热工仪表基础知识讲义

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5
1、 温度的测量与变送
下表列出了常用测温仪麦的测温原理、测温范围和主要特 点。表中所列的各种温度计,机械式的大多只能就地指示, 幅射式的精度较差,只有电的测温仪表精度高,且测温元件 很容易与温度变送器配用,转换成统一标准信号进行远传, 以实现对温度的自动记录和调节。因此,在生产过程控制中 应用最多的是热电偶和热电阻温度计。本节仅介绍这两种温 度计。
3
1、 温度的测量与变送

温度是化工生产中既普遍而又十分重要的参 数之一。任何一个化工生产过程,都伴随着物质 的物理和化学性质的改变,都必然有能量的转化 和交换,而热交换则是这些能量转换中最普遍的 交换形式。因此,在很多煤化工反应的过程中, 温度的测量和控制,常常是保证这些反应过程正 常进行与安全运行的重要环节;它对产品产量和 质量的提高都有很大的影响。
10
1、 温度的测量与变送


国际电工委员会(IEC)对其中已被国际公认,性能 优良和产量最大的七种制定了标准,即IEC584-1和 IEC584-2中所规定的:S分度(铂铑10-铂);B分度号 (铂铑 30-铂铑6);K分度号(镍铬-镍硅);E分度号(镍铬-康铜 ); T分度号 (铜-康铜);J分度号(铁-康铜); R分度号 (铂铑 13-铂)等热电偶。 热电偶根据测温条件和安装位臵的不同,具有多种 结构型式。虽然它们的结构和外形不尽相同,但其基本结 构通常均由热电极、绝缘管、保护套管和接线盒等主要部 分组成。
15

对于制作热电阻丝的材料是有一定技术要求的,一 般应具有下列特性;电阻温度系数要大,则测量灵敏度就 高;热容量要小,则对温度变化的响应就快,即动态特性 较好;电阻率要大,则相同的电阻值下电阻体体积就小, 因而热容量也小;在整个测温范围内,具有稳定的物理和 化学性质;要容易加工,有良好的复制性,电阻与温度的 关系最好近于线性或为平滑的曲线,以便于分度和读数; 价格便宜等。根据具体情况,目前应用最广泛的是铂和 铜,分度号Pt50铂电阻、分度号Pt100铂电阻和分度号 Cu50铜电阻、分度号Cu100铜电阻。相应的分度表 (电 阻 值与温度对照表)可在相关资料中查到。热电阻是由电阻 体、保护套管以及接线盒等主要部件所组成。除电阻体外, 其余部分的结构形状一般与热电偶的相应部分相同。
11
1、 温度的测量与变送
12
1、 温度的测量与变送



1.2 热电阻温度计 热电阻温度计由热电阻、电测仪表 (动圈仪表或平衡 电桥)和连接导线所组成,其中热电阻是感温元件,有导 体的和半导体两种。 热电阻温度计广泛用来测量中、低温 (一般为500℃ 以下)。它的特点是准确度高,在测量中、低温时,它的 输出信号比热电偶要大得多,灵敏度高,同样可实现远传、 自动记录和多点测量。
13
1、 温度的测量与变送




热电阻的测温原理 金属导体的电阻值随温度的变比而变化的。一般说来, 他们之间的关系为: Rt=R0[1+α(t-t0)] ΔRt=Rt-R0=αR0Δt 式中 Rt 温度为t℃时的电阻值; R。 温度为t0℃(通常为0℃)时的电阻值; α 电阻温度系数即温度变化1℃时电阻值的相对变化 量,单位是 ℃-1,; Δt 温度的变化量,即t-t。=Δt ΔRt 温度改变Δt时的电阻变化量。
9
1、 温度的测量与变送




由于热电极的材料不同,所产生的接触电势亦不同,因此不同 热电极材料制成的热电偶在相同温度下产生的热电势是不同的,这在 各种热电偶的分度表中可以查到。根据热电测温的基本原理,理论上 似乎任意两种导体都可以组成热电偶。但实际情况它们还必须进行严 格的选择,热电极材料应满足如下要求。 1.在测温范围内其热电性质要稳定,不随时间变化。 2.稳定性要高,即在高温下不被氧化和腐蚀。 3.电阻温度系数要小,导电率要高,组成热电偶后产生的热电势要 大,热电势与温度间要成线性关系,这样有利于提高仪表的测量精度。 4.复现性要好 (同种成分的材料制成的热电偶,其热电特性相一致的 性质称复现性),这样便于成批生产,而且在使用上也可保证良好的 互换性。 5、材料组织要均匀,要有良好的韧性,便于加工成丝。
t0 t0 1 A B
2
3
t
热电偶温度计测量线路 1、热电偶 2、连接导线 3、电测仪表
8
1、 温度的测量与变送
热电偶是由两根不同的导体或半导体材料(如上图中的A和B) 焊接或绞接而成。焊接的一端称为热电偶的热端 ( 测量端或 工作端),和导线连接的一端称为热电偶的冷端 (自由端 )。 组成热电偶的两根导体或半导体称作热电极。把热电偶的热 端插入需要测温的生产设备中, A和 B 两种不同的物质,电 子密度高的向电子密度低的流动,产生电流,形成电动势, 一般为mV信号,经过测温仪计算为测量介质的温度。
4
1、 温度的测量与变送

温度测量仪麦种类繁多,若按测量方式的不同,测 温仪表可分为接触式和非接触式两大类。前者感温元件与 被测介质直接接触,后者的感温元件却不与被测介质相接 触。接触式测温元件简单、可靠、测量精度较高;但是, 由于测温元件要与被测介质接触进行充分的热交换才能达 到热平衡,因而产生了滞后现象,而且可能与被测介质产 生化学反应;另外高温材料的限制,接触式测温仪表不能 应用于很高温度的测量。而非接触式测温仪表不与被测介 质接触,因而其测温范围很广,其测温上限原则上不受限 限制;由于它是通过热辐射来测量温度的,所以不会破坏 被测介质的温度场,测温速度也较快,但是这种方法受到 被测介质至仪表之间的距离以及幅射通道上的水汽、烟雾、 尘埃等其它介质的影响,因此测量量精度较低。
22
2、 压力的测量与变送


由上述可如,弹簧管自由端将随压力的增大而向外 伸张。反之若管内压力小于管外压力,则自由端将随负压 的增大而向内弯曲。所以,利用弹簧管不仅可以制成压力 表,而且还可制成真空表或压力真空表。 弹簧管压力表除普通型外,还有一些是具有特殊用 途的,例如耐腐蚀的氨用压力表、禁油的氧用压力表等。 为了能表明具体适用何种特殊介质的压力测量,常在其表 壳、衬圈或表盘上涂以规定的色标,并注有特殊介质的名 称,使用时应予以注意。
26
2、 压力的测量与变送

基础
振子
ห้องสมุดไป่ตู้20
2、 压力的测量与变送

a
b
弹簧管压力表 1、弹簧管 2拉杆 3、扇型齿轮 3、中心齿轮 5、指针 6、面板 7、游丝 8、调整螺钉 9 接头
21
2、 压力的测量与变送

它的截面呈扁圆形或椭圆形,椭圆的长轴2a与图面 垂直的弹簧管的中心轴O相平行。管子封闭的一端B为自由 端,即位移输出端;而另一端A则是固定的,作为被测压 力的输入端。当由它的固定端A通入被测压力P后,由于呈 椭圆形截面的管子在压力P的作用下,将趋于圆形,弯成 圆弧形的弹簧管随之产生向外挺直的扩张变形,使自由端 B发生位移。此时弹簧管的中心角γ 要随即减小Δ γ ,也 就是自由端将由B移到B,处,如图2-3(b)上虚线所示。此 位移量就相应于某一压力值。自由端B的弹性变形位移通 过拉杆使扇形齿轮作逆时针偏转,使固定在中心齿轮轴上 的指针也作顺时针偏转,从而在面板的刻度标尺上显示出 被测压力的数值。由于弹簧管自由端位移而引起弹簧管中 心角相对变化值Δ γ /γ 与被测压力P之间具有比例关系, 因此弹簧管压力表的刻度标尺是均匀的。
1
主要内容



一、四大参数的测量原理及仪表 二、自动控制基础知识 三、调节阀 四、联锁系统的构成
2
一、四大参数的测量原理及仪 表


现场仪表测量参数的分类: 现场仪表测量参数一般分为温度、压力、 流量、液位四大参数。 下面就着重介绍一 下这四大参数的测量原理,以及测量这四 大参数所运用的仪表。
14
1、 温度的测量与变送


由上可知,温度的变化,导致了导体电阻的变化。 实验证明,大多数金属导体在温度每升高1℃时,其电阻 值要增加0.4一0.6%,热电阻温度计就是把温度变化所引 起热电阻的变化值,通过测量电路 (电桥)转换成电压(毫 伏)信号,然后由显示仪表指示或记录被测温度。 热电阻温度计与热电偶温度计的测温原理是不相同 的。热电偶温度计把温度的变化通过感温元件——热电偶 转换为热电势的变化值来测量温度的;而热电阻温度计则 是把温度的变化通过感温元件——热电阻转换为电阻的变 化来测量温度的。

6
7
1、 温度的测量与变送

1.1 热电偶温度计 热电偶温度计由热电偶、电测部份 (动圈仪表、电位差计 或DCS)及连接导线组成如图所示。由于热电偶的性能稳定、 结构简单、使用方便、测量范围广、有较高的准确度,且 能方便地将温度信号转换为电势信号,便于信号的远传和 多点集中测量,因而在石油化工生产中应用极为普遍。
19
2、 压力的测量与变送



主要压力检测仪表: (1)弹簧管压力表 弹簧管压力表是压力仪表的主要组成部份之 一,它有着极为广泛的应用价值 ,它具有结构简单, 品种规格齐全、测量范围广、便于制造和维修和价格 低廉等特点。弹簧管压力表是单圈弹簧压力表的简称。 它主要由弹簧管、齿轮传动机构(包括拉杆、扇形齿 轮、中心齿轮)、示数装臵(指针和分度盘)以及外 壳等几部份组成,如下图所示。弹簧管是一端封闭并 弯成270度圆孤形的空心管子 。
24
2、 压力的测量与变送

25
2、 压力的测量与变送


(3)单晶硅谐振式传感器
谐振式传感器是采用超精细加工工艺在单晶硅材料 上制成两个完全一致的H型谐振梁,并以一定的频率产生 振动。其谐振频率取决于梁的长度及张力,而张力随压力 的变化而变化,实现了压力变化转换成频率信号的变化, 并采用了频率差分技术,将两个频率信号直接输出到脉冲 计数器。从而使传感器具有误差小,重复性好、分解能力 和反应灵敏度高、直接输出数字信号等特点。由于传感器 良好的特性,可使变送器几乎不受静压和温度的影响,而 且具有优良的过压性能和范围较宽的量程。
18
2、 压力的测量与变送


目前,石油化工生产中应用中广泛的一种压力测量 仪表是弹性元件。根据测压范围不同,常用的测压元件有 单圈弹簧管、多圈弹簧管、膜片、膜盒、波纹管等。在被 测介质压力的作用下,弹性元件发生弹性变型,而产生相 应的位移,能过转换位臵,可将位移转换成相应的电信号 或气信号,以远传显示,报警或调节用。
1、 温度的测量与变送
16
2、 压力的测量与变送

我们生产中一般所说的压力,指发生在两个物体的接触表 面的作用力,或者是气体对于固体和液体表面的垂直作用 力,或者是液体对于固体表面的垂直作用力。
17
2、 压力的测量与变送

压力测量仪表的品种,规格甚多。常用的压力测量方 法和仪表有:通过液体产生或传递压力来平衡被测压力的 平衡法。属于应于这类方法的仪表有液柱式压力计和活塞 式压力计;将被测压力通过一些隔离元件(如弹性元件) 转换成一个集中力,并在测量过程中用一个外界力(如电 磁力或气动力)来平衡这个未知的集中力,然后通过对外 界力的测量而得知被测压力的机械力平衡法。力平衡式压 力变送器就是属于应用此法的例子;根据弹性元件受压后 产生弹性变型的大小来测量弹性力平衡法。属于这类应用 方法的仪表很多,若根据所用弹性元件来分,可分为薄膜 式,波纹管式,弹簧管式压力表;能过机械和电子元件将 被测压力转换在成各种电量(如电压、电流、频率等)来 测量的电测法。例如电容式、电阻式、电感式、应变片式 和霍尔片式等变送器应于此法的压力测量仪表。
23
2、 压力的测量与变送




(2)应变式压力变送器 应变式变送器以是以电为能源,它利用应变片作 为转换元件,将被测压力转换成应变片电阻值的变化,然 后经过桥式电路得到毫伏级的电量输出,供显示仪表显示 被测压力或经放大电路转换成统一标准信号后,再传送到 记录仪和调节器等仪表。 应变片有金属电阻丝应变片(金属丝粘贴在衬底上 组成的元件)和半导体应变片两类。 根据电阻应变原理,应变片在压力作用下产生弹性 变形dL/L(即应变e) ,其电阻值随之发生变化。如果已 如应变片的电阻变化与其变形(即应变)的关系,那么,通 过对应变片电阻变化的测量就可测知被测压力。
相关文档
最新文档