塑料成型成型零件尺寸的计算

合集下载

成型零件尺寸计算

成型零件尺寸计算

成型零件工件尺寸计算案例、塑料制品制品如图1所示,材料为ABS。

以下计算相关模具凹模、型芯的直径和高(深)度、螺纹直径以及孔的中心距尺寸。

图1制品尺寸二、计算1、确定模塑收缩率查模具设计手册得知,ABS的收缩率为0.4〜0.8%。

收缩率的平均值为:B 一% =0.6%2、确定制品尺寸公差等级,将尺寸按规定形式进行处理查常用塑料模塑公差等级表,对于ABS塑件标注公差尺寸取MT3 ,未注公差尺寸取MT5级,以满足模具制造和成型工艺控制,满足制品要求。

查得制品未注公差尺寸的允许偏差为双向偏差形式,按照尺寸形式的规定,作如下转换:塑件外径『' '内部小孔'一1一’'塑件高度三1顼二--------- 1 '-3、计算凹模、型芯工作尺寸...... …月—i.取模具制造公差五厂。

1)凹模尺寸径向尺寸'-V - - :'注J匕二[50.32 +50.32x0.006—"0.64]十年片口40.lt —〜,,,,、=(不保留小数位)高度尺寸、T.=21祁'H (不保留小数位)2)型芯尺寸大型芯径向尺寸 ,-',:-;一』'L」一 L '孩=[45+45x0.006 + 1、』0.361 顷==45.5 w (保留一位小数)大型芯高度尺寸二- 一-1"^ = 18+18x0.006 + jx0.2] …=18.2 (保留一位小数)或=[786 + 7.86 x O.OQ6 T E.28]小型芯径向尺寸=8 7叩(不保留小数位) 小型芯高度尺寸 f ,-L -:]'" 一 ,.... - ::-.J . - 22-i :::=2.2两个小型芯固定孔的中心距匕M =【£$+£孩性】土*%皿上二【30+30x0.006]土于 _3。

2 +。

35-3U.2 H U.U35取制造公差为土 U.U1,因土 U.U1V 土 U.U35,满足要求,故最后确定两小型芯固定孔的中 心距为上=30 2 + 0 014、计算螺纹型芯和螺距工作尺寸 查普通金属螺纹基本尺寸标准(GB197 — 81),得:OB.。

成型零件工作尺寸的计算方法

成型零件工作尺寸的计算方法

图 1(a) 塑件
图 1(b)形成塑件外形的型腔
图 1(c)塑件
(1)模腔尺寸的计算
图 1(d)形成塑件内腔的型芯
模腔是指凹模与凸模(型腔和型芯)组成的空腔,如果仅考虑塑件的收缩率 S:
模腔尺寸-塑件尺寸
S=
× 100%
塑件尺寸
则模腔尺寸为:
模腔尺寸 = 塑件尺寸 ×(1+S )
δ 一般情况下,模具的制造公差 z 可以取为
3 Lm = Ls × (1 + S ) − ∆
4
标注公差后得到型腔的尺寸为:
Lm
=
Ls×(1+
S
)−
3 4

+δ +0
z
(3)型芯尺寸的计算
和型腔的计算过程一样,可以得到标注公差后的型芯尺寸为:
Lm
=
Ls×(1+S
)+
3 ∆
4
+0 −δ
z
参考资料:
成型零件工作尺寸的计算方法
注塑模成型零件工作尺寸,是指这些零件上直接成型塑料件的型腔尺寸。塑 料件在高压和熔融温度下充模成型,并且在模具温度下冷却固化,最终在室温下 进行尺寸检测和使用,因此塑料制品的形状和尺寸精度的获得,必须考虑物料的 成型收缩率等众多因素的影响。由于塑料件尺寸类型的多样性,成型收缩的方向 性和收缩率的不稳定性,以及塑料件和金属模具的制造误差,成型零件工作尺寸 的计算一直是注塑加工中的重大课题。
δz = ∆ 3 ∼ ∆ 4
δ 设计模具成型零件时还应该考虑模具在使用过程中的磨损量 c ,可以取塑
∆ 件总公差 的 1/6,即
δc = ∆ 6
(Hale Waihona Puke )型腔尺寸的计算按照塑件与成型零件平均尺寸的收缩率计算:

塑料成型成型零件尺寸的计算

塑料成型成型零件尺寸的计算

5
第三章 塑料模设计及制造基础 2021/8/14
成型零 件的尺 寸计算
目的与要求 重点和难点
成型零件尺寸计算
计算实例
型腔壁厚底板厚
思考与练习
磨损量的取值原则:
磨损量的大小取决于塑料品种、模具材料及热处理。
小批量生产时,c取小值,甚至可以不考虑。 玻璃纤维等增强塑料对成形零件磨损大,c应取大值。 模具材料耐磨,表面强化好,c应取小值。 垂直于脱模方向的模具表面不考虑磨损。 平行于脱模方向的模具表面要考虑磨损。 小型塑件的模具磨损对塑件影响较大。
目的与要求 重点和难点
成型零件尺寸计算
计算实例
型腔壁厚底板厚
思考与练习
hM 2 z(hs 2)(hs 2)S cp
整理得: hM(hshsScp3 2)0 -z
标注制造公差后得:
h0
M z
(hshs Scp
2 3)-0z
17
第三章 塑料模设计及制造基础 2021/8/14
成型零 件的尺 寸计算
目的与要求 重点和难点
d2M=[3.5+3.5×0.008+0.75×0.16]-0.053 =3.65-0.053 ⑶ 扩孔直径:d3=6.5+0.2 计算得z=0.067
d3M=[6.5+6.5×0.008+0.75×0.20]-0.067 =6.7-0.067 ⑷ 内孔深度:h1=19+0.28 计算得z=0.093
标注公差后得:lM-0z (lslsScp 3 4)-0z 13
第三章 塑料模设计及制造基础 2021/8/14
成型零 件的尺 寸计算
※式中Δ前的系数x可取在1/2~3/4之间; ※有脱模斜度时型芯径向尺寸确定

经验尺寸和公式总汇

经验尺寸和公式总汇
2.矩形凹模壁厚计算
矩形凹模内 侧短边长
b
整体凹模
镶拼式凹模
壁厚 S
凹模壁厚 模套壁厚
S1
S2
~40
25
9
22
>40 ~ 50 25 ~ 30 9 ~ 10 22 ~ 25
>50 ~ 60 30 ~ 35 10 ~ 11 25 ~ 28
>60 ~ 70 35 ~ 42 11 ~ 12 28 ~ 35
五、分流道设计与制造
3.分流道的尺寸设计
流道的直径过大:不仅浪费材料, 而且冷却时间增长, 成 型周期也随之增长, 造成成本上的浪费。
流道的直径过小:材料的流动阻力大, 易造成充填不足, 或者必须增加射出压力才能充填。
因此流道直径应适合产品的重量或投影面积。
流道直径(mm) 4 6 8 10 12
产品重量(g) 95 375
375以上 大型
流道直径(mm) 4 6 8 10 12
投影面积(cm2) 10以下 200 500 1200 大型
§4.3普通浇注系统的设计
五、分流道设计与制造
2.分流道的尺寸设计
流道长度宜短, 因为长的流道不但会造成压力损失,不利 于生产性,同時也浪费材料;但过短, 产品的残余应力增大, 并且容易产生毛边。
流道长度可以按如下经验公式计算:
D=
D——分流道直徑mm W——产品质量g L——流道長度mm
支承板厚度 H
15 15 ~ 20 20 ~ 25 25 ~ 30 30 ~ 40
>40
※当塑件的投影面积较大时,支承板会很厚,为减小厚度可加支柱。 加一个支柱:H′=H/2.7 加两个支柱:H″=H/4.3
※板厚值也可参考表3-22

塑料模具毕业,课程设计说明任务书,圆盖注塑模设计与制造(好东西)

塑料模具毕业,课程设计说明任务书,圆盖注塑模设计与制造(好东西)

圆盖注塑模设计学生:林波摘要:本课题主要是针对圆盖的注塑模具设计,该圆盖材料为丙烯晴-丁二烯-苯乙烯(ABS),是工业生产中常见的一种保护盖产品。

通过对塑件进行工艺的分析和比较,最终设计出一副注塑模。

该课题从产品结构工艺性,具体模具结构出发,对模具的浇注系统、模具成型部分的结构、侧抽机构、顶出系统、冷却系统、注塑机的选择及有关参数的校核都有详细的设计,同时并简单的编制了模具的加工工艺。

通过整个设计过程表明该模具能够达到此塑件所要求的加工工艺。

根据题目设计的主要任务是圆盖注塑模具的设计,也就是设计一副注塑模具来生产塑件产品,以实现自动化提高产量。

针对塑件的具体结构,该模具是轮辐式浇口的单分型面注射模具。

关键词:注塑模、圆盖。

零件名称:圆盖生产批量:中小批量材料:丙烯腈丁二烯苯乙烯(ABS)塑件立体图形 :一、塑件的工艺性分析塑件的工艺性分析包括:塑件的原材料分析、塑件的尺寸精度分析、塑件表面质量和塑件的工艺性分析,其具体分析如下:1、塑件的原材料分析:塑料品种结构特点使用温度化学稳定性性能特点成型特点丙烯腈、丁二烯、苯乙烯(ABS),属于热塑性塑料非结晶态树脂,不透明小于85-110℃,脆化温度未-18℃有较良好的耐化学试剂性,不耐浓的氧化性酸及醛、酮、酯、氧化烃等不透明,具有良好的综合物理力学性能,耐热、耐腐、耐磨及良好的抗蠕变性,介电性能好,吸水性较强熔融温度高(超过250℃时才出现分解),熔体粘度不太高,流动性中等(溢边值为0.04mm),与流动性和压力有关,对压力更敏感,冷却速度较快,成型收缩小结论: ①熔融温度较高,熔体黏度中等,一般采用螺杆注射机成型,模具温度可控制在60-80℃②吸湿性强,含水量应小于0.3%,必须充分干燥③易发生熔接熔接痕,应注意选择进料口位置形式,顶出力过大或机械加工时塑件表面呈现“白色痕迹”(但在热水中加热可消失),脱模斜度应取2°以上2、塑件的结构工艺性分析:⑴ 从图纸上分析,该塑件的外形为回转体,壁厚均匀,都为3.5mm,且符合最小壁厚要求.⑵ 塑件型腔较大,有尺寸不等的孔,如:36-Ф3.5 、6-Ф16,它们均符合最小孔径要求.⑶ 在塑件侧壁有四个Ф5mm的孔,因此成型后塑件不易取出,需要考虑侧抽装置.3 、塑件的尺寸精度分析:该塑件的未注公差按MT5级公差要求,其余公差要求按制件的制件图所示公差要求塑件的外形尺寸: ФФ内形尺寸: Ф孔尺寸: ФФФФ空心距尺寸: ФФФФ4、塑件表面质量分析:该塑件为工业用圆盖塑料,对其表面质量没有什么高的要求,粗糙度可取Ra3.2um ,塑件内部也不需要较高的表面粗糙度要求,所以内外表面的粗糙度都3取Ra3.2um.结论:该塑件可采用注射成型加工,且加工性能较好,但成型以后需要设置侧抽芯机构才能将塑件顺利脱出.二、成型设备选择与模塑工艺规程编制1、计算塑件的体积:+2、注塑机的初步选择塑件成型所需的注射总量应小于所选注塑机的注射容量.注射容量以容积()表示时,塑件体积(包括浇注系统)应小于注塑机的注塑容量,其关系是:式中- 塑件与浇注系统的体积()- 注射机注射容量()0.8- 最大注射容量利用系数根据塑件的原材料分析,查相关手册①得知该塑件的原材料所需的注射压力为60-100 ,由于塑件的尺寸较大,型芯较多,所以选择较大的注射压力.模具所需的注射压力应小于或等于注射机的额定注射压力,其关系按下式:式中- 塑件成型是所需的压力()- 所选注射机的额定注射压力()模具所需的最大锁模力应小于或等于注射机的额定锁模力,其关系式如下:式中- 模具型腔压力,取45MPa- 塑件与浇注系统在分型面上的投影面积()- 注射机额定锁模力(N)再根据塑件形状及尺寸采用一模一件的模具结构,由以上数据,相关资料②初选螺杆式注塑机:XS-ZY-250.它的注射容量为250,注塑压力为130MPa,锁模力为1800KN,均满足以上条件.3、塑件模塑成型工艺参数的确定ABS注射成型工艺参数见下表,试模时,可根据实际情况作适当调整工艺参数规格工艺参数规格预热和干燥温度t/℃: 80-95成型时间/s 注射时间0-5时间/h: 4-5保压时间15-30料筒温度t/℃ 后段150-170 冷却时间15-30 中段165-180 总周期40-70 前段180-200螺杆转速n/()30-60喷嘴温度t/℃ 170-180后处理方法红外线灯烘箱模具温度t/℃ 50-80 温度t/℃ 70 注射压力p/Mpa 60-100时间/h2-4三、注射模的结构设计注射模结构设计主要包括: 分型面的选择、模具型腔数目的确定及型腔的排列、浇注系统设计、型芯、型腔结构的确定、推件方式、侧抽芯机构的设计、模具结构零件设计等内容.1、分型面的选择该塑件为工业用圆盖塑料,对其表面质量没有什么高的要求,只要求外径没有明显的斑点及熔接痕.在选择分型面时,根据分型面的选择原则,考虑不影响塑件的外观以及成型后能够顺利取出制件如图所示,塑件留动模,塑件的脱模容易实现,且模具的加工相对以上方案简单,方便. 所以,通过对以上几种分型面的考虑以及塑件的外观的要求,选择大端底平面作为分型面的方案较合适.2、型腔数目的确定及型腔的排列由于该塑件采用一模一件成型,所以,型腔布置在模具的中间.这样也有利于浇注系统的排列和模具的平衡.3、浇注系统的设计(1)主流道设计主流道是指浇注系统中从注射机喷嘴与模具接触处开始到分流道为止的塑料熔体的流动通道,是熔体最先流经模具的部分,它的形状与尺寸对塑料熔体的流动速度和充模时间有较大的影响,因此,必须使熔体的温度降和压力损失最小。

成型零部件尺寸及力学计算

成型零部件尺寸及力学计算

塑料成型模具成型零部件尺寸及力学计算塑料成型模具重点、难点•重点:•收缩的定义和重要性•计算型腔尺寸的方法•理解按极限尺寸计算和按平均收缩率计算的差别•模具常用的修模方法•难点:•按极限尺寸计算型腔尺寸的方法塑料成型模具塑料制品精度塑料原料收缩δS估算收缩率不准确δSS 模具零件制造误差δm 模具零件磨损δw 配合与安装误差δq影响因素制品公差Δ≥δS +δSS +δm +δw +δq因此,塑料制品的精度往往较低,应尽量选用低精度。

否则制品精度的提高会使模具的制造费用成指数幂增加。

制品公差标准GB/T14486-1993塑料成型模具成型零件制造误差在0~500mm 内。

、、、、,、IT 、IT 、IT 、IT IT a i m m D 。

D D a i a m m 160100644025 12111098,:: ,::)001.045.0(3其值分别对应常用精度系数公差单位型腔零件尺寸型腔零件制造公差δδ+=⋅=组合式型腔的制造公差要用尺寸链来决定制造误差约与成正比。

当制品尺寸较小时,型腔零件的制造误差约占制品公差的三分之一。

3D塑料成型模具塑料原料收缩理论收缩指的是在高温高压下注射入模腔中的塑料所成型出来的制品比模腔尺寸要小的现象。

常以mm/mm 或%来表示每种塑料的收缩或膨胀或压缩率可能不同原则1:塑料的压力、体积和温度之间有一种联系。

影响压力、温度和时间的因素都将影响收缩。

原则2:塑料受热时会膨胀,当冷却到原来的温度时又会收缩到原来的体积。

原则3:塑料受压时其体积会缩小,当压力恢复时又会膨胀到原来的体积。

塑料成型模具塑料制品收缩过程刚开始注塑时,压力小,但与模腔壁接触的塑料凝固后马上收缩模腔充满后,压力升高,塑料被压缩,但可补料以补偿收缩保持压力直到浇口冻结和阀式浇口关闭,补料停止继续收缩,压力持续下降,直至顶出,收缩还将继续重要因素:注射压力和浇口封闭时间塑料成型模具塑料原料收缩率影响收缩率的因素有:从理论上计算收缩率是不大可能的左边大部分是模具设计者或制造者控制不了的导致收缩率的波动•材料规格•加入回收塑料•加入填充剂•顶出时制品的温度•注射压力及保压压力•制品壁厚和流动阻力•制品形状•模具设计多数塑料在顶出后几小时会达到总收缩量的90%,其余的10%在10天内完成,少数塑料要几个月时间在高于室温下退火,可加速松驰,终止收缩,但吸湿塑料还会有尺寸变化m mL m m L 。

塑料模具课程设计罩盖模具设计

塑料模具课程设计罩盖模具设计

课程设计课程名称塑料成型工艺与模具设计题目名称罩盖模具设计学生学院材料与能源学院专业班级材料成型及控制工程卓越2班学号 2学生姓名 _指导教师目录一、设计课题 (3)二、塑件成型工艺性分析 (3)三、拟定模具的结构形式 (3)四、注射机型号的确定 (7)五、成型零件的结构设计和计算 (8)六、成型零件的结构设计和计算 (9)七、排气槽的设计 (10)八、导向与定位结构的设计 (11)九、总装配图和零件图的绘制 (11)十、结论 (13)十一、参考文献 (13)一、设计课题罩盖,结构如图所示。

大批量生产。

材料ABS。

二、塑件成型工艺性分析2.1、塑件工艺分析(1)外形尺寸该塑件壁厚为3mm,塑件外形尺寸不大,塑料熔体流程不太大,适合与注塑成型。

(2)精度等级公差要求等级较低,能够完成。

(3)脱模斜度ABS属于无定型塑料,成型收缩率较小。

三、拟定模具的结构形式3.1、分型面为位置的确定通过对塑件结构形式的分析,分型面应选在端盖截面积最大且利于开模却取出塑件的底平面上。

如图:圆柱形形芯包紧力的计算:P=EST/R E=塑料弹性模量S=塑件收缩率T=壁厚R=最大径向尺寸经计算后模的包紧力比前模大,故塑件可以留在后模。

3.2、型腔数量和排列方式的确定(1)型腔数量的确定该塑件为大批量生产,可采用一摸多腔的结构形式。

同时考虑到塑件尺寸,模具结构尺寸的大小关系,以及各种成本费用的关系,初步定位一摸两腔的结构形式。

(2)型腔排列形式的确定多腔模式尽量采用平衡式排列布置,且要力求紧凑,并与浇口开设的位置对称。

由于该设计采用的是一摸两腔的布置,故采用直线对称排比。

如下图:(3)模具结构形式的确定从上面的分析可知,本模具设计属于一摸两腔,对称直线排列,采用推管推杆推出的结构形式。

浇注系统设计时,流到采用对称平衡式,浇口采用潜伏式,开模时水口凝料与塑胶自动脱离。

因此定模部分不需要单独开设分型面取出凝料,动模部分需要添加型芯固定板、由上综合分析可知,选用单分型面注射模。

塑料的成型工艺分析

塑料的成型工艺分析

一、塑料的成型工艺分析1、塑件尺寸分析(1)外形尺寸该塑件壁厚不均匀,但塑件整体尺寸不大。

塑料熔体的流程不太长,适用于注射成型,零件尺寸见附图一。

附图一制件零件图(2)精度等级每个尺寸的公差都不一样,有点属于一般精度,有的有较高精度要求的,就按实际公差进行计算。

(3)脱模斜度ABS属于无定型塑料,成型收缩率小,查相关资料,选择该塑件上型芯和凹模的统一脱模斜度为1°。

2、制件材料性能分析(1)使用性能综合性能好。

冲击强度,力学强度较高,尺寸稳定,耐化学性,电气性能良好;易于成型和机械加工,其表面可镀锘,适合做一般机械零件、减摩零件、传动零件和结构零件。

(2)成形性能1、无定形塑料。

其品种很多,各品种的机电性能及成型特性也各有差异,应按品种来确定成型方法及成型条件。

2、吸湿性强。

含水量应小于0.3%(质量),必须充分干燥,要求表面光泽的塑件应要求长时间预热干燥。

3、流动性中等。

溢边料0.04mm左右。

4、模具设计时要注意浇注系统,选择好进料口位置、形式。

推出力过大或机械加工时塑料表面呈现白色痕迹。

(3)ABS的主要性能指,标其性能指标见下表-1表-1 ABS的主要性能指密度/3-g 1.02~1.08 屈服强度/MPa50⨯cm比体积/cm3×g1-0.86~0.98 拉伸强度/MPa38吸水率(%)0.2~0.4 拉伸弹性模量/MPa 1.4×103熔点/°C130~160 抗弯强度/MPa80计算收速率(%)0.4~0.7 抗压强度/MPa53比热熔/J*1-(kg×°C)1470 弯曲弹性模量/MPa 1.4×1032、制件成型过程及工艺参数的选定(1)注射成型过程1、成型前的准备。

对ABS的色泽、粒度和均匀度等进行检验,由于ABS吸水性较大,成型前应进行充分的干燥。

2、注射过程。

塑料在注射机料筒内经过加热、塑化达到流动状态后,由模具的浇筑系统进入模具型腔成型,其过程可分为充模、压实、保压、倒流和冷却五个阶段。

成型机头宽度计算

成型机头宽度计算

成型机头宽度计算
一、成型机头宽度计算的重要性
在塑料加工、橡胶制品等行业中,成型机头宽度是一个关键参数,直接影响到产品的质量、产量和生产效率。

合理的成型机头宽度计算,可以保证产品尺寸精度、减少废品率、降低生产成本。

因此,对成型机头宽度进行精确计算具有重要意义。

二、成型机头宽度计算的方法
1.公式推导
成型机头宽度计算公式为:W = f(t, L, r)
其中,W表示成型机头宽度;t表示料筒厚度;L表示模具长度;r表示模具半径。

2.参数解析
(1)料筒厚度t:根据材料性质和设备性能选择合适的料筒厚度。

(2)模具长度L:根据产品尺寸和生产工艺确定模具长度。

(3)模具半径r:根据产品形状和模具设计确定模具半径。

3.实例演示
以一个圆形截面的塑料管为例,假设料筒厚度t=20mm,模具长度
L=300mm,模具半径r=50mm,代入公式计算得到成型机头宽度
W=120mm。

二、注意事项
1.材料性质的影响
不同材料的熔融指数、流动性等性能差异较大,因此在计算成型机头宽度时,要充分考虑材料性质,以保证产品质量和生产效率。

2.设备性能的考虑
不同设备的加工能力、塑化能力等参数不同,计算成型机头宽度时,要结合设备性能参数,以确保设备运行稳定、减少故障率。

3.生产工艺的调整
在实际生产过程中,要根据产品尺寸、产量等要求,不断调整成型机头宽度,以满足生产需求。

三、结论与应用
成型机头宽度计算是塑料、橡胶等行业关键环节,通过对成型机头宽度进行精确计算,可以提高产品质量和生产效率。

孔边距计算

孔边距计算

当塑件的投影面积较大时,支承板会很 厚,为减小厚度可加支柱。 加一个支:H′=H/2.7 加两个支柱:H″=H/4.3
项目训练
根据壳体塑件的尺寸和型腔布置方案完 成下列设计计算 1、确定凹模镶件尺寸和模套的壁厚 确定支承板的厚度 2、确定支承板的厚度 确定壳体塑件模具的标准模架 3、确定壳体塑件模具的标准模架
高度及深度 尺寸
中心距尺寸
C M = (Cs + Cs Scp ) ±
δz 2
δz
2
C M = (Cs + Cs Scp ) ±
δz 2
δz
2
孔边距或型 芯中心 到边距尺寸
L M = (Ls + L sScp-Δ/24) ±
L M = (L s + L sScp + ∆/24) ±
主要内容
一、凹模上的孔边距计算 二、型芯上的孔边距计算 三、型腔壁厚与底板厚度的确定
表中壁厚是边长比L/b=1.8时的参考尺寸,当L/b>1.8时壁厚应适当增大。
3.支承板厚度的计算
塑件在分型面上的投影面积 A(cm A(cm2) 支承板厚度 H
~5 >5 ~ 10 >10 ~ 50 >50 ~ 100 >100 ~ 200 >200
15 15 ~ 20 20 ~ 25 25 ~ 30 30 ~ 40 >40
1).模塑过程中模具承受的力 ) 设备施加的锁模力 熔融塑料作用于型腔内壁的压 力 2).型腔受内压力作用发生膨 2) . 胀变形 影响塑件的尺寸精度 配合面处产生溢料飞边 小型腔的许用变形量小,压力 作用会导致其破坏
大型腔以刚度为主计算, 大型腔以刚度为主计算,小型腔以强度为主计算 圆形凹模直径: ﹤ ~ 圆形凹模直径:D﹤67~86mm时以强度计算为主 时以强度计算为主 矩形凹模长边: ﹤ 矩形凹模长边:L﹤108~136mm时以强度计算为主 ~ 时以强度计算为主

《塑料注塑模结构设计》7成型零部件设计7

《塑料注塑模结构设计》7成型零部件设计7

5 瓣合式凹模(镶拼式凹模) 镶拼式凹模)
组成凹模的每一个镶块都是活动的, 组成凹模的每一个镶块都是活动的,它们被模套或其他锁合装置 箍合在一起 适用: 适用:有侧凹或侧孔的制品 当瓣合模块数量等于2时 可将他们组成的凹模成为哈夫凹模。 当瓣合模块数量等于 时,可将他们组成的凹模成为哈夫凹模。
瓣合式凹模结构示意图
二 设计要点
排气槽(或孔 位置和大小的选定 主要依靠经验, 排气槽 或孔)位置和大小的选定,主要依靠经验,经过试模 或孔 位置和大小的选定, 后再修改或增加。 后再修改或增加。 基本的设计要点可归纳如下: 基本的设计要点可归纳如下: 1.排气要保证迅速、完全,排气速度要与充模速度相适应; .排气要保证迅速、完全,排气速度要与充模速度相适应; 2.排气槽(孔)尽量设在塑件较厚的成型部位 2.排气槽(孔)尽量设在塑件较厚的成型部位; 尽量设在塑件较厚的成型部位; 3.排气槽应尽量设在分型面上,但排气槽溢料产生的毛边应不 .排气槽应尽量设在分型面上, 妨碍塑件脱模; 妨碍塑件脱模; 4.排气槽应尽量设在料流的终点,如流道、冷料井的尽端; .排气槽应尽量设在料流的终点,如流道、冷料井的尽端; 5.为了模具制造和清模的方便,排气槽应尽量设在凹模的一面; .为了模具制造和清模的方便,排气槽应尽量设在凹模的一面; 6.排气槽排气方向不应朝向操作面,防止注射时漏料烫伤人; .排气槽排气方向不应朝向操作面,防止注射时漏料烫伤人; 7.排气槽 孔)不应有死角,防止积存冷料; 不应有死角, .排气槽(孔 不应有死角 防止积存冷料;
一 凹模结构设计
凹模是成型塑件外表面的成型零件。 凹模是成型塑件外表面的成型零件。 凹模的基本结构:整体式、整体嵌入式和组合式、镶拼式。 凹模的基本结构:整体式、整体嵌入式和组合式、镶拼式。

成型零部件的工作尺寸计算

成型零部件的工作尺寸计算
大型塑件模具:δ c<Δ /6 成型零件磨损的原因: 模具制造公差占塑件总公差的三分之一左右:δ z=Δ /3
※塑件脱模时的摩擦(型腔变大、型芯变小、中心距工作尺寸不变) ※料流的冲刷 ※腐蚀性气体的锈蚀 ※模具的打磨抛光
2019/2/12
二、影响塑件工作尺寸公差的因素
2.成型零件的磨损δ c
垂直于脱模方向的模具表面不考虑磨损。 平行于脱模方向的模具表面要考虑磨损。
塑件成型收缩的波动δ
s
成型零件的制造误差δ
z
成型零件的磨损δ
c
模具安装配合误差δ
j
2019/2/12
二、影响塑件工作尺寸公差的因素
1.塑件的成型收缩δ s
⑴成型收缩率δ s :δs =(Smax-Smin) Ls 对于一副已制造好的模具,δ s是引起塑件尺寸变化的主要因素
一般要求:成型收缩引起的塑件尺寸误差δ s< Δ /3
其中:
中心距制造公差δ z=(1/3~1/6)Δ
2019/2/12
四、成型零件工作尺寸计算
6.螺纹成型件的工作尺寸计算
⑴公制普通螺纹型环工作尺寸计算 螺纹型环中径工作尺寸 D2M
0 +δ z=(D ) +δ z 2s+D2sScp–b 0
螺纹型环大径工作尺寸 DM
0
+δ z=(D
0
s+DsScp–b)0
螺纹型芯小径工作尺寸 d1M
2019/2/12
四、成型零件工作尺寸计算
6.螺纹成型件的工作尺寸计算
⑶螺距工作尺寸计算 螺纹型芯螺距:
z P (P P S ) M s s cp 2
式中:PM ——螺纹型芯螺距
Ps ——塑件内螺纹螺距基本工作尺寸

成型零件尺寸计算

成型零件尺寸计算

④模具安装配合误差δj ,主要受配合间隙影响,对于过盈配合, 不存在此误差。 ⑤水平飞边厚度的波动δf :对于压铸模和注塑模,水平飞边厚 度很薄,影响较小。 塑件可能产生的最大误差δ = δz + δc +δs +δj +δf 塑件的公差值应大于或等于上述各种因素引起的积累误差: 即:∆≥δ
径向尺寸
4 3
深度尺寸:
LM=(HS+HSSCP - 2 ∆) 0+ δz
3
2.型芯尺寸:
径向尺寸: LM=(LS+LSSCP + 4 ∆) - δz 0
3
高度尺寸: HM=(HS+HSSCP + ∆) - δz 0
3 2
3.中心距尺寸:
LM=(LS+LSSCP )± 2
z
4.螺纹型环尺寸:
大径尺寸: DM=(d S+ d S SCP - b)0+ δz 中径尺寸: D2M=(d2S+d2SSCP - b)0+ δz
(2)轴类尺寸(B类)
该类尺寸属被包容尺寸(或广义的轴),与塑料熔体或塑件之间产生摩擦磨 损之后,具有变小的趋势 。属这类尺寸的有:型芯高度、型芯径向尺寸等。
(3)中心距类尺寸(C类)
该类尺寸不受摩擦磨损影响,因此可视为一种不变尺寸。属于这类尺寸的 有:孔间距、型芯间距和孔中心与型芯中心的距离。
塑件及成型零件尺寸标注方法
=(30+30×0.008)± = 30.24±0.03mm
6.螺纹型芯大径尺寸:
dM=(DS+DSSCP + b) 0- δz
=(8+8×0.008 + 0.20) 0- 0.03

塑料成型零件尺寸计算例

塑料成型零件尺寸计算例

例:图7—1为硬聚氯乙烯制件,收缩率为0.6%—1%,试确定凹模直径与深度、凸模直径与高度、4—Φ5型芯间中心距及螺纹型环尺寸。

图7-24 塑料制件图7-1 塑料制件解:按平均值法求解 (1)凹模(型腔)直径塑件平均收缩率为0.8%, 根据式( ),并取凹模制造公差δz =∆31=0.087mm ,此值介于IT9—ITl0之间。

mm S L L L cp s s m 087.00087.00008.3426.0431008.0343443\+++=⎥⎦⎤⎢⎣⎡⨯-⨯+=⎥⎦⎤⎢⎣⎡∆-+=δ(2)凹模深度 设mm z 073.031=∆=δ,按ITl0制造,mm z 07.0=δ,mm z 037.061=∆=δ()070.00070.00097.1322.032141008.01321+++=⎥⎦⎤⎢⎣⎡⨯-⨯⎪⎭⎫ ⎝⎛+=⎥⎦⎤⎢⎣⎡∆-+=zs cp m H S H δ(3)凸模直径设凸模按IT9级制造,δz =0.052mm ,约为∆51。

()mml S l z s cp m 0052.00052.004.2428.043241008.01431---=⎥⎦⎤⎢⎣⎡⨯+⨯⎪⎭⎫ ⎝⎛+=⎥⎦⎤⎢⎣⎡∆++=δ(4)凸模高度设mm z 093.031=∆=δ,此值在ITl0-ITll 之间,按ITl0级制造,mm z 084.0=δ,磨损余量取δc =0.05mm ,约为∆61。

()mm S h h z cp s m 0084.00084.0034.1928.0321008.0119321---=⎥⎦⎤⎢⎣⎡⨯+⎪⎭⎫ ⎝⎛+=⎥⎦⎤⎢⎣⎡∆++=δ(5)两型芯中心距 若按mm z 055.0422.041==∆=δ,现按IT9级精度,取δz =0.048mm , 则型芯中心距为: ()[]21zcp m m S C C δ±+=,mm mm mm mm C m 024.013.162048.01008.0116±=±⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+⨯= (6)螺纹型环M30粗牙螺纹由有关手册查得d s 小=26.21 mm ,d s 中=27.73mm ,螺距P s = 3.5mm ,查得螺纹中径公差Δ中=0.31mm ;查得螺纹型环制造公差δ大=0.04mm ,δ中=0.03mm ,δ小=0.04mm ,将上述数据代入式(4—46)、(4—47)、(4—48)得螺纹型环中径:()[]mmd S D s cp m 03.0003.00064.2731.073.271008.011+++=⎥⎦⎤⎢⎣⎡-⨯⎪⎭⎫ ⎝⎛+=∆-+=中中中中δ螺纹型环小径:()[]mmd S D s cp m 04.0004.0011.2631.021.261008.011+++=⎥⎦⎤⎢⎣⎡-⨯⎪⎭⎫ ⎝⎛+=∆-+=小中小小δ螺纹型环大径:()[]mmd S D s cp m 040004.0093.2931.0301008.011。

塑料模成型零部件强度和刚度是计算

塑料模成型零部件强度和刚度是计算

第三节成型零部件的设计成型零部件的强度与刚度的计算一、模具强度及刚度概念从工程力学的角度上讲:构件刚度—是指构件抵抗变形的能力构件强度—是指某种材料抵抗破坏的能力,即材料破坏时所需要的应力。

模塑成型过程中,型腔受到塑料熔体的压力会产生一定的内应力及变形。

若型腔或底板壁厚不够,当内应力超过材料的许用应力时,型腔会因强度不够而破裂。

若型腔刚度不足也会发生过大的弹性变形,因此导致溢料、影响塑件尺寸和精度、脱模困难。

型腔刚度计算的依据可归纳为以下几个方面:(1)防止溢料(2)保证塑件精度(3)有利于脱模二、壁厚的受力分析1.模塑过程中模具承受的力设备施加的锁模力注射过程中塑料流动的注射压力浇口封闭前一瞬间的保压压力开模时的拉应力2.型腔受内压力作用发生膨胀变形影响塑件的尺寸精度配合面处产生溢料飞边小型腔的许用变形量小,压力作用会导致其破坏3.型腔壁厚的最大允许变形量δ从中小型塑件的尺寸精度考虑:δ≤Δ/5从不产生溢料飞边考虑:δ﹤塑料的溢料值(表5-3)保证塑件的顺利脱模:δ≤S·t(收缩量腔力学计算的特征和性质:大型腔以刚度为主计算,小型腔以强度为主计算圆形凹模直径:D﹤67~86mm时以强度计算为主矩形凹模长边:L﹤108~136mm时以强度计算为主4.型腔壁厚和底板壁厚的校核型腔要承受塑料融体的高压作用若壁厚不够可表现为:刚度不够——产生过大的弹性变形。

强度不够——型腔发生塑性变形、破裂型腔壁厚计算以最大压力为准大型模具以刚度计算为主小型模具以强度计算为主刚度与强度的校核目的保证强度和刚度(1).刚度——防止过大弹性变形⑴从保证塑件精度要求方面出发:要求弹性变形δ<1/5Δ弹性变形量[δ]由塑件的尺寸公差值决定⑵从保证模具型腔不发生溢料方面出发:由塑料粘度特性决定弹性变形值应小于制件收缩值型腔尺寸+弹性变形=制件尺寸+热膨胀(收缩)值当变形大于热收缩值时,冷却减压后,型腔弹性恢复,塑件收缩导致制件尺寸大于型腔尺寸以致难以脱模2.强度——防止型腔变形、破裂刚度和强度校核,其选择以一分解值为标准影响因素:(1) 型腔形状(2) 模具材料的许用应力(3) 型腔的允许变形量(4) 塑料融体压力单型腔侧壁厚度tc的经验计算公式为:tc=0.20t+17(型腔压力PM<49MPa)。

成型零件尺寸计算

成型零件尺寸计算
尺寸部位
简图
计算公式 LM=[(1+SCP)LS-x]
型腔 径向 尺寸
+δ z 0
说明 LS——塑件基本尺寸; SCP——收缩率; Δ ——塑件的尺寸公差; δ z——模具制造公差, δ z= Δ /3 ~Δ /4 x——修正系数。 塑件尺寸较大、 精度级别较 低时, x =1/2。 塑件尺寸较小、 精度级别较 高时, x =3/4
型腔 深度 尺寸
HM=[(1+SCP)HS-xΔ ] +δ z HS—— 塑 件 基 本 尺 寸 ; 0 SCP——收缩率; Δ ——塑件的尺寸公差; δ z——模具制造公差, δ z= Δ /3 ~Δ /4 x——修正系数。 塑件尺寸较大、 精度级别较 低时, x =1/2 塑件尺寸较小、 精度级别较 高时, x =2/3 AM=[(1+SCP)AS+xΔ ]0 -δ z AS——塑件基本尺 寸; SCP—— 收 缩率; Δ ——塑件 的尺寸公差; δ z——模 具制造公差, δ z = Δ /3 ~Δ /4 x——修 正系数。 x=0.5 ~ 0.75 CS——塑件基本尺 寸; SCP—— 收 缩率; Δ ——塑件 的尺寸公差; δ z——模
型芯径向 尺寸
中心距尺 寸
CM =(1+SCP)CS ± δ z/2
具制造公差, δ z = Δ /3 ~ Δ /4
型芯高度 尺寸
BM=[(1+SCP)BS+xΔ ] 0 -δ z
BS——塑件基本尺 寸; SCP—— 收 缩率; Δ ——塑件 的尺寸公差; δ z——模 具制造公差, δ z = Δ /3 ~Δ /4 x—— 修正系数。 x=1/2 ~ 2/3 塑 件尺寸较大、精度 级别较低时, x =1/2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 塑料模设计 寸计算
知之者不如好之者,
目的与要求 重点和难点
成型零件尺寸计算
计算实例
型腔壁厚底板厚
思考与练习
好之者不如乐知者。
——孔子《论语》
a
1
第三章 塑料模设计及制造基础 09.05.2020
成型零 件的尺 寸计算
§3.3 成型零件的设计与制造
目的与要求 重点和难点
成型零件尺寸计算
计算实例
型腔壁厚底板厚
思考与练习
1. 成型零件的制造误差z
模具制造公差取塑件总公差的三分之一左右:z=/3,或取 IT7~8级作为模具制造误差。
2. 成型零件的磨损c
成型零件磨损的原因: ※塑件脱模时的摩擦(型腔变大、型芯变小、中心距尺寸不变) ※料流的冲刷 ※腐蚀性气体的锈蚀 ※模具的重新打磨抛光等
目的与要求 重点和难点
而成型零件的尺寸和公差必须以塑件的尺寸和精度及塑料 的收缩率为依据。
成型零件尺寸计算
计算实例
成型零件的制造误差z
成型零件的磨损c
型腔壁厚底板厚
思考与练习
塑件成型收缩的波动s
模具安装配合误差j
水平飞边厚度的波动f
a
4
第三章 塑料模设计及制造基础 09.05.2020
成型零 件的尺 寸计算
a
9
第三章 塑料模设计及制造基础 09.05.2020
成型零 件的尺 寸计算
三、成型零件尺寸计算方法
※塑件可能产生的最大误差为上述各种误差的总和:
目的与要求 重点和难点
成型零件尺寸计算
计算实例
型腔壁厚底板厚
思考与练习
=z+c+s+j+f ※从成型工艺与模具设计角度讲,累积误差不能超过塑件规 定的公差Δ,即≤Δ。 ※模具制造公差z,模具的磨损c和成型收缩的波动s是影响 塑件公差的主要因素。
目的与要求
目的与要求 重点和难点
成型零件尺寸计算
计算实例
型腔壁厚底板厚
思考与练习
1. 掌握影响塑件尺寸公差的因素; 2. 会运用公式计算成型零件工作部分的尺寸。
重点和难点 掌握成型零件尺寸的计算方法。
a
2
第三章 塑料模设计及制造基础 09.05.2020
成型零 件的尺 寸计算
目的与要求 重点和难点
模具磨损量 c= Δ/6 模具制造公差 z= Δ/3
按平均值方法可得:
L M δ 2 zδ 2 c(L s-Δ 2)(L s-Δ 2)S cp
整理得:
LM
Ls Ls
Scp
-3 4
标注制造公差后得:
Lz M 0 a
(L sLsScp-4 3)0 z
12
第三章 塑料模设计及塑件制造基础型芯 09.05.2020
※成型零件尺寸计算的方法有:平均值法和极限值法。
a
10
第三章 塑料模设计及制造基础 09.05.2020
成型零 件的尺 寸计算
目的与要求 重点和难点
在平均值法中,塑料的收缩率是指平均收缩率Scp。
※规定塑件与成型零件尺寸标注方法 轴类(塑件外形)尺寸采用基轴制,标负差; 孔类(塑件内形)尺寸采用基孔制,标正差; 中心距尺寸公差带对称分布,标正负差。
一、成型零件的工作尺寸
成型零件工作尺寸包括:※型芯和型腔的径向尺寸 ※型芯高度和型腔深度尺寸 ※型芯与型芯间中心距尺寸
成型零件尺寸计算
计算实例
型腔壁厚底板厚
思考与练习
a
3
第三章 塑料模设计及制造基础 09.05.2020
成型零 件的尺 寸计算
二、影响塑件尺寸公差的因素
塑件的尺寸和精度主要取决于成型零件的尺寸和精度;
a
5
第三章 塑料模设计及制造基础 09.05.2020
成型零 件的尺 寸计算
目的与要求 重点和难点
成型零件尺寸计算
计算实例
型腔壁厚底板厚
思考与练习
磨损量的取值原则:
磨损量的大小取决于塑料品种、模具材料及热处理。
小批量生产时,c取小值,甚至可以不考虑。 玻璃纤维等增强塑料对成形零件磨损大,c应取大值。 模具材料耐磨,表面强化好,c应取小值。 垂直于脱模方向的模具表面不考虑磨损。 平行于脱模方向的模具表面要考虑磨损。 小型塑件的模具磨损对塑件影响较大。
型腔壁厚底板厚
思考与练习
(3) 成型收缩偏差s产生的原因: 系统误差:计算收缩率与实际收缩率的差异;
偶然误差:成型时工艺条件变化、材料批号的改变等。
s=(Smax-Smin) ×b 式中:Smax-塑件的最大收缩率; Smin-塑件的最小收缩率; b-塑件的基本尺寸。
对于一副已制造好的模具,s是引起塑件尺寸变化的重要 因素。一般要求:成型收缩引起的塑件尺寸误差s<Δ/3。
成型零件尺寸计算
计算实例
型腔壁厚底板厚
思考与练习
a
11
第三章 塑料模设计及制型腔造基础 09.05.2020
成型零 四、成型零件尺寸计算
件的尺
塑件
寸计算
1.型腔径向尺寸
(LM
)z 0
计算
目的与要求 重点和难点
成型零件尺寸计算
计算实例
型腔壁厚底板厚
思考与练习
已知:塑件径向尺寸
(L
s
)
0
平均收缩率Scp
成型零件工作尺寸的计算
a
8
第三章 塑料模设计及制造基础 09.05.2020
成型零 件的尺 寸计算
目的与要求 重点和难点
成型零件尺寸计算
计算实例
型腔壁厚底板厚
思考与练习
4. 模具的安装配合误差j
模具活动成型零件和配合间隙的变化会引起塑件尺寸 的变化。
5. 水平飞边的波动f
压缩模飞边厚度受成型工艺条件变化的影响,从而 影响塑件的高度尺寸,而注射模和压注模的飞边较小。
成型零 件的尺 寸计算
目的与要求
2. 型芯径向尺寸
(lM
)0 z
计算
按平均值方法可得: lM δ 2 zδ 2 c (ls+Δ 2)(ls+Δ 2)S cp
重点和难点
成型零件尺寸计算
计算实例
整理得: lMlslsScp1822c
型腔壁厚底板厚
思考与练习
模具型腔在室温下的尺寸:c=b+S×b。
⑵影响塑件收缩的因素(产生偶然误差) ※塑料品种 ※塑件特点 ※模具结构 ※成型方法及工艺条件(料筒温度、注射压力、注射速度、 模具温度)。
a
7
第三章 塑料模设计及制造基础 09.05.2020
成型零 件的尺 寸计算
目的与要求 重点和难点
成型零件尺寸计算
计算实例
中小型塑件模具:c=Δ/6
大型塑件模具:c<Δ/6
a
6
第三章 塑料模设计及制造基础 09.05.2020
成型零 件的尺 寸计算
目的与要求 重点和难点
成型零件尺寸计算
计算实例
型腔壁厚底板厚
思考与练习
3. 塑件的成型收缩偏差s
⑴成型收缩率S:室温下塑件尺寸b与模具尺寸c的相对差值。 S =(c-b)/ b
相关文档
最新文档