六年级奥数应用题及答案:行程问题

合集下载

【奥数题】人教版小学数学六年级上册奥数思维拓展:行程问题(试题)含答案与解析

【奥数题】人教版小学数学六年级上册奥数思维拓展:行程问题(试题)含答案与解析

奥数思维拓展:行程问题(试题)一、选择题1.小张从家到单位有两条一样长的路。

一条是平路、另一条是一半上坡路,一半下坡路,小张上班走这两条路所用的时间一样多。

已知下坡的速度是平路的1.5倍,那么上坡的速度是平路的()倍。

A.35B.25C.14D.342.15辆车组成一列车队以速度v经过主席台,已知主席台长度为L,车长为S,每辆车之间的距离为车长的15倍,请问这列车队经过主席台需要多少时间?()。

A.225S LV+B.240S LV+C.2252S LV+D.2102S LV+3.已知A、B两地相距300米.甲、乙两人同时分别从A、B两地出发,相向而行,在距A地140米处相遇;如果乙每秒多行1米,则两人相遇处距B地180米.那么乙原来的速度是每秒()米.A.235B.245C.3D.315二、填空题4.甲、乙两人同时从A、B两地开车相向而行,经过2小时在距中点21千米处相遇。

甲的平均速度为x千米/小时,乙比甲的34少6千米,乙的平均速度为( )千米小时;已知60x=,那么A、B两地相距( )千米。

5.甲、乙两人分别从A、B两地同时出发,相向而行,他们相遇时,甲比乙多行90米,相遇后乙的速度减少50%,甲到B地后立即调头,追上乙时离A地还有90米,那么A、B两地间的距离为( )米。

6.李阳和明明同时从公园的南、北门出发,相向而行,李阳每分钟行走100米,明明速度与李阳的速度比是4∶5,两人出发20分钟后相遇,公园南、北门相距( )米。

7.平时在微风吹送下,一帆船由甲地经3小时到达乙地.今天这船照例在微风中从甲地出发,行驶了全程的13;由于风向骤变,船继而以原速度的25行驶了8千米,接着风向又变得顺起来,而且风力加大,这时船以最初的速度的2倍行驶,到达乙地时比往常迟36分钟.则甲乙两地相距_______千米.8.甲、乙两人分别从A、B两地同时出发相向而行,乙的速度是甲的2,二人相遇后继续3行进,甲到B地、乙到A地后立即返回.已知两人第二次相遇的地点距第三次相遇的地点是100千米,那么,A、B两地相距( )千米.9.(2003年迎春杯)甲、乙两人同时同地同向出发,沿环形跑道匀速跑步.如果出发时乙的速度是甲的2.5倍,当乙第一次追上甲时,甲的速度立即提高25%,而乙的速度立即减少20%,并且乙第一次追上甲的地点与第二次追上甲的地点相距100米,那么这条环形跑道的周长是_______米.三、解答题10.A、B两地相距840千米,甲、乙两车同时从两地相对开出,经过6时相遇,已知两车的速度比是3∶4,甲、乙两车每时分别行驶多少千米?11.甲、乙两车从相距900km的两地相向而行,乙车速度为每小时100km。

小学奥数行程问题应用题100题及答案

小学奥数行程问题应用题100题及答案

小学奥数行程问题应用题100题及答案(1) 亮亮从家到学校需要走960米,他平时早晨7:00出发去上学,每分钟走40米,可以准时到校,亮亮今天起床晚了,他7:08才出发,为了准时到校,他每分钟需要走多少米?(2) 丹丹从家去学校,每分钟走60米,走了10分钟到达学校,问丹丹家到学校的距离有多远?(3) 王叔叔开车从北京到上海,从开始出发,车速即比原计划的速度提高了19,结果提前一个半小时到达;返回时,按原计划的速度行驶 280 千米后,将车速提高16,于是提前1 小时 40 分到达北京.北京、上海两市间的路程是多少千米? (4) 有一个圆形人工湖的周长是450米,小胖在雷雷前面50米处,两人同时沿顺时针方向跑。

已知小胖速度为200米/分,雷雷速度为150米/分,问:几分钟后小胖追上雷雷?(5) 甲乙二人上午8时同时从东村骑车到西村去,甲每小时比乙快6千米。

中午12时甲到西村后立即返回东村,在距西村15千米处遇到乙。

求东西两村相距多少千米?(6) 田田和牛牛两人分别从甲、乙两地同时出发,如果两个人同向而行,田田26分钟可以赶上牛牛;如果两个人相向而行的话,6分钟就可以相遇。

已知牛牛每分钟走50米,求甲、乙两地之间的路程。

(7)上学路上当当发现田田在他前面,于是就开始追田田。

当当每分钟走70米,田田每分钟走45米,当当一共经过了30分钟才追上田田,请问:两人开始相距多远?(8)飞飞和薇薇在操场上比赛跑步,飞飞每分钟跑60米,薇薇每分钟跑40米,一圈跑道长400米,他们同时从起跑点背向出发,那么第一次相遇需要多少分钟?第二次相遇需要多少分钟?第三次相遇需要多少分钟?有什么规律呢?(9)小明在420米长的环形跑道上跑了一圈,前一半时间的速度为8米/秒,后一半时间的速度为6米/秒。

问:他后一半路程用了多少时间?(10)六年级同学从学校出发到公园春游,每分钟走72米。

15分钟以后,学校有急事要通知学生,派乐乐骑自行车从学校出发用9分钟追上同学们,乐乐每分钟要行多少米才可以准时追上同学们?(11)甲、乙两人在周长为400米的环形跑道上同时同地同向而行,甲每分钟走60米,乙每分钟走40米,甲每追上乙一次,两人就会击一次掌,当两人击了第3次掌时,甲掉头往回走,每相遇一次仍击一次掌,两人又击了5次掌,此时甲走了多少米?乙走了多少米?(12)有一个周长为100米的圆形花圃,小张和小王同时从边上同一点出发,沿着同一方向跑步,已知小张的速度是5米/秒,小王的速度是3米/秒,小张跑多少圈后才能第一次追上小王?(13)小王和小李两人分别从甲、乙两地同时出发同向而行,小李在前,小王在后面。

六年级奥数题及答案:复杂行程问题

六年级奥数题及答案:复杂行程问题

六年级奥数题及答案:复杂行程问题
甲、乙、丙三个班的学生租用一辆大巴车一起去郊外活动,但大巴车只能搭载一个班的学生,于是计划先让甲班的学生坐车,乙、丙两班的学生步行,甲班学生搭乘大巴一段路后,下车步行,然后大巴车回头去接乙班学生,并追赶上步行的甲班学生,再回头载上丙班学生后一直驶到终点,此时甲、乙两班也恰好赶到终点,已知学生步行的速度为5千米/小时,大巴车的行驶速度为55千米/小时,出发地到终点之间的距离为8千米,求这些学生到达终点一共所花的时间.
【分析】如图所示:虚线为学生步行部分,实线为大巴车行驶路段,由于大巴车的速度是学生的_倍,所以大巴车第一次折返点到出发点的距离是乙班学生搭车前步行距离的6倍,如果将乙班学生搭车前步行距离看作是一份的话,大巴车第一次折返点到出发点的距离为6份,大巴车第一次折返到接到乙班学生又行驶了5份距离,如此大巴车一共行驶了6+5+6+5+6=28份距离,而A到F的总距离为8千米,所以大巴车共行驶了28千米,所花的总时间为小时.(或者是各班各乘车6千米,步行2千米,所花的总时间为(小时))
六年级奥数题及答案:复杂行程问题.到电脑,方便收藏和打印:。

小学六年级数学奥数行程问题20道详解(含答案)全国通用

小学六年级数学奥数行程问题20道详解(含答案)全国通用

行程问题50道详解一1、甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求两次相遇地点之间的距离.解:第二次相遇两人总共走了3个全程,所以甲一个全程里走了4千米,三个全程里应该走4*3=12千米,通过画图,我们发现甲走了一个全程多了回来那一段,就是距B地的3千米,所以全程是12-3=9千米,所以两次相遇点相距9-(3+4)=2千米。

2、甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走67.5米,丙每分钟走75米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过2分钟与甲相遇,求东西两镇间的路程有多少米?解:那2分钟是甲和丙相遇,所以距离是(60+75)×2=270米,这距离是乙丙相遇时间里甲乙的路程差所以乙丙相遇时间=270÷(67.5-60)=36分钟,所以路程=36×(60+75)=4860米。

3、A,B两地相距540千米。

甲、乙两车往返行驶于A,B两地之间,都是到达一地之后立即返回,乙车较甲车快。

设两辆车同时从A地出发后第一次和第二次相遇都在途中P地。

那么两车第三次相遇为止,乙车共走了多少千米?解:根据总结:第一次相遇,甲乙总共走了2个全程,第二次相遇,甲乙总共走了4个全程,乙比甲快,相遇又在P点,所以可以根据总结和画图推出:从第一次相遇到第二次相遇,乙从第一个P点到第二个P点,路程正好是第一次的路程。

所以假设一个全程为3份,第一次相遇甲走了2份乙走了4份。

第二次相遇,乙正好走了1份到B地,又返回走了1份。

这样根据总结:2个全程里乙走了(540÷3)×4=180×4=720千米,乙总共走了720×3=2160千米。

4、小明每天早晨6:50从家出发,7:20到校,老师要求他明天提早6分钟到校。

小学六年级数学奥数行程问题20道详解(含答案)全国通用

小学六年级数学奥数行程问题20道详解(含答案)全国通用

行程问题50道详解一1、甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求两次相遇地点之间的距离.解:第二次相遇两人总共走了3个全程,所以甲一个全程里走了4千米,三个全程里应该走4*3=12千米,通过画图,我们发现甲走了一个全程多了回来那一段,就是距B地的3千米,所以全程是12-3=9千米,所以两次相遇点相距9-(3+4)=2千米。

2、甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走67.5米,丙每分钟走75米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过2分钟与甲相遇,求东西两镇间的路程有多少米?解:那2分钟是甲和丙相遇,所以距离是(60+75)×2=270米,这距离是乙丙相遇时间里甲乙的路程差所以乙丙相遇时间=270÷(67.5-60)=36分钟,所以路程=36×(60+75)=4860米。

3、A,B两地相距540千米。

甲、乙两车往返行驶于A,B两地之间,都是到达一地之后立即返回,乙车较甲车快。

设两辆车同时从A地出发后第一次和第二次相遇都在途中P地。

那么两车第三次相遇为止,乙车共走了多少千米?解:根据总结:第一次相遇,甲乙总共走了2个全程,第二次相遇,甲乙总共走了4个全程,乙比甲快,相遇又在P点,所以可以根据总结和画图推出:从第一次相遇到第二次相遇,乙从第一个P点到第二个P点,路程正好是第一次的路程。

所以假设一个全程为3份,第一次相遇甲走了2份乙走了4份。

第二次相遇,乙正好走了1份到B地,又返回走了1份。

这样根据总结:2个全程里乙走了(540÷3)×4=180×4=720千米,乙总共走了720×3=2160千米。

4、小明每天早晨6:50从家出发,7:20到校,老师要求他明天提早6分钟到校。

六年级行程问题(含答案)

六年级行程问题(含答案)

比例的知识是小学数学最后一个重要内容,从某种意义上讲仿佛扮演着一个小学“压轴知识点”的角色。

从一个工具性的知识点而言,比例在解很多应用题时有着“得天独厚”的优势,往往体现在方法的灵活性和思维的巧妙性上,使得一道看似很难的题目变得简单明了。

比例的技巧不仅可用于解行程问题,对于工程问题、分数百分数应用题也有广泛的应用。

我们常常会应用比例的工具分析2个物体在某一段相同路线上的运动情况,我们将甲、乙的速度、时间、路程分别用,,v v t t s s 乙乙乙甲甲甲,;;来表示,大体可分为以下两种情况:1. 当2个物体运行速度在所讨论的路线上保持不变时,经过同一段时间后,他们走过的路程之比就等于他们的速度之比。

s v t s v t =⨯⎧⎨=⨯⎩甲甲甲乙乙乙,这里因为时间相同,即t t t ==乙甲,所以由s st t v v ==甲乙乙甲乙甲, 得到s s t v v ==甲乙乙甲,s v s v =甲甲乙乙,甲乙在同一段时间t 内的路程之比等于速度比 2. 当2个物体运行速度在所讨论的路线上保持不变时,走过相同的路程时,2个物体所用的时间之比等于他们速度的反比。

s v t s v t =⨯⎧⎨=⨯⎩甲甲甲乙乙乙,这里因为路程相同,即s s s ==乙甲,由s v t s v t =⨯=⨯乙乙乙甲甲甲, 得s v t v t =⨯=⨯乙乙甲甲,v t v t =甲乙乙甲,甲乙在同一段路程s 上的时间之比等于速度比的反比(1) 理解行程问题中的各种比例关系. (2) 掌握寻找比例关系的方法来解行程问题.知识框架重难点比例解行程问题【例 1】 甲、乙两车从相距330千米的A 、B 两城相向而行,甲车先从A 城出发,过一段时间后,乙车才从B 城出发,并且甲车的速度是乙车速度的。

当两车相遇时,甲车比乙车多行驶了30千米,则甲车开出 千米,乙车才出发。

【巩固】 甲乙两地相距12千米,上午10:45一位乘客乘出租车从甲地出发前往乙地,途中,乘客问司机距乙地还有多远,司机看了计程表后告诉乘客:已走路程的加上未走路程的2倍,恰好等于已走的路程,又知出租车的速度是30千米/小时,那么现在的时间是 。

六年级奥数题(行程问题)及答案-AB距离

六年级奥数题(行程问题)及答案-AB距离

六年级奥数题(行程问题)及答案-AB距离
导语:今天小编为同学们带来的是一道奥数中较重要的一部分,行程问题希望同学们能认真读题,认真做题。

已知甲车速度为每小时90千米,乙车速度为每小时60千米,甲乙两车分别从A,B两地同时出发相向而行,在途径C地时乙车比甲车早到10分钟;第二天甲乙分别从B,A两地出发同时返回原来出发地,在途径C地时甲车比乙车早到1个半小时,那么AB距离是多少?
答案与解析:画图可知某一个人到C点时间内,第一次甲走的和第二次甲走的路程和为一个全程还差90×10/60=15千米,第一次乙走的和第二次乙走的路程和为一个全程还差60×1.5=90千米。

而速度比为3:2;这样我们可以知道甲走的路程就是:(90-15)÷(3-2)×3=215,所以全程就是215+15=230千米。

小六奥数行程问题带答案

小六奥数行程问题带答案

1、一列火车通过530米的桥需40秒钟,以同样的速度穿过380米的山洞需30秒钟。

求这列火车的速度是每秒多少米?车长多少米?分析与解:火车40秒行驶的路程=桥长+车长;火车30秒行驶的路程=山洞长+车长。

比较上面两种情况,由于车长与车速都不变,所以可以得出火车40-30=10:秒能行驶530-380=150米,由此可以求出火车的速度,车长也好求了。

解:(1)火车速度:(530-380)÷(40-30)=150÷10=15(米/秒)(2)火车长度: 15×40-530=70(米)答:这列火车的速度是每秒15米,车长70米。

2. 一辆大轿车与一辆小轿车都从甲地驶往乙地.大轿车的速度是小轿车速度的80%.已知大轿车比小轿车早出发17分钟,但在两地中点停了5分钟,才继续驶往乙地;而小轿车出发后中途没有停,直接驶往乙地,最后小轿车比大轿车早4分钟到达乙地.又知大轿车是上午10时从甲地出发的.那么小轿车是在上午什么时候追上大轿车的.分析与解答:大轿车行完全程比小轿车多17-5+4=16分钟所以大轿车行完全程需要的时间是16÷(1-80%)=80分钟小轿车行完全程需要80×80%=64分钟由于大轿车在中点休息了,所以我们要讨论在中点是否能追上。

大轿车出发后80÷2=40分钟到达中点,出发后40+5=45分钟离开小轿车在大轿车出发17分钟后,才出发,行到中点,大轿车已经行了17+64÷2=49分钟了。

说明小轿车到达中点的时候,大轿车已经又出发了。

那么就是在后面一半的路追上的。

既然后来两人都没有休息,小轿车又比大轿车早到4分钟。

那么追上的时间是小轿车到达之前4÷(1-80%)×80%=16分钟所以,是在大轿车出发后17+64-16=65分钟追上。

所以此时的时刻是11时05分。

3. 一只帆船的速度是60米/分,船在水流速度为20米/分的河中,从上游的一个港口到下游的某一地,再返回到原地,共用3小时30分,这条船从上游港口到下游某地共走了多少米?分析与解答:船的顺水速度:60+20=80米/分,船的逆水速度:60-20=40米/分。

六年级奥数简单行程问题试题及答案【三篇】

六年级奥数简单行程问题试题及答案【三篇】

愿你信心满满,尽展聪慧才华; 妙笔生花,谱下锦绣第几篇。

学习的仇敌是自己的满足,要使自己学一点东西,必要从不自满开始。

【第一篇】甲乙两地相距 6 千米.陈宇从甲地步行去乙地,前一半时间每分钟走 80 米,后一半的时间每分钟走 70 米.这样他在前一半的时间比后一半的时间多走米.考点简单的行程问题.剖析解设陈宇从甲地步行去乙地所用时间为2 分钟,依据题意,前一半时间和后一半的时间共走 007+008 千米,已知甲乙两地相距 6 千米,由此列出方程007+008=6,解方程求出一半的时间,所以前一半比后一半时间多走 80- 70×40 米,解决问题.解答解设陈宇从甲地步行去乙地所用时间为分钟,依据题意得007+008=6,015=6,=40;前一半比后一半时间多走80- 70×40,=10×40,=400 米.答前一半比后一半的时间多走400 米.故答案为 400.评论依据题目特色,奇妙灵巧地设出未知数,是解题的重点.【第二篇】 1 甲乙两地相距 6 千米.陈宇从甲地步行去乙地,前一半时间每分钟走 80 米,后一半的时间每分钟走70 米.这样他在前一半的时间比后一半的时间多走米.剖析解设陈宇从甲地步行去乙地所用时间为 2 分钟,依据题意,前一半时间和后一半的时间共走007+008 千米,已知甲乙两地相距 6千米,由此列出方程007+008=6,解方程求出一半的时间,所以前一半比后一半时间多走80- 70×40 米,解决问题.解答解设陈宇从甲地步行去乙地所用时间为分钟,依据题意得007+008=6,015=6,=40;前一半比后一半时间多走80- 70×40,=10×40,=400 米.答前一半比后一半的时间多走400 米.故答案为 400.评论依据题目特色,奇妙灵巧地设出未知数,是解题的重点.【第三篇】例 1 甲、乙二人沿体育场的跑道跑步,甲每分钟跑290 米,乙每分钟跑 270 米,跑道一圈长 400 米.假如两人同时从起跑线上同方向跑,那么甲经过多长时间才能第一次追上乙?剖析这是一道关闭线路上的追及问题.甲和乙同时同地起跑,方向一致.所以,当甲第一次追上乙时,比乙多跑了一圈,也就是甲与乙的行程差是400 米.依据行程差÷速度差=追实时间即可求出甲追上乙所需的时间.解答解 400÷290-270=400÷20,=20 分钟;答甲经过 20 分钟才能第一次追上乙.评论此类题依据追及拉开行程÷速度差=追及拉开时间,代入数值计算即可.【六年级奥数简单行程问题试题及答案【三篇】】。

六年级 行程问题(综合)奥数 答案

六年级 行程问题(综合)奥数 答案

正比例和反比例的性质参考答案典题探究一、行程问题考点1)一般行程问题:基本公式:路程=速度×时间高级公式:(务必倒背如流,此两公式太重要了)相遇问题(速度和×相遇时间=路程和),追击问题(速度差×追击时间=路程差)2)流水问题:水速对追击和相遇时间无影响。

原因?四者中只要知2就可求另外2个量。

基本公式:顺水速度=船速+水速逆水速度=船速-水速高级公式:船速=(顺+逆)÷2,水速=(顺-逆)÷23)非环形跑道多次相遇问题:要注意“第一次相遇行的全程数”与“第二次相遇行的全程数”的关系。

环形跑道:每相遇一次,总路程多了一圈,不存在以上关系。

所以如果速度和不变,则每相遇一次所用时间相同。

二:行程问题主要方法:(1)列方程求解;(2)画图分析;(3)抓住原因分析求解;(4)比例(常用到设数的方法)例1小华在8点到9点之间开始解一道题,当时时针、分针正好成一直线,解完题时两针正好第一次重合.问:小明解这道题用了多长时间?分析这道题实际上是一个行程问题.开始时两针成一直线,最后两针第一次重合.因此,在我们所考察的这段时间内,两针的路程差为30分格,又因分格/分钟,所以,当它们第一次重合时,一定是分针从后面追上时针.这是一个追及问题,追及时间就是小明的解题时间。

例2甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走50米,丙每分钟走40米.甲从A 地,乙和丙从B地同时出发相向而行,甲和乙相遇后,过了15分钟又与丙相遇,求A、B两地间的距离。

画图如下:分析结合上图,如果我们设甲、乙在点C相遇时,丙在D点,则因为过15分钟后甲、丙在点E相遇,所以C、D之间的距离就等于(40+60)×15=1500(米)。

又因为乙和丙是同时从点B出发的,在相同的时间内,乙走到C点,丙才走到D点,即在相同的时间内乙比丙多走了1500米,而乙与丙的速度差为50-40=10(米/分),这样就可求出乙从B到C的时间为1500÷10=150(分钟),也就是甲、乙二人分别从A、B出发到C点相遇的时间是150分钟,因此,可求出A、B的距离。

小学六年级奥数行程问题

小学六年级奥数行程问题

1、两名运动员在湖周围环形道上练习长跑,甲每分钟跑250米,乙每分钟跑200米,两人同时同地同向出发,经过45分钟甲追上乙,如果两人同时同地反向出发,经过多少分钟两人相遇?2、一队自行车运动员以每小时24千米的速度骑车从甲地到乙地,两小时后一辆摩托车以每小时56千米的速度也从甲地到乙地,在甲地到乙地距离的二分之一处追上了自行车运动员.问:甲乙两地相距多少千米?3、小爱和小清同时从A、B两城相向而行,在离A城35千米处相遇,到达对方城市后立即以原速沿原路返回,又在离A城15千米处相遇,两城相距多少千米?4、A、B、C三辆车同时从甲出发到乙地去,A、B两车速度分别为每小时50km 和38km,有一辆迎面开来的卡车分别在他们出发后4小时、5小时、6小时先后与A、B、C三车相遇。

求C车的速度。

5、甲乙两地相距258千米。

一辆汽车和一辆拖拉机同时分别从两地相对开出,经过4小时两车相遇。

已知汽车的速度是拖拉机速度的2倍。

相遇时,汽车比拖拉机多行多少千米?6、甲乙两车分别从A、B两站同时出发,相向而行,第一次相遇时在距A站28千米处,相遇后两车继续前进,各自到达B、A两站后,立即沿原路返回,第二次相遇距A站60千米处。

A、B两站间的路程是多少千米?7、小张与小王早上8时分别从甲、乙两地同时相向出发,到10时两人相距112.5千米;继续行进到下午1时,两车相距还是112.5千米。

问两地相距多少千米?8、两地相距380千米。

有两辆汽车从两地同时相向开出。

原计划甲汽车每小时行36千米,乙汽车每小时行40千米,但开车时甲汽车改变了速度,以每小时40千米的速度开出,问在相遇时,乙汽车比原计划少行了多少千米?9、东、西两镇相距240千米,一辆客车在上午8时从东镇开往西镇,一辆货车在上午9时从西镇开往东镇,到正午12时,两车恰好在两镇间的中点相遇。

如果两车都从上午8时由两镇相向开行,速度不变,到上午10时,两车还相距多少千米?10、客车和货车同时从甲乙两站相对开出,客车每小时行54千米,货车每小时行48千米,两车相遇后又以原来的速度继续前进,客车到乙站后立即返回,货车到甲站后也立即返回,两车再次相遇时,客车比货车多行216千米。

六年级下册数学试题-奥数思维训练习题---行程问题(解析版)全国通用

六年级下册数学试题-奥数思维训练习题---行程问题(解析版)全国通用

奥数思维训练题库---行程问题【基础】【2】从A 到B 有两条路可走,小王骑车从A 过C 到B 比走另一条路少用3分钟,而从A 出发到B ,再经过C 返回到A 要53分钟,小王骑车速度为每小时36千米。

求:小王从A 经过C 到B 所走过的路程。

程。

【答案】15千米千米【基础】【2】从小明的家到长途汽车站有3千米。

现在从家往车站去,如果用每小时4千米的速度行走,在汽车发车前17分钟到达车站;如果想在汽车发车前2分钟到达车站,那么需用每小时多少千米的速度行走?走?【答案】每小时3千米千米【基础】【1】小明以一固定的速度从甲地跑到乙地,上午8时,他离乙地20千米,上午9时半他离乙地8千米,小明几点到达乙地?千米,小明几点到达乙地?【答案】十点半【答案】十点半【相遇追及】【2】兄弟两人同时从家里出发到学校,路程是1400米。

哥哥骑自行车每分钟行200米,弟弟步行每分钟行80米,在行进中弟弟与刚到学校就立即返回来的哥哥相遇。

从出发到相遇,弟弟走了多少分钟?钟?【答案】10分钟分钟【相遇追及】【3】如图,有两只蜗牛同时一个等腰三角形的顶点A 出发,分别沿着两腰爬行。

一只蜗牛每分钟行2.5米,另一只蜗牛每分钟行2米,8分钟后在离C 点6米处的P 点相遇,则线段BP 的长度是多少?的长度是多少?【答案】2米(2.5-2)×2)×8=48=4米,6-4=2米。

则BP 长是2米。

米。

【相遇追及】【2】甲、乙二人练习跑歩,】甲、乙二人练习跑歩,若甲让乙先跑若甲让乙先跑10米则甲跑5秒钟可追上乙;若甲让乙先跑2秒钟,则甲跑4秒钟就能追上乙.问:甲、乙二人的速度各是________、________。

【答案】6米/秒,4米/秒【相遇追及】【2】甲走一段路用40分钟,乙走同样一段路用30分钟。

从同一地点出发,甲先走5分钟,乙再开始追,乙________分钟才能追上甲。

分钟才能追上甲。

【答案】20【多次相遇】【1】甲乙两车同时从A 、B 两地相向而行,甲车每小时行驶36千米,乙车每小时行驶34千米,两车分别到达目的地后立即返回,第二次相遇时共行驶了12小时,两地相距________米。

(完整)六年级奥数应用题及答案:行程问题

(完整)六年级奥数应用题及答案:行程问题

六年级应用题及答案:行程问题一、填空题(共10小题,每小题3分,满分30分)1.(3分)两车同时从甲乙两地相对开出,甲每小时行48千米,乙车每小时行54千米,相遇时两车离中点36千米,甲乙两地相距_________千米.2.(3分)小明从甲地到乙地,去时每小时走6公里,回来时每小时走9公里,来回共用5小时.小明来回共走了_________公里.3.(3分)一个人步行每小时走5公里,如果骑自行车每1公里比步行少用8分钟,那么他骑自行车的速度是步行速度的_________倍.4.(3分)一位少年短跑选手,顺风跑90米用了10秒钟.在同样的风速下,逆风跑70米,也用了10秒钟.在无风的时候,他跑100米要用_________秒.5.(3分)A、B两城相距56千米.有甲、乙、丙三人.甲、乙从A城,丙从B城同时出发.相向而行.甲、乙、丙分别以每小时6千米、5千米、4千米的速度行进.求出发后经_________小时,乙在甲丙之间的中点?6.(3分)主人追他的狗,狗跑三步的时间主人跑两步,但主人的一步是狗的两步,狗跑出10步后,主人开始追,主人追上狗时,狗跑出了_________步.7.(3分)兄妹二人在周长30米的圆形水池边玩,从同一地点同时背向绕水池而行,兄每秒走1.3米,妹每秒走1.2米,他们第十次相遇时,妹妹还需走_________米才能回到出发点.8.(3分)骑车人以每分钟300米的速度,从102路电车始发站出发,沿102路电车线前进,骑车人离开出发地2100米时,一辆102路电车开出了始发站,这辆电车每分钟行500米,行5分钟到达一站并停车1分钟.那么需要_________分钟,电车追上骑车人.9.(3分)一个自行车选手在相距950公里的甲、乙两地之间训练,从甲地出发,去时每90公里休息一次,到达乙地并休息一天后再沿原路返回,每100公里休息一次.他发现恰好有一个休息的地点与去时的一个休息地点相同,那么这个休息地点距甲地有_________公里.10.(3分)如图,是一个边长为90米的正方形,甲从A出发,乙同时从B出发,甲每分钟行进65米,乙每分钟行进72米,当乙第一次追上甲时,乙在_________边上.二、解答题(共4小题,满分0分)11.动物园里有8米的大树.两只猴子进行爬树比赛,一只稍大的猴子爬上2米时,另一只猴子才爬了1.5米.稍大的猴子先爬到树顶,下来的速度比原来快了2倍.两只猴子距地面多高的地方相遇?12.三个人自A地到B地,两地相距36千米,三个人只有一辆自行车,这辆车只能坐两人,自行车的速度比步行速度快两倍.他们三人决定:第一个人和第二个人同乘自行车,第三个人步行.这三个人同时出发,当骑车的二人到达某点C时,骑车人放下第二个人,立即沿原路返回去接第三个人,到某处D 与第三个人相遇,然后两人同乘自行车前往B;第二个人在C处下车后继续步行前往B地.结果三个人同时到达B地.那么,C距A处多少千米?D距A处多少千米?13.铁路旁一条平行小路上,有一行人与一骑车人同时向南行进,行人速度为每小时3.6公里,骑车人速度为每小时10.8公里.这时有一列火车从他们背后开过来,火车通过行人用22秒钟,通过骑车人用26秒钟.这列火车的车身长多少米?14.一条小河流过A、B、C三镇.A、B两镇之间有汽船来往,汽船在静水的速度为每小时11千米.B、C两镇之间有木船摆渡,木船在静水中的速度为每小时3.5千米.已知A、C两镇水路相距50千米,水流速度为每小时1.5千米.某人从A镇上乘汽船顺流而下到B 镇,吃午饭用去1小时,接着乘木船又顺流而下到C镇,共用8小时,那么A、B两镇的水路路程是多少米.六年级应用题及答案:行程问题参考答案与试题解一、填空题(共10小题,每小题3分,满分30分)1.(3分)两车同时从甲乙两地相对开出,甲每小时行48千米,乙车每小时行54千米,相遇时两车离中点36千米,甲乙两地相距1224千米.考点:相遇问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

六年级奥数应用题及答案;行程问题一、填空题(共10小题,每小题3分,满分30分)1.(3分)两车同时从甲乙两地相对开出,甲每小时行48千米,乙车每小时行54千米,相遇时两车离中点36千米,甲乙两地相距_________ 千米.2.(3分)小明从甲地到乙地,去时每小时走6公里,回来时每小时走9公里,来回共用5小时.小明来回共走了_________ 公里.3.(3分)一个人步行每小时走5公里,如果骑自行车每1公里比步行少用8分钟,那么他骑自行车的速度是步行速度的_________ 倍.4.(3分)一位少年短跑选手,顺风跑90米用了10秒钟.在同样的风速下,逆风跑70米,也用了10秒钟.在无风的时候,他跑100米要用_________ 秒.5.(3分)A、B两城相距56千米.有甲、乙、丙三人.甲、乙从A城,丙从B城同时出发.相向而行.甲、乙、丙分别以每小时6千米、5千米、4千米的速度行进.求出发后经_________ 小时,乙在甲丙之间的中点?6.(3分)主人追他的狗,狗跑三步的时间主人跑两步,但主人的一步是狗的两步,狗跑出10步后,主人开始追,主人追上狗时,狗跑出了_________ 步.7.(3分)兄妹二人在周长30米的圆形水池边玩,从同一地点同时背向绕水池而行,兄每秒走1,3米,妹每秒走1,2米,他们第十次相遇时,妹妹还需走_________米才能回到出发点.8.(3分)骑车人以每分钟300米的速度,从102路电车始发站出发,沿102路电车线前进,骑车人离开出发地2100米时,一辆102路电车开出了始发站,这辆电车每分钟行500米,行5分钟到达一站并停车1分钟.那么需要_________ 分钟,电车追上骑车人.9.(3分)一个自行车选手在相距950公里的甲、乙两地之间训练,从甲地出发,去时每90公里休息一次,到达乙地并休息一天后再沿原路返回,每100公里休息一次.他发现恰好有一个休息的地点与去时的一个休息地点相同,那么这个休息地点距甲地有_________公里.10.(3分)如图,是一个边长为90米的正方形,甲从A出发,乙同时从B出发,甲每分钟行进65米,乙每分钟行进72米,当乙第一次追上甲时,乙在_________ 边上.二、解答题(共4小题,满分0分)11.动物园里有8米的大树.两只猴子进行爬树比赛,一只稍大的猴子爬上2米时,另一只猴子才爬了1,5米.稍大的猴子先爬到树顶,下来的速度比原来快了2倍.两只猴子距地面多高的地方相遇?12.三个人自A地到B地,两地相距36千米,三个人只有一辆自行车,这辆车只能坐两人,自行车的速度比步行速度快两倍.他们三人决定;第一个人和第二个人同乘自行车,第三个人步行.这三个人同时出发,当骑车的二人到达某点C时,骑车人放下第二个人,立即沿原路返回去接第三个人,到某处D与第三个人相遇,然后两人同乘自行车前往B;第二个人在C处下车后继续步行前往B地.结果三个人同时到达B地.那么,C距A处多少千米?D距A处多少千米?13.铁路旁一条平行小路上,有一行人与一骑车人同时向南行进,行人速度为每小时3,6公里,骑车人速度为每小时10,8公里.这时有一列火车从他们背后开过来,火车通过行人用22秒钟,通过骑车人用26秒钟.这列火车的车身长多少米?14.一条小河流过A、B、C三镇.A、B两镇之间有汽船来往,汽船在静水的速度为每小时11千米.B、C两镇之间有木船摆渡,木船在静水中的速度为每小时3,5千米.已知A、C两镇水路相距50千米,水流速度为每小时1,5千米.某人从A镇上乘汽船顺流而下到B镇,吃午饭用去1小时,接着乘木船又顺流而下到C镇,共用8小时,那么A、B两镇的水路路程是多少米.六年级应用题及答案;行程问题参考答案与试题解一、填空题(共10小题,每小题3分,满分30分)1.(3分)两车同时从甲乙两地相对开出,甲每小时行48千米,乙车每小时行54千米,相遇时两车离中点36千米,甲乙两地相距1224 千米.考点;相遇问题。

分析;乙的速度快,相遇时,乙已经行过了中点,比全路程的一半多36千米,甲行驶的路程就比全路程的一半少36千米,它们的路程差就是36×2=72千米,再求出速度差,然后用路程差除以速度差就是相遇时的时间,进而求出全程.解答;解;36×2=72(千米),54﹣48=6(千米),72÷6=12(小时),12×(48+54)=12×102=1224(千米).答;甲乙两地相距1224千米.故答案为;1224.点评;本题是相遇问题,根据全程=速度和×相遇时的时间来求解;根据数量关系分别求出速度和及相遇时间即可解决问题.2,(3分)小明从甲地到乙地,去时每小时走6公里,回来时每小时走9公里,来回共用5小时.小明来回共走了36 公里.考点;简单的行程问题。

分析;设甲、乙两地相距x公里,那么去时的时间就是,回来时时间就是,来回的时间加起来就是5小时,根据这个等量关系列出方程.解答;解;设甲、乙两地相距x公里,来回就走了2x,由题意可得;x=5x=182x=2×18=36(公里)故填36.点评;注意题目中是来回走了多少千米,求出甲乙两地之间的距离要再乘2.3.(3分)一个人步行每小时走5公里,如果骑自行车每1公里比步行少用8分钟,那么他骑自行车的速度是步行速度的 3 倍.考点;简单的行程问题。

分析;本题要先算出步行1公里需要少时间,再求出骑自行车每公里需要的时间,每小时能行多少公里,然后进行比较就能求出骑自行车的速度是步行速度的多少倍.解答;解;这个人步行每小时5公里,故每12分钟1公里,所以他骑车每12﹣8=4分钟行1公里,即每小时15公里;所以他骑车速度是步行速度的15÷5=3(倍).或直接用时间比较;12÷4=3(倍).故答案为;3.点评;本题要在求出两人速度的基础上进行比较,同时注意时间单位.4.(3分)一位少年短跑选手,顺风跑90米用了10秒钟.在同样的风速下,逆风跑70米,也用了10秒钟.在无风的时候,他跑100米要用12,5 秒.考点;流水行船问题。

分析;要求出在无风的时候,他跑100米要用多少秒.根据题意,利用“路程÷时间=速度”,先求出顺风速度和逆风速度;然后根据“无风速度=(顺风速度+逆风速度)÷2”,代入数值先求出无风速度,然后根据“路程÷速度=时间”代入数值得出即可.解答;解;100÷[(90÷10+70÷10)÷2],=100÷8,=12,5(秒);答;他跑100米要用12,5秒.故答案为;12,5.点评;此题应根据路程、时间和速度的关系分别求出顺风速度和逆风速度,进而通过与无风速度的关系求出结论.5.(3分)A、B两城相距56千米.有甲、乙、丙三人.甲、乙从A城,丙从B城同时出发.相向而行.甲、乙、丙分别以每小时6千米、5千米、4千米的速度行进.求出发后经7 小时,乙在甲丙之间的中点?考点;相遇问题。

分析;根据题意,甲比乙每小时多行(6﹣5)千米,甲比丙每小时多行(6﹣4)千米,要求出发后几小时,乙在甲丙之间的中点,也就是丙行到两城之间路程的一半的地方,由此解答.解答;解;设经过x小时后,乙在甲、丙之间的中点,依题意得6x﹣5x=5x﹣(56﹣4x),x=9x﹣56,解得x=7.或56÷[(5+4)﹣(6﹣5)],=56÷[9﹣1],=56÷8=7(小时);故答案为;7,点评;此题数量关系比较复杂,三人的速度各不相同,解答时要弄清要求什么必须先求什么,逐步分析解答.6.(3分)主人追他的狗,狗跑三步的时间主人跑两步,但主人的一步是狗的两步,狗跑出10步后,主人开始追,主人追上狗时,狗跑出了30 步.考点;追及问题。

分析;设狗跑3步的时间为单位时间,则狗的速度为每单位时间3步,主人的速度为每单位时间2×2=4(步),主人追上狗需要10÷(4﹣3)=10(单位时间),从而主人追上狗时,狗跑了3×10=30(步).解答;解;10÷(2×2﹣3)×3=10÷1×3=30(步);答;主人追上狗时,狗跑出了30步.点评;此题属于追及问题,主要理清时间与步数之间的关系.7.(3分)兄妹二人在周长30米的圆形水池边玩,从同一地点同时背向绕水池而行,兄每秒走1,3米,妹每秒走1,2米,他们第十次相遇时,妹妹还需走 6 米才能回到出发点.考点;多次相遇问题。

分析;第十次相遇,妹妹已经走了;30×10÷(1,3+1,2)×1,2=144(米). 144÷30=4(圈)…24(米). 30﹣24=6 (米).还要走6米回到出发点.解答;解;第十次相遇时妹妹已经走的路程;30×10÷(1,3+1,2)×1,2,=300÷2,5×1,2,=144(米).144÷30=4(圈)…24(米).30﹣24=6 (米).还要走6米回到出发点.故答案为6米.点评;此题属于多次相遇问题,关键在于先求出第十次相遇时妹妹已经走的路程.8.(3分)骑车人以每分钟300米的速度,从102路电车始发站出发,沿102路电车线前进,骑车人离开出发地2100米时,一辆102路电车开出了始发站,这辆电车每分钟行500米,行5分钟到达一站并停车1分钟.那么需要15,5 分钟,电车追上骑车人.考点;追及问题。

分析;由题干可知;电车追及距离为2100米.1分钟追上(500﹣300)=200米,追上2100米要用(2100÷2 00)=10,5(分钟).但电车行10,5分钟要停两站,电车停2分钟,骑车人又要前行(300×2)=600米,电车追上这600米,又要多用(600÷200)=3分钟.由此即可解决.解答;解;根据题意可得;①追上2100米要用;(2100÷200)=10,5(分钟).②但电车行10,5分钟要停两站,1×2=2(分钟),③电车停2分钟,骑车人又要前行(300×2)=600米,电车追上这600米要用;(600÷200)=3分钟.所以电车追上骑车人共需10,5+2+3=15,5(分钟);故答案为;15,5.点评;此题要注意电车到站停车1分钟骑车人还在前行.9.(3分)一个自行车选手在相距950公里的甲、乙两地之间训练,从甲地出发,去时每90公里休息一次,到达乙地并休息一天后再沿原路返回,每100公里休息一次.他发现恰好有一个休息的地点与去时的一个休息地点相同,那么这个休息地点距甲地有450 公里.考点;简单的行程问题。

相关文档
最新文档