图,确定数列{f(x n)}从小到大依次为1,2,4,…,组成以1为首项,2为公比的等比数列是关键.二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上.. 13.已知向量=(2,1),=(x,﹣1),且﹣与共线,则x的值为﹣2 .考点:平面向量的坐标运算.专题:平面向量及应用.分析:求出向量﹣,然后利用向量与共线,列出方程求解即可.解答:解:向量=(2,1),=(x,﹣1),﹣=(2﹣x,2),又﹣与共线,可得2x=﹣2+x,解得x=﹣2.故答案为:﹣2.点评:本题考查向量的共线以及向量的坐标运算,基本知识的考查.14.函数f(x)=sin2x﹣4si nxcos3x(x∈R)的最小正周期为.考点:三角函数的周期性及其求法;两角和与差的正弦函数.专题:三角函数的图像与性质.分析:由三角函数恒等变换化简函数解析式可得:f(x)=﹣sin4x,根据三角函数的周期性及其求法即可得解.解答:解:∵f(x)=sin2x﹣4sinxcos3x=sin2x﹣sin2x(1+cos2x)=﹣sin2xcos2x=﹣sin4x,∴最小正周期T==,故答案为:.点评:本题主要考查了三角函数的周期性及其求法,三角函数恒等变换,三角函数的图象与性质,属于基本知识的考查.15.已知条件p:x2﹣3x﹣4≤0;条件q:x2﹣6x+9﹣m2≤0,若¬q是¬p的充分不必要条件,则实数m的取值范围是m≥4 .考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:分别解关于p,q的不等式,求出¬q,¬p的关于x的取值范围,从而求出m的范围.解答:解:∵条件p:x2﹣3x﹣4≤0;∴p:﹣1≤x≤4,∴¬p:x>4或x<﹣1,∵条件q:x2﹣6x+9﹣m2≤0,∴q:3﹣m≤x≤3+m,∴¬q:x>3+m或x<3﹣m,若¬q是¬p的充分不必要条件,则,解得:m≥4,故答案为:m≥4.点评:本题考察了充分必要条件,考察集合的包含关系,是一道基础题.16.设点P、Q分别是曲线y=xe﹣x(e是自然对数的底数)和直线y=x+3上的动点,则P、Q两点间距离的最小值为.考点:利用导数研究曲线上某点切线方程;两条平行直线间的距离.专题:导数的综合应用.分析:对曲线y=xe﹣x进行求导,求出点P的坐标,分析知道,过点P直线与直线y=x+2平行且与曲线相切于点P,从而求出P点坐标,根据点到直线的距离进行求解即可.解答:解:∵点P是曲线y=xe﹣x上的任意一点,和直线y=x+3上的动点Q,求P,Q两点间的距离的最小值,就是求出曲线y=xe﹣x上与直线y=x+3平行的切线与直线y=x+3之间的距离.由y′=(1﹣x)e﹣x ,令y′=(1﹣x)e﹣x =1,解得x=0,当x=0,y=0时,点P(0,0),P,Q两点间的距离的最小值,即为点P(0,0)到直线y=x+3的距离,∴d min=.故答案为:.点评:此题主要考查导数研究曲线上某点的切线方程以及点到直线的距离公式,利用了导数与斜率的关系,这是高考常考的知识点,是基础题.三、解答题:本大题共5小题,满分60分,解答应写出文字说明、证明过程或演算步骤17.在△ABC中,角A,B,C的对边分别为a,b,c,且满足bcosA=(2c+a)cos(π﹣B)(1)求角B的大小;(2)若b=4,△ABC的面积为,求a+c的值.考点:余弦定理的应用;正弦定理.专题:解三角形.分析:(1)利用正弦定理化简bcosA=(2c+a)cos(π﹣B),通过两角和与差的三角函数求出cosB,即可得到结果.(2)利用三角形的面积求出ac=4,通过由余弦定理求解即可.解答:解:(1)因为bcosA=(2c+a)cos(π﹣B),…(1分)所以sinBcosA=(﹣2sinC﹣sinA)cosB…(3分)所以sin(A+B)=﹣2sinCcosB∴cosB=﹣…(5分)∴B=…(6分)(2)由=得ac=4…(8分).由余弦定理得b2=a2+c2+ac=(a+c)2﹣ac=16…(10分)∴a+c=2…(12分)点评:本题考查余弦定理以及正弦定理的应用,三角形的解法,考查计算能力.18.4月23人是“世界读书日”,某中学在此期间开展了一系列的读书教育活动,为了解本校学生课外阅读情况,学校随机抽取了100名学生对其课外阅读时间进行调查,下面是根据调查结果绘制的学生日均课外阅读时间(单位:分钟)的频率分布直方图,若将日均课外阅读时间不低于60分钟的学生称为“读书谜”,低于60分钟的学生称为“非读书谜”(1)求x的值并估计全校3000名学生中读书谜大概有多少?(经频率视为频率)(2)根据已知条件完成下面2×2的列联表,并据此判断是否有99%的把握认为“读书谜”与性别有关?附:K2=n=a+b+c+d考点:独立性检验.专题:概率与统计.分析:(1)利用频率分布直方图,直接求出x,然后求解读书迷人数.(2)利用频率分布直方图,写出表格数据,利用个数求出K2,判断即可.解答:解:(1)由已知可得:(0.01+0.02+0.03+x+0.015)*10=1,可得x=0.025,…(2分)因为( 0.025+0.015)*10=0.4,将频率视为概率,由此可以估算出全校3000名学生中读书迷大概有1200人;…(4分)(2)完成下面的2×2列联表如下非读书迷读书迷合计男 40 15 55女 20 25 45合计 60 40 100…(8分)≈8.249,…(10分)VB8.249>6.635,故有99%的把握认为“读书迷”与性别有关.…(12分)点评:本题考查频率分布直方图的应用,对立检验的应用,考查计算能力.19.已知PA⊥平面ABCD,CD⊥AD,BA⊥AD,CD=AD=AP=4,AB=2.(1)求证:CD⊥平面ADP;(2)若M为线段PC上的点,当BM⊥PC时,求三棱锥B﹣APM的体积.考点:棱柱、棱锥、棱台的体积;直线与平面垂直的判定.专题:空间位置关系与距离.分析:(1)利用平面与平面垂直的判定定理证明平面ADP⊥平面ABCD,然后利用性质定理证明CD⊥平面ADP.(2)取CD的中点F,连接BF,求得BP,所以BC=BP.在平面PCD中过点M作MQ∥DC交DP 于Q,连接QB,QA,利用等体积法转化求解即可.解答:(1)证明:因为PA⊥平面ABCD,PA⊂平面ADP,所以平面ADP⊥平面ABCD.…(2分)又因为平面ADP∩平面ABCD=AD,CD⊥AD,所以CD⊥平面ADP.…(4分)(2)取CD的中点F,连接BF,在梯形ABCD中,因为CD=4,AB=2,所以BF⊥CD.又BF=AD=4,所以BC=.在△ABP中,由勾股定理求得BP=.所以BC=BP.…(7分)又知点M在线段PC上,且BM⊥PC,所以点M为PC的中点.…(9分)在平面PCD中过点M作MQ∥DC交DP于Q,连接QB,QA,则V三棱锥B﹣APM=V三棱锥M﹣APB=V三棱锥Q﹣APM=V三棱锥B﹣APQ==…(12分)点评:本题考查平面与平面垂直的判定定理以及性质定理的应用,几何体的体积的求法,考查空间想象能力以及计算能力转化思想的应用.20.已知椭圆C:+=1(a>b>0)经过点(1,),离心率为.(1)求椭圆C的方程;(2)不垂直与坐标轴的直线l与椭圆C交于A,B两点,以AB为直径的圆过原点,且线段AB 的垂直平分线交y轴于点P(0,﹣),求直线l的方程.考点:直线与圆锥曲线的综合问题;椭圆的标准方程.专题:直线与圆;圆锥曲线的定义、性质与方程.分析:(1)运用椭圆的离心率公式和点满足方程及a,b,c的关系,即可得到椭圆方程;(2)设直线l的方程设为y=kx+t,设A(x1,y1)B(x2,y2),联立椭圆方程,运用韦达定理和判别式大于0,以AB为直径的圆过坐标原点,则有•=0即为x1x2+y1y2=0,代入化简整理,再由两直线垂直的条件,解方程可得k,进而得到所求直线方程.解答:解:(1)由题意得e==,且+=1,又a2﹣b2=c2,解得a=2,b=1,所以椭圆C的方程是+y2=1.(2)设直线l的方程设为y=kx+t,设A(x1,y1)B(x2,y2),联立消去y得(1+4k2)x2+8ktx+4t2﹣4=0,则有x1+x2=,x1x2=,△>0可得4k2+1>t2,y1+y2=kx1+t+kx2+t=k(x1+x2)+2t=,y1y2=(kx1+t)(kx2+t)=k2x1x2+kt(x1+x2)+t2=k2•+kt•+t2=,因为以AB为直径的圆过坐标原点,所以•=0即为x1x2+y1y2=0,即为+=0,可得5t2=4+4k2,①由4k2+1>t2,可得t>或t<﹣,又设AB的中点为D(m,n),则m==,n==,因为直线PD与直线l垂直,所以k PD=﹣=,可得=②由①②解得t1=1或t2=﹣,当t=﹣时,△>0不成立.当t=1时,k=±,所以直线l的方程为y=x+1或y=﹣x+1.点评:本题考查椭圆的方程和性质,主要考查椭圆的离心率的运用和方程的运用,联立直线方程,运用韦达定理,同时考查圆的性质:直径所对的圆周角为直角,考查直线垂直的条件和直线方程的求法,属于中档题.21.已知函数f(x)=e x﹣x﹣2(e是自然对数的底数).(1)求函数f(x)的图象在点A(0,﹣1)处的切线方程;(2)若k为整数,且当x>0时,(x﹣k+1)f′(x)+x+1>0恒成立,其中f′(x)为f(x)的导函数,求k的最大值.考点:利用导数研究曲线上某点切线方程;函数恒成立问题.专题:导数的综合应用.分析:(1)求出原函数的导函数,得到函数在x=0时的导数,然后由直线方程的点斜式求得切线方程;(2)把当x>0时,(x﹣k+1)f′(x)+x+1>0恒成立,转化为,构造函数,利用导数求得函数g(x)的最小值的范围得答案.解答:解:(1)f(x)=e x﹣x﹣2,f′(x)=e x﹣1,∴f′(0)=0,则曲线f(x)在点A(0,﹣1)处的切线方程为y=﹣1;(2)当x>0时,e x﹣1>0,∴不等式,(x﹣k+1)f′(x)+x+1>0可以变形如下:(x﹣k+1)(e x﹣1)+x+1>0,即①令,则,函数h(x)=e x﹣x﹣2在(0,+∞)上单调递增,而h(1)<0,h(2)>0,∴h(x)在(0,+∞)上存在唯一的零点,故g′(x)在(0,+∞)上存在唯一的零点.设此零点为a,则a∈(1,2).当x∈(0,a)时,g′(x)<0;当x∈(a,+∞)时,g′(x)>0;∴g(x)在(0,+∞)上的最小值为g(a).由g′(a)=0,可得e a=a+2,∴g(a)=a+2∈(3,4),由于①式等价于k<g(a).故整数k的最大值为3.点评:本题考查了利用导数求过曲线上某点处的切线方程,考查了函数恒成立问题,着重考查了数学转化思想方法,考查了函数最值的求法,属中高档题.四、选修4-1:几何证明选讲22.如图:⊙O的直径AB的延长线于弦CD的延长线相交于点P,E为⊙O上一点,=,DE交AB于点F.(1)求证:O,C,D,F四点共圆;(2)求证:PF•PO=PA•PB.考点:相似三角形的判定.专题:选作题;推理和证明.分析:(1)连接OC,OE,证明∠AOC=∠CDE,可得O,C,D,F四点共圆;(2)利用割线定理,结合△PDF∽△POC,即可证明PF•PO=PA•PB.解答:证明:(1)连接OC,OE,因为=,所以∠AOC=∠AOE=∠COE,…(2分)又因为∠CDE=∠COE,则∠AOC=∠CDE,所以O,C,D,F四点共圆.…(5分)(2)因为PBA和PDC是⊙O的两条割线,所以PD•DC=PA•PB,…(7分)因为O,C,D,F四点共圆,所以∠PDF=○POC,又因为∠DPF=∠OPC,则△PDF∽△POC,所以,即PF•PO=PD•DC,则PF•PO=PA•PB.…(10分)点评:本题考查四点共圆,考查割线定理,三角形相似的性质,考查学生分析解决问题的能力,比较基础.五、选修4-4:坐标系与参数方程23.在平面直角坐标系xOy中,直l的参数方程(t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为:ρ=4cosθ.(1)直线l的参数方程化为极坐标方程;(2)求直线l的曲线C交点的极坐标(ρ≥0,0≤θ<2π)考点:点的极坐标和直角坐标的互化;参数方程化成普通方程.专题:坐标系和参数方程.分析:(1)将直线直l的参数方程(t为参数),消去参数t,即可化为普通方程,将代入=0可得极坐标方程.(2)C曲线C的极坐标方程为:ρ=4cosθ,即ρ2=4ρcosθ,利用化为普通方程,与直线方程联立可得交点坐标,再化为极坐标即可.解答:解:(1)将直线直l的参数方程(t为参数),消去参数t,化为普通方程=0,将代入=0得=0.(2)C曲线C的极坐标方程为:ρ=4cosθ,即ρ2=4ρcosθ,化为普通方程为x2+y2﹣4x=0.联立解得:或,∴l与C交点的极坐标分别为:,.点评:本题考查了参数方程化为普通方程、极坐标方程化为直角坐标方程、直线与圆的交点,考查了推理能力与计算能力,属于中档题.六、选修4-5:不等式选讲24.设函数f(x)=|2x﹣a|+|2x+1|(a>0),g(x)=x+2.(1)当a=1时,求不等式f(x)≤g(x)的解集;(2)若f(x)≥g(x)恒成立,求实数a的取值范围.考点:绝对值不等式的解法;函数恒成立问题.专题:不等式的解法及应用.分析:(1)当a=1时,不等式等价于3个不等式组,求出每个不等式组的解集,再取并集,即得所求.(2)由题意可得,|2x﹣a|+|2x+1|﹣x﹣2≥0 恒成立.令h(x)=|2x﹣a|+|2x+1|﹣x﹣2,化简它的解析式,求得它的最小值,再令最小值大于或等于零,求得a的范围.解答:解:(1)当a=1时,不等式f(x)≤g(x)即|2x﹣1|+|2x+1|≤x+2,等价于①,或②,或③.解①求得 x无解,解②求得0≤x<,解③求得≤x≤,综上,不等式的解集为{x|0≤x≤}.(2)由题意可得|2x﹣a|+|2x+1|≥x+2恒成立,转化为|2x﹣a|+|2x+1|﹣x﹣2≥0 恒成立.令h(x)=|2x﹣a|+|2x+1|﹣x﹣2=(a>0),易得h(x)的最小值为﹣1,令﹣1≥0,求得a≥2.点评:本题主要考查带有绝对值的函数,函数的恒成立问题,绝对值不等式的解法,体现了转化、分类讨论的数学思想,属于中档题.。

相关文档
最新文档