04-有理数的加减法-教师版

合集下载

有理数的加减法 教案

有理数的加减法 教案

有理数的加减法教案以下是为您推荐的有理数的加减法教案,希望本篇文章对您学习有所帮助。

 有理数的加减法教案 一、教学目的 知识与技能:使学生理解有理数加法的意义,初步掌握有理数加法法则,并能准确地进行有理数的加法运算. 过程与方法:通过有理数的加法运算,培养学生的运算能力. 情感与态度:激发学生学习数学的兴趣。

 二、教学重点与难点 重点:熟练应用有理数的加法法则进行加法运算. 难点:有理数的加法法则的理解. 三、教学过程 (一)复习提问 1.有理数是怎幺分类的? 2.有理数的绝对值是怎幺定义的?一个有理数的绝对值的几何意义是什幺? 3.有理数大小比较是怎幺规定的?下列各组数中,哪一个较大?利用数轴说明? -3与-2;|3|与|-3|;|-3|与0; -2与|+1|;-|+4|与|-3|. (二)引入新课 在小学算术中学过了加、减、乘、除四则运算,这些运算是在正有理数和零的范围内的运算.引入负数之后,这些运算法则将是怎样的呢?我们先来学有理数的加法运算. (三)进行新课有理数的加法(板书课题) 例1 如图所示,某人从原点0出发,如果第一次走了5米,第二次接着又走了3米,求两次行走后某人在什幺地方? 两次行走后距原点0为8米,应该用加法. 为区别向东还是向西走,这里规定向东走为正,向西走为负.这两数相加有以下三种情况: 1.同号两数相加 (1)某人向东走5米,再向东走3米,两次一共走了多少米? 这是求两次行走的路程的和. 5+3=8 用数轴表示如图 从数轴上表明,两次行走后在原点0的东边.离开原点的距离是8米.因此两次一共向东走了8米. 可见,正数加正数,其和仍是正数,和的绝对值等于这两个加数的绝对值的和. (2)某人向西走5米,再向西走3米,两次一共向东走了多少米? 显然,两次一共向西走了8米 (-5)+(-3)=-8 用数轴表示如图 从数轴上表明,两次行走后在原点0的西边,离开原点的距离是8米.因此两次一共向东走了-8米. 可见,负数加负数,其和仍是负数,和的绝对值也是等于两个加数的绝对值的和. 总之,同号两数相加,取相同的符号,并把绝对值相加. 例如,(-4)+(-5),同号两数相加 (-4)+(-5)=-( ),取相同的符号 4+5=9把绝对值相加 ∴ (-4)+(-5)=-9. 口答练习: (1)举例说明算式7+9的实际意义? (2)(-20)+(-13)=? 2.异号两数相加 (1)某人向东走5米,再向西走5米,两次一共向东走了多少米? 由数轴上表明,两次行走后,又回到了原点,两次一共向东走了0米. 5+(-5)=0 可知,互为相反数的两个数相加,和为零. (2)某人向东走5米,再向西走3米,两次一共向东走了多少米? 由数轴上表明,两次行走后在原点o的东边,离开原点的距离是2米.因此,两次一共向东走了2米. 就是5+(-3)=2. (3)某人向东走3米,再向西走5米,两次一共向东走了多少米? 由数轴上表明,两次行走后在原点o的西边,离开原点的距离是2米.因此,两次一共向东走了-2米. 就是3+(-5)=-2. 请同学们想一想,异号两数相加的法则是怎幺规定的?强调和的符号是如何确定的?和的绝对值如何确定? 最后归纳 绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0. 例如(-8)+5绝对值不相等的异号两数相加 8大于5 (-8)+5=-( )取绝对值较大的加数符号 8-5=3 用较大的绝对值减去较小的绝对值 ∴(-8)+5=-3. 口答练习 用算式表示:温度由-4℃上升7℃,达到什幺温度. (-4)+7=3(℃) 3.一个数和零相加 (1)某人向东走5米,再向东走0米,两次一共向东走了多少米? 显然,5+0=5.结果向东走了5米. (2)某人向西走5米,再向东走0米,两次一共向东走了多少米? 容易得出:(-5)+0=-5.结果向东走了-5米,即向西走了5米. 请同学们把(1)、(2)画出图来 由(1),(2)得出:一个数同0相加,仍得这个数. 总结有理数加法的三个法则.学生看书,引导他们看有理数加法运算的三种情况. 有理数加法运算的三种情况: 特例:两个互为相反数相加; (3)一个数和零相加. 每种运算的法则强调:(1)确定和的符号;(2)确定和的绝对值的方法. (四)例题分析 例1 计算(-3)+(-9). 分析:这是两个负数相加,属于同号两数相加,和的符号与加数相同(应为负),和的绝对值就是把绝对值相加(应为3+9=12)(强调相同、相加的特征). 解:(-3)+(-9)=-12. 例2 分析:这是异号两数相加,和的符号与绝对值较大的加数的符号相同(应为负),和的绝对值等于较大绝对值减去较小绝对值..(强调两个较大”一个较小”) 解: 解题时,先确定和的符号,后计算和的绝对值. (五)巩固练习 1.计算(口答) (1)4+9; (2) 4+(-9); (3)-4+9; (4)(-4)+(-9); (5)4+(-4); (6)9+(-2); (7)(-9)+2; (8)-9+0; 2.计算 (1)5+(-22); (2)(-1.3)+(-8) (3)(-0.9)+1.5; (4)2.7+(-3.5) 四.课堂小结:今天我们学到了什幺? 五.作业布置。

七年级数学上册1.3《有理数的加减法》教案(新版)新人教版

七年级数学上册1.3《有理数的加减法》教案(新版)新人教版

有理数的加减法(一)
[本节课内容]
1.有理数的加法
2.有理数的加法的运算律
[本节课学习目标]
1、理解有理数的加法法则.
2、能够应用有理数的加法法则,将有理数的加法转化为非负数的加减运算.
3、掌握异号两数的加法运算的规律.
4、理解有理数的加法的运算律.
5、能够应用有理数的加法的运算律进行计算.
[知识讲解]
一、有理数加法:
正有理数及0的加法运算,小学已经学过,然而实际问题中做加法运算的数有可能超出
正数范围.例如,足球循环赛中,可以把进球数记为正数,失球数记为负数,它们的和叫做
净胜球数.如果,红队进4个球,失2个球;蓝队进1个球,失1个球.
于是红队的净胜球数为4+(-2),蓝队的净胜球数为1+(-1).
这里用到正数和负数的加法.
下面借助数轴来讨论有理数的加法.
看下面的问题:
一个物体作左右方向的运动;我们规定向左为负,向右为正,向右运动 5m记作 5m,向左运动 5m记作-5m;如果物体先向右移动 5m,再向右移动 3m,那么两次运动后总的结
果是什么?
两次运动后物体从起点向右移动了 8m,写成算式就是:5+3 = 8
如果物体先向左运动 5m,再向左运动 3m,那么两次运动后总的结果是什么?
两次运动后物体从起点向左运动了 8m,写成算式就是(-5)+(-3) = -8
1。

有理数的加减混合运算优秀教案

有理数的加减混合运算优秀教案

有理数的加减混合运算
【课时安排】
3课时
【第一课时】
【教学目标】
1.能进行包括小数或分数的有理数的加减混合运算;
2.能根据具体问题,适当运用运算律简化运算;
3.能综合运用有理数及其加法、减法的有关知识,解决简单的实际问题,体会数学与现实生活的联系。

【教学重点】
省略括号和加号会正确地进行有理数加减混合运算。

【教学难点】
小数或分数的加减混合运算。

【教学方法】
引导、探索相结合。

【教学过程】
一、通过复习回顾,课前小活动引入课题。

[师]上节课,我们探讨了有理数的减法,现在来共同回顾一下:在有理数减法中,重点研究了什么呢?
[生]研究了有理数减法的法则及其运用。

[师]好,那有理数减法的法则是什么呢?共同背一下。

[生齐声背]减去一个数,等于加上这个数的相反数。

[师]很好,这节课我们首先做一个小活动,请同学们拿出准备好的卡片。

[生](拿出事先准备好的红绿卡片各10张,上面写着不同的数字,有分数、整数)[师](板书要求:收到红卡片“+”,抽到绿卡片“—”)
现在同桌两个一组,每人各抽一轮,一轮抽四张,并把卡片上的数字按要求记录下来。

七年级数学上学期期中考点专题03有理数的加减法含解析新人教版

七年级数学上学期期中考点专题03有理数的加减法含解析新人教版

专题03 有理数的加减法重点突破知识点一 有理数的加法(基础)有理数的加法法则:(先确定符号,再算绝对值) 1.同号两数相加,取相同的符号,并把绝对值相加;2.异号两数相加,绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;3.互为相反数的两个数相加得0;(如果两个数的和为0,那么这两个数互为相反数)4.一个数同0相加,仍得这个数。

有理数的加法运算律:1.两个数相加,交换加数的位置,和不变。

即a b b a +=+;2.三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

即()()a b c a b c ++=++。

知识点二 有理数的减法(基础) 有理数的减法法则:减去一个数等于加上这个数的相反数。

即()a b a b -=+-。

【注意减法运算2个要素发生变化】:减号变成加号;减数变成它的相反数。

有理数减法步骤: 1.将减号变为加号。

2.将减数变为它的相反数。

3.按照加法法则进行计算。

考查题型考查题型一 有理数加法运算典例1.(2018·广东初一期中)计算-(-1)+|-1|,其结果为( ) A .-2 B .2 C .0 D .-1【答案】B 【解析】试题提示:由题可得:原式=1+1=2,故选B.a b的值()变式1-1.(2019·呼伦贝尔市期末)有理数a、b在数轴上的位置如图所示,则A.大于0B.小于0C.小于a D.大于b【答案】A【提示】先根据数轴的特点判断出a,b的符号,再根据其与原点的距离判断出其绝对值的大小,然后根据有理数的加法法则得出结果.【详解】根据a,b两点在数轴上的位置可知,a<0,b>0,且|b|>|a|,所以a+b>0.故选A.【名师点拨】此题考查数轴,绝对值,有理数的加法法则.解题关键在于用几何方法借助数轴来求解,非常直观,体现了数形结合的优点.变式1-2.(2019·庆阳市期中)若a=2,|b|=5,则a+b=( )A.-3 B.7 C.-7 D.-3或7【答案】D【提示】根据|b|=5,求出b=±5,再把a与b的值代入进行计算,即可得出答案.【详解】∵|b|=5,∴b=±5,∴a+b=2+5=7或a+b=2-5=-3;故选D.【名师点拨】此题考查了有理数的加法运算和绝对值的意义,解题的关键是根据绝对值的意义求出b的值.变式1-3.(2019·扬州市期中)若|m|=3,|n|=5,且m-n>0,则m+n的值是()A.-2 B.-8或8 C.-8或-2 D.8或-2【答案】C【详解】∵|m|=3,|n|=5,∴m=±3,n=±5,∵m-n>0,∴m=±3,n=-5,∴m+n=±3-5,∴m+n=-2或m+n=-8.故选C .变式1-4.(2018·上饶市期末)若m 是有理数,则m m +的值是( ) A .正数 B .负数C .0或正数D .0或负数【答案】C【提示】根据:如果m>0,则|m|=m; 如果m<0,则|m|=-m; 如果m=0,则|m|=0.【详解】如果m 是正数,则m m +是正数;如果m 是负数,则m m +是0;如果m 是0,则m m +是0. 故选C【名师点拨】本题考核知识点:有理数的绝对值.解题关键点:理解绝对值的意义. 考查题型二 有理数加法中的符号问题典例2.(2018·重庆市期末)将 6-(+3)+(-2) 改写成省略括号的和的形式是( ) A .6-3-2 B .-6-3-2C .6-3+2D .6+3-2【答案】A【提示】先把加减法统一成加法,再省略括号和加号.【详解】将6﹣(+3)+(﹣2)改写成省略括号的和的形式为6﹣3﹣2. 故选A .【名师点拨】本题考查了有理数的加减混合运算,将算式写成省略括号的形式必须统一成加法后,才能省略括号和加号.变式2-1.(2020·银川市期中)把(+3)﹣(+5)﹣(﹣1)+(﹣7)写成省略括号的和的形式是( ). A .﹣3﹣5+1﹣7 B .3﹣5﹣1﹣7 C .3﹣5+1﹣7 D .3+5+1﹣7 【答案】C【解析】(+3)﹣(+5)﹣(﹣1)+(﹣7)=(+3)+(-5)+(+1)+(﹣7)=3﹣5+1﹣7, 故选:C.变式2-2.(2020·邯郸市期末)若两个非零的有理数a,b 满足:|a|=-a,|b|=b,a +b <0,则在数轴上表示数a,b 的点正确的是( ) A .B .C .D .【答案】D【提示】根据|a|=-a 得出a 是负数,根据|b|=b 得出b 是正数,根据a+b <0得出a 的绝对值比b 大,在数轴上表示出来即可.【详解】解:∵a 、b 是两个非零的有理数满足:|a|=-a,|b|=b,a+b <0, ∴a <0,b >0, ∵a+b <0, ∴|a|>|b|, ∴在数轴上表示为:故选D.【名师点拨】本题考查数轴,绝对值,有理数的加法法则等知识点,解题关键是确定出a <0,b >0,|a|>|b|. 变式2-3.(2019·深圳市期中)如果a <0,b >0,a +b <0 ,那么下列关系式中正确的是( ) A .a b b a ->>-> B .a a b b >->>- C .a b b a >>->- D .b a b a >>->-【答案】A【提示】由于a <0,b >0,a+b <0,则|a|>b,于是有-a>b,-b>a,易得a,b,-a,-b 的大小关系. 【详解】∵a <0,b >0,a+b <0, ∴|a|>b, ∴-a>b,-b>a,∴a,b,-a,-b 的大小关系为:-a>b>-b>a, 故选A .【名师点拨】本题考查了有理数的加法法则,有理数的大小比较,异号两数的加法法则确定出|a|>b 是解题的关键. 考查题型三 有理数加法在实际生活中的应用典例3(2018·厦门市期末)下列温度是由-3℃上升5℃的是( ) A .2℃ B .-2℃ C .8℃ D .-8℃【答案】A【提示】物体温度升高时,用初始温度加上上升的温度就是上升之后的温度,即是所求 【详解】(-3℃)+5℃= 2℃ 故本题答案应为:A【名师点拨】此题考查了温度的有关计算,是一道基础题.熟练掌握其基础知识是解题的关键变式3-1.(2019·石家庄市期中)在学习“有理数的加法与减法运算”时,我们做过如下观察:“小亮操控遥控车模沿东西方向做定向行驶练习,规定初始位置为0,向东行驶为正,向西行驶为负.先向西行驶3m,在向东行驶lm,这时车模的位置表示什么数?”用算式表示以上过程和结果的是( ) A .(﹣3)﹣(+1)=﹣4 B .(﹣3)+(+1)=﹣2C.(+3)+(﹣1)=+2 D.(+3)+(+1)=+4【答案】B【详解】由题意可得:(﹣3)+(+1)=﹣2.故选B.变式3-2.(2019·石家庄市期中)一家快餐店一周中每天的盈亏情况如下(盈利为正):37元,-26元,-15元,27元,-7元,128元,98元,这家快餐店总的盈亏情况是()A.盈利了290元B.亏损了48元C.盈利了242元D.盈利了-242元【答案】C【提示】利用有理数的加法求出已知各数的和即可求出一周总的盈亏情况.【详解】∵37+(−26)+(−15)+27+(−7)+128+98=242(元),∴一周总的盈亏情况是盈利242元.故选择C.【名师点拨】本题考查正数和负数、有理数的加法,解题的关键是掌握正数和负数、有理数的加法.±kg,现随机选取10袋面粉进行质量变式3-3.(2020·沈阳市期末)面粉厂规定某种面粉每袋的标准质量为500.2检测,结果如下表所示:则不符合要求的有()A.1袋B.2袋C.3袋D.4袋【答案】A【提示】提示表格数据,找到符合标准的质量区间即可解题.±kg,即质量在49.8kg——50.2kg之间的都符合要求,【详解】解:∵每袋的标准质量为500.2根据统计表可知第5袋49.7kg不符合要求,故选A.【名师点拨】本题考查了有理数的实际应用,属于简单题,熟悉概念是解题关键.考查题型四有理数加法运算律典例4.(2019·忠县期中)计算1﹣3+5﹣7+9=(1+5+9)+(﹣3﹣7)是应用了()A.加法交换律 B.加法结合律C.分配律 D.加法交换律与结合律【答案】D【提示】根据加法交换律与结合律即可求解.【详解】计算1-3+5-7+9=(1+5+9)+(-3-7)是应用了加法交换律与结合律.故选:D.【名师点拨】考查了有理数的加减混合运算,方法指引:①在一个式子里,有加法也有减法,根据有理数减法法则,把减法都转化成加法,并写成省略括号的和的形式.②转化成省略括号的代数和的形式,就可以应用加法的运算律,使计算简化.变式4-1.(2018·新蔡县期中)计算()+()+()+()等于()A.-1 B.1 C.0 D. 4【答案】A【提示】有理数的加减运算,适当运用加法交换律.【详解】解:故选:A.【名师点拨】本题考查有理数的加减运算,熟记有理数的加减运算法则,同时能够题目数字特点进行灵活计算.变式4-2.(2019淮南市期中)-1+2-3+4-5+6+…-2017+2018的值为( )A.1 B.-1 C.2018 D.1009【答案】D【提示】从左边开始,相邻的两项分成一组,组共分成1009组,每组的和是1,据此即可求解.【详解】原式=(−1+2)+(−3+4)+(−5+6)+…(−2015+2016)+(−2017+2018),=1+1+1+…+1=1×1009,=1009.故选D.【名师点拨】属于规律型:数字的变化类,考查有理数的加减混合运算,掌握运算法则是解题的关键.变式4-3.(2019·南阳市期中)下列交换加数的位置的变形中,正确的是A.1-4+5-4=1-4+4-5 B.13111311 34644436 -+--=+--C.1-2+3-4=2-1+4-3 D.4.5-1.7-2.5+1.8=4.5-2.5+1.8-1.7 【答案】D【详解】A. 1−4+5−4=1−4−4+5,故错误;B.13111311=-34644436-+--+--,故错误;C. 1-2+3-4=-2+1-4+3,故错误;D. 4.5−1.7−2.5+1.8=4.5−2.5+1.8−1.7,故正确. 故选D.考查题型五 有理数减法运算典例5.(2020·济南市期末)﹣3﹣(﹣2)的值是( ) A .﹣1 B .1 C .5 D .﹣5【答案】A【提示】利用有理数的减法的运算法则进行计算即可得出答案. 【详解】﹣3﹣(﹣2)=﹣3+2=﹣1,故选A .【名师点拨】本题主要考查了有理数的减法运算,正确掌握运算法则是解题关键. 变式5-1.(2019·郯城县期末)比﹣1小2的数是( ) A .3 B .1 C .﹣2 D .﹣3【答案】D【提示】根据题意可得算式,再计算即可. 【详解】-1-2=-3, 故选D .【名师点拨】此题主要考查了有理数的减法,关键是掌握减去一个数,等于加上这个数的相反数. 变式5-2.(2019·重庆市期末)若 |a |= 3, |b | =1 ,且 a > b ,那么 a -b 的值是( ) A .4 B .2 C .-4 D .4或2【答案】D根据绝对值的性质可得a =±3,b =±1,再根据a >b ,可得①a =3,b =1②a =3,b =﹣1,然后计算出a -b 即可. 【详解】∵|a |=3,|b |=1,∴a =±3,b =±1. ∵a >b ,∴有两种情况: ①a =3,b =1,则:a -b =2; ②a =3,b =﹣1,则a -b =4. 故选D .【名师点拨】本题考查了绝对值的性质,以及有理数的减法,关键是掌握绝对值的性质,绝对值等于一个正数的数有两个.变式5-3.(2018·自贡市期中)若x <0,则()x x --等于( ) A .-x B .0 C .2x D .-2x【答案】D【提示】根据有理数的加法法则和绝对值的代数意义进行提示解答即可.【详解】()2x x x x x --=+=, ∵0x <, ∴20x <,∴原式=22x x =-. 故选D.【名师点拨】“由已知条件0x <得到20x <,进而根据绝对值的代数意义得到:22x x =-”是解答本题的关键. 考查题型六 有理数减法在实际生活中的应用典例6.(2019临河区期末)某市有一天的最高气温为2℃,最低气温为﹣8℃,则这天的最高气温比最低气温高( ) A .10℃ B .6℃ C .﹣6℃ D .﹣10℃ 【答案】A【解析】提示:用最高温度减去最低温度,然后根据减去一个数等于加上这个数的相反数进行计算即可得解. 详解:2-(-8) =2+8 =10(℃). 故选:A .名师点拨:本题考查了有理数的减法,是基础题,熟记减去一个数等于加上这个数的相反数是解题的关键. 变式6-1.(2019·长兴县月考)某地一周前四天每天的最高气温与最低气温如右表,则这四天中温差最大的是( )A .星期一B .星期二C .星期三D .星期四【答案】C【提示】利用每天的最高温度减去最低温度求得每一天的温差,比较即可解答. 【详解】星期一温差:10﹣3=7℃; 星期二温差:12﹣0=12℃; 星期三温差:11﹣(﹣2)=13℃; 星期四温差:9﹣(﹣3)=12℃; 综上,周三的温差最大. 故选C .【名师点拨】本题考查了有理数的减法的应用,根据题意正确列出算式,准确计算有理数减法是解题的关键. 变式6-2.(2018·吕梁市期末)我市冬季里某一天的最低气温是-10℃,最高气温是5℃,这一天的温差为 A .-5℃ B .5℃C .10℃D .15℃【答案】D【详解】解:5−(−10) =5+10=15℃. 故选D.变式6-3.(2020·寿阳县期末)甲、乙、丙三地海拔分别为20m ,15m -,10m -,那么最高的地方比最低的地方高( ) A .10m B .25mC .35mD .5m【答案】C【提示】根据正数与负数在实际生活中的应用、有理数的减法即可得.【详解】由正数与负数的意义得:最高的地方的海拔为20m ,最低的地方的海拔为15m - 则最高的地方比最低的地方高20(15)201535()m --=+= 故选:C .【名师点拨】本题考查了正数与负数在实际生活中的应用、有理数的减法,理解负数的意义是解题关键. 考查题型七 有理数加减混合运算典例7(2018·南阳市期中)计算:①﹣13+(﹣20)﹣(﹣33);②(+12)﹣(﹣13)+(﹣14)﹣(+16) 【答案】①0;②512. 【解析】①﹣13+(﹣20)﹣(﹣33) =﹣33+33 =0;②(+12)﹣(﹣13)+(﹣14)﹣(+16) =12+13﹣14﹣16 =643212121212+-- =512. 变式7-1.(2019·河池市期中)计算:(1) 6789-+- (2) 2(5)(8)5---+-- 【答案】(1)-2;(2)-10-+-【详解】解:(1)6789-+-=189-=79=-2---+--(2)2(5)(8)5=-+--2585=--385=--55=-10【名师点拨】此题考查的是有理数的加减法混合运算,掌握有理数的加、减法法则是解决此题的关键.变式7-2.(2019·枣庄市期中)请根据如图所示的对话解答下列问题.求:(1)a,b,c的值;(2)8-a+b-c的值.【答案】(1)a=-3,b=±7,c=-1或-15; (2)33或5.【详解】解:(1)∵a的相反数是3,b的绝对值是7,∴a=-3,b=±7;∵a=-3,b=±7,c和b的和是-8,∴当b=7时,c= -15,当b= -7时,c= -1,(2)当a=-3,b=7,c=-15时,8-a+b-c=8-(-3)+7-(-15)=33;当a=-3,b=-7,c=-1时,8-a+b-c=8-(-3)+(-7)-(-1)=5.故答案为(1)a=-3,b=±7;c=-1或-15;(2)33或5.【名师点拨】本题考查有理数的加减混合运算,掌握相反数和绝对值的概念是解题关键.。

有理数的加减混合运算教案

有理数的加减混合运算教案

有理数的加减混合运算教案有理数的加减混合运算教案作为一位优秀的人民教师,就不得不需要编写教案,教案是教学活动的依据,有着重要的地位。

我们该怎么去写教案呢?以下是小编为大家整理的有理数的加减混合运算教案,希望对大家有所帮助。

有理数的加减混合运算教案篇1一、素质教育目标(一)知识教学点1.了解:代数和的概念。

2.理解:有理数加减法可以互相转化。

3.应用:会进行加减混合运算。

(二)能力训练点培养学生的口头表达能力及计算的准确能力。

(三)德育渗透点通过学习一切加减法运算,都可以统一成加法运算,继续渗透数学的转化思想。

(四)美育渗透点学习了本节课就知道一切加减法运算都可以统一成加法运算.体现了数学的统一美。

二、学法引导1.教学方法:采用尝试指导法,体现学生主体地位,每一环节,设置一定题目进行巩固练习,步步为营,分散难点,解决关键问题。

2.学生写法:练习→寻找简单的一般性的方法→练习巩固。

三、重点、难点、疑点及解决办法1.重点:把加减混合运算算式理解为加法算式。

2.难点:把省略括号和的形式直接按有理数加法进行计算。

四、课时安排1课时五、教具学具准备投影仪或电脑、自制胶片。

六、师生互动活动设计教师提出问题学生练习讨论,总结归纳加减混合运算的一般步骤,教师出示练习题,学生练习反馈。

七、教学步骤(一)创设情境,复习引入师:前面我们学习了有理数的加法和减法,同学们学得都很好!请同学们看以下题目:-9+(+6);(-11)-7师:(1)读出这两个算式。

(2)“+、-”读作什么?是哪种符号?“+、-”又读作什么?是什么符号?学生活动:口答教师提出的问题。

师继续提问:(1)这两个题目运算结果是多少?(2)(-11)-7这题你根据什么运算法则计算的?学生活动:口答以上两题(教师订正)。

师小结:减法往往通过转化成加法后来运算。

【教法说明】为了进行有理数的加减混合运算,必须先对有理数加法,特别是有理数减法的题目进行复习,为进一步学习加减混合运算奠定基础.这里特别指出“+、-”有时表示性质符号,有时是运算符号,为在混合运算时省略加号、括号时做必要的准备工作。

《有理数的加减法》教学设计

《有理数的加减法》教学设计

《有理数的加减法》教学设计《有理数的加减法》教学设计有理数的加法与小学的加法大有不同,小学的加法不涉及到符号的问题,下面给大家分享《有理数的加减法》教学设计,一起来看看吧!《有理数的加减法》教学设计1教学目标:1、会将有理数的减法运算转化为有理数的加法运算。

2、会将有理数的加减混合运算转化为有理数的加法运算。

教学重点、难点:会进行有理数的减法运算,会进行有理数的加减混合运算。

课前复习:1、有理数加法法则是什么?2、有理数加法运算律是什么?教学过程:一、有理数的减法法则实际生活中有很多时候要涉及到有理数的减法。

例如:某地某天的气温是―2至5C,这一天的温差是多少呢?(温差是最高气温减最低气温,单位:C)。

显然,这天的温差是5―(―2)。

这里就用到了有理数的减法。

我们知道,减法是与加法相反的运算,计算5―(―2),就是要求一个数,使之与(―2)的和得4,因为与―3相加得4,所以这个数应该是7,即:5―(―2)=7。

(1)另一方面,我们知道5+(+2)=7(2)由(1),(2)有5―(―2)=5+(+2)(3)从(3)式能看出减―2相当于加哪个数吗?用上面的方法考虑:0―(―2)=___, 0+(+2)=___;1―(―2)=___, 1+(+2)=____;―5―(―2)=___,―5+(+2)=___。

这些数减3的结果与它们加+2的结果相同吗?从(3)式能看出减―2相当于加哪个数吗?把5换成0,1,—5,用上面的方法考虑,并看它们的结果相同吗?计算:10-8=___,10+(-8)=____;13-7=___,13+(-7)=____。

上述式子表明:减去一个数,等于加上这个数的相反数。

于是,得到有理数减法法则:减去一个数,等于加这个数的相反数。

用式子可以表示成ab=a+(b)例题解析:计算:(1)(-4)―(―5);(2)0-6;(3)7.1―(―4.9);解:(1)(-4)―(―5)=(-4)+5=1;(2))0-6=0+(-6)=-6;(3)7.1―(―4.9)=7.1+4.9=12;二、有理数加减混合运算有理数的.加减混合运算,可以按照运算顺序,从左到右逐一加以计算,通常也会利用有理数的减法法则,把它写成只有加法运算的和的形式。

第二章有理数及其运算-有理数的加减运算(教案)

第二章有理数及其运算-有理数的加减运算(教案)
4.培养学生合作探究、自主学习的习惯,提高团队协作和独立解决问题的能力。
5.培养学生在面对数学问题时,敢于尝试、勇于克服困难的精神,增强数学学习的自信心。
三、教学难点与重点
1.教学重点
(1)掌握有理数的概念:包括正数、负数和零的分类,理解有理数在生活中的应用。
举例:温度的变化(如零上3摄氏度与零下2摄氏度相加)、在坐标轴上表示有理数等。
4.解决实际问题中涉及有理数加减运算的问题,如温度变化、盈利亏损等。
二、核心素养目标
本节课的核心素养目标如下:
1.培养学生运用数学语言进行表达、交流的能力,提高数学思维能力。
2.培养学生运用数学知识解决实际问题的能力,增强数学应用的意识。
3.培养学生具备良好的数学逻辑推理能力,掌握有理数加减运算的基本法则。
第二章有理数及其运算-有理数的加减运算(教案)
一、教学内容
本节课选自教材第二章“有理数及其运算”中的“有理数的加减运算”。教学内容主要包括以下几点:
1.理解有理数的概念,掌握正数、负数和零的分类。
2.掌握有理数的加减法运算法则,包括同号相加、异号相加、加减混合运算等。
3.能够熟练运用加减法运算法则进行有理数的加减运算。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了有理数的加减运算的基本概念、运算法则和应用。同时,我们也通过实践活动和小组讨论加深了对有理数加减运算的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
3.重点难点解析:在讲授过程中,我会特别强调有理数加减法的运算法则和解决实际问题的方法。对于难点部分,我会通过举例和比较来帮助大家理解。

2.2.4 有理数的加减运算 课件 北师大版数学七年级上册

2.2.4 有理数的加减运算 课件 北师大版数学七年级上册

此时飞机比起飞点高了多少干米?
03 新知讲解
方法1.通过高度变化列出算式
4.5-3.2+1.1-1.4=1.3+1.1-1.4=2.4-1.4=1(km)
方法2.也可以将这4个数直接相加.
4.5+(-3.2)+1.1+(-1.4)
=1.3+1.1+(-1.4) =2.4+(-1.4) =1(km)
-C=a+b+(-c)
04 课堂练习
【知识技能类作业】选做题:
4.如图是一个正方体的平面展开图,若将展开图折叠成正方体后, 相对面上所标的两个数相等,则a+b+C 的值为( D )
A.6 B.4
C.2
D.-4
5.试用“+”“-”号将+3,-8,-10,+12四个有理数连接
起来,使其运算结果最大,这个最大值是33
A.-6-7+2
-9 B.-6+7-2-9
C.-6-7-2+9
D.-6+7-2+9
04 课堂练习
【知识技能类作业】必做题:
3.用式子表示“引入相反数后,加减混合运算可以统一为加法
运算”,正确的是( D )
A.a
+b
-C=a
+b+C
B.a

-b+C=a
+b
-C
C.a+b
-C=a
+(-b)+(-c)
D.a+b
第二章有理数及其运算
2.2.4有理数的加减运算
目录 Contents
01 教学目标 02 新知导入 03 新知讲解

《有理数的加减混合运算》word教案 (公开课)2022年北师大版 (1)

《有理数的加减混合运算》word教案 (公开课)2022年北师大版 (1)

第二章有理数及其运算 6 有理数的加减混合运算第1课时教学重点与难点教学重点:1.含有分数或小数的有理数加减运算.2.有的题目可以先写成省略括号的和的形式再计算.3.还有的题目可以先将加减运算统一成加法,再按照加法法那么计算.教学难点:1.感受算法的多样化,并选择好适合自己思维特点的某种方法.2.用加减法列出算式解决生活中的实际问题.学情分析认知根底:学生在前面几节课中已经学习过有理数的加法、减法的法那么,并利用它们解决了一些简单的实际问题,但前面的运算多为整数运算不含分数或小数的运算,且多为单纯的加法或减法运算,而很少有加法、减法的混合运算.同时在本章前面的数学学习中学生已经具备了一定的运算技能,这些为本节课的学习作了很好的知识准备.活动经验根底:前面所学的内容虽然比拟单一,但是即使是一道加法计算题,往往也有不同的算法,而且有的算法明显比拟简捷.例如学生们在计算同一道题时,有的同学算的特别快,而有的同学就要算很长时间.这种差异,使得算得快的同学有优越感,算得慢的同学有渴望互相交流方法的好奇心.这些体验都成为开展本节课学习的积极因素.教学目标1.使学生理解有理数的加减法可以转化为加法,并感受、体会“代数和〞的思想(不必出现名称).2.能熟练正确地进行包括小数或分数的加减混合运算.3.培养学生的数感,提高计算能力和步步有据的推理能力.教材处理本节重在让学生感受算法的多样化,是先写成省略括号的和的形式再计算好呢?还是先将加减运算统一成加法,再按照加法法那么计算好.至于如何选择要“因题因人〞而异,教师要给学生创造讨论的时机,多提供些有多种算法的题目.教师在处理时切不可做简单的硬性规定.这样不但扼杀了学生的创造性,还容易养成学生不爱思考,“只等着教师来告诉我〞的懒惰的思维方式,还会使学生学习数学的兴趣越来越小.教学方法本节宜采用“探究〞法.本节课的知识点是在学生已有解题经验并结合创设的问题情境,由学生自主讨论、分析出来的,是学生在前面学习过程中产生的一种自发的渴望交流的需求,然后由教师补充和纠正,最后再由学生归纳得出的.即使学生说错,教师也不包办、不代替,只是进行补充和纠正.教学过程一、巧妙设疑,复习引入设计说明教师通过设置问题串,层层设疑,引导学生全面观察、审视自己所学过的知识,自主发现学习的新领域,既复习旧知,作好新知学习的铺垫,同时也不断激发学生对新课的好奇心,从而自然引入新课.问题1:有理数的定义是什么?学生答复出“整数和分数统称有理数〞,在此根底上,教师再进一步针对已学过的题目特点提出问题2.问题2:请翻阅教材第4节和第5节的内容,这些题目中的数字是哪种数?这是他们第一次从这个角度进行观察,教师紧接着点出本节课的学习要点,不少学生会产生极大的新鲜感.今天我们就来学习包括小数和分数的有理数加减混合运算,先入为主直接点出本节课的重点.问题3:口答以下各题,并说明计算的依据:(1)12.5-(-0.3);(2)17-⎝⎛⎭⎫-27;(3)12-⎝⎛⎭⎫-13;(4)-2.25+14;(5)14+⎝⎛⎭⎫-34;(6)17-25;(7)-11.5+4.5.教学说明问题1从根本概念入手分析,使学生对“有理数的加减混合运算〞有一个全面的认识,而不是仅仅局限于整数范围.然而在答复这个问题时,很可能有一局部学生一时想不起有理数的定义了,那可以采用多提问几个同学,多出现几种答案,然后再查阅教材原文,甚至可以全班齐读定义等方法,通过屡次感知和重复加深理解、记忆.如果课堂上真出现这种情况,那就更说明学生对于根本概念的掌握是不扎实的,是需要强化的.另外,强调这个概念还因为初一的学生的数感本身就是不够完善的,很多学生存在着“数〞=“整数〞,甚至于“数〞=“正整数〞这样的错误认识,因此我们要多为学生创造一些正确理解有理数的教学情境或者时机.问题2是让学生在明确了有理数的概念之后,通过教材的实例感受所学过的题型是不全面的.学生需要认真地观察一会儿,就能发现之前教材上的所有题目中的数字都是整数,更能激发学生的好奇心.问题3这组题是为了让学生的思维在减法与加法之间屡次反复,对某些思想懒惰易形成思维定势的学生来说,减去一个数等于加上它的相反数用的多了,看见加法就会创造出“加上一个数就等于减去它的相反数〞这样的算法,而且这样的学生并不少见.这组题是将教材中计算重新编排而成,学生在口答过程中说对答案的不在少数,能说清算理的人就不多了,可见有时学生能算对数可能只是初步的感性认识,是模糊的.通过这样交替进行的说与算的思维训练,为后面多步复杂的综合计算夯实根底.二、初步感知1.问题引入 阅读教材中的游戏题.学生经过交流,分组展示小丽和小彬所抽到的卡片并计算.2.稳固新知计算以下各题,说明最后一步的算理:(1)(-3.5)+15+⎝⎛⎭⎫-45;(2)⎝⎛⎭⎫-13+15.5+⎝⎛⎭⎫-23; (3)4.7-3.4-(-8.5);(4)0-12-⎝⎛⎭⎫-14+⎝⎛⎭⎫-34. 教学说明本环节设计的问题引导学生经历了两个过程.第一个环节,问题引入局部的两个设问可以设计为让学生分小组进行讨论.这是本节课上学生第一次分组讨论的问题,也是难点问题.第二个环节,先由三位同学板书,其他同学写在练习本上.无论采用哪种方法学生都有出错的可能,学生易错点的原因是由于算理模糊、不够熟练,为了防止这些错误,运算结果是否正确都要求讲明最后一步的算理,再由同组的另一位同学更正,加深全班同学的认识.这就完成了“模仿熟练〞的过程,为下一步的“提炼方法〞奠定根底.学生在本节课的探究过程中,说清算理是学法中的重要措施,也是突破难点(2)的重要手段.而且第(2)题还可以用来渗透结合律简化运算的技巧,为第二课时的内容作好铺垫.至此,本节课由复习引入到初步感知两个教学局部,充分展示了学生从“发现新知〞到“模仿熟练〞再到“提炼方法〞的思维过程,同时辅以“说理训练〞夯实了根底,确保学生能明明白白地做对题目,突破本节课的难点.三、延伸拓展设计说明运用数学知识处理带有实际背景的问题,需要有较强的抽象思维能力和建模的数学思想,所以这类问题一直属于难点题型.通过以下两个练习训练学生以上能力.练习1:教材中 习题2.7问题解决2.练习2:北京某出租车司机小李某天营运全是在长安大街上进行的,如果规定向东为正,向西为负,他这天的行车里程(单位:千米)如下:15,-2,5,-1,10,-3,-2,12,4,-5,6.(1)将最后一名乘客送到目的地时,小李距离出车时的出发点有多远?(2)假设汽车耗油量为a 千克/千米,这天小李的车共耗油多少千克?解:(1)由题意可得:15-2+5-1+10-3-2+12+4-5+6=39(千米).(2)将以上各数的绝对值相加得65千米,耗油量为65a 千克.教学说明本环节的处理不能仅仅停留在就题论题的层面上,教师应该有意识地向学生渗透建模的数学思想以及处理这类问题的思维方法,这样才能逐渐的培养学生的逻辑思维.大体方法是这样的:1.审题,具体的就是弄懂题目中有关的数字所代表的实际意义.2.根据题目要求,将有关的数字运用数学知识进行重新组合(列算式或列方程或列函数关系式等等),这就是建模的过程.3.解决这个数学问题.练习2的难度就比拟大,它很好地表达了“代数和〞与“绝对值的和〞在实际意义上的不同,有利于学生更生动形象地理解数学定义.具体处理时方法和前面一样,要注意思维的条理性,培养逻辑思维能力和建模的数学思想.四、总结反思,提炼方法有理数加法的计算可以通过省略加号和括号的方法以及转化成加法直接计算,要让学生知道如何选择解题方法,在考虑自己解题特点的同时也要受题目客观条件的影响.表达因题因人而异的优选法.问题1:你认为自己做计算题时,比拟适合用哪种方法?问题2:你认为什么样的题目适合用省略加号和括号的方法计算?问题3:解决实际问题时,应该怎样做?评价与反思1.深挖教材,尽可能的为学生体会算法多样化创造适宜的问题情境,为此进行了教材原题的变式处理.2.“说理训练〞夯实了根底,确保学生能明明白白地做对题目,突破本节课的难点.字母表示数【学习目标】课标要求:1.能用字母和代数式表示以前学过的运算律和计算公式。

有理数的加减乘除(教案)

有理数的加减乘除(教案)

计算:(1)601)315141(÷+-; (2))315141(601+-÷.有理数加法法则:⑴同号两数相加,取 的符号,并把 相加; ⑵绝对值不相等的异号两数相加,取 符号,并用 的绝对值减去 的绝对值,互为相反数的两个数相加得 ; ⑶一个数同0相加,仍得 。

有理数的减法:减去一个数,等于加上这个数的 。

知识名称:有理数的加、减、乘、除及基本运算定律【知识梳理1】有理数加法法则:同号两数相加,取原来的符号,并把绝对值相加。

异号两数相加,绝对值相等时和为零;绝对值不相等时,其和的绝对值为较大的绝对值减去较小的 绝对值所得的差,其和的符号取绝对值较大的加数的符号。

一个数同零相加,仍得这个数。

有理数的减法:减去一个数,等于加上这个数的加上这个数的相反数。

①进行有理数减法运算时,首先应弄清减数的符号(是“+”,还是“-” )。

②将有理数减法转化为加法时,要同时改变两个符号:一个是运算符号由“-”变为“+”,另一个是减数的性质符号。

【例题精讲】 例1. 计算:(1)计算:5+(﹣2)考点:有理数的加法. 解:5+(﹣2)=+(5﹣2)=3.1741063 专题:计算题.分析:由于﹣4与4互为相反数,所以根据加法交换律和结合律,先计算(﹣4)与4的和,以简化计算.解答:解:原式=(﹣4+4)﹣0.14= 0﹣0.14=﹣0.14. 点评:本题利用了互为相反数的两个数相加得0,以简化计算 (2).考点:有理数的加法.1741063分析:根据原式=﹣﹣2﹣,然后计算同分母的分数的加减,最后进行加减运算即可. 解答:解:原式=﹣﹣2﹣=﹣1﹣2 =﹣3.例2. (1) (-3)―(―5); (2)0-7; (3) 7.2―(―4.8); (4)-341521 .答案:方法总结:减去一个数等于加上这个数的相反数。

例3 已知a ,b ,c 在数轴上的位置如图所示,用“<”或“>”连接则:a ﹣b > 0,|a| < |c|.考点:有理数的减法;数轴.1741063分析:由题意可知c <b <0<a ,且|c|>|a|>|b|.根据有理数加减法法则和绝对值的定义作答. 解答:解:根据数轴可知:c <b <0<a ,且|c|>|a|>|b|. ∴a ﹣b >0,|a|<|c|.点评:本题考查了数轴和有理数的加减法运算及绝对值的定义.例4.用算式表示:珠穆朗玛峰的海拔高度是8848米,吐鲁番盆地的海拔高度是-155米,两处高度相差 多少米___ _______。

人教版七年级数学上册《有理数的加减法(第4课时)》示范教学设计

人教版七年级数学上册《有理数的加减法(第4课时)》示范教学设计

1.3有理数的加减法(第4课时)教学目标1.会把有理数的加减混合运算统一成加法运算.2.熟练掌握有理数的加减混合运算.3.能根据具体问题,适当运用运算律进行简化运算.教学重点熟练掌握有理数的加减混合运算.教学难点能根据具体问题,适当运用运算律进行简化运算.教学过程知识回顾1.有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加.(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0.(3)一个数同0相加,仍得这个数.有理数减法法则:减去一个数,等于加这个数的相反数.新知探究一、课堂活动【问题】计算(-20)+(+3)-(-5)-(+7).【答案】-19【思考】这里使用了哪些运算律?【师生活动】学生独立思考后,再相互交流.教师提醒学生注意联系有理数加法法则和减法法则.这里,先把减法转化为加法,然后用加法的交换律与结合律,达到简化运算的目的.【设计意图】为学生提供了自主探究学习的机会,在探究过程中教师注意加强引导,以帮助学生攻克难点.【新知】引入相反数后,加减混合运算可以统一为加法运算.a+b-c=a+b+(-c).【问题】下面的运算有简便写法吗?(-20)+(+3)+(+5)+(-7).【答案】-20+3+5-7【思考】你知道算式“-20+3+5-7”怎样读吗?【师生活动】读作:“负20、正3、正5、负7的和”,或“负20加3加5减7”.【问题】下面的运算有简便写法吗?(-20)+(+3)-(-5)-(+7).【答案】原式=-20+3+5-7=-20-7+3+5=-27+8=-19.【设计意图】让学生通过刚学习的知识完成例题运算步骤书写的简化.【问题】(1)把算式(+9)-(+10)+(-2)-(-8)写成省略括号和加号的形式,并把结果用两种读法读出来.(2)式子-7+1-5-9的正确读法是().A.负7、正1、负5、负9B.减7加1减5减9C.负7加1、负5减9D.负7加1减5减9【答案】(1)原式=9-10-2+8,读作:“正9、负10、负2、正8的和”或“9减10减2加8”.(2)D【设计意图】巩固所学新知,即时了解学生对新知的掌握程度.二、典例精讲【例1】计算:3112820.25 1.5 2.75 424⎛⎫⎛⎫--+-+--⎪ ⎪⎝⎭⎝⎭.【答案】5【师生活动】学生归纳、交流,教师在适当的时候提供帮助.由教师总结出有理数加减混合运算的运算步骤.【设计意图】锻炼学生的思维严谨性,培养学生归纳和概括的能力以及语言表达能力.估计学生独立完成有一定困难,所以在学生总结的基础上,教师要给出完整的步骤.【归纳】有理数加减混合运算的运算步骤:(1)将减法转化为加法;(2)省略括号和加号;(3)运用加法交换律和结合律,将同号两数相加;(4)按有理数加法法则进行运算.【例2】有8筐白菜,以每筐25 kg为标准,超过的千克数记作正数,不足的千克数记作负数,这8筐白菜的质量记录如下:1.5,-3,2,-0.5,1,-2,-2,-2.5.(1)这8筐白菜一共多少千克?(2)如果将这些白菜以5元/kg的价格出售,那么这8筐白菜一共能卖多少钱?【答案】解:(1)25×8+(1.5-3+2-0.5+1-2-2-2.5)=200+(-5.5)=194.5(kg).答:这8筐白菜一共194.5 kg.(2)194.5×5=972.5(元).答:这8筐白菜一共能卖972.5元.【师生活动】让学生独立完成后并展示结果,教师进行讲解.【设计意图】让学生体会在实际生活中何时使用有理数的加减混合运算,并会用此解决问题,从而进一步感受学习数学的必要性.三、拓展提升【问题】在数轴上,点A,B分别表示数a,b.利用有理数减法,分别计算下列情况下点A,B之间的距离.(1)a=2,b=6;(2)a=0,b=6;(3)a=2,b=-6;(4)a=-2,b=-6.你能发现点A,B之间的距离与数a,b之间的关系吗?【答案】4684【设计意图】让学生利用数轴,通过观察几组数的情况后,知道用大数减小数,得到的差就是这两点之间的距离.【归纳】数轴上两点间的距离:在数轴上,设A,B两点表示的数分别为a,b(a>b),则点A,B之间的距离等于a-b.【问题】将下列式子写成省略加号和括号的形式,观察所得到的式子,你能发现简化符号有什么规律吗?(-40)-(+27)+19-24-(-32),-9-(-2)+(-3)-4.【答案】-40-27+19-24+32-9+2-3-4【归纳】数字前“-”号的个数是奇数取“-”,数字前“-”号的个数是偶数取“+”.课堂小结板书设计一、有理数的加减混合运算法则二、有理数的加减混合运算的运算步骤课后任务完成教材P24练习.。

有理数的加减混合运算教案最新4篇

有理数的加减混合运算教案最新4篇

有理数的加减混合运算教案最新4篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、计划大全、策划方案、报告大全、心得体会、演讲致辞、条据文书、作文大全、教案资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of classic sample essays for everyone, such as work summaries, plan summaries, planning plans, report summaries, insights, speeches, written documents, essay summaries, lesson plan materials, and other sample essays. If you want to learn about different formats and writing methods of sample essays, please stay tuned!有理数的加减混合运算教案最新4篇作为一位优秀的人·民教师,就不得不需要编写教案,教案是教学活动的依据,有着重要的地位。

有理数的加减法教案

有理数的加减法教案

有理数的加减法教案一、教学目标1. 理解有理数的概念,掌握有理数的加减法运算规则;2. 能够熟练进行有理数的加减法运算;3. 培养学生的逻辑思维能力和数学运算能力。

二、教学重点和难点1. 教学重点:有理数的加减法运算规则;2. 教学难点:有理数的加减法运算中负数的处理。

三、教学内容1. 有理数的概念有理数是指可以表示为两个整数之比的数,包括正有理数、负有理数和零。

有理数的表示方法为分数形式,如 12,−34 等。

2. 有理数的加法有理数的加法运算规则如下:• 同号相加,取相同的符号,绝对值相加;• 异号相加,取绝对值较大的符号,绝对值相减。

例如:2+3=5(−2)+(−3)=−52+(−3)=−1(−2)+3=13. 有理数的减法有理数的减法运算规则如下:• 减去一个数,等于加上它的相反数;• 减去一个数,等于加上它的相反数。

例如:2−3=−1(−2)−(−3)=12−(−3)=5(−2)−3=−54. 有理数的加减混合运算有理数的加减混合运算需要按照运算优先级进行计算,先计算括号内的运算,再进行加减运算。

例如:2+3−(−4)=9(−2)−3+(−4)=−92−3+(−4)=−5(−2)+3−(−4)=5四、教学方法1.讲解法:通过讲解有理数的概念和加减法运算规则,让学生理解有理数的加减法运算方法;2.案例法:通过实例演示,让学生掌握有理数的加减法运算技巧;3.练习法:通过大量的练习,让学生熟练掌握有理数的加减法运算方法。

五、教学步骤1. 引入通过讲解有理数的概念,让学生了解有理数的定义和表示方法。

2. 讲解有理数的加减法运算规则讲解有理数的加减法运算规则,包括同号相加、异号相加、减法运算等。

3. 案例演示通过实例演示,让学生掌握有理数的加减法运算技巧。

4. 练习通过大量的练习,让学生熟练掌握有理数的加减法运算方法。

5. 总结总结有理数的加减法运算规则和技巧,让学生对有理数的加减法运算有更深入的理解。

《有理数的加减法》公开课教案

《有理数的加减法》公开课教案

《有理数的加减法》公开课教案XX中学王老师一、教学目标理解并掌握有理数的加减法运算法则。

能正确进行有理数的加减运算,尤其是涉及符号的运算。

通过实际例子和互动,培养学生对数学的兴趣和解决问题的能力。

二、教学重点与难点重点:有理数加减法的运算规则和符号问题。

难点:处理负数和正数相加减时的符号变化。

三、教学过程导入部分(5分钟)故事引入:讲一个小故事,关于两个人的银行账户存取款,分别代表正负数的加减法。

让学生思考存款(正数)和取款(负数)之间的关系。

提问:同学们,有没有碰到过存钱和取钱的情况?我们来想象一下,如果你今天存了50元,明天取了20元,你账户里还有多少钱?新课讲解(20分钟)正数加正数:拿两个正数相加,比如5 + 3,问学生结果是多少。

解释说,正数相加结果更大。

负数加负数:例如-5 + (-3),用欠债的例子解释:如果你欠了5元,又欠了3元,总共欠了多少?正数加负数:例如5 + (-3),通过温度升高和降低的例子讲解:如果现在是5度,温度降低3度,现在是多少度?负数加正数:例如-5 + 3,通过负债和还钱的例子解释:欠5元,还了3元,还欠多少?符号总结:正正得正,负负得负,同号相加,符号不变;正负相加,符号取决于绝对值大的数。

练习互动(15分钟)课堂互动:出几道题让学生回答,比如7 + (-4),-8 + 5,-6 + (-2)等。

小组讨论:让学生两两分组,每组设计一个问题,然后交换解答。

实际应用:举几个生活中的例子,比如购物退货、温度变化等,让学生进一步理解有理数的加减法。

课堂小结(5分钟)总结今天的内容:我们学习了有理数的加减法,包括正数和负数相加减的规则。

鼓励学生:今天的内容看起来有点复杂,但通过多练习和理解实际例子,我们一定可以掌握。

回顾反思让学生回顾今天的学习内容,思考自己哪里还不太明白,或者觉得哪个部分最有趣。

鼓励学生写下自己的疑问和感受,课后讨论。

布置作业完成课本上的相关练习题。

第04讲 有理数的加减法(解析版)

第04讲 有理数的加减法(解析版)

第4讲有理数的加减法1.掌握有理数加法的意义,法则及运算律,并会使用运算律简算;2.掌握有理数减法的法则和运算技巧,认识减法与加法的内在联系;3.熟练将加减混合运算统一成加法运算,理解运算符号和性质符号的意义,运用加法运算律合理简算,并会解决简单的实际问题.考点01有理数的加法1.定义:把两个有理数合成一个有理数的运算叫作有理数的加法.2.法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0;(3)一个数同0相加,仍得这个数.要点诠释:利用法则进行加法运算的步骤:(1)判断两个加数的符号是同号、异号,还是有一个加数为零,以此来选择用哪条法则.(2)确定和的符号(是“+”还是“-”).(3)求各加数的绝对值,并确定和的绝对值(加数的绝对值是相加还是相减).3.运算律:要点诠释:交换加数的位置时,不要忘记符号.考法01有理数的加法运算1.计算:(1)(+20)+(+12); (2)1223⎛⎫⎛⎫-+-⎪ ⎪⎝⎭⎝⎭; (3)(+2)+(-11);(4)(-3.4)+(+4.3); (5)(-2.9)+(+2.9); (6)(-5)+0.【答案】(1)(2)属于同一类型,用的是加法法则的第一条;(3)(4)属于同一类,用的是加法法则的第二条;(5)用的是第二条:互为相反数的两个数相加得0;(6)用的是法则的第三条.(1)(+20)+(+12)=+(20+12)=+32=32;(2)121211 23236⎛⎫⎛⎫⎛⎫-+-=-+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(3)(+2)+(-11)=-(11-2)=-9(4)(-3.4)+(+4.3)=+(4.3-3.4)=0.9(5)(-2.9)+(+2.9)=0;(6)(-5)+0=-5.【总结】绝对值不等的异号两数相加,是有理数加法的难点,在应用法则时,一定要先确定符号,再计算绝对值.2.计算:11 3343⎛⎫⎛⎫-++⎪ ⎪⎝⎭⎝⎭【答案】11111 3333433412⎛⎫⎛⎫⎛⎫-++=+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭3计算:(1) (+10)+(-11);(2)⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭12 -1+-23【答案】(1) (+10)+(-11)=﹣(11-10)=﹣1;(2)⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭1212341 -1+-=-1+=-1+=-2 2323666考点02有理数的减法1.定义:已知两个数的和与其中一个加数,求另一个加数的运算,叫做减法,例如:(-5)+?=7,求?,减法是加法的逆运算.要点诠释:(1)任意两个数都可以进行减法运算.(2) 几个有理数相减,差仍为有理数,差由两部分组成:①性质符号;②数字即数的绝对值.2.法则:减去一个数,等于加这个数的相反数,即有:()a b a b -=+-.要点诠释: 将减法转化为加法时,注意同时进行的两变,一变是减法变加法;二变是把减数变为它的相反数”.如:考法02有理数的减法计算:(1)(-32)-(+5); (2)(+2)-(-25).【思路】此题是有理数的减法运算,先按照减法法则将减法转化为加法,再按照有理数的加法进行计算. 【答案】法一:法二:(1)原式=-32-5=-32+(-5)=-37;(2)原式=2+25=27【总结】算式中的“+”或“-”既可以看作运算符号按法则进行计算,也可以看作是性质符号按多重符号化简进行计算.考点03有理数加减混合运算将加减法统一成加法运算,适当应用加法运算律简化计算.考法03有理数的加减混合运算1.计算:3.8+441﹣(+654)+(﹣832) 【思路】根据有理数的加减混合运算的方法:有理数加减法统一成加法,求解即可. 【答案】解:原式=(3.8﹣6.8)+(441﹣832) =﹣3﹣4125=﹣7125, 【总结】本题考查了有理数的加减混合运算的知识,如果在一个式子里,有加法也有减法,根据有理数减法法则,把减法都转化成加法,并写成省略括号的和的形式. 2.用简便方法计算:(1)(-2.4)+(-4.2)+(-3.8)+(+3.1)+(+0.8)+(-0.7) (2) 2)324(83)65()851(43-++-+-+ 【答案】 (1) 原式=[(-3.8)+ (-4.2)]+[ (-2.4)+ (-0.7) +(+3.1)]+(+0.8)=-8+0.8=-7.2 (2) 原式=(2-1-4)+(34-58-56+38-23)=-3+[68-58+38+(-56-46)]=-3-1=-4 考法04有理数加减法在实际生活中的应用1.邮递员骑车从邮局出发,先向南骑行2km 到达A 村,继续向南骑行3km 到达B 村,然后向北骑行9km 到C 村,最后回到邮局.(1)以邮局为原点,以向北方向为正方向,用1cm 表示1km ,画出数轴,并在该数轴上表示出A 、B 、C 三个村庄的位置; (2)C 村离A 村有多远? (3)邮递员一共骑了多少千米?【思路】(1)以邮局为原点,以向北方向为正方向用1cm 表示1km ,按此画出数轴即可; (2)可直接算出来,也可从数轴上找出这段距离;(3)邮递员一共骑了多少千米?即数轴上这些点的绝对值之和. 【答案】解:(1)依题意得,数轴为:;(2)依题意得:C 点与A 点的距离为:2+4=6(千米); (3)依题意得邮递员骑了:2+3+9+4=18(千米).【总结】本题主要考查了学生有实际生活中对数轴的应用能力,只要掌握数轴的基本知识即可.2.华英中学七年级(14)班的学生分成五组进行答题游戏,每组的基本分为100分,答对一题加50分,答错一题扣50分,游戏结束后各组的得分如下表:(1)第一名超过第二名多少分? (2)第一名超过第五名多少分?【答案】由表看出:第一名350分,第二名150分,第五名-400分.(1) 350-150=200(分)(2) 350-(-400)=350+400=750(分)答:第一名超过第二名200分;第一名超过第五名750分. 3.某产粮专业户出售粮食8袋,每袋重量(单位:千克)如下:197,202,197,203,200,196,201,198. 计算出售的粮食总共多少千克?【答案】法一:以200(千克)为基准,超过的千克数记作正数,不足的千克数记作负数,则这8个数的差的累计是:(-3)+(+2)+(-3)+(+3)+0+(-4)+(+1)+(-2)=-6200×8+(-6)=1594(千克) 答:出售的粮食共1594千克.法二:197+202+197+203+200+196+201+198=1594(千克) 答:出售的粮食共1594千克.考向01计算拆项法阅读下题的计算方法. 计算⎪⎭⎫ ⎝⎛-++⎪⎭⎫ ⎝⎛-+-2134317329655解:原式=()()()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+-+⎪⎭⎫ ⎝⎛++⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+-+⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+-2134317329655=()()()[]⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+-++-+-2143326531795=0+(﹣45)=﹣45 上面这种解题方法叫做拆项法,按此方法计算:⎪⎭⎫ ⎝⎛-++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-211324022322010652011【思路】根据拆项法,可把整数结合在一起,分数结合在一起,再根据有理数的加法,可得答案. 【答案】解:原式=[(﹣2011)+(﹣65)]+[(﹣2010)+(﹣32)]+[4022+32]+[(﹣1)+(﹣21)] =[(﹣2011)+(﹣2010)+4022+(﹣1)]+[(﹣65)+(﹣32)+32+(﹣21)]=0+(﹣34)=﹣34.【总结】本题考查了有理数的加法,拆项法是解题关键.考向02凑整凑分(1)11(6)( 3.3)(3)(6)(0.3)(8)(6)(16)644⎛⎫⎛⎫++++-+++-+++++++-+- ⎪ ⎪⎝⎭⎝⎭. 【答案】解法一:11(6)( 3.3)(3)(6)(0.3)(8)(6)(16)644⎛⎫⎛⎫++++-+++-+++++++-+- ⎪ ⎪⎝⎭⎝⎭11(6)(3)(0.3)(8)(6)( 3.3)(6)(16)644⎡⎤⎡⎤⎛⎫⎛⎫=++++++++++++-+-+-+- ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦→同号的数一起先加(23.55)(31.55)8=++-=-.解法二:11(6)( 3.3)(3)(6)(0.3)(8)(6)(16)644⎛⎫⎛⎫++++-+++-+++++++-+- ⎪ ⎪⎝⎭⎝⎭11(6)6[( 3.3)(3)(0.3)][(6)(6)][(16)(8)]44⎡⎤⎛⎫⎛⎫=++++-+-+++++-+++-++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦→同分母,互为相反数的数,或几个数可以凑整的数分别结合相加000(8)8=+++-=-.【总结】计算多个有理数相加时,必须先审题,分析特点,寻找规律,然后再去计算.注意在交换加数的位置时,要连同符号一起交换. (2)1113.7639568 4.7621362--+--+ 【答案】仔细观察各个加数,可以发现两个小数的和是-1,两个整数的和是29,三个分数通分后也不难算.故把整数、分数、小数分别分为一组. 解:1113.7639568 4.7621362--+--+ 111(3.76 4.76)(521)(3968)362=-+--++-+1(6)2922=-+-+=【总结】计算多个有理数相加时,必须先审题,分析特点,寻找规律,然后再去计算.注意在交换加数的位置时,要连同符号一起交换. (3)51133.464 3.872 1.54 3.376344+---+++ 【答案】3.46和1.54的和为整数,把它们分为一组;-3.87与3.37的和为-0.5,把它们分为一组;546与13-易于通分,把它们分为一组;124-与34同分母,把它们分为一组. 解:51133.464 3.872 1.54 3.376344+---+++5113(3.46 1.54)( 3.87 3.37)(4)(2)6344=++-++-+-+115(0.5)4(1) 4.537.522=+-++-=+=【总结】计算多个有理数相加时,必须先审题,分析特点,寻找规律,然后再去计算.注意在交换加数的位置时,要连同符号一起交换. (4)1355354624618-++- 【答案】先把整数分离后再分组.解:1355354624618-++- 1355354624618=--++++--1355(3546)()24618=-++-+-++-182********-++-=+2936= 注:带分数中的整数与分数分离时,如果这个数是负数,那么分离得到的整数与分数都是负数,例如 113322-=--. 【总结】计算多个有理数相加时,必须先审题,分析特点,寻找规律,然后再去计算.注意在交换加数的位置时,要连同符号一起交换. (5)132.2532 1.87584+-+ 【答案】如果按小数、整数分组,效果似乎不是很好.可先将小数和分数统一后再考虑分组.解:132.25321.87584+-+ (2.25 2.75)(3.125 1.875)=-++ 0.55 4.5=-+=【总结】计算多个有理数相加时,必须先审题,分析特点,寻找规律,然后再去计算.注意在交换加数的位置时,要连同符号一起交换.考向03特殊技巧计算-3.72-1.23+4.18-2.93-1.25+3.72; 【答案】观察各个加数,可以发现-3.72与3.72互为相反数,把它们分为一组;4.18、-2.93与-1.25的和为0,把它们分为一组可使计算简便. 解:-3.72-1.23+4.18-2.93-1.25+3.72 =(-3.72+3.72)+(4.18-2.93-1.25)-1.23 =0+0-1.23=-1.23【总结】计算多个有理数相加时,必须先审题,分析特点,寻找规律,然后再去计算.注意在交换加数的位置时,要连同符号一起交换.考向04凑正凑负11-12+13-15+16-18+17【答案】把正数和负数分别分为一组.解:11-12+13-15+16-18+17=(11+13+16+17)+(-12-15-18)=57+(-45)=12【总结】计算多个有理数相加时,必须先审题,分析特点,寻找规律,然后再去计算.注意在交换加数的位置时,要连同符号一起交换.考向05应用1.“九宫图”传说是远古时代洛河中的一个神龟背上的图案,故又称“龟背图”,中国古代数学史上经常研究这一神话.(1)现有1,2,3,4,5,6,7,8,9共九个数字,请将它们分别填入图1的九个方格中,使得第行的三个数、每列的三个数、斜对角的三个数之和都等于15;(2)通过研究问题(1),利用你发现的规律,将3,5,﹣7,1,7,﹣3,9,﹣5,﹣1这九个数字分别填入图2的九个方格中,使得横、竖、斜对角的所有三个数的和都相等.【答案】解:(1)15÷3=5,∴最中间的数是5,其它空格填写如图1;(2)如图2所示.【总结】本题考查了有理数加法,熟知“九宫图”的填法是解题的关键.2.某产粮专业户出售粮食8袋,每袋重量(单位:千克)如下:197,202,197,203,200,196,201,198.计算出售的粮食总共多少千克?【答案】法一:以200(千克)为基准,超过的千克数记作正数,不足的千克数记作负数,则这8个数的差的累计是:(-3)+(+2)+(-3)+(+3)+0+(-4)+(+1)+(-2)=-6200×8+(-6)=1594(千克) 答:出售的粮食共1594千克.法二:197+202+197+203+200+196+201+198=1594(千克) 答:出售的粮食共1594千克.【易错01】对括号使用不当导致错误(1)计算:-7-5.【答案】解:原式=-7+(-5)=-12. (2)计算:⎪⎭⎫⎝⎛-+--2141512 【答案】解:原式=2+15-14+12=2920.(1)3401(1)(5)|4|77⎡⎤⎛⎫⎛⎫+-----+--+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦;(2)212102133434⎛⎫⎛⎫⎛⎫-++---+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(3)4444499999999999999955555++++(4)1+(-2)+(-3)+4+5+(-6)+(-7)+8+…+97+(-98)+(-99)+100的值. (5)111118244880120++++; (6)2312()()3255---+--+-【解析】(1)原式341[15]45(5)1077=--+-++=--= (2)原式212102133434⎛⎫⎛⎫⎛⎫=-+++++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭21212133434=-++- 2211213213183344⎛⎫⎛⎫=-++-=-+=- ⎪ ⎪⎝⎭⎝⎭(3)原式=1111101001000100005555⎡⎤⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+-++-++-++- ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦⎣⎦11000005⎡⎤⎛⎫++- ⎪⎢⎥⎝⎭⎣⎦11111(10100100010000100000)55555⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+++++-+-+-+-+- ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦111110(1)111109=+-=.(4)1+(-2)+(-3)+4+5+(-6)+(-7)+8+…+97+(-98)+(-99)+100=[1+(-2) + (-3)+4]+[5+(-6) + (-7)+8]+…+[97+(-98) + (-99)+100] =0+0++…+0=0.(5)111111111182448801202446688101012++++=++++⨯⨯⨯⨯⨯ 111111*********()()22446688101012221224=-+-+-+-+-=-= (6)原式23122312231283[()][()]32553255325530=------=--------=----=-1.某地一天的最高气温是12℃,最低气温是2℃,则该地这天的温差是( ) A . ﹣10℃ B . 10℃ C . 14℃D . ﹣14℃【答案】B2.比﹣1小2015的数是( )A .﹣2014B .2016C .﹣2016D .2014 【答案】C【解析】解:根据题意得:﹣1﹣2015=﹣2016,故选C.3.如果三个数的和为零,那么这三个数一定是( ).A .两个正数,一个负数B .两个负数,一个正数C .三个都是零D .其中两个数之和等于第三个数的相反数 【答案】D【解析】若0a b c ++=,则a b c +=-或b c a +=-或a c c +=-,所以D 正确. 4. 若0,0a b ><,a b <, 则a 与b 的和是 ( ) A. B.C.D..【答案】D【解析】(a b +)的符号与绝对值较大的b 一致为负的,并用较大的绝对值减去较小的绝对值,即有()b a --. 5.下列判断正确的是( ) A .两数之差一定小于被减数.六、对点通关训练B .若两数的差为正数,则两数都为正数.C .零减去一个数仍得这个数.D .一个数减去一个负数,差一定大于被减数. 【答案】D【解析】A 错误,反例:2-(-3)=5,而5>2;B 不对,反例:2-(-3)=5,而-3为负数;C 错误,0-2=-2,0-(-2)=2,所以零减去一个数得这个数的相反数.6.某粮店出售的三种品牌的面粉袋上,分别标有质量为(25±0.1)kg ,(25±0.2)kg ,(25±0.3)kg 的字样,从中任意拿出两袋,它们的质量最多相差 ( )A .0.8kgB .0.6kgC .0.5kgD .0.4kg 【答案】B【解析】因为最低重量为24.7kg ,最大重量为25.3kg ,故质量最多相差25.3-24.7=0.6kg . 7.有理数,,a b c 在数轴上对应点位置如图所示,用“>”或“<”填空:(1)|a |______|b |;(2)a +b +c ______0: (3)a -b +c ______0; (4)a +c ______b ; (5)c -b ______a . 【答案】<,<,>,>,>【解析】由图可知:b a c >>,且0,0b a c <<>,再根据有理数的加法法则可得答案. 8.小明存折中原有450元,取出260元,又存入150元,现在存折中还有______元. 【答案】340【解析】450﹣260+150=290+150=340(元).9. 若a ,b 为整数,且|a-2|+| a -b|=1,则a+b =________. 【答案】2,6,3或5【解析】当|a-2|=1,| a -b|=0时,得:a+b =6或2;当|a-2|=0,| a -b|=1时,得:a+b =3或5;10.某地的冬天,半夜的温度是-5︒C ,早晨的温度是-1︒C ,中午的温度是4︒C.则 (1)早晨的温度比半夜的温度高________度; (2)早晨的温度比中午的温度低________度. 【答案】(1)4 (2) 5【解析】 (1)-1-(-5)=4 (2) -1-(+4)= -511.北京与纽约的时差为-13(负号表示同一时刻纽约时间比北京时间晚).如果现在是北京时间15:00,那么纽约时间是______________【答案】2:00【解析】15:00+(-13)=2:00.12. 数学活动课上,王老师给同学们出了一道题:规定一种新运算“☆”对于任意两个有理数a和b,有a☆b=a-b+1,请你根据新运算,计算(2☆3)☆2的值是 .【答案】 -1【解析】(2☆3)☆2=(2☆3)-2+1=2-3+1-2+1=-113.数轴上到原点的距离小于3的整数的个数为x,不大于3的正整数的个数为y,绝对值等于3的整数的个数为z,求:x+y+z的值.【解析】解:根据数轴,到原点的距离小于3的整数为0,±1,±2,即x=5,不大于3的正整数为1,2,3,即y=3,绝对值等于3的整数为3,﹣3,即z=2,所以x+y+z=10.14.股民李星星在上周星期五以每股11.2元买了一批股票,下表为本周星期一到星期五该股票的涨跌情况求:(1)本周星期三收盘时,每股的钱数.(2)李星星本周内哪一天把股票抛出比较合算,为什么?星期一二三四五每股涨跌/元+0.4 +0.45 ﹣0.2 +0.25 ﹣0.4【解析】解:(1)根据题意得:11.2+0.4+0.45+(﹣0.2)=11.85(元),则本周星期三收盘时,该只股票每股为11.85元;(2)根据题意得:11.2+0.4+0.45+(﹣0.2)+0.25=12.1(元),则本周该只股票最高价12.1元出现在周四,李星星本周四把股票抛出比较好.1.某市一天的最高气温为2℃,最低气温为﹣8℃,那么这天的最高气温比最低气温高()A.﹣10℃ B.﹣6℃ C.10℃D.6℃【答案】C【解析】解:2﹣(﹣8)=2+8=10℃.故选C.2.若等式0□1=﹣1成立,则□内的运算符号为()A. + B.﹣C.×D.÷【答案】B3.两个有理数相加,和小于其中一个加数而大于另一个加数,需满足()A.两个数都是正数 B.两个数都是负数C.一个是正数,另一个是负数 D.至少有一个数是零【答案】C【解析】举例验证.4.下列说法中正确的是A.正数加负数,和为0B.两个正数相加和为正;两个负数相加和为负C.两个有理数相加,等于它们的绝对值相加D.两个数的和为负数,则这两个数一定是负数【答案】B【解析】举反例:如5+(-2)=+3≠0,故A错;如:(-2)+(-3)≠|-2|+|-3|,故C错;如(+2)+(-8)=-6,故D错误.5.下列说法正确的是( )A.零减去一个数,仍得这个数B.负数减去负数,结果是负数C.正数减去负数,结果是正数D.被减数一定大于差【答案】C【解析】举反例逐一排除.6.某粮店出售的三种品牌的面粉袋上,分别标有质量为(25±0.1)kg,(25±0.2)kg,(25±0.3)kg的字样,从中任意拿出两袋,它们的质量最多相差( )A .0.8kgB .0.6kgC .0.5kgD .0.4kg 【答案】B【解析】因为最低重量为24.7kg ,最大重量为25.3kg ,故质量最多相差25.3-24.7=0.6kg . 7. -3+5的相反数是( ).A .2B .-2C .-8D .8 【答案】B8.有理数,,a b c c 在数轴上对应点位置如图所示,用“>”或“<”(1)|a |______|b |;(2)a +b +c______0: (3)a -b +c______0;(4)a +c______b ; (5)c -b______a . 【答案】<,<,>,>,>【解析】由图可知:b a c >>,且0,0b a c <<>,再根据有理数的加法法则可得答案. 9.计算:|﹣2|+2=________. 【答案】4.10.某月股票M 开盘价20元,上午10点跌1.6元,下午收盘时又涨了0.4元,则股票这天的收盘价是_______. 【答案】18.8元【解析】跌1.6元记为-1.6元,涨0.4元记为+0.4元,故有收盘价为20+(-1.6)+0.4-18.8. 11.列出一个满足下列条件的算式:(1)所有的加数都是负数,和为-5,________;(2)一个加数是0,和是-5________;(3)至少有一个加数是正整数,和是-5,________. 【答案】(1)(-2)+(-3)=-5 (2)(-5)+0=-5 (3)2+(-7)=-5 【解析】答案不唯一.12. 数学活动课上,王老师给同学们出了一道题:规定一种新运算“☆”对于任意两个有理数a 和b ,有a ☆b =a-b+1,请你根据新运算,计算(2☆3)☆2的值是 . 【答案】-1【解析】(2☆3)☆2=(2☆3)-2+1=2-3+1-2+1=-1 13.计算(﹣3)+(﹣9)的结果为 . 【答案】-12.【解析】同号两数相加的法则是取相同的符号,并把绝对值相加. 原式=﹣(3+9)=﹣12.14.计算题(1)232(1)(1)( 1.75)343-----+-(2)132.1253(5)(3.2)58-+---+(3)21772953323+---(4)231321234243--++-+(5)2312()() 3255 ---+--+-(6)123456782001200220032004 -+-+-+-+--+-+【解析】(1)原式22(1)( 1.75 1.75)133=-++-+=;(2)原式131 [3( 3.2)][(5) 2.125]3 584 =+-++---=(3)原式21729771 9)533326 =+---=-(4)原式223311 ()()12334422 =-++-++-=-(5)原式23122312231283[()][()]32553255325530 =------=--------=----=-(6)原式=12342001200220032004 -+-++-+-+ (12)(34)(20032004)110021002 =-++-+++-+=⨯=15.已知:|a|=2,|b|=3,求a+b的值.【解析】由题意知:a=±2, b=±3,所以要分四种情况代入求值.∵|a|=2, ∴ a=±2, ∵|b|=3, ∴b=±3.当a=+2, b=+3时, a+b=(+2)+(+3)=+5;当a=+2, b=-3时, a+b=(+2)+(-3)=-1;当a=-2,b=+3时, a+b=(-2)+(+3)=+1;当a=-2, b=-3时, a+b=(-2)+(-3)=-5.16.某人用400元购买了8套儿童服装,准备以一定价格出售,如果以每套儿童服装55元的价格为标准,超出的记作正数,不足的记作负数,记录如下:+2,﹣3,+2,+1,﹣2,﹣1,0,﹣2.(单位:元)(1)当他卖完这八套儿童服装后是盈利还是亏损?(2)盈利(或亏损)了多少钱?【解析】解:根据题意得(1)2﹣3+2+1﹣2﹣1+0﹣2=﹣3,55×8+(﹣3)=437元,∵437>400,∴卖完后是盈利;(2)437﹣400=37元,故盈利37元.。

第04讲 有理数的加减法及加减混合运算(8类热点题型讲练)(原卷版)--初中数学北师大版7年级上册

第04讲 有理数的加减法及加减混合运算(8类热点题型讲练)(原卷版)--初中数学北师大版7年级上册

第04讲有理数的加减法及加减混合运算1.掌握有理数的加法的运算法则;能够正确书写计算题都解题格式;并能够正确计算有理数的加法运算.2.掌握有理数的减法的运算法则;能够正确书写计算题都解题格式;并能够正确计算有理数的减法运算.3.能够灵活应用有理数的加减法则;并能够正确计算有理数的混合运算.知识点01有理数的加法法则(先确定符号,再算绝对值)(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;知识点02有理数的减法法则减去一个数等于加上这个数的_______,即)(b a b a -+=-.【注意】计算过程中,一定要注意符号.【答案】相反数题型01有理数的加法运算【典例1】(2023·天津河西·统考二模)计算()()14-+-的结果等于()A .5B .3C .5-D .8-【变式训练】题型02有理数加法运算律【变式训练】题型03有理数加法在生活中的应用【典例1】(2023·全国·七年级假期作业)学校为了备战校园足球联赛,一名足球守门员练习折返跑,从球门线出发,向前记作正数,返回记作负数,他的记录为:7,68,1013,8,4+-+-+--,,(单位:米).(1)守门员最后是否回到了球门线的位置?(2)在练习过程中,守门员离开球门线最远的距离是多少米?(3)守门员全部练习结束后一共跑了多少米?【变式训练】【变式1】(2022秋·广西崇左·七年级统考期中)某天下午,出租车司机小王从公司出发,在东西向的公路上接送乘客.如果规定向东为正,向西为负,出租车的行程如下(单位:千米):5+,4-,3+,7-,2-,3+,8-,7+.(1)最后一名乘客送到目的地时,小王与公司的距离有多远?(2)若汽车耗油量为0.2升/千米,这天下午汽车共耗油多少升?【变式2】(2023·江苏·七年级假期作业)小虫从点O 出发在一条直线上来回爬行,向右爬行的路程记为正,向左爬行的路程记为负,爬行的各段路程依次为:5310861210+-+--+-,,,,,,.(单位:cm )(1)小虫最后是否回到出发地O ?为什么?(2)小虫离开O 点最远时是多少?(3)在爬行过程中,如果每爬行1cm 奖励1粒芝麻,则小虫一共可以得到多少粒芝麻?题型04有理数的减法运算【典例1】(2023·浙江绍兴·统考中考真题)计算23-的结果是()A .1-B .3-C .1D .3【变式训练】题型05有理数的加减混合运算【典例1】(2022秋·广东河源·七年级校考期中)计算:()()()74314++----.【变式训练】题型06有理数的加减中的简便运算【变式训练】【变式1】(2023·浙江·七年级假期作业)计算下列各式:题型07新定义下的有理数加减混合运算【典例1】(2023·全国·九年级专题练习)对于任意有理数m 、n ,定义新运算:&2022m n m n =--,则()2&4-=________________.【变式训练】题型08有理数的加减混合运算的应用【典例1】(2023秋·内蒙古巴彦淖尔·七年级统考期末)一只蚂蚁在一根横木上从某点出发,以笔直的线路来回爬行,规定向右爬行记为正,爬行轨迹记录如下:647961210+--+-+-,,,,,,(单位:厘米).(1)蚂蚁最后是否回到了出发点O ?(2)蚂蚁离开出发点最远是______厘米?(3)在爬行过程中,如果蚂蚁每爬行1厘米奖励2粒芝麻,则蚂蚁一共得到多少粒芝麻?【变式训练】一、选择题1.(2023·陕西榆林·校考模拟预测)计算:()23-+=()A .1B .1-C .5D .5-2.(2023·山东临沂·统考中考真题)计算(7)(5)---的结果是()A .12-B .12C .2-D .23.(2023·广东佛山·佛山市汾江中学校考三模)下列计算中,正确的是()A .()231+-=B .()220--=C .033-=D .()235-+-=-4.(2023·江苏·七年级假期作业)将()()()6372-+--+-中的减法改写成省略加号的和的形式是()A .6372--+-B .6372---C .6372-+-D .6372+--5.(2023春·四川自贡·八年级自贡市第一中学校考阶段练习)规定一种新运算“*”,对于任意有理数a 和b ,有1a b a b *=-+,请你根据定义的新运算,计算()()232**-的值是()A .2-B .0C .2D .3。

有理数的加减法教案

有理数的加减法教案

有理数的加减法教案引言:有理数是数学中的一个重要概念,包括整数、分数和小数。

在数学运算中,掌握有理数的加减法是基础且必要的。

通过本教案,将引导学生掌握有理数的加法和减法,并能够灵活运用于实际问题中。

一、有理数的加法1. 概念讲解:有理数的加法是指在数轴上,将两个有理数的距离相加得到一个新的有理数。

正数与正数相加,直接相加;负数与负数相加,将其绝对值相加再加上负号;正数与负数相加,先取绝对值相减,结果的符号由绝对值大的一方决定。

2. 计算方法示例:a) 正数加正数:如 3 + 5 = 8b) 负数加负数:如 -4 + (-2) = -6c) 正数加负数:如 7 + (-3) = 43. 练习题:让学生完成一些简单的有理数加法运算的练习题,鼓励他们理解概念并能熟练运用。

二、有理数的减法1. 概念讲解:有理数的减法是指在数轴上,用一个有理数减去另一个有理数得到一个新的有理数。

减法可以转化为加法运算,即减去一个数等于加上其相反数。

2. 计算方法示例:a) 正数减正数:如 8 - 3 = 5b) 负数减负数:如 -4 - (-2) = -2c) 正数减负数:如 7 - (-3) = 103. 练习题:让学生完成一些简单的有理数减法运算的练习题,巩固他们掌握的知识。

三、实际问题运用1. 将学生分成小组,让他们找到一些实际生活中有关有理数加减法的问题,并进行讨论和解答。

例如,某人存款增加了200元,之后又取出了100元,请问最终存款是多少?2. 鼓励学生运用想象力,设计有趣、实际的问题,加深对于有理数加减法的理解和应用。

总结:通过本教案的学习,学生应该能够掌握有理数的加法和减法,理解数轴上的加减运算,并能够运用到实际问题中。

持续的练习和应用将帮助学生巩固所学知识,提高数学运算能力。

有理数的加减法教案

有理数的加减法教案

有理数的加减法教案1. 教学目标•了解有理数的概念及相关术语•掌握有理数的加减法运算方法•能够运用有理数的加减法解决实际问题2. 教学内容2.1 有理数2.1.1 概念有理数是正整数、负整数和 0 的集合,用 Q 表示,其中包括分数和小数。

正整数、负整数和 0 称为整数。

2.1.2 相关术语•绝对值:数轴上点 O 到该点对应的数 a 的距离称为数 a 的绝对值,用|a| 表示。

•相反数:两数绝对值相等,但符号相反的两数互为相反数。

常用符号表示为 a 和 -a。

•数轴:描绘数与数之间一一对应关系的直线叫做数轴。

数轴常用来表示有理数。

•距离:数轴上两点之间的长度称为这两点的距离。

2.2 有理数的加减法2.2.1 加法•同号相加:绝对值相加,符号保持不变。

•异号相加:绝对值相减,符号取绝对值较大的一数的符号。

加法公式:a + b = c2.2.2 减法a -b = a + (-b)减法运算可以转化为加法运算,即加上另一个数的相反数。

2.3 实际问题的解决将所给条件转化成有理数并进行加减法运算,再从有理数的意义出发解释结果。

3. 教学重点与难点3.1 教学重点•有理数的概念与相关术语的理解•加减法运算方法的掌握•实际问题的转化和求解3.2 教学难点•加减法运算方法的灵活应用•实际问题的分析和提取4. 教学方法•演示法:通过例题演示有理数的加减法运算方法•提问法:通过提问引导学生理解有理数的各个相关概念5. 教学步骤5.1 导引老师简要介绍有理数的概念,并提出学习目标和教学重难点。

5.2 引入通过图片展示数轴上的正整数和负整数,并与实际生活中的场景联系起来,引出有理数的概念。

5.3 解释相关术语分别从绝对值、相反数、数轴和距离等术语进行解释,直观地展示每个概念的含义和关系,并辅以实例说明。

5.4 加减法的运算方法老师讲述有理数的加减法运算方法,包括同号相加、异号相加、负数减正数的转换等。

5.5 实际问题的解决老师通过实例,将所给条件转换为有理数并求解,并从有理数的意义出发解释结果。

数学第四章教案:有理数的加减

数学第四章教案:有理数的加减

数学第四章教案:有理数的加减一、教学目标1.掌握有理数的加减法;2.将自然数、整数、分数、小数等知识中的加减法运用到有理数的加减中;3.提高学生的综合运算能力和分析问题的能力。

二、教学重难点1.有理数的加减法的运用;2.有理数加减的运算顺序;3.混合运算的解决方法。

三、教学步骤1.引入新知识引导学生通过以下问题,思考对有理数加减的认识:(1)5+3=8 ,那么-5+3=?(2)5-3=2 ,那么-5-3=?(3)3-5=-2 ,那么-3-5=?(4)-5-3=-8 ,那么-3-5=?通过以上几个问题的演示,可以引出有理数加减的基本规律:同号相加,异号相减;正数加上一个负数,相当于减去这个负数;负数加上一个正数,相当于减去这个正数。

进一步让学生看到两位信风扇的温度计,一位显示室内温度+14℃,一位显示室内温度-12℃,邀请两个学生过来做加法运算,得出室内实际温度是多少。

学生可轻松求得答案。

2.重点内容讲解重点讲解有理数加减法,其中包括正数加减、负数加减、同号异号情况、混合运算等内容,老师在讲解时注重将有理数加减的运用与生活实际相结合,让学生更容易理解。

同时,老师还指导学生掌握拆分、合并的方法,帮助学生快速求出有理数运算的结果。

3.教学示范教师通过以上2个步骤的讲解,让学生对有理数加减的规律有了充分理解,接着,老师带头示范各种运算方法。

例如,让学生完成以下问题:(1)-7-(4-5)+2=?(2)3×(2-5)-1÷(-⅔)=?(3)3(4x+2)-2(6x+1)=?4.练习与巩固根据本课内容布置相关练习,让学生在课堂外进一步巩固和理解所学知识。

五、授课体会有理数加减是初中数学中重要也是难度较大的知识点,教师在课堂上重点突出了有理数加减法的基本规律,生动形象地讲解了规律的运用,巧妙设计了许多有趣的例题,让学生在轻松愉快的学习氛围中掌握了有理数加减的基本知识和解题技巧。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学科教师辅导讲义
4.若a ,b 互为相反数,c 、d 互为倒数,则(a+b )+cd=___1_____.
5.若两数的和为负数,则这两个数一定(B )
A .两数同正
B .两数同负;
C .两数一正一负
D .两数中一个为0
6.下列各组运算结果符号为负的有( D )
(+35)+(-45),(-67)+(+56),(-313)+0,(-1.25)+(-34
) A .1个 B .2个 C .3个 D .4个
7.某月股票M 开盘价20元,上午10点跌1.6元,下午收盘时又涨了0.4元,则股票这天的收盘价是_18.8______.
8.列出一个满足下列条件的算式:(1)所有的加数都是负数,和为-5,__-2+(-3)=-5______;(2)一个加数是0,和是-5_-5+0=-5_______;(3)至少有一个加数是正整数,和是-5,_-7+2=-5_______.
9. 数学活动课上,王老师给同学们出了一道题:规定一种新运算“☆”对于任意两个有理数a 和b ,有a ☆b =a-b+1,请你根据新运算,计算(2☆3)☆2的值是 -1 .
10 . 如图所示,数轴上A 、B 两点所表示的有理数的和是____-1_____.
11.计算:
(1)21510543263骣骣骣鼢?珑?-+---+-鼢?珑?鼢?珑?桫桫桫 (2)5353432 3.151122212
22骣骣骣鼢?珑?+-+--++鼢?珑?鼢?珑?桫桫桫 = 21
3
- = 3.15- (3)()113.16223350.16224骣÷ç---+-+-÷ç÷ç桫 (4)1111513 4.522553
---+-+ =34-
=253
-
(5)()15120.51266轾骣骣鼢珑犏-+++-++鼢珑鼢珑犏桫桫臌
(6)21917887.21435312.792121-++- =1- =175。

相关文档
最新文档