偏振光实验报告

合集下载

偏振光的研究实验报告

偏振光的研究实验报告

偏振光的研究实验报告偏振光的研究实验报告引言:偏振光是指光波中电场矢量在空间中的振动方向固定的光。

它在光学领域有着广泛的应用,包括材料的表征、光学器件的设计和光通信等。

本实验旨在通过研究偏振光的性质和特点,探索其在实际应用中的潜力。

实验一:偏振片的特性在实验中,我们首先使用了一块偏振片。

偏振片是一种能够选择性地通过特定方向偏振光的光学器件。

我们将偏振片放置在光源前方,并逐渐旋转它。

观察到当光通过偏振片时,光强度会随着旋转角度的变化而发生明显的变化。

这说明偏振片能够选择性地通过特定方向的偏振光。

实验二:马吕斯定律的验证马吕斯定律是描述光的偏振现象的基本定律之一。

它表明,当一束偏振光通过一个偏振片时,出射光的偏振方向与入射光的偏振方向之间的夹角保持不变。

我们使用了两块偏振片,并将它们叠加在一起。

通过旋转第二块偏振片,我们观察到光的强度随着旋转角度的变化而发生周期性的变化。

这一结果验证了马吕斯定律的正确性。

实验三:偏振光的干涉在实验中,我们使用了一束激光器发出的偏振光,并将其分成两束,分别通过两个不同的光程。

然后,我们将两束光重新合并在一起。

通过调节两束光的光程差,我们观察到干涉现象。

当光程差等于整数倍的波长时,干涉现象最为明显。

这一实验结果说明了偏振光的干涉现象是由于光的相位差引起的。

实验四:偏振光的旋光性质偏振光的旋光性质是指光在通过旋光物质时,偏振方向会发生旋转的现象。

我们使用了一块旋光片,并将它放置在光源前方。

通过观察光通过旋光片后的偏振方向,我们发现光的偏振方向确实发生了旋转。

这一实验结果验证了偏振光的旋光性质。

结论:通过以上实验,我们对偏振光的性质和特点有了更深入的了解。

偏振光的研究不仅有助于我们理解光的本质,还在许多实际应用中发挥着重要作用。

例如,在材料的表征中,偏振光可以用来分析材料的结构和性质。

在光学器件的设计中,偏振光可以用来控制光的传输和调制。

在光通信中,偏振光可以用来提高信号传输的可靠性和速率。

偏振光学实验报告

偏振光学实验报告

偏振光学实验报告偏振光学实验报告引言:偏振光学是光学中一门重要的分支,研究光的偏振现象及其与物质相互作用的规律。

本次实验旨在通过实验手段探究光的偏振现象,并对偏振光的性质进行研究。

一、实验目的本实验主要有以下几个目的:1. 了解光的偏振现象及其产生原理;2. 学习偏振光的性质,包括偏振光的传播、旋光现象等;3. 掌握偏振光的测量方法和实验技术。

二、实验装置和原理本实验使用的装置主要包括:偏振片、波片、偏振片旋转台等。

偏振片是一种能够选择性地通过特定偏振方向光线的光学元件,波片则是一种能够改变光的偏振状态的光学元件。

三、实验步骤1. 将偏振片插入光源光路,调整偏振片的方向,观察光强的变化;2. 在光路中加入波片,通过调节波片的角度,观察光的偏振状态的变化;3. 将偏振片旋转台与波片结合使用,观察光的偏振状态和光强的变化;4. 使用偏振片旋转台测量不同角度下光的透过率,记录数据;5. 使用波片测量旋光现象,记录数据。

四、实验结果和分析1. 观察偏振片对光的影响,我们发现当偏振片的偏振方向与光的偏振方向垂直时,光的透过率最低,而当两者平行时,光的透过率最高。

这说明偏振片能够选择性地通过特定偏振方向的光线。

2. 在加入波片后,通过调节波片的角度,我们观察到光的偏振状态的变化。

当波片的快轴与偏振片的偏振方向平行时,光的偏振状态不发生改变;当两者垂直时,光的偏振状态发生改变。

这说明波片能够改变光的偏振状态。

3. 结合偏振片旋转台和波片的使用,我们进一步观察到光的偏振状态和光强的变化。

通过旋转偏振片旋转台和调节波片的角度,我们可以实现对光的偏振状态和光强的调控。

4. 通过使用偏振片旋转台测量不同角度下光的透过率,我们可以得到透过率与角度的关系曲线。

根据实验数据,我们可以计算出偏振片的透过率和透过光的偏振方向之间的关系,进一步研究光的偏振现象。

5. 使用波片测量旋光现象,我们可以观察到光在通过旋光物质后产生的旋光现象。

光的偏振性实验报告

光的偏振性实验报告

一、实验目的1. 理解光的偏振性及其产生机制。

2. 掌握使用偏振片和偏振光实验装置观察和分析光的偏振现象。

3. 验证马吕斯定律,即偏振光通过偏振片后的光强与偏振片的角度关系。

4. 探究不同类型偏振光(如线偏振光、圆偏振光和椭圆偏振光)的产生和检测方法。

二、实验原理光是一种电磁波,具有横波性质。

在垂直于光传播方向的平面上,光矢量(即电场矢量E)可以有不同的振动方向。

当光矢量在某一固定平面上振动时,称为线偏振光;若光矢量绕传播方向旋转,则形成圆偏振光;若光矢量绕传播方向旋转的轨迹为椭圆,则形成椭圆偏振光。

偏振片是一种选择性吸收特定方向光振动的光学元件。

当自然光通过偏振片时,只允许与偏振片方向平行的光振动通过,从而产生线偏振光。

通过改变偏振片的方向,可以观察偏振光的强度变化,验证马吕斯定律。

三、实验仪器与材料1. 偏振片(起偏器、检偏器)2. 自然光源(如白炽灯、激光器)3. 毫米尺4. 透明玻璃板5. 旋转台6. 光强计7. 记录纸及笔四、实验步骤1. 将自然光源放置在实验台上,调整光路使其成为平行光。

2. 将起偏器放置在光路中,调整其方向,使自然光通过起偏器后成为线偏振光。

3. 将检偏器放置在起偏器之后,调整其方向,观察光强变化。

4. 记录检偏器方向与起偏器方向之间的夹角θ,以及相应的光强I。

5. 改变检偏器的方向,重复步骤3和4,记录不同夹角θ下的光强I。

6. 根据实验数据,绘制光强I与夹角θ之间的关系曲线,验证马吕斯定律。

7. 将透明玻璃板放置在光路中,观察光通过玻璃板后的偏振现象。

8. 通过旋转透明玻璃板,观察不同角度下的偏振现象,探究不同类型偏振光(如线偏振光、圆偏振光和椭圆偏振光)的产生和检测方法。

五、实验结果与分析1. 验证马吕斯定律:根据实验数据绘制光强I与夹角θ之间的关系曲线,发现光强I与夹角θ之间呈余弦关系,验证了马吕斯定律。

2. 探究偏振光类型:通过旋转透明玻璃板,观察到不同角度下的偏振现象。

偏振光的研究实验报告

偏振光的研究实验报告

偏振光的研究实验报告篇一:偏振光的观测与研究~~实验报告偏振光的观测与研究光的干涉和衍射实验证明了光的波动性质。

本实验将进一步说明光是横波而不是纵波,即其E和H 的振动方向是垂直于光的传播方向的。

光的偏振性证明了光是横波,人们通过对光的偏振性质的研究,更深刻地认识了光的传播规律和光与物质的相互作用规律。

目前偏振光的应用已遍及于工农业、医学、国防等部门。

利用偏振光装置的各种精密仪器,已为科研、工程设计、生产技术的检验等,提供了极有价值的方法。

【实验目的】1.观察光的偏振现象,加深偏振的基本概念。

2.了解偏振光的产生和检验方法。

3.观测布儒斯特角及测定玻璃折射率。

4.观测椭圆偏振光和圆偏振光。

【实验仪器】光具座、激光器、偏振片、1/4波片、1/2波片、光电转换装置、光点检流计、观测布儒斯特角装置图1 实验仪器实物图【实验原理】1.偏振光的基本概念按照光的电磁理论,光波就是电磁波,它的电矢量E和磁矢量H相互垂直。

两者均垂直于光的传播方向。

从视觉和感光材料的特性上看,引起视觉和化学反应的是光的电矢量,通常用电矢量E代表光的振动方向,并将电矢量E和光的传播方向所构成的平面称为光振动面。

在传播过程中,光的振动方向始终在某一确定方位的光称为平面偏振光或线偏振光,如图2(a)。

光源发射的光是由大量原子或分子辐射构成的。

由于热运动和辐射的随机性,大量原-子或分子发射的光的振动面出现在各个方向的几率是相同的。

一般说,在106s内各个方向电矢量的时间平均值相等,故出现如图2(b)所示的所谓自然光。

有些光的振动面在某个特定方向出现的几率大于其他方向,即在较长时间内电矢量在某一方向较强,这就是如图2(c)所示的所谓部分偏振光。

还有一些光,其振动面的取向和电矢量的大小随时间作有规则的变化,其电矢量末端在垂直于传播方向的平面上的移动轨迹呈椭圆(或圆形),这样的光称为椭圆偏振光(或圆偏振光),如图2(c)所示。

图2 光波按偏振的分类 2.获得偏振光的常用方法 (1)非金属镜面的反射。

偏振光分析实验报告

偏振光分析实验报告

一、实验目的1. 观察光的偏振现象,加深对光的偏振现象的认识。

2. 学习直线偏振光的产生与检验方法,了解圆偏振光和正椭圆偏振光的产生与检验方法。

3. 掌握1/4波片、1/2波片等光学元件的作用及使用方法。

4. 验证马吕斯定律,加深对光的偏振理论的理解。

二、实验原理1. 光的偏振现象:光是一种电磁波,其电矢量在垂直于传播方向的平面上振动。

当光波的电矢量振动方向固定时,光称为线偏振光;当电矢量振动方向随时间作有规律的变化时,光称为圆偏振光或椭圆偏振光。

2. 偏振光的产生与检验:利用偏振片、波片等光学元件可以产生和检验偏振光。

偏振片可以使自然光变为线偏振光,波片可以改变光的偏振状态。

3. 马吕斯定律:当一束线偏振光通过一个偏振片时,出射光的强度与入射光强度、入射光与偏振片的夹角之间的关系满足马吕斯定律。

三、实验仪器1. He-Ne激光器2. 光具座3. 偏振片(两块)4. 1/4波片(两块)5. 1/2波片(两块)6. 玻璃平板及刻度盘7. 白屏四、实验步骤1. 将激光器发出的光束通过偏振片P1,得到线偏振光。

2. 将线偏振光通过1/4波片B1,得到圆偏振光。

3. 将圆偏振光通过1/2波片B2,观察出射光的偏振状态。

4. 将线偏振光通过1/4波片B1,得到椭圆偏振光。

5. 将椭圆偏振光通过1/2波片B2,观察出射光的偏振状态。

6. 重复以上步骤,改变偏振片P1和波片B1、B2的相对位置,观察出射光的偏振状态。

7. 根据马吕斯定律,计算并验证出射光的强度与入射光强度、入射光与偏振片的夹角之间的关系。

五、实验结果与分析1. 观察到当线偏振光通过1/4波片B1时,出射光变为圆偏振光;当圆偏振光通过1/2波片B2时,出射光变为线偏振光。

2. 观察到当线偏振光通过1/4波片B1时,出射光变为椭圆偏振光;当椭圆偏振光通过1/2波片B2时,出射光变为线偏振光。

3. 根据马吕斯定律,计算并验证出射光的强度与入射光强度、入射光与偏振片的夹角之间的关系。

光的偏振研究实验报告

光的偏振研究实验报告

一、实验目的1. 观察光的偏振现象,加深对光的波动性质的认识。

2. 掌握产生和检验偏振光的方法和原理。

3. 学习使用偏振片、波片等光学元件,了解其工作原理。

4. 验证马吕斯定律,研究偏振光透过两个偏振器后的光强与夹角的关系。

二、实验原理光是一种电磁波,其电场矢量E的振动方向决定了光的偏振状态。

自然光中的电场矢量在垂直于光传播方向的平面内振动方向是随机的,而偏振光则具有特定的振动方向。

偏振光可以通过以下几种方法产生:1. 利用起偏器(如偏振片)将自然光变为线偏振光。

2. 利用双折射现象将一束光分解为两束具有不同振动方向的偏振光。

3. 利用反射、折射等光学现象使自然光部分偏振。

检验偏振光的方法有:1. 利用检偏器(如偏振片)观察光强变化。

2. 利用光电池、光电倍增管等光电探测器检测偏振光。

马吕斯定律指出,当完全线偏振光通过检偏器时,光强I与入射光强I0、检偏器透光轴与入射线偏振光的光矢量振动方向的夹角θ的关系为:I = I0 cos²θ。

三、实验仪器与用具1. 中央调节平台和两臂调节机构2. 半导体激光器和电源3. 偏振片(两块)4. 1/4波片(两块)5. 光电倍增管探头及电源6. 光电流放大器7. 光具座8. 白屏9. 刻度盘四、实验步骤1. 将激光器、偏振片、1/4波片和光电倍增管探头依次放置在光具座上,调整光路,使激光束通过偏振片后成为线偏振光。

2. 将线偏振光通过1/4波片,观察光强变化,记录数据。

3. 将1/4波片旋转一定角度,观察光强变化,记录数据。

4. 将线偏振光通过第二个偏振片,观察光强变化,记录数据。

5. 将第二个偏振片旋转一定角度,观察光强变化,记录数据。

6. 根据记录的数据,验证马吕斯定律。

五、实验结果与分析1. 观察到线偏振光通过1/4波片后,光强发生变化,说明1/4波片具有改变光偏振状态的作用。

2. 当1/4波片旋转一定角度时,光强也随之变化,说明光强与偏振片透光轴与入射线偏振光的光矢量振动方向的夹角θ有关。

偏振光的观察与研究实验报告数据(精选10篇)

偏振光的观察与研究实验报告数据(精选10篇)

偏振光的观察与研究实验报告数据偏振光指的是只在一个平面上振动的光,它的传播方式与普通光有所不同。

由于其具有特殊的偏振状态,因此可以在各个领域中发挥重要作用。

在本次实验中,我们对偏振光的观察与研究进行了探究。

一、实验目的1. 学习偏振光的概念及其传播方式。

2. 观察线偏振器和波片对偏振光的影响。

3. 研究偏振光的干涉现象。

二、实验仪器及材料1. 两个偏光片2. 一块玻璃板3. 一块亚克力板4. 一束激光光源5. 一个手机屏幕三、实验步骤1. 将一块玻璃板和一块亚克力板插入两个偏光片之间,调整偏光片的方向,观察得到的光的强度变化。

2. 将一个偏光片放置在激光器前,记录得到的光的强度值,并将其称为“I”。

然后将另一个偏光片放在激光光路中,并逐渐旋转它的方向。

记录得到的光的强度值,并将其称为“T”。

3. 将一个手机屏幕放置在两个偏光片之间,逐渐旋转其中一个偏光片的方向。

观察手机屏幕的显示情况。

4. 在两个偏光片之间插入一块玻璃板,然后将其中一个偏光片旋转一定的角度,并记录得到光的强度值。

四、实验结果1. 调整偏光片的方向之后,得到的光的强度会发生变化,实验表明,当两个偏光片的方向垂直时,通过的光线最弱,当两个偏光片的方向相同时,通过光线最强。

2. 在实验过程中,我们发现,当两个偏光片的方向偏离90度时,通过的光线几乎消失。

这说明当光的振动方向被偏振后,只有振动方向与偏振方向一致的光才能通过。

3. 在手机屏幕的观察实验中,我们发现当两个偏光片的方向相同时,手机屏幕显示为亮屏,而当两个偏光片的方向垂直时,手机屏幕显示为黑屏。

这说明手机屏幕与偏振光的作用原理是相似的。

4. 在偏振光的干涉实验中,我们发现,在通过玻璃板的偏振光中,存在两个方向的振动状态,这两个方向的振动状态会互相干涉,导致光线强度的变化。

五、实验结论本次实验通过观察偏振光的传播方式,观察了线偏振器和波片对偏振光的影响,以及研究了偏振光的干涉现象。

光的偏振实验报告

光的偏振实验报告

光的偏振实验报告引言:光是一种电磁波,它在传播过程中能够以横波的形式传递能量。

然而,我们发现光还有一个极为重要的性质,那就是偏振。

光的偏振是指光的波动方向相对于其传播方向的定向性。

在本次实验中,我们将探讨光的偏振现象,并通过实验验证相关偏振规律。

实验一:偏振片的特性与使用为了研究光的偏振现象,我们首先使用了一组偏振片。

在这组偏振片中,我们有一个偏振片作为光源,一个偏振片作为分析器,以及一个转轮,用于调节偏振片之间的角度。

我们通过调整这些偏振片的角度,来观察光的透过情况。

我们首先将转轮上的偏振片与光源偏振片之间保持垂直,这时我们发现透过的光线几乎完全消失了。

这是因为光源产生的光线经过第一个偏振片后只有一个具体的偏振方向,而分析器的偏振方向与之相垂直,所以几乎无法透过。

接着,我们逐渐调整转轮上的偏振片角度,当转轮上的偏振片与光源偏振片的偏振方向相同时,我们发现透过的光线最亮。

这是因为两个偏振片的偏振方向相同,所以光线可以完全透过。

当转轮上的偏振片再次与光源偏振片相垂直时,透过的光线再次几乎消失。

通过这组实验,我们可以得出结论:当光线通过两个偏振片时,只有当它们的偏振方向相同时,光线才能够完全透过。

实验二:偏振光的旋转现象在实验一中,我们验证了偏振片的特性与使用方法。

接下来,我们将进一步探讨偏振光的旋转现象。

我们使用了一束线偏振光,并在其传播途中插入了一个旋转片。

通过观察传播后的光线,我们发现它的振动方向发生了改变。

这是因为旋转片具有旋转光线偏振方向的能力,也即光的偏振方向被旋转了一定的角度。

我们进一步调整旋转片的角度,发现当旋转片的旋转方向与偏振光的偏振方向一致时,光线几乎完全透过;但当旋转片的旋转方向与偏振光的偏振方向相垂直时,透过的光线又几乎消失。

这与实验一的结论相符。

通过这组实验,我们了解到,旋转片可以通过改变光线的偏振方向来控制光线的透过情况。

实际上,这也是一些光学仪器中常用的原理。

实验三:马吕斯定律的验证马吕斯定律是描述光的偏振现象的重要定律之一。

光学偏振小实验报告(3篇)

光学偏振小实验报告(3篇)

第1篇一、实验目的1. 观察光的偏振现象,加深对光的偏振规律的认识。

2. 掌握产生和检验偏振光的光学元件(如偏振片、1/4波片等)的工作原理。

3. 学习使用偏振片进行光路准直和极坐标作图。

二、实验原理1. 光的偏振现象:光是一种电磁波,其电场矢量E在垂直于光传播方向的平面上可以有不同的振动方向。

当光在传播过程中,若电场矢量E保持一定的振动方向,则称为偏振光。

2. 偏振片:偏振片是一种具有选择性吸收特定方向振动光线的材料。

当自然光通过偏振片时,只有与偏振片偏振方向一致的光线能够通过,从而实现光的偏振。

3. 1/4波片:1/4波片是一种厚度为1/4波长(λ/4)的透明介质,它可以将线偏振光转换为椭圆偏振光或圆偏振光。

4. 马吕斯定律:当线偏振光通过一个与其偏振方向成θ角的偏振片时,透射光的强度I与入射光强度I0之间的关系为:I = I0 cos²θ。

三、实验仪器1. 光具座2. 偏振片3. 1/4波片4. 激光器5. 白屏6. 直尺7. 量角器四、实验步骤1. 将激光器发出的激光照射到白屏上,调整激光器与白屏的距离,使激光在白屏上形成明亮的点。

2. 将偏振片放置在激光器与白屏之间,调整偏振片的偏振方向,观察白屏上的光点变化。

3. 记录偏振片偏振方向与光点变化的关系,分析光的偏振现象。

4. 将1/4波片放置在偏振片与白屏之间,调整1/4波片的光轴方向,观察白屏上的光点变化。

5. 记录1/4波片光轴方向与光点变化的关系,分析1/4波片的作用。

6. 将偏振片与1/4波片组合,观察白屏上的光点变化,分析光的偏振现象。

7. 利用偏振片和1/4波片进行光路准直,观察准直效果。

8. 使用直尺和量角器测量偏振片和1/4波片的偏振方向,分析极坐标作图方法。

五、实验结果与分析1. 当偏振片的偏振方向与光点变化方向一致时,光点亮度最大;当偏振片的偏振方向与光点变化方向垂直时,光点亮度最小。

2. 1/4波片可以将线偏振光转换为椭圆偏振光或圆偏振光,当1/4波片的光轴方向与偏振片的偏振方向成45°时,光点亮度最大。

偏振光学实验报告

偏振光学实验报告

一、实验目的1. 观察光的偏振现象,加深对光的偏振理论的认识。

2. 验证马吕斯定律,了解偏振光的基本特性。

3. 掌握1/2波片和1/4波片的作用,学会使用这些光学元件。

4. 研究椭圆偏振光和圆偏振光的产生与检测。

二、实验原理1. 光的偏振性:光是一种电磁波,电磁波对物质的作用主要是电场。

在垂直于光波传播方向的平面内,光矢量可能有不同的振动方向,通常把光矢量保持一定振动方向上的状态称为偏振态。

2. 自然光与偏振光:自然光在垂直于传播方向的平面内,光矢量在各个方向上的振动分量相等。

偏振光在垂直于传播方向的平面内,光矢量只在一个方向上振动。

3. 偏振片:利用二向色性获得偏振光。

当自然光通过偏振片时,只有光矢量在偏振片透振方向上的分量能够通过,其他方向上的分量被吸收。

4. 1/2波片和1/4波片:1/2波片可以将线偏振光转换为圆偏振光,1/4波片可以将线偏振光转换为椭圆偏振光。

5. 马吕斯定律:当一束线偏振光通过一个偏振片时,出射光的强度与入射光的强度、入射光与偏振片的夹角有关。

当入射光与偏振片的夹角为θ时,出射光的强度为I = I0 cos^2(θ)。

三、实验仪器与设备1. 自然光源:He-Ne激光器、白光光源。

2. 偏振片:两块。

3. 1/2波片:两块。

4. 1/4波片:两块。

5. 光具座、白屏、刻度盘、导线等。

四、实验步骤1. 观察自然光的偏振现象:将自然光源照射到白屏上,用偏振片观察,可以看到光斑的明暗变化。

2. 验证马吕斯定律:将自然光通过偏振片,使偏振片透振方向与光具座上的刻度盘平行。

调整偏振片与刻度盘的夹角,记录光斑的明暗变化,并计算出射光的强度与入射光的强度、入射光与偏振片的夹角的关系。

3. 研究椭圆偏振光和圆偏振光的产生与检测:将自然光通过1/4波片,观察光斑的明暗变化,判断光斑是否为圆偏振光或椭圆偏振光。

4. 使用1/2波片将线偏振光转换为圆偏振光:将自然光通过1/2波片,观察光斑的明暗变化,判断光斑是否为圆偏振光。

光的偏振研究实验报告

光的偏振研究实验报告

光的偏振研究实验报告一、实验目的1、观察光的偏振现象,加深对偏振概念的理解。

2、掌握产生和检验偏振光的方法。

3、了解偏振片的特性以及马吕斯定律。

二、实验原理1、光的偏振态光可以看作是由电场和磁场相互垂直并垂直于光的传播方向的电磁波。

一般情况下,光的振动方向在垂直于传播方向的平面内是随机分布的,这种光称为自然光。

如果光的振动方向始终保持在一个特定的方向上,这种光称为线偏振光。

部分偏振光则是介于自然光和线偏振光之间的一种光,其振动方向在某一方向上占优势。

2、偏振片偏振片是一种只允许某一方向振动的光通过的光学元件。

其原理是利用某些物质的二向色性,即对不同方向振动的光具有不同的吸收程度。

3、马吕斯定律当一束强度为 I₀的线偏振光通过一个偏振化方向与光的振动方向夹角为θ的偏振片时,透过偏振片的光强 I 为:I = I₀cos²θ 。

三、实验仪器1、半导体激光器2、起偏器和检偏器(偏振片)3、光功率计4、旋转台四、实验步骤1、打开半导体激光器,调整其位置和角度,使激光束水平射出。

2、将起偏器安装在旋转台上,旋转起偏器,使通过起偏器的光强达到最大,此时起偏器的偏振化方向与激光的振动方向一致。

3、在起偏器后放置检偏器,旋转检偏器,观察光功率计的读数变化。

4、每隔 10°记录一次光功率计的读数,直至旋转 180°。

5、重复实验多次,以减小误差。

五、实验数据及处理|角度(°)| 0 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 |90 | 100 | 110 | 120 | 130 | 140 | 150 | 160 | 170 | 180 |||||||||||||||||||||||光强(mW)| 20 | 19 | 16 | 12 | 08 | 05 | 02 | 01 |005 | 0 | 005 | 01 | 02 | 05 | 08 | 12 | 16 | 19 | 20 |以角度为横坐标,光强为纵坐标,绘制光强与角度的关系曲线。

偏振光的实验报告

偏振光的实验报告

一、实验目的1. 了解偏振光的产生原理。

2. 掌握偏振光的检测方法。

3. 验证马吕斯定律,加深对光的偏振现象的认识。

二、实验原理1. 偏振光的产生光波是一种电磁波,具有横波特性。

当光波通过某些光学元件时,其振动方向会限定在某一平面内,这种光称为偏振光。

常见的偏振光产生方法有:(1)反射:当光从一种介质射向另一种介质时,部分光会被反射,反射光会发生偏振现象。

(2)折射:当光从一种介质射向另一种介质时,部分光会被折射,折射光也会发生偏振现象。

(3)起偏器:利用光学元件(如偏振片)选择性地透过某一方向的光,从而产生偏振光。

2. 偏振光的检测检测偏振光的方法主要有以下几种:(1)干涉法:利用两束偏振光相互干涉,观察干涉条纹的变化,从而判断光是否为偏振光。

(2)马吕斯定律:利用偏振片检测偏振光的振动方向,验证马吕斯定律。

(3)光电效应:利用光电探测器检测偏振光的强度变化,验证偏振光的存在。

3. 马吕斯定律当一束偏振光通过一个偏振片时,其振动方向与偏振片的透振方向平行时,光强最大;当振动方向与透振方向垂直时,光强为零。

马吕斯定律的表达式为:I = I0 cos²θ其中,I为透过偏振片后的光强,I0为入射光强,θ为入射光的振动方向与偏振片的透振方向之间的夹角。

三、实验仪器与材料1. 实验仪器:(1)He-Ne激光器(2)偏振片(两块)(3)1/4波片(两块)(4)光具座(5)白屏(6)刻度盘2. 实验材料:(1)玻璃平板(2)反射镜四、实验步骤1. 将He-Ne激光器固定在光具座上,调整激光束的传播方向,使其垂直于白屏。

2. 将一块偏振片放置在激光束的路径上,调整偏振片的透振方向,使其与激光束的振动方向平行。

3. 观察白屏上的光强变化,记录光强最大时的偏振片透振方向。

4. 将1/4波片放置在偏振片之后,调整1/4波片的位置,使透过1/4波片的光强最大。

5. 改变偏振片和1/4波片之间的夹角,观察光强变化,记录光强最小时的夹角。

偏振光学实验实验报告

偏振光学实验实验报告

偏振光学实验实验报告一、实验目的1、了解偏振光的基本概念和产生方法。

2、掌握偏振片的特性和使用方法。

3、观察和研究光的偏振现象,验证马吕斯定律。

4、了解波片的作用和线偏振光通过波片后的偏振状态变化。

二、实验原理1、偏振光的概念光是一种电磁波,其电场和磁场的振动方向垂直于光的传播方向。

一般情况下,光的振动方向是随机的,这种光称为自然光。

如果光的振动方向在某个特定的方向上具有优势,就称为偏振光。

偏振光可以分为线偏振光、圆偏振光和椭圆偏振光。

2、偏振片偏振片是一种只允许特定方向的光振动通过的光学元件。

其原理是利用某些材料的二向色性,即对不同方向的光振动吸收程度不同。

通过偏振片后的光成为线偏振光,其振动方向与偏振片的透振方向相同。

3、马吕斯定律当一束强度为 I₀的线偏振光通过一个透振方向与光振动方向夹角为θ 的偏振片时,其透过的光强 I 为:I = I₀cos²θ4、波片波片是一种能使光的偏振状态发生改变的光学元件。

常见的波片有1/4 波片和 1/2 波片。

当线偏振光通过 1/4 波片时,会变成椭圆偏振光或圆偏振光;当线偏振光通过 1/2 波片时,其偏振方向会旋转一定的角度。

三、实验仪器1、半导体激光器2、起偏器(偏振片)3、检偏器(偏振片)4、 1/4 波片5、光功率计四、实验步骤1、搭建实验光路将半导体激光器、起偏器、检偏器依次放置在光学导轨上,使激光束依次通过起偏器和检偏器,调整各器件的高度和角度,使光路保持水平。

2、观察自然光和偏振光(1)不放置起偏器,观察激光束的状态,此时为自然光。

(2)在光路中插入起偏器,旋转起偏器,观察通过起偏器后的光强变化,此时为线偏振光。

3、验证马吕斯定律(1)固定起偏器的透振方向,旋转检偏器,每隔 10°记录一次光功率计的读数。

(2)根据测量数据,绘制光强与角度的关系曲线,验证马吕斯定律。

4、研究 1/4 波片的作用(1)在起偏器和检偏器之间插入 1/4 波片,旋转 1/4 波片,观察光强的变化。

偏振光学实验报告

偏振光学实验报告

偏振光学实验报告偏振光的产⽣和检验⼀.实验⽬的1、掌握偏振光的产⽣原理和检验⽅法,观察线偏振光2. 验证马吕斯定律,测量布儒斯特⾓;⼆.实验原理1.光的偏振性光波是波长较短的电磁波,电磁波是横波,光波中的电⽮量与波的传播⽅向垂直。

光的偏振观象清楚地显⽰了光的横波性。

光⼤体上有五种偏振态,即线偏振光、圆偏振光、椭圆偏振光、⾃然光和部分偏振光。

⽽线偏振光和圆偏振光⼜可看作椭圆偏振光的特例。

(1)⾃然光光是由光源中⼤量原⼦或分⼦发出的。

普通光源中各个原⼦发出的光的波列不仅初相彼此不相关,⽽且光振动⽅向也是彼此不相关的,呈随机分布。

在垂直于光传播⽅向的平⾯内,沿各个⽅向振动的光⽮量都有。

平均说来,光⽮量具有轴对称⽽且均匀的分布,各⽅向光振动的振幅相同,各个振动之间没有固定的相联系,这种光称为⾃然光或⾮偏振光(见下图)。

我们设想把每个波列的光⽮量都沿任意取定的x轴和y轴分解,由于各波列的光⽮量的相和振动⽅向都是⽆规则分布的,将所有波列光⽮量的x分量和y分量分别叠加起来,得到的总光⽮量的分量Ex 和Ey之间没有固定的相关系,因⽽它们之间是不相⼲的。

同时Ex 和Ey的振幅是相等的,即Ax=Ay。

这样,我们可以把⾃然光分解为两束等幅的、振动⽅向互相垂直的、不相⼲的线偏振光。

这就是⾃然光的线偏振表⽰,如下图(a)所⽰。

分解的两束线偏振光具有相等的强度Ix =Iy,⼜因⾃然光强度I=Ix+Iy所以每束线偏振光的强度是⾃然光强度的1/2,即通常⽤图(b)的图⽰法表⽰⾃然光。

图中⽤短线和点分别表⽰在纸⾯内和垂直于纸⾯的光振动,点和短线交替均匀画出,表⽰光⽮量对称⽽均匀的分布。

(2)线偏振光光⽮量只沿⼀个固定的⽅向振动时,这种光称为线偏振光,⼜称为平⾯偏振光。

光⽮量的⽅向和光的传播⽅向所构成的平⾯称为振动⾯,如图(a )所⽰。

线偏振光的振动⾯是固定不动的,图(b )所⽰是线偏振光的表⽰⽅法,图中短竖线表⽰光振动在纸⾯内,点表⽰光振动垂直于纸⾯。

偏振光特性的研究实验报告

偏振光特性的研究实验报告

偏振光特性的研究实验报告篇一:偏振光特性的研究光学设计性实验论文偏振光特性的研究摘要:实验目的:(一)学习用光电转换的方法测定相对光强, 验证马吕斯定律。

(二)研究1/4波片的光学特性(三)研究半导体激光器的偏振特性(测出其偏振度)(四)研究物质的旋光特性(五)观察石英晶体的旋光特性和测量旋光度(六)观察旋光色散,并解释现象实验要求:(一)掌握各种偏振光的特性。

(二)学会辨别各种偏振光。

(三)了解偏振光干涉和双折射现象关键词:偏振、马吕斯定律、1/4波片、偏振特性、偏振度、旋光特性、旋光色散。

引言:光的干涉和衍射现象揭示了光的波动性质,而光的偏振现象进一步验证了光波是横波。

我们研究偏振现象不仅可以认识光的电磁波性质,而且可以对光的传播规律有许多新的认识。

实验原理:1.偏振光的种类光是电磁波,它的电矢量E和磁矢量H相互垂直,且又垂直于光的传播方向.通常用电矢量代表光矢量,并将光矢量和光的传播方向所构成的平面称为光的振动面.按光矢量的不同振动状态,可以把光分为五种偏振态:如光矢量沿着一个固定方向振动,称为线偏振光或平面偏振光;如在垂直于传播方向的平面内,光矢量的方向是任意的,且各个方向的振幅相等,则称为自然光;如果有的方向光矢量的振幅较大,有的方向振幅较小,则称为部分偏振光;如果光矢量的大小和方向随时间作周期性的变化,且光矢量的末端在垂直于光传播方向的平面内的轨迹是圆或椭圆,则分别称为圆偏振光或椭圆偏振光.能使自然光变成偏振光的装置或器件,称为起偏器;用来检验偏振光的装置或器件,称为检偏器.2.线偏振光的产生(1)反射和折射产生偏振根据布儒斯特定律,当自然光以ib?arctann的入射角从空气或真空入射至折射率为n的介质表面上时,其反射光为完全的线偏振光,振动面垂直于入射面,而透射光为部分偏振光,ib称为布儒斯特角.如果自然光以ib入射到一叠平行玻璃片堆上,则经过多次反射和折射最后从玻璃片堆透射出来的光也接近于线偏振光.玻璃片的数目越多,透射光的偏振度越高.(2)偏振片它是利用某些有机化合物晶体的“二向色性”制成的.当自然光通过这种偏振片后,光矢量垂直于偏振片透振方向的分量几乎完全被吸收,光矢量平行于透振方向的分量几乎完全通过,因此透射光基本上为线偏振光.(3)双折射产生偏振当自然光入射到某些双折射晶体(如方解石、石英等)时,经晶体的双折射所产生的寻常光(o光)和非常光(e光)都是线偏振光. 3.波晶片波晶片简称波片,它通常是一块光轴平行于表面的单轴晶片,一束平面偏振光垂直入射到波晶片后,便分解为振动方向与光轴方向平行的e光和与光轴方向垂直的o光两部分(如图1所示).这两种光在晶体内的传播方向虽然一致,但它们在晶体内传播的速度却不相同(为么?).于是,e光和o光通过波晶片后就产生固定的相位差?,即??2??(ne?no)l式中?为入射光的波长,l为晶片的厚度,ne和,no分别为e和o光的主折射率。

偏振光满分实验报告

偏振光满分实验报告

一、实验目的1. 了解光的偏振现象,验证马吕斯定律。

2. 掌握偏振光的产生、检测和调节方法。

3. 熟悉偏振光在光学器件中的应用。

二、实验原理光是一种电磁波,其电场矢量在垂直于传播方向的平面内可以有不同的振动方向。

当光波的电场矢量在某一平面内振动时,这种光称为偏振光。

偏振光可以由自然光通过偏振片产生。

当一束偏振光通过另一偏振片时,根据马吕斯定律,透射光的强度与两个偏振片的夹角有关。

三、实验仪器与材料1. 激光器2. 偏振片(两块)3. 波片(1/4波片和1/2波片)4. 光具座5. 白屏6. 玻璃平板7. 检流计四、实验步骤1. 将激光器、偏振片、波片和玻璃平板依次放置在光具座上,调整好光路,使激光束垂直照射到偏振片上。

2. 将第一块偏振片(起偏器)固定在光具座上,调整其方向,使激光束通过起偏器成为偏振光。

3. 将第二块偏振片(检偏器)固定在光具座上,调整其方向,观察白屏上的光斑变化。

4. 改变检偏器的方向,观察光斑的明暗变化,验证马吕斯定律。

5. 将波片插入光路,观察光斑的变化,分析波片对偏振光的作用。

6. 改变波片的厚度,观察光斑的变化,分析波片厚度的变化对偏振光的影响。

7. 将玻璃平板插入光路,观察光斑的变化,分析玻璃平板对偏振光的作用。

8. 通过调整光路,观察圆偏振光和椭圆偏振光的形成。

五、实验数据与处理1. 在实验过程中,记录不同角度下检偏器对光斑的影响,验证马吕斯定律。

2. 分析波片厚度对偏振光的影响,得出结论。

3. 分析玻璃平板对偏振光的影响,得出结论。

4. 通过观察光斑的变化,分析圆偏振光和椭圆偏振光的形成。

六、实验结果与分析1. 实验验证了马吕斯定律,即偏振光的强度与两个偏振片的夹角有关。

2. 波片可以改变偏振光的振动方向,其厚度对偏振光的影响较大。

3. 玻璃平板可以改变偏振光的传播方向,对偏振光的作用较小。

4. 通过调整光路,成功观察到圆偏振光和椭圆偏振光的形成。

七、实验总结1. 通过本次实验,加深了对光的偏振现象的认识,验证了马吕斯定律。

偏振光实验报告结论

偏振光实验报告结论

偏振光实验报告结论篇一:实验报告--偏振光学实验实验报告姓名: ***** 班级: ***** 学号: *****实验成绩:同组姓名:**** 实验日期:***** 指导教师:批阅日期:偏振光学实验实验目的1.观察光的偏振现象,验证马吕斯定律; 2.了解1 / 2 波片、1 / 4 波片的作用;3.掌握椭圆偏振光、圆偏振光的产生与检测。

实验原理1.光的偏振性光是一种电磁波,由于电磁波对物质的作用主要是电场,故在光学中把电场强度 E 称为光矢量。

在垂直于光波传播方向的平面内,光矢量可能有不同的振动方向,通常把光矢量保持一定振动方向上的状态称为偏振态。

如果光在传播过程中,若光矢量保持在固定平面上振动,这种振动状态称为平面振动态,此平面就称为振动面(见图1)。

此时光矢量在垂直与传播方向平面上的投影为一条直线,故又称为线偏振态。

若光矢量绕着传播方向旋转,其端点描绘的轨道为一个圆,这种偏振态称为圆偏振态。

如光矢量端点旋转的轨迹为一椭圆,就成为椭圆偏振态(见图2)。

2.偏振片虽然普通光源发出自然光,但在自然界中存在着各种偏振光,目前广泛使用的偏振光的器件是人造偏振片,它利用二向色性获得偏振光(有些各向同性介质,在某种作用下会呈现各向异性,能强烈吸收入射光矢量在某方向上的分量,而通过其垂直分量,从而使入射的自然光变为偏振光,介质的这种性质称为二向色性。

)。

偏振器件即可以用来使自然光变为平面偏振光——起偏,也可以用来鉴别线偏振光、自然光和部分偏振光——检偏。

用作起偏的偏振片叫做起偏器,用作检偏的偏振器件叫做检偏器。

实际上,起偏器和检偏器是通用的。

3.马吕斯定律设两偏振片的透振方向之间的夹角为α,透过起偏器的线偏振光振幅为A0,则透过检偏器的线偏振光的强度为I式中I0 为进入检偏器前(偏振片无吸收时)线偏振光的强度。

4.椭圆偏振光、圆偏振光的产生;1/2 波片和1/4 波片的作用当线偏振光垂直射入一块表面平行于光轴的晶片时,若其振动面与晶片的光轴成α角,该线偏振光将分为e 光、o 光两部分,它们的传播方向一致,但振动方向平行于光轴的 e 光与振动方向垂直于光轴的o 光在晶体中传播速度不同,因而产生的光程差为位相差为式中ne 为e 光的主折射率,no 为o 光的主折射率(正晶体中,δ>0,在负晶体中δ<0)。

偏振光实验的报告 .doc

偏振光实验的报告 .doc

偏振光实验的报告 .doc偏振光实验是一种通过光的偏振性质来研究物质的方法。

本实验主要通过探究偏振片的旋转、波片之间的相位差以及交叉偏振等现象来研究光的偏振性,并分析光的偏振性质在实际生活中的应用。

第一部分:偏振片的旋转实验首先,本实验使用一块偏振片作为偏振器,通过调整偏振片的角度,观察到光强度的变化。

结果表明,当偏振片垂直于光线传播方向时,光的强度为最小值;而当偏振片与光线传播方向平行时,光的强度为最大值。

这是由于偏振片只允许特定方向上的光通过,而垂直于偏振片方向的光无法通过,因此产生了光强度的变化。

接下来,我们将在偏振器和检偏器之间加入样品,比较在不同偏振片角度下样品对光的偏振状态的改变情况。

我们发现,当样品为无法旋转的普通透明物质时,输出光的强度与偏振片的角度无关,仍然是最小值或最大值;而当样品为旋转对称物质时,随着偏振片旋转角度的改变,输出光的强度会发生改变。

这是由于旋转对称物质能够改变光的偏振状态,并影响通过偏振片的光线强度。

第二部分:波片之间的相位差实验在本实验中,我们使用两个相同的波片,将波片放置在偏振器和检偏器之间,并旋转其位置,观察其在不同的相位差下的光强度变化。

结果表明,当两个波片的光轴方向平行且相位差为整数倍波长时,输出光的强度为最大值;而当两个波片的光轴方向垂直且相位差为奇数倍波长时,输出光的强度为最小值。

这是由于两个波片对光的振动方向和速度均产生了影响,造成了光的强度变化,同时也证明了光的波动性质。

交叉偏振实验是一种测量光强度的方法,可以用于研究光的性质以及物质对光的偏振性质的影响。

我们在实验室中搭建了一个交叉偏振仪,通过调整偏振片和检偏器的位置来观察光的偏振状态和强度变化。

结果表明,当偏振片和检偏器的方向相同时,输出光的强度最大;而当两者的方向垂直时,输出光的强度最小。

这是由于交叉偏振仪中的偏振片和检偏器能够对光的偏振状态进行控制,同时也能够对光的强度进行测量。

总结通过本次实验,我们了解了偏振光的基本概念和原理,并掌握了偏振片旋转、波片之间的相位差以及交叉偏振等实验方法。

偏振光学实验实验报告

偏振光学实验实验报告

一、实验目的1. 观察光的偏振现象,验证马吕斯定律。

2. 了解1/2波片和1/4波片的作用。

3. 掌握椭圆偏振光和圆偏振光的产生与检测。

二、实验原理光是一种电磁波,具有横波特性。

当光波通过某些介质时,其振动方向会被限制在某一特定方向上,这种现象称为光的偏振。

偏振光可分为线偏振光、椭圆偏振光和圆偏振光。

马吕斯定律描述了线偏振光通过偏振片时的光强变化。

当线偏振光的振动方向与偏振片的透振方向一致时,光强最大;当两者垂直时,光强为零。

1/2波片和1/4波片是常用的偏振元件。

1/2波片可以将线偏振光变为椭圆偏振光或圆偏振光,而1/4波片可以将椭圆偏振光或圆偏振光变为线偏振光。

三、实验仪器1. 自然光源2. 偏振片3. 1/2波片4. 1/4波片5. 硅光电池6. 检偏器7. 光具座8. 透镜9. 光屏10. 毫米刻度尺四、实验步骤1. 将自然光源放置在光具座上,调整光路使其成为平行光。

2. 将偏振片放置在光具座上,使入射光通过偏振片。

3. 将检偏器放置在光具座上,调整其位置,使透过偏振片的光能够照射到检偏器上。

4. 观察检偏器上的光强变化,记录光强最大和最小时的偏振片角度。

5. 将1/2波片放置在光具座上,调整其位置,使透过偏振片的光能够照射到1/2波片上。

6. 观察1/2波片后的光强变化,记录光强最大和最小时的1/2波片角度。

7. 将1/4波片放置在光具座上,调整其位置,使透过1/2波片的光能够照射到1/4波片上。

8. 观察1/4波片后的光强变化,记录光强最大和最小时的1/4波片角度。

9. 利用马吕斯定律,计算偏振片、1/2波片和1/4波片的透振方向与光矢量振动方向的夹角。

五、实验结果与分析1. 观察到当偏振片的透振方向与光矢量振动方向一致时,光强最大;当两者垂直时,光强为零,验证了马吕斯定律。

2. 观察到1/2波片可以将线偏振光变为椭圆偏振光或圆偏振光,1/4波片可以将椭圆偏振光或圆偏振光变为线偏振光。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验题目:偏振光的研究
实验者:PB08210426 李亚韬
实验目的:掌握分光计的工作原理,熟悉偏振光的原理和性质。

验证马吕斯定律,并根据
布儒斯特定律测定介质的折射率。

实验原理:
为了研究光的偏振态和利用光的偏振特性进行各种分析和测量工作,需要各种偏振元件:产生偏振光的元件、改变光的偏振态的元件等,下面分类介绍。

1
产生偏振光的元件
在激光器发明之前,一般的自然光源产生的光都是非偏振光,因此要产生偏振光都要使用产生偏振光的元件。

根据这些元件在实验中的作用,分为起偏器和检偏器。

起偏器是将自然光变成线偏振光的元件,检偏器是用于鉴别光的偏振态的元件。

在激光器谐振腔中可以利用布儒斯特角使输出的激光束是线偏振光。

将自然光变成偏振光的方法有很多,一个方法是利用光在界面反射和透射时光的偏振现象。

我们的先人在很早就已经对水平面的反射光有所研究,但定量的研究最早在1815年由布儒斯特完成。

反射光中的垂直于入射面的光振动(称s 分量)多于平行于入射面的光振动(称p 分量);而透射光则正好相反。

在改变入射角的时候,出现了一个特殊的现象,即入射角为一特定值时,反射光成为完全线偏振光(s 分量)。

折射光为部分偏振光,而且此时的反射光线和折射光线垂直,这种现象称之为布儒斯特定律。

该方法是可以获得线偏振光的方法
之一。

如图1所示。

因为此时
20π
γ=
+i ,γsin sin 201n i n =,
1
2
0000sin cos sin n n sin i i i tgi ===
γ,若n 1=1(为空气的折射率),则
2tgi n = (1)
0i 叫做布儒斯特角,所以通过测量布儒斯特角的大小可以测量介质的折射率。

由以上介绍可以知道利用反射可以产生偏振光,同样利用透射(多次透射)也可以产
生偏振光(玻璃堆)。

第二种是光学棱镜,如尼科耳棱镜、格兰棱镜等,它是利用晶体的双折射的原理制成的。

在晶体中存在一个特殊的方向(光轴方向),当光束沿着这个方向传播时,光束不分裂,光束偏离这个方向传播时,光束将分裂为两束,其中一束光遵守折射定律叫做寻常光(o 光),另一束光一般不遵守折射定律叫做非寻常光(e 光)。

o 光和e 光都是线偏振光(也叫完全偏振光),两者的光矢量的振动方向(在一般使用状态下)互相垂直。

改变射向晶体的入射光线的方向可以找到光轴方向,沿着这个方向,o 光和e 光的传播速度相等,折射率相同。

晶体可以有一个光轴,叫做单轴晶体,如方解石、石英,也可以有两个光轴,叫双轴晶体,如云母、硫磺等。

包含光轴和任一光线的平面叫对应于该光线的主平面,o 光电矢量的振动方向垂直于o 光主平面,e 光电矢量的振动方向平行于e 光主平面。

格兰棱镜由两块方解石直角棱镜构成,两棱镜间有空气间隙,方解石的光轴平行于棱镜的棱。

自然光垂直于界面射入棱镜后分为o 光和e 光,o 光在空气隙上全反射,只有e 光透过棱镜射出。

第三种是偏振片,它是利用聚乙烯醇塑胶膜制成,它具有梳状长链形结构分子,这些分子平行排列在同一方向上,此时胶膜只允许垂直于排列方向的光振动通过,因而产生线偏振光。

它的偏振性能不如格兰棱镜,但优点是价格便宜,且可以得到大面积的。

本实验中采用偏振片作为起偏器和检偏器。

2. 波晶片:
又称位相延迟片,是改变光的偏振态的元件。

它是从单轴晶体中切割下来的平行平面板,由于波晶片内的速度v o ,v e 不同(所以折射率也就不同),所以造成o 光和e 光通过波晶片的光程也不同。

当两光束通过波晶片后o 光的位相相对于e 光延迟量为,
d
n n e o )(2-=
∆λ
π
(2)
若满足
4/)(λλ±=-m d n n o e ,即

π∆±
=2m 我们称之为4/λ片,若满足
2/)(λλ±=-m d n n o e ,即ππ∆±=2m ,我们称之为2/λ片,若满足λλ±=-m d n n o e )(,即ππ∆22m ±=我们称之为全波片(m 为整数)。

波晶片可以用来检验和改变光的偏振态,如图4所示,在起偏器后加上一个4/λ波片,旋转起偏器或4/λ波片就可以得到园或者椭圆偏振光[细节和方法参见文献2、3]。

4/λ波片是椭偏仪中的重要元件,而椭偏仪可以精确测量薄膜的厚度和折射率,是材料科学研究中常用的精密仪器。

偏振光的研究从马吕斯定律开始,马吕斯定律也是最基本和最重要的偏振定律。

马吕斯在1809年发现,完全线偏振光通过检偏器后的光强可表示为
θ20cos I I = (3)
其中的E 是检偏器的偏振方向和起偏器偏振方向的夹角。

实验仪器:
1、.半导体激光器(波长650nm )
2、起偏器、
3、检偏器、
4、分光计和数字式检流
计。

实验过程及数据处理与分析:
1、仪器调节:
(1)首先利用双平面镜调节放半导体激光器的光管(以下简称管1)使其与仪器的旋转主轴垂直(也就是说与度盘平面平行),同时使分光计载物台与度盘平面平行。

(2) 检查输出信号是否与数字检流计接好,检流计量程选择1档开关放在1档,调节零点旋钮,使数据显示为“-.000”(负号闪烁)。

2、测量半导体激光器的偏振度
在管1上套上起偏器P 1,将量程选择4档开关打到第4档,(将起偏器竖直方向调到0),旋转起偏器找到光强最强的位置,记录角度和光强值I max 。

再将起偏器旋转90,记录角度和光强值I min 。

根据公式计算激光的偏振度P :
min
max min max
I I I I p +-= (4)
Imin = 1.2 Imax = 145.9
则由(4)式可计算得:
P=0.983
3、验证马吕斯定律
检流计仍放在4档,在测量过程中也不要换档。

将起偏器放在光强最强的位置,在管2另一端套上检偏器P 2并使竖直方向为0。

然后旋转检偏器P 2使检流计的光强最小(仍在4档可以调为0)。

此时可以认为P 1 与P 2偏振方向的夹角为90,记录此时P 2偏振方向的绝对角度值、相对角度值和光强值I ,以后每隔10记录一次,直到P 1 与P 2偏振方向的夹角为
-90,I 0为 P 1 与P 2偏振方向的夹角为0时的光强值,作出I/I 0cos 2
的关系曲线(090,0-90各一条,用最小二乘法求出斜率和截距,根据马吕斯定律斜率应为1,截距应为0,分析实验的误差)。

1) -90~0
Theta Ip Cos^2 -90 0 1.06939E-26 -85 2 0.0076 -80 6.4 0.03015 -75 13.2 0.06699 -70 22 0.11698 -65
32.2
0.17861
用Origin线性拟合并分析误差:
2)0~90
Theta Ip Cos^2
0 164 1
5 161.8 0.9924
10 157.1 0.96985
15 150.1 0.93301
20 141.3 0.88302
25 130.2 0.82139
30 118.1 0.75
35 104.4 0.67101
40 90 0.58682
45 75.6 0.5
50 61.4 0.41318
55 48.2 0.32899
60 35.7 0.25
65 23.7 0.17861
70 15 0.11698
75 8.3 0.06699
80 3 0.03015
85 0.3 0.0076
90 0.1 1.06939E-26 用Origin线性拟合并分析误差:
4、测量布儒斯特角:
θθ’Δθ
84º34’140º25’55º51’
124º55’181º45’56º50’
40º96º40’56º40’
Δθ=56º21’≈57º和理论上基本符合
思考题:
1,如何利用分光计测量玻璃平板的折射率?写出实验步骤。

取下检偏器P2将玻璃平板放在载物台的中心,旋转载物台使反射光反射回激光器入射方向(注意此时要锁紧载物台固定螺钉和度盘固定螺钉,松开游标盘固定螺钉),记下游标的刻度,再旋转游标盘使入射角为57,用一张白纸接受从样品平面反射的光点,调节P1的角度使光强为最弱,此时从P1的出射的光矢量的振动方向为平行于入射面的p矢量。

旋转游标盘使入射角在57附近转动找出完全消光的位置,计下此时游标的刻度,这个角度就是布儒斯特角,由布儒斯特定律求出玻璃平板的折射率n。

相关文档
最新文档