中科大 Materials Studio 培训教程7(包你学会!)

合集下载

material_studio教程

material_studio教程

3.绘制苯甲酰胺分子 3.
绘制苯甲酰胺分子
下面是要建造的苯甲酰胺结构: (1).生成3D 文档 3D (1).
在菜单上选择 New,并且选择3D Atomistic Document 后单 击OK此时文件名称出现。 在左侧的Project Explorer 中,名称为3D Atomistic Document.xsd,在其上单击鼠标右键,选择ReName 进行改 名并进行保存。
绘制苯甲酰胺分子
(6).编辑键的类型 (6). 首先选择两个原子之间的键,然后在 Sketch 工具 栏上的Modify Bond Type 按钮来改变。 键的类型,同样的选项也可以在Modify 菜单下的 Modify Bond Type 中找到。 如果要选择多个原子或键,请按下 Shift 后再进 行选择。 如要取消选择,请在结构外单击鼠标左键。
建造石英晶体建造多甲基异丁烯酸盐多甲基异丁烯酸盐pmma是一种重要的商业热塑性材料特别是对于上光应用更为广泛典型的生产方式是通过使用过氧化物或者含氮前体的甲基异丁烯酸盐的自由基聚合或者通过热化学光化学起始反应来生成建造多甲基异丁烯酸盐1
Materials Studio 入门教程
Materials Studio 入门教程
观察并且处理研究表格文档
(5).研究表格支持的其它格式 (5). 研究表格也支持 3D 周期体系,如晶体和无定型晶 胞结构。 轨迹文件(.xtd)文件也可以输入 轨迹文件的每一个桢都会放置到 研究表格的一行上。
观察并且处理研究表格文档
(6).计算基本描述符 (6).
研究表格的细节显示如下:
研究表格的顶头一行,包含了列标A、B…等,被称为列头。 第二行,包含了对该列内容的描述,例如“Structure”,被 称为列描述符。 当计算完多个模型的性质之后,其值会出现在研究表格中。

Materials Studio 培训教程

Materials Studio 培训教程

Materials Studio 培训教目录Materials Studio 快速入门教程⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2 Visualizer 模块快速入门教程⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯11用第一性原理预测AlAs 的晶格参数⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯36 CO 分子在Pd(110)表面的吸附⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯43Pd(110)面上的CO 分子电荷密度变化⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯55模拟CO_Pd(110)体系的STM 图⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯61使用DMol3 中的离域内坐标对固体进行几何优化⋯⋯⋯⋯⋯⋯64 用LST/QST 搜索过渡态⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯69气体在聚合体中扩散的测量⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯76聚合物与金属氧化物表面的相互作用⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯86计算共存相之间的界面张力⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯96运行简单的MesoDyn 模拟⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯99使用粉末衍射图进行分析⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯108指标化粉末衍射图⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯117无机物的Rietveld 精修⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯125使用Reflex Plus 来解析3-氯-反-苯乙烯酸的结构⋯⋯⋯⋯⋯⋯⋯133 无机化合物FIN31 的结构确定⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯142创腾科技有限公司Neotrident Technology Limited 2Materials Studio 快速入门教程该教程将介绍Materials Studio 软件的基本功能,在这一部分,你将学到:1.生成Projects2.打开并且观察3D 文档3.绘制苯甲酰胺分子4.观察并且处理研究表格文档5.处理分子晶体:尿素6.建造Alpha 石英晶体7.建造多甲基异丁烯酸盐8.保存Project 并结束1. 生成Projects(1).运行Material Visualizer从运行菜单中运行或者在桌面点击快捷方式。

MaterialsStudio培训教程

MaterialsStudio培训教程
将显示固定在Line。
None
PPT文档演模板
Dashed line
Line
Stick
MaterialsStudio培训教程
Lighting
在TON.xsd 的 3D Viewer 上单 击右键,选择 Lighting 选项,该选 项将指定加光情况。在此选项卡内 可以设定三个光源,并改变光源的 照射位置(照射位置用箭头显示)。
msi ?
PPT文档演模板
MaterialsStudio培训教程
2.调整显示方式 在 3D Viewer 上按右键,出右键菜单,选 Display Style ,Display Style 对话
框中的各选项的意义如下:
Atom 栏: Display Style: Line:线状模型。 Stick:棍状模型。 Ball and stick:球棍模型。 CPK:球堆砌模型。 Polyhedron:多面体堆积模型(晶体)。
Materials Studio 使用了多种类型的文件,如3D Atomistic and Mesoscale、 text、chart、 HTML、 study table、grid、script、 和 forcefield documents。在 后面进行计算时,这些文件将逐个显示在projects中,反映了计算的过程。 现在 的教学中, 主要出现的是 3D Atomistic 类型的文件。
3. 改变3D结构的视图
可以使用3D Viewer 工具栏上的工具来改变3D 视图。
3D Viewer工具栏
通过选择相应的工具并在3D 结构上拖动来改变结构视图。
Rotate:旋转结构视图。使用三键鼠标,右键是旋转操作。 Zoom:向上或者右侧拖动可以增大所选结构的视图;向下或者向左侧拖动会缩小所 选结构的视图。使用三键鼠标,也可用鼠标上的滚轮进行3D结构的放大、缩小。 Translation:将结构沿着不同的方向平移。 对于三键鼠标来说,左键执行所选操作,右键则是旋转操作,同时按下左健和右键 则会完成缩放操作。此外还可以将键盘和鼠标联用来完成上述操作。

Materials Studio 培训教程

Materials Studio 培训教程

Materials Studio 培训教目录Materials Studio 快速入门教程⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2 Visualizer 模块快速入门教程⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯11用第一性原理预测AlAs 的晶格参数⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯36 CO 分子在Pd(110)表面的吸附⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯43Pd(110)面上的CO 分子电荷密度变化⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯55模拟CO_Pd(110)体系的STM 图⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯61使用DMol3 中的离域内坐标对固体进行几何优化⋯⋯⋯⋯⋯⋯64 用LST/QST 搜索过渡态⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯69气体在聚合体中扩散的测量⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯76聚合物与金属氧化物表面的相互作用⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯86计算共存相之间的界面张力⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯96运行简单的MesoDyn 模拟⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯99使用粉末衍射图进行分析⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯108指标化粉末衍射图⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯117无机物的Rietveld 精修⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯125使用Reflex Plus 来解析3-氯-反-苯乙烯酸的结构⋯⋯⋯⋯⋯⋯⋯133 无机化合物FIN31 的结构确定⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯142创腾科技有限公司Neotrident Technology Limited 2Materials Studio 快速入门教程该教程将介绍Materials Studio 软件的基本功能,在这一部分,你将学到:1.生成Projects2.打开并且观察3D 文档3.绘制苯甲酰胺分子4.观察并且处理研究表格文档5.处理分子晶体:尿素6.建造Alpha 石英晶体7.建造多甲基异丁烯酸盐8.保存Project 并结束1. 生成Projects(1).运行Material Visualizer从运行菜单中运行或者在桌面点击快捷方式。

中科大-Materials-Studio-培训教程-7(包你学会!)请将这一系列全看完-一定有收获。

中科大-Materials-Studio-培训教程-7(包你学会!)请将这一系列全看完-一定有收获。

3
4
3
5
6
7
显示出bulk Pd的结构,我们把显示方式改为Ball and Stick。在Pd 3D Model document中右键单击,选择Display Style,在Atoms标签中选择Ball and Stick,关闭对 话框。
现在使用CASTEP来优化 bulk Pd。为了减少计算量, 将晶胞转换为原胞。
(1).准备项目
在D或E盘中建立class 5文件夹。运行MS,在class 5中建立名为Pd_
2
2021/3/11
4
5
2
为便于管理项目,我们先在项目中准备三个子文件夹。在Project
Explorer的根图标Pd_CO上右键单击,选择New / Folder。再重复此操作二次。 在New Folder上右键单击,选择Rename,键入Pd bulk。在其它的文件上重 复此操作过程,把它们依次更名为Pd(110)和(1x1) CO on Pd(110)。
注意真空层的方向在oc
2021/3/11
9
结构由2D 变为3D,并且一个真空层被加到原子的上方。
真 空 层
C B
O A
2021/3/11
旋转此3D图,注意OA、OB、 OC的方向与X、Y、Z三个坐 标轴不同。真空层沿OC方向。
10
右击3D 模型,选择Lattice Parameters,选择Advanced 标签,按下Reorient to standard 按钮,关闭此对话框。
2021/3/11
17
Pd 的起始对称性是P1,但是 随着CO 分子的引入发生了改变。 可以通过运用Find Symmetry工具 找到并加上对称性。
选择工具条上的Find Symmetry 工具,按下Find Symmetry 按钮,然后按下 Impose Symmetry按钮。 现在的对称性是PMM2。

Materials_Studio_培训教程

Materials_Studio_培训教程

CASTEP概述关于CASTAPCASTAP是特别为固体材料学而设计的一个现代的量子力学基本程序,其使用了密度泛函(DFT)平面波赝势方法,进行第一性原理量子力学计算,以探索如半导体,陶瓷,金属,矿物和沸石等材料的晶体和表面性质。

典型的应用包括表面化学,键结构,态密度和光学性质等研究,CASTAP也可用于研究体系的电荷密度和波函数的3D形式。

此外,CASTAP可用于有效研究点缺陷(空位,间隙和置换杂质)和扩展缺陷(如晶界和位错)的性质。

Material Studio使用组件对话框中的CASTAP选项允许准备,启动,分析和监测CASTAP服役工作。

计算:允许选择计算选项(如基集,交换关联势和收敛判据),作业控制和文档控制。

分析:允许处理和演示CASTAP计算结果。

这一工具提供加速整体直观化以及键结构图,态密度图形和光学性质图形。

CASTAP的任务CASTAP计算是要进行的三个任务中的一个,即单个点的能量计算,几何优化或分子动力学。

可提供这些计算中的每一个以便产生特定的物理性能。

性质为一种附加的任务,允许重新开始已完成的计算以便产生最初没有提出的额外性能。

在CASTAP计算中有很多运行步骤,可分为如下几组:* 结构定义:必须规定包含所感兴趣结构的周期性的3D模型文件,有大量方法规定一种结构:可使用构建晶体(Build Crystal)或构建真空板(Build Vacuum Stab)来构建,也可从已经存在的的结构文档中引入,还可修正已存在的结构。

注意:CASTAP仅能在3D周期模型文件基础上进行计算,必须构建超单胞,以便研究分子体系。

提示:CASTAP计算所需时间随原子数平方的增加而增加。

因此,建议用最小的原胞来描述体系,可使用Build\Symmetry\PrimitiveCell菜单选项来转换成原胞。

* 计算设置:合适的3D模型文件一旦确定,必须选择计算类型和相关参数,例如,对于动力学计算必须确定系综和参数,包括温度,时间步长和步数。

中科大MaerialsSudio培训教程包你学会精品PPT课件

中科大MaerialsSudio培训教程包你学会精品PPT课件
msi ?
2.调整显示方式 在 3D Viewer 上按右键,出右键菜单,选 Display Style ,Display Style 对话
框中的各选项的意义如下:
Atom 栏: Display Style: Line:线状模型。 Stick:棍状模型。 Ball and stick:球棍模型。 CPK:球堆砌模型。 Polyhedron:多面体堆积模型(晶体)。
3. 在此可改变模块和 图示工具的设置值。 初学者慎用。
在layer builder中试 试。
二. 打开并且观察3D 文档 目的: 介绍Materials Studio 中文档 documents 的概念 模块: Materials Visualizer 前提: 已生成一个Project
Materials Studio 使用了多种类型的文件,如3D Atomistic and Mesoscale、 text、chart、 HTML、 study table、grid、script、 和 forcefield documents。在 后面进行计算时,这些文件将逐个显示在projects中,反映了计算的过程。 现在 的教学中, 主要出现的是 3D Atomistic 类型的文件。
3D Viewer工具栏
通过选择相应的工具并在3D 结构上拖动来改变结构视图。 Rotate:旋转结构视图。使用三键鼠标,右键是旋转操作。 Zoom:向上或者右侧拖动可以增大所选结构的视图;向下或者向左侧拖动会缩小所 选结构的视图。使用三键鼠标,也可用鼠标上的滚轮进行3D结构的放大、缩小。 Translation:将结构沿着不同的方向平移。 对于三键鼠标来说,左键执行所选操作,右键则是旋转操作,同时按下左健和右键 则会完成缩放操作。此外还可以将键盘和鼠标联用来完成上述操作。

MaterialsStudio快速入门教程

MaterialsStudio快速入门教程

材料性质预测
分子动力学模拟:预测材料力学性 质
弹性常数计算:评估材料稳定性
添加标题
添加标题
添加标题
添加标题
密度泛函理论:计算材料电子结构
声子谱分析:研究材料热力学性质
分子结构优化
目的:通过优化 分子结构来提高 材料的性能
方法:使用 MaterialsStudi o软件中的模块 进行分子结构优 化
目的:预测材料的物理、化学和机械性能,为材料设计和优化提供 依据
方法:利用MaterialsStudio的高级功能,如X射线衍射、中子衍 射和电子显微镜等手段进行实验测量和数据处理
应用:广泛应用于材料科学、化学、物理学和工程等领域
Part Five
常见问题与解决方 案
常见问题汇总
材料计算软件 运行缓慢
量子力学计算
MaterialsStudio中的量子力 学计算模块可用于模拟分子的 电子结构和性质
支持多种量子力学方法,如密 度泛函理论、分子力学等
可用于研究分子的电子结构、 能量、振动频率等性质
用户可以通过简单的界面和操 作完成量子力学计算
晶体结构分析
定义:通过MaterialsStudio软件对晶体结构进行分析,了解材料 的性质和行为
应用场景:在 MaterialsStudi o中,蒙特卡罗 模拟可用于模拟 材料的物理性质, 如热导率、电导 率等。
优势:蒙特卡罗 模拟可以快速得 到近似解,对于 大规模复杂系统 具有很高的计算 效率。
操作步骤:在 MaterialsStudi o中,用户可以 通过选择 “Simulate”菜 单下的“Monte Carlo”选项来 进行模拟。
步骤:选择优化 算法、设置优化 参数、执行优化 计算、分析优化 结果

Materials-Studio培训学习教程资料

Materials-Studio培训学习教程资料

Materials-Studio培训学习教程资料MaterialsStudio 培训学习教程资料在当今科技迅速发展的时代,材料科学的研究和应用变得越来越重要。

而 MaterialsStudio 作为一款功能强大的材料模拟软件,为科研人员和工程师提供了有力的工具。

对于想要深入学习和掌握这款软件的人来说,一套系统全面的培训学习教程资料是必不可少的。

首先,我们来了解一下 MaterialsStudio 软件的基本情况。

它涵盖了众多的模块,能够对材料的结构、性能、热力学等方面进行精确的模拟和分析。

无论是在化学、物理、材料科学还是工程领域,都有着广泛的应用。

那么,一份好的 MaterialsStudio 培训学习教程资料应该包含哪些内容呢?基础知识部分是重中之重。

这包括软件的安装与配置,让学习者能够顺利地在自己的电脑上搭建起学习和工作的环境。

同时,要详细介绍软件的界面和操作流程,让初学者能够快速熟悉各个功能区域和操作按钮。

对于材料结构的建模,教程资料应当有清晰的步骤和示例。

从简单的晶体结构构建,到复杂的分子体系建模,都要逐步引导学习者掌握。

并且,要讲解如何优化模型结构,以获得更准确的计算结果。

在性能计算方面,要涵盖诸如能带结构、态密度、光学性质等重要内容。

通过实际案例,演示如何设置计算参数,解读计算结果,并分析材料的性能特点。

热力学性质的计算也是不可忽视的一部分。

比如,相图的绘制、热膨胀系数的计算等,这些内容对于研究材料的稳定性和相变过程具有重要意义。

除了理论知识和操作方法,实际案例的分析也是教程资料的关键组成部分。

通过实际的科研项目或工程应用案例,让学习者能够看到MaterialsStudio 在解决实际问题中的强大能力。

同时,也能帮助他们更好地理解和运用所学的知识。

为了让学习者更好地掌握所学内容,教程资料还应当配备相应的练习和作业。

这些练习可以是针对某个具体知识点的小题目,也可以是综合性的项目,让学习者在实践中巩固和提高。

Materials-Studio-培训教程

Materials-Studio-培训教程

注意:具有内部自由度的体系中,利用几何优化(Geometry Optimization)任务可获得状态方程。
CASTAP中能量的默认单位是电子伏特(eV),各种能量单位的换 算关系见Mohr.P.J(2000). 1 eV=0.036749308 Ha=23.0605 kcal/mole=96.4853 kJ/mole
CASTAP动力学任务
CASTAP动力学任务允许模拟结构中原子在计算力的影响下将如何移动。 在进行CASTAP动力学计算以前,可以选择热力学系综和相应参数,定义模拟 时间和模拟温度。
选择热力学系综
对牛顿运动定律积分允许探索体系恒值能量表面(NVE动力学)。然而,在 体系与环境进行热交换条件下发生最本质的现象。使用NVT系综(或者是确定性 的Nosé 系综或者是随机性的Langevin 系综)可模拟该条件。
CASTAP的任务
CASTAP计算是要进行的三个任务中的一个,即单个点的能量计算, 几何优化或分子动力学。可提供这些计算中的每一个以便产生特定的 物理性能。性质为一种附加的任务,允许重新开始已完成的计算以便 产生最初没有提出的额外性能。
在CASTAP计算中有很多运行步骤,可分为如下几组:
* 结构定义:必须规定包含所感兴趣结构的周期性的3D模型文件,有 大量方法规定一种结构:可使用构建晶体(Buum Stab)来构建,也可从已经存在的的结构文档中 引入,还可修正已存在的结构。 注意: CASTAP仅能在3D周期模型文件基础上进行计算,必须构建超 单胞,以便研究分子体系。
从菜单栏里选择Build / Crystals / Build Crystal。 Build Crystal 对话框显示出来。
杨碚芳课
点击Enter group 输入216,按下 TAB 按钮(或在Enter group中选择 F-43m),空间群信息更新为F-43m 空间群。空间群信息框中的信息也 随着F-43m空间群的信息而发生变 化 。

Materials Studio 培训教程

Materials Studio 培训教程

Materials Studio 培训教目录Materials Studio 快速入门教程⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2 Visualizer 模块快速入门教程⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯11用第一性原理预测AlAs 的晶格参数⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯36 CO 分子在Pd(110)表面的吸附⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯43Pd(110)面上的CO 分子电荷密度变化⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯55模拟CO_Pd(110)体系的STM 图⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯61使用DMol3 中的离域内坐标对固体进行几何优化⋯⋯⋯⋯⋯⋯64 用LST/QST 搜索过渡态⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯69气体在聚合体中扩散的测量⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯76聚合物与金属氧化物表面的相互作用⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯86计算共存相之间的界面张力⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯96运行简单的MesoDyn 模拟⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯99使用粉末衍射图进行分析⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯108指标化粉末衍射图⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯117无机物的Rietveld 精修⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯125使用Reflex Plus 来解析3-氯-反-苯乙烯酸的结构⋯⋯⋯⋯⋯⋯⋯133 无机化合物FIN31 的结构确定⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯142创腾科技有限公司Neotrident Technology Limited 2Materials Studio 快速入门教程该教程将介绍Materials Studio 软件的基本功能,在这一部分,你将学到:1.生成Projects2.打开并且观察3D 文档3.绘制苯甲酰胺分子4.观察并且处理研究表格文档5.处理分子晶体:尿素6.建造Alpha 石英晶体7.建造多甲基异丁烯酸盐8.保存Project 并结束1. 生成Projects(1).运行Material Visualizer从运行菜单中运行或者在桌面点击快捷方式。

Materials Studio 培训教程

Materials Studio 培训教程

Materials Studio 培训教目录Materials Studio 快速入门教程⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2 Visualizer 模块快速入门教程⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯11用第一性原理预测AlAs 的晶格参数⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯36 CO 分子在Pd(110)表面的吸附⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯43Pd(110)面上的CO 分子电荷密度变化⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯55模拟CO_Pd(110)体系的STM 图⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯61使用DMol3 中的离域内坐标对固体进行几何优化⋯⋯⋯⋯⋯⋯64 用LST/QST 搜索过渡态⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯69气体在聚合体中扩散的测量⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯76聚合物与金属氧化物表面的相互作用⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯86计算共存相之间的界面张力⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯96运行简单的MesoDyn 模拟⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯99使用粉末衍射图进行分析⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯108指标化粉末衍射图⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯117无机物的Rietveld 精修⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯125使用Reflex Plus 来解析3-氯-反-苯乙烯酸的结构⋯⋯⋯⋯⋯⋯⋯133 无机化合物FIN31 的结构确定⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯142创腾科技有限公司Neotrident Technology Limited 2Materials Studio 快速入门教程该教程将介绍Materials Studio 软件的基本功能,在这一部分,你将学到:1.生成Projects2.打开并且观察3D 文档3.绘制苯甲酰胺分子4.观察并且处理研究表格文档5.处理分子晶体:尿素6.建造Alpha 石英晶体7.建造多甲基异丁烯酸盐8.保存Project 并结束1. 生成Projects(1).运行Material Visualizer从运行菜单中运行或者在桌面点击快捷方式。

中科大MaterialsStudio培训教程包你学会

中科大MaterialsStudio培训教程包你学会

选择 File / Save 或单击工具栏上的 Save button 中建立了新的 my_benzamide.xsd 3D文件。
。这样就在my quickstart project
2. 设置球棍模型为默认显示方式 从菜单栏中选择 Modify / Default Atom Style ,打开 Default Atom Style 对话
用 None、Dashed line、Line和 Stick styles显 示zeolite Theta-1 的结构. 注意3D Viewer边框的 变化 .
将显示固定在Line.
None
Dashed line
Line
Stick
Lighting
在TON.xsd 的 3D Viewer 上单 击右键,选择 Lighting 选项,该选项 将指定加光情况.在此选项卡内可以 设定三个光源,并改变光源的照射位 置(照射位置用箭头显示).
选择 Tools \ Settings Organizer ,打开Settings Organizer 对话框.
1. 在这此处的Materials Studio icon,选 中所有的模块和图示工具.
2. 单击Reset,所有的模块和图示工具都恢复 Accelrys默认值.
若干次操作后,已有 一些参数设置.由于 错误等原因,要重复 前面的一个过程.为 保存两次操作一样, 需返回MS的默认设置.
在d盘上建文件夹class 1: d:\class 1
一. 生成一个Project 目的: 介绍Materials Studio 中 project 概念 模块: Materials Visualizer
1. 建立一个新文件夹D:\ MS teach \ class1 2. 运行 Materials Studio,生成名称为My quickstart 的Project
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

创建一个表面是一个两步过程。首先是要切出一个表面,其次就是创建一个包 含了表面的真空层。 从菜单栏里选择Build | Surfaces / Cleave Surface。把Cleave plane (h k l) 从 (-1 0 0) 改为(1 1 0),按下TAB 键。把Fractional Thickness 提高至1.5。按下 Cleave 按钮,关闭此对话框。
6 7
显示出bulk Pd的结构,我们把显示方式改为Ball and Stick。在Pd 3D Model document中右键单击,选择Display Style,在Atoms标签中选择Ball and Stick,关闭对
话框。
现在使用CASTEP来优化 bulk Pd。为了减少计算量, 将晶胞转换为原胞。
(4). 把CO 分子添加到1 x 1 Pd(110)表面并优化此结构 现在的工作对象是(1x1) Co on Pd(110)文件夹内的结构。在Project Explorer 内,打开(1x1) CO on Pd(110)文件夹内的(1x1) CO on Pd(110).xsd 文件。现在把CO 分子添加到短桥键位置的上方。上一讲已根据实验事实来确 定了键的长度,这里直接使用已有的结构数据。
工作递交后,开始运行。结束后出现提示 信息。选择File / Save Project保存项目, Window / Close all关闭工作窗口 。
在Project Explorer中打开位于Pd CASTEP GeomOpt文件夹中的Pd.xsd, 显示的即为Pd优化后的原胞结构。由下面步骤恢复Pd优化后的晶胞结构。
点击选上碳原子,按下SHIFT 键,点击氧原子。 在Edit Sets 对话框里,点击New。在Define New Set 对话框里,输入CO DensityDifference, 按下OK。
2. 定义分子片断 打开(1x1) CO on Pd(110)\(1x1) CO on Pd (1 1 0) CASTEP GeomOpt 文件夹里的 (1x1) CO onPd(110).xsd 文件。
把颜色选项改回Element,关闭此对话框。 这个结构是优化CO 分子在Pd(110)表面吸附的起始模型。
选择工具条中的File | Save As...。浏览到(1x1) CO on Pd(110)文件夹,把文件名改 为(1x1) CO on Pd(110),按下Save 按钮。 选择File | SaveProject,然后then Window | Close All。
注意真空层的方向在oc
结构由2D 变为3D,并且一个真空层被加到原子的上方。
真 空 层
C B 旋转此3D图,注意OA、OB、 OC的方向与X、Y、Z三个坐 标轴不同。真空层沿OC方向。
O
A
右击3D 模型,选择Lattice Parameters,选择Advanced 标签,按下Reorient to standard 按钮,关闭此对话框。
优 化
优化结束, (1x1)CO on Pd(110)文件夹中有了新文件夹 (1x1)CO on Pd(110) CASTEP GeomOpt。其中的(1x1)CO on Pd(110).xsd就是优化 的结果。
File / save project
Window / Close all
2. 定义分子片断
现在开始优化结构。 选择File / Save Project,然后Window / Close All。在Project Explorer 内,打开 (1x1)CO on Pd(110)文件夹内的(1x1)CO on Pd(110).xsd。 选择CASTEP 工具中的Calculation。计算步骤和计算的参数设置见下页。 按下Run 按钮。 注意:Pd的结构已优化过,现在内层原子被固定, 仅其表面一层原子和CO再优 化。
从工具栏中选择CASTEP ,再选择Calculation或菜单栏中选择 Modules | CASTEP | Calculation。把Task从Energy改为Geometry
Optimization,按下More...按钮,在 CASTEP Geometry Optimization对话框中选 中Optimize Cell选项。设定本地机运行,按下Run键。
(1).准备项目
在D或E盘中建立class 5文件夹。运行MS,在class 5中建立名为Pd_CO 的Project。
1
3
2
4
5
为便于管理项目,我们先在项目中准备三个子文件夹。在Project Explorer的根图标Pd_CO上右键单击,选择New / Folder。再重复此操作二次。 在New Folder上右键单击,选择Rename,键入Pd bulk。在其它的文件上重 复此操作过程,把它们依次更名为Pd(110)和(1x1) CO on Pd(110)。
要计算片断的电荷密度 差,必须首先定义片断。使 用Edit Sets 选项来执行。 首先建立一个含有碳原子和 氧原子的片断。 选择菜单栏里的Edit / Edit sets。
1
1
1
点击选上碳原子,按下SHIFT 键,点击氧原子。
1
在Edit Sets 对话框里,点击 New。在Define New Set 对话 框里,输入CO DensityDifference, 按下OK。 注意在模型(1x1) CO on Pd (1 1 0).xsd 中的CO 分子现 在是加亮的,并且被标记为刚 才设定的名称。不必定义Pd 表 面,因为CASTEP 会自动假设 剩下的原子在计算电荷密度差 别的时候是排除在考虑之外的。 关闭Edit Sets 对话框。
选择菜单栏里的 Build / Add Atoms,选 择Option 标签。确认 坐标系统是Fractional。 选择Atoms标签, 把Element 改为C。把 a 的值改为0.0,b 的 值改为0.5,c 的值改 为0.382。 按下Add按钮。
如果新加的原子没有球状显示,从菜单栏选择view / Display Style / Ball and Stick
(2) 建立Pd晶体,结构优化
Materials Studio所提供的结构库中包含有Pd的晶体结构。在Project Explorer中,右键单击Pd bulk文件夹并且选择Import....,从Structures / metals / pure-metals中导入Pd.msi。
1 2 3 4
5
选择菜单条中的Modify / Constraints。勾选上Fix fractional position,关闭此对话框。
Pd 体内的原子被固定住,可以通过改变显示颜色查看被限制了的Pd 原子。 在3D 模型文件内,点击取消选择原子。右击文件,选择Display Style。在Atom 标 签栏上的Coloring 区域,把颜色选项改为Constraint。 现在这个3D 模型文件如下所示:
Pd 的起始对称性是P1,但是 随着CO 分子的引入发生了改变。 可以通过运用Find Symmetry工具 找到并加上对称性。 选择工具条上的Find Symmetry 工具,按下Find Symmetry 按钮,然后按下 Impose Symmetry按钮。 现在的对称性是PMM2。
右击3D 模型文件,选择 Display Style。选择Lattice 标签, 把Style 改为Default。 现在结构如右图所示:
一个新的3D 模型文件打开了,它包含了一个二维周期性表面。
然而,CASTEP 需要的是一个3D 周期性系统当作输入文件。这可以通过使用 Vacuum Slab 工具得到。 选择Build / Crystals / Vacuum Slab。把Vacuum thickness 的值从10.00 改为 8.00,注意C轴的方向,按下Build按钮。
这样调整了方向,oc沿z轴方向。
改变晶格显示方式,转动结构使得z-轴在竖直方向。 右击3D 文件,选择Display Style。选择Lattice 标签。在Display style 部分,把Style 由Default改为Original。关闭对话框,3D 结构改变如下:
旋 转
Z 坐标有最大值的的Pd 原子被称为Pd 最上层。 在弛豫表面之前,必须把Pd 内部的原子固定住,因为现在只 需要弛豫Pa 的表面。 按下SHIFT 键,选中除了最上层的Pd 原子之外的所有Pd 原 子。
Pd(110)面上的CO 分子电荷密度变化
目的:介绍分子吸附在表面时,用 CASTEP 计算电荷密度差。 模块:Materials Visualizer,CASTEP 前提: CO 吸附在 Pd(110) 表面 背景 本讲义将研究相对于孤立的CO 分子和没有被干扰的Pd(110)面而言,CO 分子的成键是如 何影响电子分布的。电荷密度的变化可以用两种方法计算出来。第一个选择就是计算各个分子 碎片的电荷密度。这个方法便于描述如何由较小的体系组成较大的体系。该方法描绘了在发生 化学反应的时候和一个分子吸附到一个表面的时候,电荷密度是如何发生变化的。本例中, CO 分子吸附在Pd(110)面上,电荷密度的变化可以表示为: Δρ = ρCO@Pd(110) - (ρCO + ρPd(110)) 式中ρCO@Pd(110) 是CO + Pd(110)体系的总的电荷密度,ρCO 和ρPd(110)分别是吸附物和基底的未受 干扰的电荷密度。 另一个方法就是根据原子来计算电荷密度: Δρ = ρCO@Pd(110) - Σ (ρi) 这里,下标i 遍及所有原子。这个方法显示了由于形成全部的化学键而导致的电子分布的变化。 该方法便于描述体系的化学键是如何通过原子电荷密度的离域化来形成的。电荷密度的显示有 助于理解化学吸附的过程。分子会选择在哪里吸附?分子为什么会选择在那里吸附?分子稳定 吸附在那里的成键机理是什么? You will focus on one adsorption site: the short bridge site you studied in the tutorial Adsorption of CO onto a Pd(110) surface.
相关文档
最新文档