2017高考文科数学全国2卷试题与答案解析[]
2017年普通高等学校招生全国统一考试文科数学Ⅱ卷(含答案及详尽解析)
全国卷Ⅱ(文科)第Ⅰ卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合A ={1,2,3},B ={2,3,4},则A ∪B =( ) A .{1,2,3,4} B .{1,2,3} C .{2,3,4} D .{1,3,4}解析:依题意得A ∪B ={1,2,3,4},选A. 答案:A2.(1+i)(2+i)=( ) A .1-i B .1+3i C .3+i D .3+3i解析:依题意得(1+i)(2+i)=2+i 2+3i =1+3i ,选B. 答案:B3.函数f (x )=sin(2x +π3)的最小正周期为( )A .4πB .2πC .π D.π2解析:依题意得,函数f (x )=sin(2x +π3)的最小正周期T =2π2=π,选C.答案:C4.设非零向量a ,b 满足|a +b |=|a -b |,则( ) A .a ⊥b B .|a |=|b | C .a ∥b D .|a |>|b |解析:依题意得(a +b )2-(a -b )2=0,即4a ·b =0,a ⊥b ,选A. 答案:A5.若a >1,则双曲线x 2a 2-y 2=1的离心率的取值范围是( )A .(2,+∞)B .(2,2)C .(1,2)D .(1,2)解析:依题意得,双曲线的离心率e = 1+1a2,因为a >1,所以e ∈(1,2),选C.答案:C6.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )A .90πB .63πC .42πD .36π解析:依题意,题中的几何体是用一个平面将一个底面半径为3、高为10的圆柱截去一部分后所剩余的部分,可在该几何体的上方拼接一个与之完全相同的几何体,从而形成一个底面半径为3、高为10+4=14的圆柱,因此该几何体的体积等于12×(π×32)×14=63π,选B.答案:B7.设x ,y 满足约束条件⎩⎪⎨⎪⎧2x +3y -3≤0,2x -3y +3≥0,y +3≥0,则z =2x +y 的最小值是( )A .-15B .-9C .1D .9解析:依题意,在坐标平面内画出不等式组表示的平面区域及直线2x +y =0(图略),平移直线y =-2x ,当直线经过点(-6,-3)时,z =2x +y 取得最小值,z min =2×(-6)+(-3)=-15,选A.答案:A8.函数f (x )=ln(x 2-2x -8)的单调递增区间是( ) A .(-∞,-2) B .(-∞,1) C .(1,+∞) D .(4,+∞)解析:由x 2-2x -8>0,得x <-2或x >4.因此,函数f (x )=ln(x 2-2x -8)的定义域是(-∞,-2)∪(4,+∞).注意到函数y =x 2-2x -8在(4,+∞)上单调递增,由复合函数的单调性知,f (x )=ln(x 2-2x -8)的单调递增区间是(4,+∞),选D.答案:D9.甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则()A.乙可以知道四人的成绩B.丁可以知道四人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩解析:依题意,由于甲看后还是不知道自己的成绩,说明乙、丙两人必是一个优秀、一个良好,则甲、丁两人必是一个优秀、一个良好,因此乙看了丙的成绩就可以知道自己的成绩,丁看了甲的成绩就清楚自己的成绩,综合以上信息可知,乙、丁可以知道自己的成绩,选D.答案:D10.执行如图所示的程序框图,如果输入的a =-1,则输出的S =( ) A .2 B .3 C .4 D .5解析:依题意,当输入的a =-1时,执行程序框图,进行第一次循环:S =0+(-1)×1=-1,a =1,K =2;进行第二次循环:S =-1+1×2=1,a =-1,K =3;进行第三次循环:S =1+(-1)×3=-2,a =1,K =4;进行第四次循环:S =-2+1×4=2,a =-1,K =5;进行第五次循环:S =2+(-1)×5=-3,a =1,K =6;进行第六次循环:S =-3+1×6=3,a =-1,K =7.此时K =7>6,结束循环,输出的S =3,选B.答案:B11.从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为( )A.110B.15 C.310 D.25解析:依题意,记两次取得卡片上的数字依次为a ,b ,则一共有25个不同的数组(a ,b ),其中满足a >b 的数组共有10个,分别为(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3),(5,4),因此所求的概率为1025=25,选D.答案:D12.过抛物线C :y 2=4x 的焦点F ,且斜率为3的直线交C 于点M (M 在x 轴的上方),l 为C 的准线,点N 在l 上,且MN ⊥l ,则M 到直线NF 的距离为( )A. 5 B .2 2C .2 3D .3 3 解析:依题意,得F (1,0), 则直线FM 的方程是y =3(x -1).由⎩⎪⎨⎪⎧y =3(x -1),y 2=4x ,得x =13或x =3.由M 在x 轴的上方,得M (3,23),由MN ⊥l ,得|MN |=|MF |=3+1=4,又∠NMF 等于直线FM 的倾斜角,即∠NMF =60°,因此△MNF 是边长为4的等边三角形,点M 到直线NF 的距离为4×32=23,选C. 答案:C第Ⅱ卷本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~23题为选考题,考生根据要求作答.二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.函数f (x )=2cos x +sin x 的最大值为________. 解析:依题意,得f (x )=5sin(x +θ)(其中sin θ=25,cos θ=15).因此函数f (x )的最大值是 5.答案: 514.已知函数f (x )是定义在R 上的奇函数,当x ∈(-∞,0)时,f (x )=2x 3+x 2,则f (2)=________.解析:依题意得,f (-2)=2×(-2)3+(-2)2=-12,由函数f (x )是奇函数,得f (2)=-f (-2)=12.答案:1215.长方体的长、宽、高分别为3、2、1,其顶点都在球O 的球面上,则球O 的表面积为________.解析:依题意得,长方体的体对角线长为32+22+12=14,记长方体的外接球的半径为R ,则有2R =14,R =142,因此球O 的表面积等于4πR 2=14π. 答案:14π16.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若2b cos B =a cos C +c cos A ,则B =________.解析:依题意得2b ×a 2+c 2-b 22ac =a ×a 2+b 2-c 22ab +c ×b 2+c 2-a 22bc ,即a 2+c 2-b 2=ac ,所以2ac cos B =ac >0,cos B =12.又0<B <π,所以B =π3.答案:π3三、解答题(解答应写出文字说明,证明过程或演算步骤)17.(本小题满分12分)已知等差数列{a n }的前n 项和为S n ,等比数列{b n }的前n 项和为T n ,a 1=-1,b 1=1,a 2+b 2=2.(1)若a 3+b 3=5,求{b n }的通项公式; (2)若T 3=21,求S 3.解析:设{a n }的公差为d ,{b n }的公比为q , 则a n =-1+(n -1)d ,b n =q n -1. 由a 2+b 2=2得d +q =3. ① (1)由a 3+b 3=5得2d +q 2=6. ②联立①和②解得⎩⎪⎨⎪⎧ d =3,q =0(舍去),⎩⎪⎨⎪⎧d =1,q =2.因此{b n }的通项公式为b n =2n -1. (2)由b 1=1,T 3=21得q 2+q -20=0, 解得q =-5,q =4.当q =-5时,由①得d =8,则S 3=21. 当q =4时,由①得d =-1,则S 3=-6. 18.(本小题满分12分)如图,四棱锥P ABCD 中,侧面P AD 为等边三角形且垂直于底面ABCD ,AB =BC =12AD ,∠BAD =∠ABC =90°.(1)证明:直线BC ∥平面P AD ;(2)若△PCD 的面积为27,求四棱锥P ABCD 的体积.解析:(1)证明:在平面ABCD 内,因为∠BAD =∠ABC =90°,所以BC ∥AD . 又BC ⊄平面P AD ,AD ⊂平面P AD ,故BC ∥平面P AD .(2)取AD 的中点M ,连接PM ,CM .由AB =BC =12AD 及BC ∥AD ,∠ABC =90°得四边形ABCM 为正方形,则CM ⊥AD .因为侧面P AD 为等边三角形且垂直于底面ABCD ,平面P AD ∩平面ABCD =AD ,所以PM ⊥AD ,PM ⊥底面ABCD .因为CM ⊂底面ABCD ,所以PM ⊥CM .设BC =x ,则CM =x ,CD =2x ,PM =3x ,PC =PD =2x . 取CD 的中点N ,连接PN ,则PN ⊥CD ,所以PN =142x . 因为△PCD 的面积为27, 所以12×2x ×142x =27,解得x =-2(舍去)或x =2.于是AB =BC =2,AD =4,PM =2 3.所以四棱锥P ABCD 的体积V =13×2×(2+4)2×23=4 3.19.(本小题满分12分)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如下:旧养殖法新养殖法(1)记A 表示事件“旧养殖法的箱产量低于50 kg ”,估计A 的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关;(3) 附:,K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ).解析:(1)旧养殖法的箱产量低于50 kg 的频率为 (0.012+0.014+0.024+0.034+0.040)×5=0.62. 因此,事件A 的概率估计值为0.62. (2)根据箱产量的频率分布直方图得列联表K 2=200×(62×66-34×38)100×100×96×104≈15.705.由于15.705>6.635,故有99%的把握认为箱产量与养殖方法有关.(3)箱产量的频率分布直方图表明:新养殖法的箱产量平均值(或中位数)在50 kg 到55 kg之间,旧养殖法的箱产量平均值(或中位数)在45 kg 到50 kg 之间,且新养殖法的箱产量分布集中程度较旧养殖法的箱产量分布集中程度高,因此,可以认为新养殖法的箱产量较高且稳定,从而新养殖法优于旧养殖法.20.(本小题满分12分)设O 为坐标原点,动点M 在椭圆C :x 22+y 2=1上,过M 作x轴的垂线,垂足为N ,点P 满足NP →= 2 NM →.(1)求点P 的轨迹方程;(2)设点Q 在直线x =-3上,且OP →·PQ →=1,证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .解析:(1)设P (x ,y ),M (x 0,y 0),则N (x 0,0),NP →=(x -x 0,y ),NM →=(0,y 0), 由NP →= 2 NM →得x 0=x ,y 0=22y .因为M (x 0,y 0)在C 上,所以x 22+y 22=1.因此点P 的轨迹方程为x 2+y 2=2.(2)证明:由题意知F (-1,0).设Q (-3,t ),P (m ,n ),则 OQ →=(-3,t ),PF →=(-1-m ,-n ), OQ →·PF →=3+3m -tn ,OP →=(m ,n ),PQ →=(-3-m ,t -n ),由OP →·PQ →=1得-3m -m 2+tn -n 2=1,又由(1)知m 2+n 2=2,故3+3m -tn =0. 所以OQ →·PF →=0,即OQ →⊥PF →,又过点P 存在唯一直线垂直于OQ ,所以过点P 且垂直于OQ 的直线l 过C 的左焦点F .21.(本小题满分12分)设函数f (x )=(1-x 2)e x . (1)讨论f (x )的单调性;(2)当x ≥0时,f (x )≤ax +1,求a 的取值范围. 解析:(1)f ′(x )=(1-2x -x 2)e x .令f ′(x )=0得x =-1-2或x =-1+ 2. 当x ∈(-∞,-1-2)时,f ′(x )<0;当x ∈(-1-2,-1+2)时,f ′(x )>0; 当x ∈(-1+2,+∞)时,f ′(x )<0.所以f (x )在(-∞,-1-2),(-1+2,+∞)单调递减,在(-1-2,-1+2)单调递增.(2)f (x )=(1+x )(1-x )e x .当a ≥1时,设函数h (x )=(1-x )e x ,h ′(x )=-x e x <0(x >0),因此h (x )在[0,+∞)单调递减,而h (0)=1,故h (x )≤1,所以f (x )=(x +1)h (x )≤x +1≤ax +1.当0<a <1时,设函数g (x )=e x -x -1,g ′(x )=e x -1>0(x >0),所以g (x )在[0,+∞)单调递增,而g (0)=0,故e x ≥x +1.当0<x <1时,f (x )>(1-x )(1+x )2,(1-x )(1+x )2-ax -1=x (1-a -x -x 2),取x 0=5-4a -12,则x 0∈(0,1),(1-x 0)(1+x 0)2-ax 0-1=0,故f (x 0)>ax 0+1. 当a ≤0时,取x 0=5-12,则x 0∈(0,1),f (x 0)>(1-x 0)(1+x 0)2=1≥ax 0+1.综上,a 的取值范围是[1,+∞).请考生在第22~23题中任选一题作答,如果多做,则按所做的第一题计分.作答时请写清题号.22.(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 1的极坐标方程为ρcos θ=4.(1)M 为曲线C 1上的动点,点P 在线段OM 上,且满足|OM |·|OP |=16,求点P 的轨迹C 2的直角坐标方程;(2)设点A 的极坐标为(2,π3),点B 在曲线C 2上,求△OAB 面积的最大值.解析:(1)设P 的极坐标为(ρ,θ)(ρ>0),M 的极坐标为(ρ1,θ)(ρ1>0). 由题设知|OP |=ρ,|OM |=ρ1=4cos θ. 由|OM |·|OP |=16得C 2的极坐标方程ρ=4cos θ(ρ>0). 因此C 2的直角坐标方程为(x -2)2+y 2=4(x ≠0). (2)设点B 的极坐标为(ρB ,α)(ρB >0).2017年普通高等学校招生全国统一考试文科数学Ⅱ卷(大儒诚信教育资源) 由题设知|OA |=2,ρB =4cos α,于是△OAB 面积S =12|OA |·ρB ·sin ∠AOB =4cos α·|sin(α-π3)| =2|sin(2α-π3)-32| ≤2+ 3.当α=-π12时,S 取得最大值2+ 3. 所以△OAB 面积的最大值为2+ 3.23.(本小题满分10分)选修4—5:不等式选讲已知a >0,b >0,a 3+b 3=2.证明:(1)(a +b )(a 5+b 5)≥4;(2)a +b ≤2.证明:(1)(a +b )(a 5+b 5)=a 6+ab 5+a 5b +b 6=(a 3+b 3)2-2a 3b 3+ab (a 4+b 4)=4+ab (a 2-b 2)2≥4.(2)因为(a +b )3=a 3+3a 2b +3ab 2+b 3=2+3ab (a +b )≤2+3(a +b )24(a +b ) =2+3(a +b )34, 所以(a +b )3≤8,因此a +b ≤2.。
2017年全国普通高等学校招生统一考试文科数学(新课标2卷精编版)-附答案解析
箱产量≥50kg
旧养殖法
新养殖法
(3)根据箱产量的频率分布直方图,对两种养殖方法的优劣进行较。
附:
P(K2≥k)
0.050
0.010
0.001
k
3.841
6.635
10.828
20.设O为坐标原点,动点M在椭圆C 上,过M作x轴的垂线,垂足为N,点P满足 .
(1)求点P的轨迹方程;
(2)设点 在直线 上,且 .证明:过点P且垂直于OQ的直线 过C的左焦点F.
zmin=-12-3=-15.
故选:A
【点睛】
此题考查二元一次不等式组表示平面区域,解决线性规划问题,通过平移目标函数表示的直线求得最值.
8.D
【解析】
由 >0得:x∈(−∞,−2)∪(4,+∞),
令t= ,则y=lnt,
∵x∈(−∞,−2)时,t= 为减函数;
x∈(4,+∞)时,t= 为增函数;
y=lnt为增函数,
15.长方体的长,宽,高分别为3,2,1,其顶点都在球O的球面上,则球O的表面积为__________.
16. 的内角 的对边分别为 ,若 ,则 ________.
17.已知等差数列 的前 项和为 ,等比数列 的前 项和为 ,且 , , .
(1)若 ,求 的通项公式;
(2)若 ,求 .
18.四棱锥 中,侧面 为等边三角形且垂直于底面 ,
(1)证明:直线 平面 ;
(2)若△ 面积为 ,求四棱锥 的体积.
19.海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如下:
(1)记A表示事件“旧养殖法的箱产量低于50kg”,估计A的概率;
2017高考文数全国2卷-解析版
评表 1分项工程质量检验评定表分项工程名称:照明设施所属分部工程名称:照明设施所属单位工程:机电工程工程部位:施工单位:监理单位:基本要求照明器和亮度传感器的类型、规格、适用场所、有效范围、数量、位置、安装间距、安装质量等符合要求;设备的电力线、信号线、接地线的类型、规格、数量、布设方式、位置、连接质量等符合要求;路面照明、建筑物(构造物)的景观照明、航空障碍灯、桥墩障碍灯等照明设施完整、协调。
实测项目项次检查项目单位规定值或允许偏差实测值或实测偏差值质量评定1 2 3 4 5 6 7 平均值、代表值合格率(%) 权值得分1 灯杆基础尺寸mm 符合设计要求2 金属灯杆防腐涂层壁厚μm 镀锌:≥85μm 115.6 97.6 105.3 93.5 100% 1 1003 灯杆垂直度mm ≤5mm/m +3 -2 +1 +4 100% 1 1004照明设备控制装置的接地电阻Ω≤4Ω0.76 0.82 0.52 0.85 100% 1 1005 灯杆接地电阻Ω≤10Ω0.58 0.73 0.61 0.65 100% 1 1006自动、手动两种方式控制全部或部分照明器的开闭可控通过通过通过通过100% 1 100 7亮度传感器与照明器的联动功能可控通过通过通过通过100% 1 1008 定时控制功能可控通过通过通过通过100% 1 100合计7 700 外观鉴定个别线缆标识不清、杆内有废料、灯杆表面局部有刮伤。
减分 4监理意见符合设计、规范要求。
质量保证资料资料齐全减分0工程质量等级评定评分:96.0 质量等级:合格检验负责人:检测:记录:复核:2011 年8 月15 日注:机电工程的功能试验检查项目,规定值或允许偏差是指功能或试验要求;实测值或实测偏差是指检查结果,即“通过”或“不通过”。
评表2分部工程质量检验评定表分部工程名称:照明设施所属单位工程:机电工程所属建设项目:工程部位:(桩号、墩台号、孔号)施工单位:监理单位:监理单位分项工程备注工程名称质量评定实得分权值加权得分等级照明设施96.0 1 96.0 合格合计 1 96.0质量等级合格加权平均分96.0 评定意见工程质量得分为96.0分,质量等级为合格。
2017年普通高等学校招生全国统一考试数学试题 文(全国卷2,含解析)
绝密★启用前2017年普通高等学校招生全国统一考试课标II文科数学【命题特点】2017年高考全国新课标II数学卷,试卷结构在保持稳定的前提下,进行了微调,一是取消试卷中的第Ⅰ卷与第II卷,把解答题分为必考题与选考题两部分,二是根据中学教学实际把选考题中的三选一调整为二选一。
试卷坚持对基础知识、基本方法与基本技能的考查, 注重数学在生活中的应用。
同时在保持稳定的基础上,进行适度的改革和创新,与2016年相比难度稳中有降略。
具体来说还有以下几个特点:1.知识点分布保持稳定小知识点集合,复数,程序框图,线性规划,向量问题,三视图保持一道小题的占比,大知识点三角数列三小一大,概率统计一大一小,立体几何两小一大,圆锥曲线两小一大,函数导数三小一大(或两小一大)。
2.注重对数学文化与数学应用的考查教育部2017年新修订的《考试大纲(数学)》中增加了数学文化的考查要求。
2017高考数学全国卷II理科第3题以《算法统宗》中的数学问题为进行背景,文科18题以以养殖水产为题材,贴近生活。
3.注重基础,体现核心素养2017年高考数学试卷整体上保持一定比例的基础题,试卷注重通性通法在解题中的运用,另外抽象、推理和建模是数学的基本思想,也是数学研究的重要方法,试卷对此都有涉及。
【命题趋势】1.函数知识:函数性质的综合应用、以导数知识为背景的函数问题是高考命题热点,函数性质重点是奇偶性、单调性及图象的应用,导数重点考查其在研究函数中的应用,注重分类讨论及化归思想的应用。
2. 立体几何知识:立体几何一般有两道小题一道大题,小题中三视图是必考问题,常与几何的面积与体积结合在一起考查,解答题一般分2进行考查。
3.解析几何知识:解析几何试题一般有3道,圆、椭圆、双曲线、抛物线一般都会涉及,双曲线一般作为客观题进行考查,多为容易题,解答题一般以椭圆与抛物线为载体进行考查,运算量较大,不过近几年高考适当控制了运算量,难度有所降低。
4.三角函数与数列:三角函数与数列解答题一般轮流出现,若解答题为数列题,一般比较容易,重点考查基本量求通项及几种求和方法,若解答题为三角函数,一般是解三角形问题,此时客观题中一般会有一道与三角函数性质有关的题目,同时客观题中会有两道数列题,一易一难,数列客观题一般具有小巧活的特点。
2017年全国卷2文科数学试题及参考答案-精选.pdf
绝密★启封并使用完毕前试题类型:新课标II2017年普通高等学校招生全国统一考试文科数学本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,共24题,共150分,共4页。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑字迹的签字笔书写,字体工整,笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.作图可先用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠、不要弄破,不准使用涂改液、修正液、刮纸刀。
第I 卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合123234A B,,,,,,则A B=A.123,4,, B.123,, C.234,, D.134,,【答案】A 【解析】由题意{1,2,3,4}A B ,故选 A.2.12ii A.1i B. 1+3iC. 3+iD.3+3i【答案】B 【解析】由题意1213iii3.函数sin 23f xx的最小正周期为A.4B.2C.D.2【答案】C 【解析】由题意22T,故选 C.4.设非零向量a ,b 满足a ba b 则A .a bB. ab C. //a b D. ab【答案】A 【解析】由||||a b a b 平方得2222()2()()2()a ab b a ab b ,即0a b ,则a b ,故选A. 5.若1a,则双曲线2221xya的离心率的取值范围是A. 2+(,)B. 22(,)C. 2(1,)D. 12(,)【答案】C 【解析】由题意的22222221111,1,112,12c aea e aaaa6.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为A.90B.63C.42D.36【答案】B【解析】由题意,该几何体是由高为6的圆柱截取一半后的图形加上高为4的圆柱,故其体积为2213634632V,故选 B.7.设x 、y 满足约束条件2+33023303x y x yy ,则2zxy 的最小值是A. -15B.-9C. 1 D 9【答案】A绘制不等式组表示的可行域,结合目标函数的几何意义可得函数在点6,3B处取得最小值12315z.故选A.8.函数2()ln(28)f x xx 的单调递增区间是A.,2B.,1C.1,D. 4,【答案】D【解析】函数有意义,则2280xx ,解得2x 或4x ,结合二次函数的单调性,对数函数的单调性和复合函数同增异减的原则可得函数的单调区间为4,9.甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩,老师说,你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩,看后甲对大家说:我还是不知道我的成绩,根据以上信息,则A.乙可以知道两人的成绩B.丁可能知道两人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩【答案】D【解析】由甲的说法可知乙、丙一人优秀一人良好,则甲丁一人优秀一人良好,乙看到丙的结果则知道自己的结果,丁看到甲的结果则知道自己的结果,故选 D.10.执行右面的程序框图,如果输入的a=-1,则输出的S=A.2B.3C.4D.5【答案】B【解析】阅读流程图,初始化数值1,1,0a k S循环结果执行如下:第一次:1,1,2S a k;第二次:1,1,3S a k;第三次:2,1,4S a k;第四次:2,1,5S a k;第五次:3,1,6S a k;第六次:3,1,7S a k;循环结束,输出3S11.从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为A.110B.15C.310D.25【答案】D【解析】如下表所示,表中的点横坐标表示第一次取到的数,纵坐标表示第二次取到的数总计有25种情况,满足条件的有10种所以所求概率为102255。
2017年高考文科数学全国卷2含答案
绝密★启用前2017年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共35小题,每小题4分,共140分。
在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合{}1,2,3A =,{}2,3,4B =,则A B =( )A .{}1,2,3,4B .{}1,2,3C .{}2,3,4D .{}1,3,4 2.(1i)(2i)++=( )A .1i -B .13i +C .3i +D .33i + 3.函数()sin 23f x x π⎛⎫=+ ⎪⎝⎭的最小正周期为( )A .4πB .2πC .πD .π24.设非零向量a ,b 满足=+-a b a b ,则( )A .⊥a bB .=a bC .∥a bD .>a b 5.若1a >,则双曲线2221x y a-=的离心率的取值范围是( )A.)+∞B .C .D .(1,2)6.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截取一部分后所得,则该几何体的体积为( )A .90πB .63πC .42πD .36π7.设x ,y 满足约束条件2330,2330,30,x y x y y +-⎧⎪-+⎨⎪+⎩≤≥≥则2z x y =+的最小值是( )A .15-B .9-C .1D .9 8.函数2()ln(28)f x x x =--的单调增区间是( )A .(,2)-∞-B .(,1)-∞C .(1,)+∞D .(4,)+∞9.甲、乙、丙、丁四位同学一起去向老师咨询成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则( )A .乙可以知道四人的成绩B .丁可以知道四人的成绩C .乙、丁可以知道对方的成绩D .乙、丁可以知道自己的成绩10.执行右面的程序框图,如果输入的1a =-,则输出的S =( ) A .2B .3C .4D .511.从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为( )A .110B .15C .310D .2512.过抛物线2:4C y x =的焦点F ,C 于点M (M 在x 轴的上方),l 为C 的准线,点N 在l 上且MN l ⊥,则M到直线NF 的距离为( )AB.C .D .-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________二、填空题:本题共4小题,每小题5分,共20分. 13.函数()2cos sin f x x x =+的最大值为 .14.已知函数()f x 是定义在R 上的奇函数,当(,0)x ∈-∞时32()2f x x x =+,则(2)f = .15.长方体的长宽高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为 .16.ABC △的内角A ,B ,C 的对边分别为a ,b ,c .若2cos cos cos b B a C c A =+,则=B .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.(12分)已知等差数列{}n a 的前n 项和为n S ,等比数列{}n b 的前n 项和为n T ,11a =-,11b =,222a b +=.(1)若335a b +=,求{}n b 的通项公式; (2)若321T =,求3S .18.(12分)如图,四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD ,12AB BC AD ==,90BAD ABC ∠=∠=. (1)证明:直线BC ∥平面PAD ;(2)若P C D △的面积为求四棱锥P ABCD -的体积.19.(12分)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取100个网箱,测量各网箱水产品的产量(单位:kg ),其频率分布直方图如下:(1)记A 表示事件“旧养殖法的箱产量低于50 kg ”,估计A 的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法(3附:22()()()()()n ad bc K a b c d a c b d -=++++20.(12分) 设O 为坐标原点,动点M 在椭圆22:12x C y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足2NP NM =. (1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .21.(12分)设函数2()(1)e x f x x =-. (1)讨论()f x 的单调性;(2)当0x ≥时,若()1f x ax +≤,求a 的取值范围.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4—4:坐标系与参数方程](10分)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为cos 4ρθ=.(1)M 为曲线1C 上的动点,点P 在线段OM 上,且满足16OM OP ⋅=,求点P 的轨迹2C 的直角坐标方程;(2)设点A 的极坐标为2,3π⎛⎫⎪⎝⎭,点B 在曲线2C 上,求OAB △面积的最大值.23.[选修4—5:不等式选讲](10分) 已知0a >,0b >,332a b +=.证明: (1)55()()4a b a b ++≥; (2)2a b +≤.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________2017年普通高等学校招生全国统一考试文科数学答案解析一、选择题 1.【答案】A 【解析】1,2,32,{}{}{3,41,2,3,4}A B ==.故选A.2.【答案】B【解析】21i 2i 2i 2i ()i 23i 113i ()==-=+++++++.故选B.3.【答案】C【解析】最小正周期2ππ2T ==.故选C. 4.【答案】A【解析】由||=||+-a b a b ,两边平方得222222++=-+a a b b a a b b ,即0=a b ,则⊥a b .故选A. 5.【答案】C【解析】222222111c a e a a a +===+.∵1a >,∴21112a +<<,则1e <故选C. 6.【答案】B【解析】由题意,该几何体是一个组合体,下半部分是一个底面半径为3,高为4的圆柱,其体积21π3436πV =⨯⨯=,上半部分是一个底面半径为3,高为6的圆柱的一半,其体积221(π36)27π2V =⨯⨯⨯=,∴该组合体的体积1263πV V V +==.故选B.7.【答案】A【解析】不等式组表示的可行域如图所示,易求得1(0)A ,,()63B --,,3(6)C -,.目标函数可化为2y x z =-+,由图可知目标函数在点B 处取得最小值,最小值为2(6)(3)15⨯-+-=-.故选A.8.【答案】D【解析】依题意有2280x x -->,解得2x -<或4x >,易知()f x 在()2-∞-,单调递减,在(4)+∞,单调递增,所以()f x 的单调递增区间是(4)+∞,.故选D. 9.【答案】D【解析】由甲的说法可知乙、丙1人优秀1人良好,则甲、丁两人1人优秀1人良好,乙看到丙的成绩则知道自己的成绩,丁看到甲的成绩知道自己的成绩,即乙、丁可以知道自己的成绩.故选D. 10.【答案】B【解析】第一次循环:011S =-=-,1a =,2K =;第二次循环:121S =-+=,1a =-,3K =;第三次循环:132S =-=-,1a =,4K =;第四次循环:242S =-+=,1a =-,5K =;第五次循环:253S =-=-,1a =,6K =;第六次循环:363S =-+=,1a =-,7K =.结束循环,输出3S =.故选B.11.【答案】D【解析】如下表所示,表中的点的横坐标表示第一次取到的数,纵坐标表示第二次取到共有25种情况,满足条件的有10种,所以所求概率为102255=.故选D. 12.【答案】C【解析】由题知0(1)F ,,则MF所在直线的方程为)1y x =-,与抛物线联立,化简,得231030x x -+=,解得113x =,23x =,∴(3M .由MN l ⊥可得(1N -,又0(1)F ,,则NF 所在直线的方程为0y +=,∴M 到直线NF 的距离d =故选C.二、填空题 13.【解析】()2cos sin f x x x =+()f x14.【答案】12【解析】∵()f x 是定义在R 上的奇函数,∴32()[(2)22221()(]2)f f =--=-⨯-+-=.15.【答案】14π【解析】设球的半径为R ,依题意知球的直径为长方形的体对角线,∴2R O 的表面积22(4π214)πS R R π===.16.【答案】π3【解析】由正弦定理得2sin cos sin cos sin cos sin()sin B B A C C A A C B =+=+=,∴1cos 2B =,则π3B =.三、解答题17.【答案】(1)设数列{}n a 的公差为d ,{}n b 的公比为q ,则21221(21)2a b d q -+=-+-+=,∴3d q +=.①31331(31)5a b d q -+=-+-+=,∴226d q +=.② 联立①②解得12d q =⎧⎨=⎩,或30d q =⎧⎨=⎩,(舍去).∴{}n b 的通项公式为12n n b -=.(2)由11b =,321T =得2200q q +-=. 解得5q =-或4q =.当5q =-时,由①得8d =,31233212S a d ⨯=+=. 当4q =时,由①得1d =-,3123362S a d ⨯=+=-. 18.【答案】(1)在平面ABCD 内,∵90BAD ABC ∠=∠=︒,∴BC AD ∥. ∵AD ⊂平面PAD ,BC ⊄平面PAD , ∴BC ∥平面PAD .(2)取AD 的中点M ,连接PM ,CM .∵12AB BC AD ==,BC AD ∥,90ABC ∠=︒,∴四边形ABCM 为正方形,∴CM AD ⊥.∵侧面PAD 为等边三角形且垂直于底面ABCD ,平面PAD 平面ABCD AD =,∴PM AD ⊥,又AD ⊂底面ABCD ,∴PM ⊥底面ABCD . ∵CM ⊂底面ABCD ,∴PM CM ⊥.设BC x =,则CM x =,CD =,PM ,2PC PD x ==. 取CD 的中点N ,连接PN . 则PN CD ⊥,∴PN. 12PCD S ==△,解得2x =±(负值舍去), ∴2AB BC ==,4AD =,PM =∴四棱锥P ABCD -的体积12(24)32P ABCD V -⨯+=⨯⨯19.【答案】(1)旧养殖法的箱产量低于50 kg 的频率为0.0120.0140.0240.0340.0()4050.62++++⨯=,∴A 的概率估计值为0.62.(22K 的观测值2200(62663438)15.70510010096104K ⨯⨯-⨯=⨯⨯⨯≈. ∵15.705 6.635>,∴有99%的把握认为箱产量与养殖方法有关. (3)箱产量的频率分布直方图表明:新养殖法的箱产量平均值(或中位数)在50 kg~55 kg 之间, 旧养殖法的箱产量平均值(或中位数)在45k g~50 kg 之间,且新养殖法的箱产量分布集中程度比旧养殖法的箱产量分布集中程度高, ∴可以认为新养殖法的箱产量较高且稳定,新养殖法优于旧养殖法.20.【答案】(1)设()P x y ,,00()M x y ,,则0()0N x ,,0()NP x x y =-,,0(0)NM y =,. 由2NP NM =得0x x =,0y y =. ∵00()M x y ,在C 上,∴22122x y +=, ∴点P 的轨迹方程为222x y +=.(2)由题意知()10F -,.设3()Q t -,,()P m n ,, 则3()OQ Q t =-,,(1)PF m n =---,,33OQ PF m tn ⋅=+-,()OP m n =,,(3)PQ m tn =---,. 由1OP PQ ⋅=得2231m m tn n --+-=, 由(1)知222m n +=,∴330m tn +-=. ∴0OQ PF ⋅=,即OQ PF ⊥.又过点P 存在唯一直线垂直于OQ ,∴过点P且垂直于OQ 的直线l 过C 的左焦点F .21.【答案】(1)∵2()1()x f x x e =-,∴2()12()x f x x x e '=--.令()0f x'=得1x =-或1x =-+. 当(1x ∈-∞-,时,()0f x '<; 当1(1x ∈--时,()0f x '>; 当)1(x ∈-+∞时,()0f x '<.∴()f x 在(1-∞-,和1()-+∞单调递减,在(11--单调递增.(2)(()1)1()x f x x x e =+-.当1a ≥时,设函数()1()x h x x e =-,则()()00xh x xe x '=-<>,∴()h x 在[0)+∞,单调递减. 又(0)1h =,∴()1h x ≤,∴()1())1(1f x x h x x ax =+++≤≤.当01a <<时,设函数()1x g x e x =--,则0((0))1xg x ex '=->>. ∴()g x 在[0)+∞,单调递增. 又(0)0g =,∴1x e x +≥.当01x <<时,2()((11))f x x x -+>,22()()111()1x x ax x a x x -+--=---,取0x =,则0)1(0x ∈,. 20001()()110x x ax -+--=,∴001()f x ax +>.当0a ≤a ≤0时,取0x =0)1(0x ∈,. 2000011()()()11f x x x ax -+=+>≥. 综上,a 的取值范围是[1)+∞,. 22.【答案】(1)设P 的极坐标为()()0ρθρ,>,M 的极坐标为11()()0ρθρ,>. 由题设知OP ρ=,14cos OM ρθ==. 由16OM OP ⋅=得2C 的极坐标方程为0)4cos (ρθρ=>, 即22(240)()x y x -+=≠.(2)设点B 的极坐标为()(0)B B ραρ,>. 由题设知2OA =,4cos B ρα=, ∴OAB△的面积1ππsin4co s s i n 2332B S O AA OB ραα⎛⎫⎛⎫=⋅⋅∠=⋅-=-⎪ ⎪⎝⎭⎝⎭当π12α=-时,S取得最大值2+∴OAB △面积的最大值为2.23.【答案】(1)556556()()a b a b a ab a b b ++=+++33233442()()a b a b ab a b =+-++ 22244()ab a b =++≥.(2)∵33223)3(3a b a a b ab b +=+++23()232()4)(a b ab a b a b +=+++⋅+≤33()24a b +=+,∴3()8a b +≤,2a b +≤.。
2017年全国2卷高考文科数学真题及详细解析(解析版,学生版,精校版,新课标Ⅱ卷)
2017年全国统一高考数学试卷(文科)(新课标Ⅱ)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={1,2,3},B={2,3,4},则A∪B=()A.{1,2,3,4}B.{1,2,3}C.{2,3,4}D.{1,3,4} 2.(5分)(1+i)(2+i)=()A.1﹣i B.1+3i C.3+i D.3+3i3.(5分)函数f(x)=sin(2x+)的最小正周期为()A.4πB.2πC.πD.4.(5分)设非零向量,满足|+|=|﹣|则()A.⊥B.||=||C.∥D.||>||5.(5分)若a>1,则双曲线﹣y2=1的离心率的取值范围是()A.(,+∞)B.(,2)C.(1,)D.(1,2)6.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为()A.90πB.63πC.42πD.36π7.(5分)设x,y满足约束条件,则z=2x+y的最小值是()A.﹣15B.﹣9C.1D.98.(5分)函数f(x)=ln(x2﹣2x﹣8)的单调递增区间是()A.(﹣∞,﹣2)B.(﹣∞,﹣1)C.(1,+∞)D.(4,+∞)9.(5分)甲、乙、丙、丁四位同学一起去问老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则()A.乙可以知道四人的成绩B.丁可以知道四人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩10.(5分)执行如图的程序框图,如果输入的a=﹣1,则输出的S=()A.2B.3C.4D.511.(5分)从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为()A.B.C.D.12.(5分)过抛物线C:y2=4x的焦点F,且斜率为的直线交C于点M(M在x轴上方),l为C的准线,点N在l上,且MN⊥l,则M到直线NF的距离为()A.B.2C.2D.3二、填空题,本题共4小题,每小题5分,共20分13.(5分)函数f(x)=2cosx+sinx的最大值为.14.(5分)已知函数f(x)是定义在R上的奇函数,当x∈(﹣∞,0)时,f (x)=2x3+x2,则f(2)=.15.(5分)长方体的长、宽、高分别为3,2,1,其顶点都在球O的球面上,则球O的表面积为.16.(5分)△ABC的内角A,B,C的对边分别为a,b,c,若2bcosB=acosC+ccosA,则B=.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤,第17至21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)已知等差数列{a n}的前n项和为S n,等比数列{b n}的前n项和为T n,a1=﹣1,b1=1,a2+b2=2.(1)若a3+b3=5,求{b n}的通项公式;(2)若T3=21,求S3.18.(12分)如图,四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°.(1)证明:直线BC∥平面PAD;(2)若△PCD面积为2,求四棱锥P﹣ABCD的体积.19.(12分)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如下:(1)记A表示事件“旧养殖法的箱产量低于50kg”,估计A的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:箱产量<50kg箱产量≥50kg旧养殖法新养殖法(3)根据箱产量的频率分布直方图,对两种养殖方法的优劣进行比较.附:P(K2≥K)0.0500.0100.001K 3.841 6.63510.828K2=.20.(12分)设O为坐标原点,动点M在椭圆C:+y2=1上,过M作x轴的垂线,垂足为N,点P满足=.(1)求点P的轨迹方程;(2)设点Q在直线x=﹣3上,且•=1.证明:过点P且垂直于OQ的直线l 过C的左焦点F.21.(12分)设函数f(x)=(1﹣x2)e x.(1)讨论f(x)的单调性;(2)当x≥0时,f(x)≤ax+1,求a的取值范围.选考题:共10分。
2017年高考数学全国卷2文(附参考答案及详解)
不 知 道 我 的 成 绩 !根 据 以 上 信 息 #则 $! ! %
*%乙 可 以 知 道 四 人 的 成 绩
+%丁 可 以 知 道 四 人 的 成 绩
,%乙 ,丁 可 以 知 道 对 方 的 成 绩
-%乙 ,丁 可 以 知 道 自 己 的 成 绩
!#!执行如图 所 示 的 程 序 框 图#如 果 输 入 的 0' )!#则 输 出 的 4
所得!
将圆柱补全#并将圆柱体从点 $ 处水平分成上下两部
分!由图可知#该 几 何 体 的 体 积 等 于 下 部 分 圆 柱 的 体
积加
上
上
部
分
圆
柱
体
积的
! "
#所 以
该
几
何
体
的
体
积
;
第4题图
&"-'"
-/,"-'"
-4-
! "
&4'"!
故选 )!
方 法 "'%估 值 法&由 题 意 #知 !";圆柱 $;几何体 $;圆柱 ! 又;圆柱 &"-'"-!#&>#"#6 /2"$;几何体 $>#"! 观 察 选 项 可 知 只 有 4'" 符 合 !
面积的最大值!
$(!$本 小 题 满 分 !# 分 %选 修 25"&不 等 式 选 讲 已 知 0$##1$##0( 11( '$!证 明 & $!%$011%$0" 11" %*2* $$%011)$!
2017年全国统一高考新课标版Ⅱ卷全国2卷文科数学试卷及参考答案与解析
2017年全国统一高考新课标版Ⅱ卷全国2卷文科数学试卷及参考答案与解析一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={1,2,3},B={2,3,4},则A∪B=( )A.{1,2,3,4}B.{1,2,3}C.{2,3,4}D.{1,3,4}2.(5分)(1+i)(2+i)=( )A.1-iB.1+3iC.3+iD.3+3i3.(5分)函数f(x)=sin(2x+)的最小正周期为( )A.4πB.2πC.πD.4.(5分)设非零向量,满足|+|=|-|则( )A.⊥B.||=||C.∥D.||>||5.(5分)若a>1,则双曲线-y2=1的离心率的取值范围是( )A.(,+∞)B.(,2)C.(1,)D.(1,2)6.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )A.90πB.63πC.42πD.36π7.(5分)设x,y满足约束条件,则z=2x+y的最小值是( )A.-15B.-9C.1D.98.(5分)函数f(x)=ln(x2-2x-8)的单调递增区间是( )A.(-∞,-2)B.(-∞,-1)C.(1,+∞)D.(4,+∞)9.(5分)甲、乙、丙、丁四位同学一起去问老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则( )A.乙可以知道四人的成绩B.丁可以知道四人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩10.(5分)执行如图的程序框图,如果输入的a=-1,则输出的S=( )A.2B.3C.4D.511.(5分)从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为( )A. B. C. D.12.(5分)过抛物线C:y2=4x的焦点F,且斜率为的直线交C于点M(M在x轴上方),l为C 的准线,点N在l上,且MN⊥l,则M到直线NF的距离为( )A. B.2 C.2 D.3二、填空题,本题共4小题,每小题5分,共20分13.(5分)函数f(x)=2cosx+sinx的最大值为.14.(5分)已知函数f(x)是定义在R上的奇函数,当x∈(-∞,0)时,f(x)=2x3+x2,则f(2)=.15.(5分)长方体的长、宽、高分别为3,2,1,其顶点都在球O的球面上,则球O的表面积为.16.(5分)△ABC的内角A,B,C的对边分别为a,b,c,若2bcosB=acosC+ccosA,则B=.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤,第17至21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)已知等差数列{an }的前n项和为Sn,等比数列{bn}的前n项和为Tn,a1=-1,b1=1,a2+b2=2.(1)若a3+b3=5,求{bn}的通项公式;(2)若T3=21,求S3.18.(12分)如图,四棱锥P-ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°.(1)证明:直线BC∥平面PAD;(2)若△PCD面积为2,求四棱锥P-ABCD的体积.19.(12分)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如下:(1)记A表示事件“旧养殖法的箱产量低于50kg”,估计A的概率;.K2=.20.(12分)设O为坐标原点,动点M在椭圆C:+y2=1上,过M作x轴的垂线,垂足为N,点P满足=.(1)求点P的轨迹方程;(2)设点Q在直线x=-3上,且•=1.证明:过点P且垂直于OQ的直线l过C的左焦点F.21.(12分)设函数f(x)=(1-x2)e x.(1)讨论f(x)的单调性;(2)当x≥0时,f(x)≤ax+1,求a的取值范围.选考题:共10分。
2017年全国高考数学试题及答案-文科Ⅱ卷(含解析)
2017年普通高等学校招生全国统一考试文科数学注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合{}{}123234A B ==,,, ,,, 则=A B A. {}123,4,, B. {}123,, C. {}234,, D. {}134,, 【答案】A【解析】由题意{1,2,3,4}A B = ,故选A. 2.(1+i )(2+i )=A.1-iB. 1+3iC. 3+iD.3+3i 【答案】B【解析】由题意2(1)(2)2313i i i i i ++=++=+,故选B. 3.函数()fx =πsin (2x+)3的最小正周期为A.4πB.2πC. πD. 2π【答案】C 【解析】由题意22T ππ==,故选C. 4.设非零向量a ,b 满足+=-b b a a 则A a ⊥b B. =b a C. a ∥b D. >b a【解析】由||||a b a b +=- 平方得2222()2()()2()a ab b a ab b ++=-+ ,即0ab = ,则a b ⊥ ,故选A.5.若a >1,则双曲线x y a=222-1的离心率的取值范围是A. 2+∞(,)B. 22(,)C. 2(1,)D. 12(,) 【答案】C【解析】由题意222222111c a e a a a+===+,因为1a >,所以21112a <+<,则12e <<,故选C. 6.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为A.90πB.63πC.42πD.36π【答案】B7.设x 、y 满足约束条件2+330233030x y x y y -≤⎧⎪-+≥⎨⎪+≥⎩。
2017年高考文科数学全国卷2(含详细答案)
--------------------答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位卷3.考试结束后,将本试卷和答题卡一并交回。
__ __ __ __ __A .1 iB .1 3iC .3 iD . 3 3i__ __ 3的最小正周期为_名 题 A. 1 只有一项A . ( 2, -------------绝密★启用前在2017 年普通高等学校招生全国统一考试--------------------文科数学此注意事项:1.置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择_--------------------题时,将答案写在答题卡上,写在本试卷上无效。
__ _ __ 一、选择题:本题共 35 小题,每小题 4 分,共 140 分。
在每小题给出的四个选项中,号 上 证 --------------------是符合题目要求的.考 准1.设集合 A1,2,3 , B 2,3,4 ,则 A B( )A . 1,2,3,4B . 1,2,3C . 2,3,4D . 1,3,4答--------------------2. (1 i)(2 i)()__ _ 3.函数 f(x) sin 2x() 姓--------------------A . 4πB . 2π C. π D.π24.设非零向量 a , b 满足 a b = a b ,则()无--------------------A . a ⊥ bB. a = bC . a ∥ bD . a >b6.如图,网格纸上小正方形的边长为 1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截取一部分后所得,则该几何体的体积为 ( ) A . 90 π B . 63π C . 42 π D . 36 π2x 3y 3≤0,7.设 x , y 满足约束条件 2x 3y 3≥0,则 z 2x y 的最小值是 ( )y 3≥0,A . 15 B. 9 C .1 D .98.函数 f(x) ln(x 2 2x 8)的单调增区间是 ( )A .( , 2) B.( ,1) C . (1, ) D . (4, )9.甲、乙、丙、丁四位同学一起去向老师咨询成语竞赛的成绩.老师说:你们四人中有 2位优秀,2 位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则 ( ) A .乙可以知道四人的成绩 B .丁可以知道四人的成绩C .乙、丁可以知道对方的成绩D .乙、丁可以知道自己的成绩10.执行右面的程序框图,如果输入的 a 1 ,则输出的 S ( )A .2B .3C .4D .511.从分别写有 1,2,3,4,5 的 5 张卡片中随机抽取 1 张,放回后再随机抽取 1 张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为 ( )1 32 10 B. 5 C. 10 D. 55.若 a >1 ,则双曲线x 2a 2 y 21 的离心率的取值范围是 ( ) 12.过抛物线 C :y2 4x 的焦点 F ,且斜率为3 的直线交 C 于点 M ( M 在 x 轴的上方),效---------------- ) B . ( 2,2) C . (1, 2) D . (1,2)文科数学试卷 第 1 页(共 20 页) l 为 C 的准线,点 N 在 l 上且 MN l ,则 M 到直线 NF 的距离为 ( )A. 5B.2 2C. 2 3 D . 3 3文科数学试卷 第 2 页(共 20 页)n的前n项和为S,等比数列b的前n项和为T,a附:0.0502AD,BAD二、填空题:本题共4小题,每小题5分,共20分.13.函数f(x)2cos x sinx的最大值为.14.已知函数f(x)是定义在R上的奇函数,当x(,0)时f(x)2x3x2,则f(2).15.长方体的长宽高分别为3,2,1,其顶点都在球O的球面上,则球O的表面积为.16.△ABC的内角A,B,C的对边分别为a,b,c.若2b cosB a cosC ccos A,则B=.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)19.(12分)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取100个网箱,测量各网箱水产品的产量(单位:kg),其频率分布直方图如下:(1)记A表示事件“旧养殖法的箱产量低于50kg”,估计A的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关;已知等差数列an n n11,b11,箱产量<50kg箱产量≥50kga 2b22.旧养殖法新养殖法(1)若a3b35,求b的通项公式;n(3)根据箱产量的频率分布直方图,对这两种养殖方法的优劣进行比较.(2)若T321,求S.3P(K2≥k)0.0100.001K2k 3.841 6.63510.828n(ad bc)2(a b)(c d)(a c)(b d)18.(12分)如图,四棱锥P ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB BC 1ABC90.(1)证明:直线BC∥平面PAD;(2)若△PCD的面积为27,求四棱锥P ABCD的体积.文科数学试卷第3页(共20页)文科数学试卷第4页(共20页)(2)设点Q在直线x3上,且OP PQ1.证明:过点P且垂直于OQ的直线l过______号上3,点B在曲线C上,求△OAB面积的最大值.__答__ __ __ __ ___ __名x-------------20.(12分)设O为坐标原点,动点M在椭圆C:在--------------------点P满足NP2NM.x22y21上,过M作x轴的垂线,垂足为N,(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4—4:坐标系与参数方程](10分)在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C1__ ___ _证考准_姓(1)求点P的轨迹方程;此--------------------C的左焦点F.卷----------------------------------------21.(12分)--------------------设函数f(x)(1x2)e.(1)讨论f(x)的单调性;(2)当x≥0时,若f(x)≤ax1,求a的取值范围.题--------------------无--------------------的极坐标方程为cos 4.(1)M为曲线C上的动点,点P在线段OM上,且满足OM OP16,求点P的1轨迹C的直角坐标方程;2(2)设点A的极坐标为2,223.[选修4—5:不等式选讲](10分)已知a>0,b>0,a3b32.证明:(1)(a b)(a5b5)≥4;(2)a b≤2.效----------------文科数学试卷第5页(共20页)文科数学试卷第6页(共20页)2.∵ a >1 ,∴1<1 <2 ,则1<e < 2 .故选 C.一、选择题1.【答案】A【解析】 A 2017 年普通高等学校招生全国统一考试文科数学答案解析B ={1,2,3} {2,3,4}={1,2,3,4}.故选 A.2.【答案】B【解析】 (1 i)(2 i) 2 i +2i i2 3i 1 1 3i .故选 B.3.【答案】C【解析】最小正周期 T2π 2π.故选 C.4.【答案】A【解析】由 |ab |= |a b |,两边平方得 a 2 2a b b 2a 2 2ab b 2 ,即 a b 0 ,则 a ⊥ b .故选 A.5.【答案】C【解析】 e 2c 2 a 2 1 1 11a 2 a 2 a 2 a 26.【答案】B【解析】由题意,该几何体是一个组合体,下半部分是一个底面半径为3 ,高为4 的圆柱,其体积V1π 32 4 36π,上半部分是一个底面半径为 3,高为 6 的圆柱的一半,其体积V 2 1 2(π 32 6) 27π,∴该组合体的体积V =V7.【答案】A1V =63π.故选 B.2【解析】不等式组表示的可行域如图所示,易求得 A(0,1),B ( 6, 3) ,C (6, 3).目标函数可化为 y由图可知目标函数在点 B 处取得最小值,最小值为 2 ( 6) ( 3) 15 .故选 A.2x z ,S K S ;S 2 3 ,∴ M (3,2 3).由 MN l 可得 N ( 1,2 3),又 F (1,0),则 NF 所在 2【解析】依题意有 x 22x 8>0 ,解得 x < 2 或 x >4 ,易知 f(x)在 ( , 2)单调递减,在 (4, ) 单调递增,所以 f(x)的单调递增区间是 (4, ) .故选 D.9.【答案】D【解析】由甲的说法可知乙、丙 1 人优秀 1 人良好,则甲、丁两人 1 人优秀 1 人良好,乙看到丙的成绩则知道自己的成绩,丁看到甲的成绩知道自己的成绩,即乙、丁可以知道自己的成绩.故选 D.10.【答案】B【解析】第一次循环: S0 1 1,a 1, K 2 ;第二次循环: S 1 2 1, a 1, K 3 ;第三次循环: 1 3 2 ,a 1 , 4 ;第四次循环:2 4 2 ,a 1 ,K 5 第五次循环: 2 5 3,a 1, K 6 ;第六次循环: S3 6 3,a 1, K 7 .结束循环,输出 S3 .故选 B.11.【答案】D【解析】如下表所示,表中的点的横坐标表示第一次取到的数,纵坐标表示第二次取到的数:12345 1(1,1)(2,1)(3,1)(4,1)(5,1) 2(1,2)(2,2)(3,2)(4,2)(5,2) 3(1,3)(2,3)(3,3)(4,3)(5,3) 4(1,4)(2,4)(3,4)(4,4)(5,4) 5(1,5)(2,5)(3,5)(4,5)(5,5)共有 25 种情况,满足条件的有 10 种,所以所求概率为12.【答案】C10 2 25 5.故选 D.【解析】由题知 F (1,0),则 MF 所在直线的方程为 y 3(x 1),与抛物线联立,化简,得3x210x 3 0 ,解得 x1 1 3, x直线的方程为 3x y3 0 ,∴ M 到直线 NF 的距离 d |3 3( 3)2 3 2 3|( 1)=2 3 .故选 C.二、填空题13.【答案】 5【解析】 f(x) 2cosx sinx≤ 22 125 ,∴ f(x)的最大值为 5 .14.【答案】12.n 的公差为 d , b 的公比为 q ,联立①②解得 d 1, 2 AD , BC ∥AD , ABC15.【答案】14 π【解析】设球的半径为 R ,依题意知球的直径为长方形的体对角线,∴ 2R32 22 1214 ,球 O 的表面积 S 4πR 2(2R )2 14π16.【答案】π3【解析】由正弦定理得 2sinB cos BsinA cosCsinC cos Asin(AC ) sinB ,∴ c osB三、解答题17.【答案】(1)设数列 an 1 π,则 B . 2 3则 a2b21 (2 1)d q 2 1 2 ,∴ d q3 .①a3b31 (3 1)d q 315 ,∴ 2d q 26 .②d 3,q 2 或 q 0 (舍去).∴ b 的通项公式为 bnn2n 1 .(2)由 b 11 , T321 得 q 2 q 20 0 .解得 q5或q 4.当q5 时,由①得 d8,S当q 4 时,由①得 d1, S333a13a12 32 d 2 32 d21 .6.18.【答案】(1)在平面 ABCD 内,∵ BADABC 90 ,∴ BC ∥AD .∵ AD 平面 PAD , BC 平面 PAD ,∴ BC ∥平面 PAD .(2)取 AD 的中点 M ,连接 PM , CM .∵ AB BC 190 ,∴四边形 ABCM 为正方形,∴ CMAD .∵侧面 PAD 为等边三角形且垂直于底面 ABCD ,平面 PAD 平面 ABCD AD ,∴ PMAD ,又 AD 底面 ABCD ,∴ PM 底面 ABCD .2x x 2 7 ,解得 x2 (负值舍去),设 BC x ,则 CMx , CD2x , PM3x , PC PD 2x .取 CD 的中点 N ,连接 PN .则 PN CD ,∴ PN 14x.2S △PCD1 142 2∴ AB BC 2 , AD 4 , PM2 3 .∴四棱锥 P ABCD 的体积 VP ABCD1 2 (2 4) 3 22 3 4 3.19.【答案】(1)旧养殖法的箱产量低于 50 kg 的频率为(0.012 0.014 0.024 0.034 0.040) 50.62,∴ A 的概率估计值为 0.62.(2)根据箱产量的频率分布直方图的列联表:箱产量<50 kg箱产量≥50 kg旧养殖法新养殖法6234 3866K 2的观测值 K2200 (62 66 34 38)2 100 100 96 104≈15.705.∵ 15.705>6.635,∴有 99% 的把握认为箱产量与养殖方法有关.(3)箱产量的频率分布直方图表明:新养殖法的箱产量平均值(或中位数)在 50 kg~55 kg 之间,旧养殖法的箱产量平均值(或中位数)在 45k g~50 kg 之间,且新养殖法的箱产量分布集中程度比旧养殖法的箱产量分布集中程度高,∴可以认为新养殖法的箱产量较高且稳定,新养殖法优于旧养殖法.20.【答案】(1)设P(x,y),M(x,y),则N(x,,NP(x x,y),NM(0,y).0)由NP2NM得x0x,y022y.∵M(x,y)在C上,∴00x2y2221,∴点P的轨迹方程为x2y22.(2)由题意知F(1,0).设Q(3,t),P(m,n),则OQ Q(3,t),PF(1m,n),OQ PF33m tn,OP(m,n),PQ(3m,tn).由OP PQ1得3m m2tn n21,由(1)知m2n22,∴33m tn0.∴OQ PF0,即OQ⊥PF.又过点P存在唯一直线垂直于O Q,∴过点P且垂直于OQ的直线l过C的左焦点F.21.【答案】(1)∵f(x)(1x2)e x,∴f(x)(12x x2)e x.令f(x)0得x12或x12.当x(,12)时,f(x)<0;当x(12,12)时,f(x)>0;当x(12,)时,f(x)<0.∴f(x)在(,12)和(12,)单调递减,在(12,12)单调递增.(2)f(x)(1x)(1x)e x.当a≥1时,设函数h(x)(1x)e x,则h(x)xe x<0(x>0),∴h(x)在[0,)单调递减.又h(0)1,∴h(x)≤1,∴f(x)(x1)h(x)≤x1≤ax1.当0<a<1时,设函数g(x)e x x1,则g(x)e x1>0(x>0).g(x)[0,)1) 1) ∴ △OAB 的面积 S 1 B sin AOB 4cos sin 3当 0<x <1时, f(x)>(1 x)(1 x)2 ,(1 x)(1 x)2 ax 1 x(1 a x x 2 ),取x0 5 4a 12 ,则 x 0 (0,.(1 x )(1 x )2 ax0 0 0 1 0 ,∴ f(x )>ax 0 0 1.当 a≤0 a≤0 时,取 x 0 5 1 2 ,则 x 0(0, .f(x )>(1 x )(1 x )21≥ax0 0 0 0 1 .综上, a 的取值范围是[1, ).22.【答案】(1)设 P 的极坐标为 ( , )( >0), M 的极坐标为 ( , )( >0).1 1由题设知 OP , OM1 4 cos .由 OM OP 16 得 C 的极坐标方程为 4cos( >0), 2即 (x 2)2 y 2 4(x 0).(2)设点 B 的极坐标为 ( , )( >0).B B由题设知 OA 2,B 4cos ,ππ 3 OA 2 sin 2≤2 3.2 3 3 2 当 π时, S 取得最大值 2 3 .12∴ △OAB 面积的最大值为 2 3 .23.【答案】(1) (a b)(a 5 b 5 ) a 6 ab 5 a 5b b 6(a 3 b 3)2 2a 3b 3 ab(a 4 b 4 )4 ab(a 2 b 2 )2≥4 .(2)∵ (a b) a 3 3a 2b 3ab 2 b 33(a b)2 2 3ab(a b)≤2 (a b)3(a b)32,4∴(a b)3≤8,a b≤2.。
2017年高考文科数学全国2卷(附答案)
12B-SX-0000011绝密★启用前2017年普通高等学校招生全国统一考试文科数学 全国 II卷 A. ( 2, ) C.(1, 2)D. (1,2)6. 如图,网格纸上小正方形的边长为 1,粗实线画出的是某几何体的三视图,该号- 学 (全卷共 10 页) (适用地区:甘肃、青海、内蒙古、黑龙江、吉林、辽宁、宁夏、新疆、陕西、重庆、西藏注意事项:答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号,回答非选择题时,将答案写在 答题卡上,写在本试卷上无效。
考试结束后,将本试卷和答案卡一并交回。
_ - 一、 选择题:本题共 12 小题,每小题 5 分,共 60 分。
在每个小题给出的四个选 _: - 项中, 只有一项是符合题目要求的。
名 姓 - 1. 设集合 A 1,2,3 ,B 2,3,4 ,则 A B ( ) - 1 2线封密 3- A. 1,2,3,4B. 1,2,3C. 2,3,4_班 -___ - 2. 1 i 2 i ()__年 -- A.1 iB.1 3iC.3 i__ 线 3. 函数 f x sin(2x) 的最小正周期为() __ 封 3密A. 4B. 2C.4. 设非零向量 a,b 满足 a b a b ,则( )D. 1,3,4D.3 3i几何体由一平面将一圆柱截取一部分后所得,则该几何体的体积为( )A. 90B. 63C.42D. 36A. a bB. a bC.a ∥b2x 3y 3 07. 设 x, y 满足约束条件 2x 3y 3 0,则 z 2x y 的最小值为( ) y30A.-15B.-9C.1D.928. 函数 f x ln (x 2 2x 8) 的单调增区间为()A. , 2B. ,1C. 1,D. 4,9. 甲、乙、丙、丁四位同学一起去向老师咨询成语竞赛的成绩.老师说:你们四人中有 2为优秀, 2 位良好,我现在给甲看乙、丙成绩,给乙看丙成绩,给丁看 甲的成绩 .看后甲对大家说:我还是不知道我的成绩.根据以上信息,则()2_ _- 5. 若 a 1 ,则双曲线 2 y 2 1的离心率的取值范围是(): a 2 校- 学-A. 乙可以知道四人的成绩 C.乙、丁可以知道对方的成绩 B.丁可以知道四人的成绩 D.乙、丁可以知道自己的成绩10. 执行如图所示程序框图,如果输入的 a 1 ,则输出的 S ( )12B-SX-0000011A.2B.3C.4D.511. 从分别写有1,2,3,4,5 的 5 张卡片中随机抽取 1 张,放回后再随机抽取 1 张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为()A.1B.1C. 3D.215. 长方体的长宽高分别为3,2,1 ,其顶点都在球O 的球面上,则球O 的表面积为.16. ABC 的内角A, B, C的对边分别为a,b,c. 若2bcosB acosC ccosA ,则B .三、解答题:共70分。
2017年高考数学文科试卷全国二卷附答案解析
2017年全国统一高考数学试卷(文科)(新课标Ⅱ)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={1,2,3},B={2,3,4},则A∪B=()A.{1,2,3,4}B.{1,2,3}C.{2,3,4}D.{1,3,4}2.(5分)(1+i)(2+i)=()A.1﹣i B.1+3i C.3+i D.3+3i3.(5分)函数f(x)=sin(2x +)的最小正周期为()A.4πB.2πC.πD .4.(5分)设非零向量,满足|+|=|﹣|则()A .⊥B.||=||C .∥D.||>||5.(5分)若a>1,则双曲线﹣y2=1的离心率的取值范围是()A.(,+∞)B.(,2)C.(1,)D.(1,2)6.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为()A.90πB.63πC.42πD.36π7.(5分)设x,y 满足约束条件,则z=2x+y的最小值是()A.﹣15B.﹣9C.1D.98.(5分)函数f(x)=ln(x2﹣2x﹣8)的单调递增区间是()A.(﹣∞,﹣2)B.(﹣∞,﹣1)C.(1,+∞)D.(4,+∞)9.(5分)甲、乙、丙、丁四位同学一起去问老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则()A.乙可以知道四人的成绩B.丁可以知道四人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩10.(5分)执行如图的程序框图,如果输入的a=﹣1,则输出的S=()A.2B.3C.4D.511.(5分)从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为()A .B .C .D .12.(5分)过抛物线C:y2=4x的焦点F ,且斜率为的直线交C于点M(M在x轴上方),l为C 的准线,点N在l上,且MN⊥l,则M到直线NF的距离为()A .B.2C.2D.3二、填空题,本题共4小题,每小题5分,共20分13.(5分)函数f(x)=2cosx+sinx的最大值为.14.(5分)已知函数f(x)是定义在R上的奇函数,当x∈(﹣∞,0)时,f(x )=2x3+x2,则f (2)=.15.(5分)长方体的长、宽、高分别为3,2,1,其顶点都在球O的球面上,则球O的表面积为.16.(5分)△ABC的内角A,B,C的对边分别为a,b,c,若2bcosB=acosC+ccosA,则B=.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤,第17至21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)已知等差数列{a n}的前n项和为S n,等比数列{b n}的前n项和为T n,a1=﹣1,b1=1,a2+b2=2.(1)若a3+b3=5,求{b n}的通项公式;(2)若T3=21,求S3.18.(12分)如图,四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°.(1)证明:直线BC∥平面PAD;(2)若△PCD面积为2,求四棱锥P﹣ABCD的体积.19.(12分)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如下:(1)记A表示事件“旧养殖法的箱产量低于50kg”,估计A的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:箱产量<50kg箱产量≥50kg旧养殖法新养殖法(3)根据箱产量的频率分布直方图,对两种养殖方法的优劣进行比较.附:P(K2≥K)0.0500.0100.001K 3.841 6.63510.828K2=.20.(12分)设O为坐标原点,动点M在椭圆C :+y2=1上,过M作x轴的垂线,垂足为N,点P 满足=.(1)求点P的轨迹方程;(2)设点Q在直线x=﹣3上,且•=1.证明:过点P且垂直于OQ的直线l过C的左焦点F.21.(12分)设函数f(x)=(1﹣x2)e x.(1)讨论f(x)的单调性;(2)当x≥0时,f(x)≤ax+1,求a的取值范围.选考题:共10分。
2017年全国高考文科数学试题及答案-全国卷2
2017年普通高等学校招生全国统一考试文科数学注意事项:1. 答题前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2. 回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3. 考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有项是符合题目要求的。
1.设集合A 1,2,3,B 2,3,4,则A U B =A. 1,2,3,4B. 1,2,3C. 2,3,4D. 13,42. ( 1+i)(2+i)=A. 1-iB. 1+3iC. 3+iD.3+3i3.函数f x = sin(2x+3)的最小正周期为A.4B.2C.D. —24.设非零向量a , b满足a+b = a-b则A a 丄b B. a = b C. a // b D. a b2x 2 .5. 若〉1,则双曲线—2 - y 1的离心率的取值范围是aA. C- 2,+ )B. 2,2)C. (1,2)D. (12)6. 如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为A.90B.63C.42D.361 1 1012. 过抛物线C:y 2=4x 的焦点F ,且斜率为.3的直线交C 于点M( M 在x 轴上方),I 为C 的 准线,点N 在I 上且MN L l,则M 到直线NF的距离为2x+3y 3 07.设x 、y 满足约束条件 2x 3y 3 0。
则z 2x y 的最小值是 y 3 0A. -15B.-9C. 1 D 98. 函数f(x)In(x 2 2x 8)的单调递增区间是A.(-,-2) B. (-,-1) C.(1, +) D. (4, +)9. 甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩,老师说,你们四人中有 位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩,看后 甲对大家说:我还是不知道我的成绩,根据以上信息,则A.乙可以知道两人的成绩B.丁可能知道两人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩10. 执行右面的程序框图,如果输入的a =-1,则输出的S=A. 2B. 3C. 4D. 511. 从分别写有123,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为A.—B.5 C.3 2 D. 5A. 5B. 2.2C. 2,3D. 3.3二、填空题,本题共4小题,每小题5分,共20分.13. 函数f x =2cosx sinx的最大值为______________________ _14. 已知函数f x是定义在R上的奇函数,当x - ,0时,f x 2x x ,则f 2 = __________________15. 长方体的长、宽、高分别为3,2,1,其顶点都在球O的球面上,则球O的表面积为_________16. △ ABC的内角A,B,C 的对边分别为a,b,c,若2b cosB=a cosC+c cosA,贝U B= _____________三、解答题:共70分。
2017年高考全国二卷文科数学试题解析
【答案】D
【解析】由甲的说法可知乙、丙一人优秀一人良好,则甲、丁一人优秀一人良好,乙看到丙的结果则知道
自己的结果,丁看到甲的结果则知道自己的结果,故选 D.
10.执行下面的程序框图,如果输入的 a 1 ,则输出的 S
A.2 B.3 C.4 D.5
【答案】B 4
11.从分别写有 1,2,3,4,5 的 5 张卡片中随机抽取 1 张,放回后再随机抽取 1 张,则抽得的第一张卡片上
A.1 i
B.1 3i C. 3 i
D. 3 3i
【答案】B
3.函数 f (x) sin(2x π ) 的最小正周期为 3
A. 4π
B. 2π C. π
π
D.
2
【答案】C
【解析】由题意 T 2π π ,故选 C. 2
4.设非零向量 a , b 满足 a+b = a b ,则
2 (1)证明:直线 BC∥平面 PAD ;
(2)若△ PCD 的面积为 2 7 ,求四棱锥 P ABCD 的体积.
19.(12 分)
海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了 100 个网箱,测量各箱
【答案】D 9.甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩,老师说:你们四人中有 2 位优秀,2 位良 好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的 成绩,根据以上信息,则
3
A.乙可以知道四人的成绩
B.丁可以知道四人的成绩
C.乙、丁可以知道对方的成绩 D.乙、丁可以知道自己的成绩
a1 1,b1 1, a2 b2 2 .
(1)若 a3 b3 5 ,求{bn}的通项公式;
2017年高考文科数学(2卷)答案详解(word版+详细解析)
2017年普通高等学校招生全国统一考试文科数学II 卷 答案详解一、选择题:本题共12小题,每小题5分,共60分。
1.设集合{1,2,3},{2,3,4}A B ==,则A B =UA .{}123,4,, B .{}123,, C .{}234,, D .{}134,, 【解析】}4,3,2,1{=B A Y . 【答案】A 2.(1)(2)i i ++= A .1i -B .13i +C .3i +D .33i +【解析】2(1)(2)2313i i i i i ++=++=+.【答案】B3.函数π()sin(2)3f x x =+的最小正周期为 A .4πB .2πC .πD .π2【解析】2π2ππ2T ω===. 【答案】C4.设非零向量a ,b 满足+=-a b a b ,则 A .⊥a bB .=a bC .a b PD .>a b【解析】∵||||a b a b +=-r r r r ,∴22||||a b a b +=-r r r r ,解得0a b ⋅=r r ,即a b ⊥rr .【答案】A5.若1a >,则双曲线2221x y a-=的离心率的取值范围是A .(2,)+∞B .(2,2)C .(1,2)D .(1,2)【解析】双曲线的离心率为22111c a e a a a+===+,∵1a >,∴(1,2)e ∈.【答案】C6.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为 A .90πB .63πC .42πD .36π【解析】由三视图可得,直观图为一个高为10的圆柱减去一个高为6的圆柱的一半,其体积为221103π63π=63π2V =⨯-⨯⨯.图A6【答案】B7.设,x y 满足约束条件2+330,2330,30,x y x y y -≤⎧⎪-+≥⎨⎪+≥⎩则2z x y =+的最小值是A .15-B .9-C .1D .9【解析】可行域如图所示,目标函数2z x y =+化为2y x z =-+,当直线2y x z =-+过点A 时,其在y轴上的截距最小,即z 取最小值,所以z max =-15. [A 的坐标联立方程求出:A(-6,-3) ]图A7【答案】A8.函数2()ln(28)f x x x =--的单调递增区间是 A .(,2)-∞-B .(,1)-∞C .(1,)+∞D .(4,)+∞【解析】令2()28(24)t g x x x x x ==--<->或,∵()22g x x '=-,∴()g x 在(,2)-∞-单调递减,在(4,)+∞单调递增.∵()ln f t t =在(0,)+∞单调递增,可得函数2()ln(28)f x x x =--的单调递增区间是(4,)+∞.【答案】D9.甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩,老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩,根据以上信息,则 A .乙可以知道四人的成绩 B .丁可以知道四人的成绩 C .乙、丁可以知道对方的成绩D .乙、丁可以知道自己的成绩【解析】已知四人中有2 位优秀、2位良好,而甲知道乙、丙的成绩后仍无法得知自己的成绩,故乙和丙只能一个是优秀、一个是良好,同时甲和丁也只能一个是优秀、一个是良好. 所以当乙知道丙的成绩后,就可以知道自己的成绩,但无法知道甲和丁的成绩;同理,丁知道甲的成绩后,也能够知道自己的成绩,但无法知道乙和丙的成绩. 综上所述,乙、丁可以知道自己的成绩.【答案】D10.执行下面的程序框图,如果输入的1a =-,则输出的S =A .2B .3C .4D .5【解析】由框图可知,0(1)2(3)4(5)6S =+-++-++-++L ,当K =7时跳出循环体输出结果,此时0(1)2(3)4(5)63S =+-++-++-+=.【答案】B11.从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为 A .110B .15C .310D .25【解析】从5张卡片中随机抽取1张,放回后再随机抽取1张,基本事件总数n =5×5 = 25,抽得的第一张卡片上的数大于第二张卡片上的数包含的基本事件有:(2, 1)、(3, 1)、(3, 2)、(4, 1)、(4, 2)、(4, 3)、(5, 1)、(5, 2)、(5, 3)、(5, 4),共有m = 10个基本事件,所以所求的概率为102=255. 【答案】D12.过抛物线2:4C y x =的焦点F ,且斜率为3的直线交C 于点M (M 在x 的轴上方),l 为C 的准线,点N 在l 上且MN l ⊥,则M 到直线NF 的距离为 A .5B .22C .23D .33【解析】抛物线2:4C y x =的焦点F (1,0),∴过抛物线焦点F 且斜率为3的直线方程为3(1)y x =-.联立23(1)4y x y x⎧=-⎪⎨=⎪⎩,∴(3,23)M ,可得(1,23)N -.∴直线NF 的方程为33=0x y +-,∴M 到直线NF 的距离为|33233|=232⨯+-.【答案】C二、填空题,本题共4小题,每小题5分,共20分. 13.函数()2cos sin f x x x =+的最大值为 .【解析】∵255()2cos sin 5(cos sin )5cos()55f x x x x x x ϕ=+=+=-,其中1tan 2ϕ=, ∴函数()f x 的最大值为5.【答案】514.已知函数()f x 是定义在R 上的奇函数,当(,0)x ∈-∞时,32()2f x x x =+,则(2)f = . 【解析】∵函数()f x 是奇函数,∴32(2)(2)[2(2)(2)]12f f =--=-⨯-+-=. 【答案】1215.长方体的长,宽,高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为 . 【解析】由题意可知,长方体的体对角线就是球O 的直径,所以球O 的半径22211412322r =++=, 球O 的表面积2144π4π14π4V r ==⨯=. 【答案】14π16.ABC △的内角,,A B C 的对边分别为,,a b c ,若2cos cos cos b B a C c A =+,则B = . 【解析】由正弦定理得,2sin cos sin cos sin cos B B A C C A =+,即2sin cos sin()B B A C =+.∵π()B A C =-+,∴2sin cos sin()sin B B A C B =+=. ∵0πB <<,∴sin 0B ≠,1cos 2B =,∴π3B =. 【答案】π3三、解答题:共70分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年普通高等学校招生全国统一考试文科数学注意事项:一、 选择题:本大题共12小题。
每小题5分,在每个小题给出的四个选项中,只有一项是符合要求的。
(1)已知集合{123}A =,,,2{|9}B x x =<,则A B =I (A ){210123}--,,,,, (B ){21012}--,,,, (C ){123},, (D ){12},(2)设复数z 满足i 3i z +=-,则z = (A )12i -+(B )12i -(C )32i +(D )32i - (3) 函数=sin()y A x ωϕ+的部分图像如图所示,则(A )2sin(2)6y x π=- (B )2sin(2)3y x π=-(C )2sin(2+)6y x π= (D )2sin(2+)3y x π=(4) 体积为8的正方体的顶点都在同一球面上,则该球面的表面积为 (A )12π(B )323π(C )8π(D )4π (5) 设F 为抛物线C :y 2=4x 的焦点,曲线y =kx(k >0)与C 交于点P ,PF ⊥x 轴,则k = (A )12(B )1 (C )32(D )2 (6) 圆x 2+y 2−2x −8y +13=0的圆心到直线ax +y −1=0的距离为1,则a = (A )−43(B )−34(C )3(D )2 (7) 如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为 (A )20π(B )24π(C )28π(D )32π(8) 某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为 (A )710(B )58(C )38(D )310(9)中国古代有计算多项式值得秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的a 为2,2,5,则输出的s =(A )7 (B )12 (C )17 (D )34(10) 下列函数中,其定义域和值域分别与函数y=10lg x的定义域和值域相同的是(A)y=x(B)y=lg x(C)y=2x(D)1 yx=(11) 函数π()cos26cos()2f x x x=+-的最大值为(A)4(B)5 (C)6 (D)7(12) 已知函数f(x)(x∈R)满足f(x)=f(2-x),若函数y=|x2-2x-3| 与y=f(x) 图像的交点为(x1,y1),(x2,y2),…,(x m,y m),则1=miix=∑(A)0 (B)m (C) 2m (D) 4m二.填空题:共4小题,每小题5分.(13) 已知向量a=(m,4),b=(3,-2),且a∥b,则m=___________.(14) 若x,y满足约束条件103030x yx yx-+≥⎧⎪+-≥⎨⎪-≤⎩,则z=x-2y的最小值为__________(15)△ABC的内角A,B,C的对边分别为a,b,c,若4cos5A=,5cos13C=,a=1,则b=____________. (16)有三张卡片,分别写有1和2,1和3,2和3. 甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________________.三、解答题:解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分12分)等差数列{na}中,34574,6a a a a+=+=(I)求{na}的通项公式;(II)设nb=[na],求数列{nb}的前10项和,其中[x]表示不超过x的最大整数,如[0.9]=0,[2.6]=2 (18)(本小题满分12分)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:(I )记A 为事件:“一续保人本年度的保费不高于基本保费”。
求P(A)的估计值; (II)记B 为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”. 求P(B)的估计值;(III )求续保人本年度的平均保费估计值.(19)(本小题满分12分)如图,菱形ABCD 的对角线AC 与BD 交于点O ,点E 、F 分别在AD ,CD 上,AE=CF ,EF 交BD 于点H ,将DEF V 沿EF 折到'D EF V 的位置.(I )证明:'AC HD ⊥; (II)若55,6,,'224AB AC AE OD ====,求五棱锥'ABCEF D -体积.(20)(本小题满分12分)已知函数()(1)ln (1)f x x x a x =+--.(I )当4a =时,求曲线()y f x =在()1,(1)f 处的切线方程; (II)若当()1,x ∈+∞时,()0f x >,求a 的取值范围.(21)(本小题满分12分)已知A 是椭圆E :22143x y +=的左顶点,斜率为()0k k >的直线交E 于A ,M 两点,点N 在E 上,MA NA ⊥.(I )当AM AN =时,求AMN V 的面积 (II)当2AM AN =时,证明:32k <<.请考生在第22~24题中任选一题作答,如果多做,则按所做的第一题计分.(22)(本小题满分10分)选修4-1:几何证明选讲如图,在正方形ABCD 中,E ,G 分别在边DA ,DC 上(不与端点重合),且DE =DG ,过D 点作DF ⊥CE ,垂足为F .(Ⅰ)证明:B ,C ,G ,F 四点共圆;(Ⅱ)若AB =1,E 为DA 的中点,求四边形BCGF 的面积.(23)(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,圆C 的方程为22(+6)+=25x y .(Ⅰ)以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,求C 的极坐标方程;(Ⅱ)直线l 的参数方程是cos sin x t α,y t α,ì=ïïíï=ïî(t 为参数),l 与C 交于A ,B 两点,10AB =,求l 的斜率.(24)(本小题满分10分)选修4-5:不等式选讲已知函数11()22f x x x =-++,M 为不等式()2f x <的解集. (Ⅰ)求M ;(Ⅱ)证明:当a ,b M Î时,1a b ab +<+.2016年普通高等学校招生全国统一考试文科数学答案第Ⅰ卷一. 选择题(1)【答案】D (2)【答案】C (3) 【答案】A(4) 【答案】A(5)【答案】D(6) 【答案】A (7) 【答案】C(8) 【答案】B(9)【答案】C(10) 【答案】D (11)【答案】B (12) 【答案】B二.填空题(13)【答案】6-(14)【答案】5-(15)【答案】2113(16)【答案】1和3 三、解答题(17)(本小题满分12分) 【答案】(Ⅰ)235n n a +=;(Ⅱ)24. 【解析】试题分析:(Ⅰ) 根据等差数列的性质求1a ,d ,从而求得n a ;(Ⅱ)根据已知条件求n b ,再求数列{}n b 的前10项和.试题解析:(Ⅰ)设数列{}n a 的公差为d ,由题意有11254,53a d a d -=-=,解得121,5a d ==, 所以{}n a 的通项公式为235n n a +=. (Ⅱ)由(Ⅰ)知235n n b +⎡⎤=⎢⎥⎣⎦, 当n=1,2,3时,2312,15n n b +≤<=; 当n=4,5时,2323,25n n b +≤<=;当n=6,7,8时,2334,35n n b +≤<=;当n=9,10时,2345,45n n b +≤<=, 所以数列{}n b 的前10项和为1322334224⨯+⨯+⨯+⨯=. 考点:等茶数列的性质,数列的求和. 【结束】(18)(本小题满分12分) 【答案】(Ⅰ)由6050200+求P(A)的估计值;(Ⅱ)由3030200+求P(B)的估计值;(错误!未找到引用源。
)根据平均值得计算公式求解. 【解析】 试题分析:试题解析:(Ⅰ)事件A 发生当且仅当一年内出险次数小于2.由所给数据知,一年内险次数小于2的频率为60500.55200+=, 故P(A)的估计值为0.55.(Ⅱ)事件B 发生当且仅当一年内出险次数大于1且小于4.由是给数据知,一年内出险次数大于1且小于4的频率为30300.3200+=, 故P(B)的估计值为0.3. (Ⅲ)由题所求分布列为: 保费 0.85a a 1.25a 1.5a 1.75a 2a 频率0.300.250.150.150.100.05调查200名续保人的平均保费为0.850.300.25 1.250.15 1.50.15 1.750.3020.10 1.1925a a a a a a a ⨯+⨯+⨯+⨯+⨯+⨯=,因此,续保人本年度平均保费估计值为1.1925a. 考点:样本的频率、平均值的计算. 【结束】(19)(本小题满分12分) 【答案】(Ⅰ)详见解析;(Ⅱ)694. 【解析】试题分析:(Ⅰ)证//.AC EF 再证//.'AC HD (Ⅱ)证明.'⊥OD OH 再证'⊥OD 平面.ABC 最后呢五棱锥'ABCEF D -体积.试题解析:(I )由已知得,,.⊥=AC BD AD CD又由=AE CF 得=AE CFAD CD,故//.AC EF 由此得,'⊥⊥EF HD EF HD ,所以//.'AC HD . (II )由//EF AC 得1.4==OH AE DO AD 由5,6==AB AC 得22 4.==-=DO BO AB AO所以1, 3.'===OH D H DH于是22222(22)19,''+=+==OD OH D H 故.'⊥OD OH由(I )知'⊥AC HD ,又,'⊥=I AC BD BD HD H , 所以⊥AC 平面,'BHD 于是.'⊥AC OD又由,'⊥=I OD OH AC OH O ,所以,'⊥OD 平面.ABC又由=EF DH AC DO 得9.2=EF 五边形ABCFE 的面积11969683.2224=⨯⨯-⨯⨯=S所以五棱锥'ABCEF D -体积16923222.342=⨯⨯=V 考点:空间中的线面关系判断,几何体的体积. 【结束】(20)(本小题满分12分)【答案】(Ⅰ)220.x y +-=;(Ⅱ)(],2.-∞. 【解析】试题分析:(Ⅰ)先求定义域,再求()f x ',(1)f ',(1)f ,由直线方程得点斜式可求曲线()=y f x 在(1,(1))f 处的切线方程为220.x y +-=(Ⅱ)构造新函数(1)()ln 1-=-+a x g x x x ,对实数a 分类讨论,用导数法求解.试题解析:(I )()f x 的定义域为(0,)+∞.当4=a 时,1()(1)ln 4(1),()ln 3'=+--=+-f x x x x f x x x,(1)2,(1)0.'=-=f f 曲线()=y f x 在(1,(1))f 处的切线方程为220.x y +-=(II )当(1,)∈+∞x 时,()0>f x 等价于(1)ln 0.1-->+a x x x 令(1)()ln 1-=-+a x g x x x ,则 222122(1)1(),(1)0(1)(1)+-+'=-==++a x a x g x g x x x x ,(i )当2≤a ,(1,)∈+∞x 时,222(1)1210+-+≥-+>x a x x x ,故()0,()'>g x g x 在(1,)∈+∞x 上单调递增,因此()0>g x ; (ii )当2>a 时,令()0'=g x 得22121(1)1,1(1)1=----=-+--x a a x a a ,由21>x 和121=x x 得11<x ,故当2(1,)∈x x 时,()0'<g x ,()g x 在2(1,)∈x x 单调递减,因此()0<g x . 综上,a 的取值范围是(],2.-∞ 考点:导数的几何意义,函数的单调性. 【结束】(21)(本小题满分12分) 【答案】(Ⅰ)14449;(Ⅱ)()32,2.【解析】试题分析:(Ⅰ)先求直线AM 的方程,再求点M 的纵坐标,最后求AMN ∆的面积;(Ⅱ)设()11,M x y ,,将直线AM 的方程与椭圆方程组成方程组,消去y ,用k 表示1x ,从而表示||AM ,同理用k 表示||AN ,再由2AM AN =求k .试题解析:(Ⅰ)设11(,)M x y ,则由题意知10y >. 由已知及椭圆的对称性知,直线AM 的倾斜角为4π, 又(2,0)A -,因此直线AM 的方程为2y x =+.将2x y =-代入22143x y +=得27120y y -=, 解得0y =或127y =,所以1127y =. 因此AMN ∆的面积11212144227749AMN S ∆=⨯⨯⨯=. (2)将直线AM 的方程(2)(0)y k x k =+>代入22143x y +=得 2222(34)1616120k x k x k +++-=.由2121612(2)34k x k -⋅-=+得2122(34)34k x k-=+,故2212121||1|2|34k AM k x k +=++=+. 由题设,直线AN 的方程为1(2)y x k =-+,故同理可得22121||43k k AN k +=+.由2||||AM AN =得2223443kk k=++,即3246380k k k -+-=. 设32()4638f t t t t =-+-,则k 是()f t 的零点,22'()121233(21)0f t t t t =-+=-≥, 所以()f t 在(0,)+∞单调递增,又(3)153260,(2)60f f =-<=>, 因此()f t 在(0,)+∞有唯一的零点,且零点k 在(3,2)内,所以32k <<. 考点:椭圆的性质,直线与椭圆的位置关系. 【结束】请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号 (22)(本小题满分10分)选修4-1:几何证明选讲 【答案】(Ⅰ)详见解析;(Ⅱ)12. 【解析】试题分析:(Ⅰ)证,DGF CBF ∆~∆再证,,,B C G F 四点共圆;(Ⅱ)证明,Rt BCG Rt BFG ∆~∆四边形BCGF 的面积S 是GCB ∆面积GCB S ∆的2倍.试题解析:(I )因为DF EC ⊥,所以,DEF CDF ∆~∆则有,,DF DE DGGDF DEF FCB CF CD CB∠=∠=∠== 所以,DGF CBF ∆~∆由此可得,DGF CBF ∠=∠ 由此0180,CGF CBF ∠+∠=所以,,,B C G F 四点共圆.(II )由,,,B C G F 四点共圆,CG CB ⊥知FG FB ⊥,连结GB , 由G 为Rt DFC ∆斜边CD 的中点,知GF GC =,故,Rt BCG Rt BFG ∆~∆ 因此四边形BCGF 的面积S 是GCB ∆面积GCB S ∆的2倍,即111221.222GCB S S ∆==⨯⨯⨯=考点:三角形相似、全等,四点共圆 【结束】(23)(本小题满分10分)选修4—4:坐标系与参数方程 【答案】(Ⅰ)212cos 110ρρθ++=;(Ⅱ)153±. 【解析】试题分析:(I )利用222x y ρ=+,cos x ρθ=可得C 的极坐标方程;(II )先将直线l 的参数方程化为普通方程,再利用弦长公式可得l 的斜率.试题解析:(I )由cos ,sin x y ρθρθ==可得C 的极坐标方程212cos 110.ρρθ++= (II )在(I )中建立的极坐标系中,直线l 的极坐标方程为()R θαρ=∈ 由,A B 所对应的极径分别为12,,ρρ将l 的极坐标方程代入C 的极坐标方程得212cos 110.ρρα++=于是121212cos ,11,ρραρρ+=-=22121212||||()4144cos 44,AB ρρρρρρα=-=+-=- 由||10AB =得2315cos ,tan 83αα==±, 所以l 的斜率为153或153-. 考点:圆的极坐标方程与普通方程互化,直线的参数方程,点到直线的距离公式.【结束】(24)(本小题满分10分)选修4—5:不等式选讲【答案】(Ⅰ){|11}M x x =-<<;(Ⅱ)详见解析.【解析】试题分析:(I )先去掉绝对值,再分12x <-,1122x -≤≤和12x >三种情况解不等式,即可得M ;(II )采用平方作差法,再进行因式分解,进而可证当a ,b ∈M 时,1a b ab +<+.试题解析:(I )12,,211()1,,2212,.2x x f x x x x ⎧-≤-⎪⎪⎪=-<<⎨⎪⎪≥⎪⎩当12x ≤-时,由()2f x <得22,x -<解得1x >-; 当1122x -<<时,()2f x <; 当12x ≥时,由()2f x <得22,x <解得1x <. 所以()2f x <的解集{|11}M x x =-<<.(II )由(I )知,当,a b M ∈时,11,11a b -<<-<<,从而22222222()(1)1(1)(1)0a b ab a b a b a b +-+=+--=--<,因此|||1|.a b ab +<+考点:绝对值不等式,不等式的证明.【结束】。