中考数学几何证明题解题思路

合集下载

【中考数学必备专题】几何辅助线大揭秘 之角平分线问题(含答案)

【中考数学必备专题】几何辅助线大揭秘 之角平分线问题(含答案)

【中考数学必备专题】几何辅助线大揭秘之角
平分线问题
一、证明题(共3道,每道40分)
1.已知,如图,△ABC的外角∠CBD和∠BCE的平分线相交于点F.求证:点F在∠DAE的平分线上.
答案:∵BF是∠CBD的平分线∴FG=FI ∵CF是∠BCE的平分线∴FH=FI ∴FG=FH ∴点F在∠DAE的平分线上
解题思路:过F作FG⊥AD于点G,FH⊥AE于点H,FI⊥BC于点I,如图只要证明FG=FH即可
试题难度:三颗星知识点:三角形角平分线
2.如图,在△ABC中,AD为∠BAC的平分线,∠B=2∠C.求证:AC=AB+BD.
答案:∵AD是∠BAC的平分线∴∠BAD=∠EAD 在△ABD和△AED中AB=AE ∠BAD=∠EAD AD=AD ∴△ABD≌△AED(SAS)∴BD=ED,∠B=∠AED ∵∠AED=∠B=2∠C ∴∠CDE=∠AED ﹣∠C=∠C ∴DE=CE ∴BD=CE ∵AC=AE+CE ∴AC=AB+BD
解题思路:在AC上截取AE=AB,连接DE,如图只要证明BD=CE即可
试题难度:三颗星知识点:三角形角平分线
3.已知:如图,在△ABC中,BE平分∠ABC,AD⊥BE,垂足为点D.求证:∠BAD=∠DAE+∠C.
答案:∵BE平分∠ABC,AD⊥BE ∴△ABF为等腰三角形(三线合一)∴∠BAD=∠BFD ∵∠BFD 为△ACF的外角∴∠BFD=∠DAE+∠C ∴∠BAD=∠DAE+∠C
解题思路:延长AD与BC交于点F,如图只要证明∠BFD=∠BAD即可
试题难度:三颗星知识点:三角形角平分线。

中考数学压轴题的常见类型与解题思路

中考数学压轴题的常见类型与解题思路

中考数学压轴题的常见类型与解题思路中考数学压轴题通常是对学生多个知识点综合考察的题目,要求考生综合运用所学的数学知识进行解答。

下面是一些常见类型的中考数学压轴题及其解题思路。

1. 几何题几何题是中考数学中常见的题型之一。

几何题涉及图形的性质、计算图形的面积、周长和体积等等。

解决几何题的关键是要熟悉几何的基本定理和公式,并通过观察图形性质找到解题思路。

2. 基础运算题基础运算题是中考数学中的重点内容,包括四则运算、分数运算、百分数运算等等。

解决基础运算题的关键是熟练掌握运算规则和方法,有条理地进行计算。

3. 等式方程题等式方程题是中考数学中常见的题型之一。

解决等式方程题的关键是要根据题目给出的条件建立方程,然后通过运用方程的性质解题。

在解题过程中,要注意合理运用方程的基本性质和解方程的方法。

4. 函数题函数题是中考数学中的重要内容,要求考生熟练掌握函数的定义、性质和运算。

解决函数题的关键是要根据给定的函数关系或函数图像进行分析,确定函数的性质,并运用函数的定义和性质解答问题。

5. 统计与概率题统计与概率题是中考数学中常见的题型之一。

解决统计与概率题的关键是要对给定的数据进行统计分析,找到规律,并运用统计学和概率学的知识解答问题。

6. 证明题证明题是中考数学中的重点内容,要求考生运用数学的推理和证明方法,通过有条理的推理过程证明结论。

解决证明题的关键是要理解证明的目标和要求,清晰地表述证明过程,运用合适的证明方法解答问题。

解决中考数学压轴题的关键是要熟练掌握数学的基本知识和运算方法,同时要灵活运用数学知识,善于找到解题的思路和方法。

在解题过程中,要注重思维的逻辑性和严密性,慎重选择解题思路,合理运用数学知识解答问题。

通过对各个题型的系统练习和深入理解,可以提高解题能力,应对中考数学压轴题。

【中考数学专题】10 与翻折或轴对称作图有关的几何证明题解析-

【中考数学专题】10  与翻折或轴对称作图有关的几何证明题解析-

专题十:与翻折或轴对称作图有关的几何证明题解析专题导例如图,M、N是正方形ABCD的边CD上的两个动点,满足AM=BN,连接AC交BN于点E,连接DE交AM于点F,连接CF,若正方形的边长为6,则线段CF的最小值是.【分析】:先判断出Rt△ADM≌Rt△BCN(HL),得出∠DAM=∠CBN,进而判断出△DCE≌△BCE (SAS),得出∠CDE=∠CBE,即可判断出∠AFD=90°,根据直角三角形斜边上的中线等于斜边的一半可得OF=AD=3,利用勾股定理列式求出OC,然后根据三角形的三边关系可知当O、F、C 三点共线时,CF的长度最小.方法剖析轴对称的性质(1)对应线段相等,对应角相等;对称点的连线被对称轴垂直平分;(2)轴对称图形变换的特征是不改变图形的形状和大小,只改变图形的位置,新旧图形具有对称性;(3)轴对称的两个图形,它们对应线段或延长线相交,交点在对称轴上.轴对称(折叠)的思考层次全等变换:对应边相等,对应角相等;对称轴性质:对应点所连线段被对称轴(折痕)垂直平分,对称轴(折痕)上的点到对应点的距离相等;指出:(1)在翻折下,前后的图形关于折痕成轴对称,注意前后的图形成镜面对称,即前后的图形的左右位置互换;(2)翻折或对称中建构勾股方程来求取线段长及对最值类问题进行探究;(3)轴对称常见的结构,折叠会产生垂直平分,等腰三形.导例答案:解:如图,在正方形ABC D中,AD=BC=CD,∠ADC=∠BCD,∠DCE=∠BCE,在Rt△ADM和Rt△BCN中,,∴Rt△ADM≌Rt△BCN(HL),∴∠DAM=∠CBN,在△DCE和△BCE中,,∴△DCE≌△BCE(SAS),∴∠CDE=∠CBE∴∠DAM=∠CDE,∵∠ADF+∠CDE=∠ADC=90°,∴∠DAM+∠ADF=90°,∴∠AFD=180°﹣90°=90°,取AD的中点O,连接OF、OC,则OF=DO =AD=3,在Rt△OD C中,OC ==3根据三角形的三边关系,OF+CF>OC,∴当O、F、C三点共线时,CF的长度最小,最小值=OC﹣OF=3﹣3.故答案为:3﹣3.典型例题类型一:利用已知直线作对称图形进行证明例1、在等边△AB C中,点D在BC边上,点E在AC的延长线上,DE=DA(如图1).(1)求证:∠BAD=∠EDC;(2)点E关于直线BC的对称点为M,连接DM,AM.①依题意将图2补全;②证明:在点D运动的过程中,始终有DA=AM.【分析】(1)先判断出∠BAD+∠CAD=60°,进而得出∠BAD+∠E=60°,即可得出结论;(2)①由对称性即可补全图形;②由对称性判断出DM=DE,∠MDC=∠EDC,再用三角形的外角的性质,判断出∠ADC=∠B+∠BAD=∠B+∠MDC,进而判断出△ADM是等边三角形,即可得出结论.类型二:对已知图形进行翻折进行证明例2.如图,矩形ABC D中,AB=4,AD=3,把矩形沿直线AC折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:△DEC≌△EDA;(2)求DF的值;(3)在线段AB上找一点P,连结FP使FP⊥AC,连结PC,试判定四边形APCF的形状,并说明理由,直接写出此时线段PF的大小.【分析】(1)根据矩形的性质、轴对称的性质可得到AD=EC,AE=DC,即可证到△DEC≌△EDA (SSS);(2)易证AF=CF,设DF=x,则有AF=4﹣x,然后在Rt△ADF中运用勾股定理就可求出DF的长.(3)根据三角形的内角和定理求得∠APF=∠AFP根据等角对等边得出AF=AP进而得出FC=AP,从而证得四边形APCF是平行四边形,又因为FP⊥AC证得四边形APCF为菱形,然后根据菱形的面积S菱形=PF•AC=AP•AD,即可求得.专项突破1.如图,在Rt△AB C中,∠C=90°,点D、E分别是BC、AB上一个动点,连接DE.将点B沿直线DE折叠,点B的对应点为F,若AC=3,BC=4,当点F落在AC的三等分点上时,BD的长为.2.如图,正方形ABC D中,点E是BC延长线上一点,连接DE,过点B作BF⊥DE于点F,连接F C.(1)求证:∠FBC=∠CDF;(2)作点C关于直线DE的对称点G,连接CG,FG,猜想线段DF,BF,CG之间的数量关系,并证明你的结论.3.已知矩形ABCD,其中AD>AB,依题意先画出图形,然后解答问题.(1)F为DC边上一点,把△ADF沿AF折叠,使点D恰好落在BC上的点E处.在图1中先画出点E,再画出点F,若AB=8,AD=10,直接写出EF的长为;(2)把△ADC沿对角线AC折叠,点D落在点E处,在图2先画出点E,AE交CB于点F,连接BE.求证:△BEF是等腰三角形.4.如图,Rt△AB C中,∠ACB=90°,AC=BC,点D为AB边上的一个动点(不与点A,B及A B中点重合),连接CD,点A关于直线CD的对称点为点E,直线BE,CD交于点F.(1)如图1,当∠ACD=15°时,根据题意将图形补充完整,并直接写出∠BFC的度数;(2)如图2,当45°<∠ACD<90°时,用等式表示线段AC,EF,BF之间的数量关系,并加以证明.5.在Rt△AB C中,∠ACB=90°,CA=C B.点D为线段BC上一个动点(点D不与点B,C重合),连接AD,点E在射线AB上,连接DE,使得DE=D A.作点E关于直线BC的对称点F,连接BF,DF.(1)依题意补全图形;(2)求证:∠CAD=∠BDF;(3)用等式表示线段AB,BD,BF之间的数量关系,并证明.6.如图①,在等腰三角形AB C中,AB=AC=8,BC=14.如图②,在底边BC上取一点D,连结AD,使得∠DAC=∠AC D.如图③,将△ACD沿着AD所在直线折叠,使得点C落在点E处,连结BE,得到四边形ABE D.则BE的长是.7.在等边三角形ABC外侧作射线AP,∠BAP=α,点B关于射线AP的对称点为点D,连接CD交AP于点E.(1)依据题意补全图形;(2)当α=20°时,∠ADC= ;∠AEC= ;(3)连接BE,求证:∠AEC=∠BEC;(4)当0°<α<60°时,用等式表示线段AE,CD,DE之间的数量关系,并证明.8.在等边△ABC外侧作直线AP,点B关于直线AP的对称点为D,连结BD,CD,其中CD交直线AP与点E.(1)如图1,若∠P AB=30°,则∠ACE=;(2)如图2,若60°<∠P AB<120°,请补全图形,判断由线段AB,CE,ED可以构成一个含有多少度角的三角形,并说明理由.9.如图1,将一张矩形纸片ABCD沿着对角线BD向上折叠,顶点C落到点E处,BE交AD于点F.(1)求证:△BDF是等腰三角形;(2)如图2,过点D作DG∥BE,交BC于点G,连结FG交BD于点O.①判断四边形BFDG的形状,并说明理由;②若AB=6,AD=8,求FG的长.10.【问题情境】如图①,在Rt△AB C中,∠ACB=90°,AC=BC,点D为A B中点,连结CD,点E为CB上一点,过点E且垂直于DE的直线交AC于点F.易知:BE=CF.(不需要证明)【探索发现】如图②,在Rt△AB C中,∠ACB=90°,AC=BC,点D为A B中点,连结CD,点E为CB的延长线上一点,过点E且垂直于DE的直线交AC的延长线于点F.【问题情境】中的结论还成立吗?请说明理由.【类比迁移】如图③,在等边△AB C中,AB=4,点D是A B中点,点E是射线AC上一点(不与点A、C重合),将射线DE绕点D逆时针旋转60°交BC于点F.当CF=2CE时,CE=.11.在△AB C中,∠ACB=90°,AC<BC,点D在AC的延长线上,点E在BC边上,且BE=AD,(1)如图1,连接AE,DE,当∠AEB=110°时,求∠DAE的度数;(2)在图2中,点D是AC延长线上的一个动点,点E在BC边上(不与点C重合),且BE=AD,连接AE,DE,将线段AE绕点E顺时针旋转90°得到线段EF,连接BF,DE.①依题意补全图形;②求证:BF=DE.专题十:与翻折或轴对称作图有关的几何证明题解析例1.解:(1)∵△ABC是等边三角形,∴∠BAC=∠ACB=60°,∴∠BAD+∠CAD=60°,∵DE=DA,∴∠CAD=∠E,∴∠BAD+∠E=60°,∵∠EDC+∠E=∠ACB=60°,∴∠BAD=∠EDC;(2)①补全图形如图2所示;②∵△ABC是等边三角形,∴∠B=60°,由对称性得,∠EDC=∠MDC,由(1)知,∠EDC=∠BAD,∴∠MDC=∠BAD,∵∠ADC=∠B+∠BAD=∠B+∠MD C.∴∠ADM=∠B=60°,由对称性得,DM=DE,∵DE=DA,∴DA=DM,∴△ADM是等边三角形,∴DA=DM,即:在点D运动的过程中,始终有DA=AM.例2.(1)证明:∵四边形ABCD是矩形,∴AD=BC,AB=CD,AB∥CD,∴∠ACD=∠CAB,∵△AEC由△ABC翻折得到,∴AB=AE,BC=EC,∠CAE=∠CAB,∴AD=CE,DC=EA,∠ACD=∠CAE,在△ADE与△CE D中,,∴△DEC≌△EDA(SSS);(2)解:如图1,∵∠ACD=∠CAE,∴AF=CF,设DF=x,则AF=CF=4﹣x,在RT△ADF中,AD2+DF2=AF2,即32+x2=(4﹣x)2,解得;x=,即DF=.(3)解:四边形APCF为菱形,设AC、FP相较于点O∵FP⊥AC∴∠AOF=∠AOP又∵∠CAE=∠CAB,∴∠APF=∠AFP∴AF=AP∴FC=AP又∵AB∥CD∴四边形APCF是平行四边形又∵FP⊥AC∴四边形APCF为菱形,在矩形ABC D中,AB=4,AD=3,∴AC=5,∵S菱形=PF•AC=AP•AD,∵AP=AF=4﹣=∴PF==.专项突破1.解:∵折叠∴BD=DF,∵点F落在AC的三等分点上∴CF=1或CF=2,若CF=1时,在Rt△CDF中,DF2=CD2+CF2,∴BD2=(4﹣BD)2+1∴BD=当CF=2时,在Rt△CDF中,DF2=CD2+CF2,∴BD2=(4﹣BD)2+4∴BD=故答案为:或2.解:(1)∵ABCD为正方形,∴∠DCE=90°.∴∠CDF+∠E=90°,又∵BF⊥DE,∴∠FBC+∠E=90°,∴∠FBC=∠CDF(2)如图所示:在线段FB上截取FM,使得FM=F D.∵∠BDC=∠MDF=45°,∴∠BDM=∠CDF,∵==,∴△BDM∽△CDF,∴==,∠DBM=∠DCF,∴BM=CF,∴∠CFE=∠FCD+∠CDF=∠DBM+∠BDM=∠DMF=45°,∴∠EFG=∠EFC=45°,∴∠CFG=90°,∵CF=FG,∴CG=CF,∴BM=CG,∴BF=BM+FM=CG+DF.补充方法:连接GM,证明四边形BMGC是平行四边形即可.3.解:(1)如图1,在BC上截取AE=AD得点E,作AF垂直DE交CD于点F(或作∠AED的平分线AF交CD于点F,或作EF垂直AE交CD于点F等等),∵四边形ABCD是矩形,∴AB=CD=8,AD=BC=10,∠B=∠C=90°,在Rt△ABE中,BE==6,∴EC=10﹣6=4,设EF=DF=x,在Rt△EF C中,则有x2=(8﹣x)2+42,解得x=5,∴EF=5.故答案为:5;(2)证明:如图2,作DH垂直AC于点H,延长DH至点E,使HE=DH.方法1:∵△ADC≌△AEC,∴AD=AE=BC,AB=DC=EC,在△ABE与△CE B中,,∴△ABE≌△CEB(SSS),∴∠AEB=∠CBE,∴BF=EF,∴△BEF是等腰三角形.方法2:∵△ADC≌△AEC,∴AD=AE=BC,∠DAC=∠EAC,又∴AD∥BC,∴∠DAC=∠ACB,∴∠EAC=∠ACB,∴F A=FC,∴FE=FB,∴△BEF是等腰三角形.4.(1)如图1中,连接E C.∵A,E关于CD对称,∴∠DCA=∠DCE=15°,CA=CE=C B.∵∠ACB=90°,∴∠ECB=60°,∴△ECB是等边三角形,∴∠CEB=60°,∵∠CEB=∠BFC+∠DCE,∴∠BFC=60°-15°=45°.(2)结论:EF2+BF2=2AC2.理由:如图2,连接CE,AF,延长AC交FE的延长线于点G.∵A,E关于CD对称,∴AC=CE,AF=EF,又∵CF=CF,∴△ACF≌△ECF(SSS),∴∠CAF=∠1,∵AC=BC,∴BC=CE,∴∠1=∠2,∴∠CAF=∠2,∵∠ACB=90°,∴∠G+∠2=90°,∴∠CAF+∠G=90°,∴∠AFG=90°,在Rt△AF B中,AB2=AF2+BF2,在Rt△AB C中,AB2=AC2+BC2=2AC2,∴BF2+AF2=2AC2,∴BF2+EF2=2AC2.5.(1)如图所示:(2)∵∠ACB=90°,CA=CB,∴∠BAC=∠CBA=45°,∴∠CAD+∠DAB=45°,∵DA=DE,∴∠DAE=∠DEB,∵∠DBA是△DBE的一个外角,∴∠EDB+∠DEB=∠DBA=45°,∴∠EDB=∠CAD,∵点E关于直线BC的对称点F,∴∠EDB=∠FDB,∴∠CAD=∠FDB;(3)线段AB,BD,BF之间的数量关系是AB﹣BF=√2BD,证明:过点D作AC的平行线交AB于M点,∴∠C=∠MDB=90°,∠CAB=∠DMB=45°,∴∠DMB=∠DBM,∴DM=DB,∴MB=√2BD,∵点E关于直线BC的对称点F,∴DE=DF,∵AD=DE,∴AD=DF,∵AC∥MD,∴∠CAD=∠ADM,∵∠CAD=∠FDB,∴∠ADM=∠FDB,∴△ADM≌△FDB(SAS),∴AM=BF,∴AB﹣BF=AB﹣AM=MB,又∵MB=√2BD,∴AB﹣BF=√2B D.6.解:∵AB=AC,∴∠ABC=∠C,∵∠DAC=∠ACD,∴∠DAC=∠ABC,∵∠C=∠C,∴△CAD∽△CBA,∴=,∴=,∴CD=,BD=BC﹣CD=,∵∠DAM=∠DAC=∠DBA,∠ADM=∠ADB,∴△ADM∽△BDA,∴=,即=,∴DM=,MB=BD﹣DM=,∵∠ABM=∠C=∠MED,∴A、B、E、D四点共圆,∴∠ADB=∠BEM,∠EBM=∠EAD=∠ABD,∴△ABD∽△MBE,∴=,∴BE ===.故答案为:.7.(1)如图;EDP(2)40°;60 °;(3)证明:∵点B关于射线AP的对称点为点D,∴△BAE≌△DAE.∴∠BAE=∠DAE=α.∵AD=AB=AC,∴∠ADC=()1806022α︒-︒+=60°-α.∴∠AEC=60°.∵∠ACB=60°,∠ACD=∠ADC=60°-α,∴∠BCE=α.∵∠ABC=60°,∠ABE=∠ADC=60°-α,∴∠BEC=60°.(4)证明:法一:在CD上截取AF=AE.F EDAB C P∵∠AEF =60°,∴△AEF 是等边三角形.∴∠AFC =∠AED =120°.∵∠ACD =∠ADC =60°-α,∴△ADE ≌△ACF .∴DE =CF .∴CD =2DE +EF .∵AE =EF ,∴CD =2DE +AE .法二:在CD 上截取BG =BE .GEDAB C P∵∠BEC =60°,∴△BEG 是等边三角形.∴∠BGC =∠AED =120°.∵∠BCE =∠DAE =α,∴△BCG ≌△DAE .∴AE =CG .∵EG =BE =DE ,∴CD =2DE +CG .∴CD =2DE +AE .8.解:(1)连接AD ,如图1.∵点D 与点B 关于直线AP 对称,∴AD =AB ,∠DAP =∠BAP =30°,∵AB =AC ,∠BAC =60°,∴AD =AC ,∠DAC =120°,∴2∠ACE +60°+60°=180°,∴∠ACE =30°,故答案为:30°;(3)线段AB ,CE ,ED 可以构成一个含有60°角的三角形.证明:连接AD ,EB ,如图2.∵点D 与点B 关于直线AP 对称,∴AD =AB ,DE =BE ,∴∠EDA =∠EBA ,∵AB =AC ,AB =AD ,∴AD =AC ,∴∠ADE =∠ACE ,∴∠ABE =∠ACE .设AC ,BE 交于点F ,又∵∠AFB =∠CFE ,∴∠BAC =∠BEC =60°,∴线段AB ,CE ,ED 可以构成一个含有60°角的三角形.9.(1)根据折叠,∠DBC =∠DBE ,又AD ∥BC ,∴∠DBC =∠ADB ,∴∠DBE =∠ADB ,∴DF =BF ,∴△BDF 是等腰三角形(2)①菱形,理由:∵四边形ABCD 是矩形,∴AD ∥BC ,∴FD ∥BG ,又∵FD ∥BG ,∴四边形BFDG 是平行四边形,∵DF =BF ,∴四边形BFDG 是菱形②∵AB =6,AD =8,∴BD =10.∴OB =12BD =5.设DF =BF =x ,∴AF =AD -DF =8-x .∴在Rt △ABF 中,AB 2+AF 2=BF 2,即62+(8-x )2=x 2,解得x =254,即BF =254,∴FO =BF 2-OB 2=(254)2-52=154,∴FG =2FO =152 10.解:【问题情境】证明:∵在Rt △AB C 中,∠ACB =90°,AC =BC ,点D 为A B 中点, ∴CD ⊥AB ,CD =BD =AD =AB ,∠BCD =∠B =45°,∴∠BDC =90°,∵∠EDF =90°,∴∠CDF=∠BDE,在△BDE与△CDF中,,∴△BDE≌△CDF(ASA),∴BE=CF;【探索发现】成立,理由:∵在Rt△AB C中,D为A B中点,∴CD=BD,又∵AC=BC,∴DC⊥AB,∴∠DBC=∠DCB=45°,∵DE⊥DF,∴∠EDF=90°,∴∠EDB+∠BDF=∠CDF+∠BDF=90°,∴∠CDF=∠BDE,∴∠ADF=∠CDE,∴AF=CE,∴CF=BE;【类比迁移】∵△ABC是等边三角形,∴∠A=∠B=60°,∵∠FDE=60°,∴∠BDF=120°﹣∠ADE,∠AED=120°﹣∠ADE,∴∠BDF=∠AED,∴△ADE∽△BDF,∴,∵点D为A B中点,AB=4,∴AD=BD=2,AC=BC=4,∵CF=2CE,∴设CE=x,则CF=2x,当点E在线段AC上时,∴AE=4﹣x,BF=4﹣2x,∴=,解得:x=3﹣,x=3+(不合题意,舍去),∴CE=3﹣,如图④,当点E在AC的延长线上时,∵AE=4+x,BF=4﹣2x,∴=,解得:x=﹣1+,(负值舍去),∴CE=﹣1+.综上所述,CE=3﹣或﹣1+,故答案为:3﹣或﹣1+.11.解:(1)∵∠AEB=110°,∠ACB=90°,∴∠DAE=∠AEB﹣∠ACB=20°;(2)①补全图形,如图所示.②证明:由题意可知∠AEF=90°,EF=AE.∵∠ACB=90°,∴∠AEC+∠BEF=∠AEC+∠DAE=90°.∴∠BEF=∠DAE.∵在△EBF和△ADE中,,∴△EBF≌△ADE(SAS).∴DE=BF.。

中考数学几何证明题答题技巧及解题思路

中考数学几何证明题答题技巧及解题思路

中考数学几何证明题答题技巧及解题思路1500字中考数学几何证明题是中考数学中的重点和难点部分,要想在考试中得到高分,需要具备一定的解题思路和答题技巧。

下面将介绍几种常见的数学几何证明题的解题思路和答题技巧。

1. 利用已知条件进行推理对于数学几何证明题,往往会给出一些已知条件,这些条件可以用来进行推理和证明。

在解题时,需要先理清题意,理解已知条件,然后运用相关的定理和性质进行推导。

2. 运用余角性质和对称性质在几何证明题中,角的余角和角的对称性质经常被使用。

如果已知两个角互为余角,可以根据余角定理进行推理;如果已知两个角互为对称角,可以根据对称性质进行推导。

3. 利用平行线性质几何证明题中经常会涉及到平行线的性质。

如果已知两条直线平行,可以根据平行线的性质来进行推理和证明。

比如,如果已知两个角的对边分别平行,可以推出这两个角相等。

4. 运用等腰三角形和相似三角形的性质在几何证明题中,等腰三角形和相似三角形的性质也经常会被使用。

如果已知两边等长,可以推导出两个角相等;如果已知两个角相等,可以推导出两边等长。

如果已知两个三角形相似,可以运用相似三角形的性质来进行推理。

5. 利用三角形的角平分线和垂直平分线的性质在几何证明题中,三角形的角平分线和垂直平分线的性质也经常会被使用。

如果已知一个角的平分线和垂直平分线重合,可以推导出这个角是直角。

6. 运用勾股定理和正弦定理勾股定理和正弦定理是解决几何证明题中常用的工具。

如果已知一个三角形是直角三角形,可以利用勾股定理进行推导;如果已知三角形的边长和角度,可以利用正弦定理进行推导。

总结起来,解决几何证明题的关键在于理清题意,抓住已知条件,灵活运用相关的定理和性质,进行推理和证明。

熟练掌握几何证明题的解题思路和答题技巧,对于提高解题效率和得到高分非常有帮助。

几何解题研究的方法与思考——以一道中考试题为例

几何解题研究的方法与思考——以一道中考试题为例

几何解题研究的方法与思考——以一道中考试题为例胡坚波收稿日期:2020-09-23作者简介:胡坚波(1981—),男,中学一级教师,主要从事初中数学课堂教学研究.摘要:解题教学是必不可少的一种课堂教学形式,教师解题研究的能力直接影响到学生对问题理解的深度.教师只有掌握了解题研究的一般方法,才能在课堂中引导学生抓住问题的本质,从而优化解法,并进一步带领学生发现问题、提出问题、解决问题,进而得到一般性的结论,最终提高学生的解题能力、培养学生的数学学科核心素养.文章以2020年中考浙江杭州卷第14题的研究为例,谈谈几何解题研究的一般方法.关键词:中考试题;解题研究;一般方法中考试题的命制往往有其意义,一道看似不起眼的试题,其中很可能蕴含着丰富的内容.如果继续探究下去,或许就能发现试题背后隐藏的深意,从而体现解题的育人价值.本文以2020年中考浙江杭州卷第14题为例,谈谈应该怎样进行几何解题的研究.题目(2020年浙江·杭州卷)如图1,已知AB 是⊙O 的直径,BC 与⊙O 相切于点B ,连接AC ,OC.若sin ∠BAC =13,则tan ∠BOC 的值为.COAB图1作为填空题的第4道题,试题本身不难,主要考查了三角函数的相关知识.不妨设BC =1,则AC =3.解得AB =22,OB =2.则tan ∠BOC作为填空题,此题的求解到这里就结束了,但是作为解题研究,现在才刚刚开始.一、获得研究对象研究图形要抓住图形的本质,为了更容易抓住本质,几何研究要做减法,即去掉非关键因素.此题中,可以隐去圆,那么题目条件等价于“如图2,∠ABM =90°,点C 在射线BM 上,O 是AB 的中点”.观察图形的结构,不难发现,若点C 的位置确定了,则整个图形的形状就随之确定,即∠BOC ,∠BAC ,∠ACO ,∠BCO 的度数也随之确定.原试题就是在确定的条件下进行的定量研究,而研究图形变化过程中的规律性也是几何研究的常见问题.在图2中,当点C 的位置变化时,∠BOC ,∠BAC ,∠ACO ,∠BCO 的大小也随之改变.当点C 从点B 向射线BM 的方向移动时,容易发现∠BOC 和∠BAC 的度数变大,∠OCB 的度数变小,但无法很快确定∠ACO 的变化情况.接下来,我们进一步探究∠ACO 的变化情况.CO ABM 图2··56二、借助技术获得初步猜想几何问题的研究一般要经历画图、测量、计算、猜想、证明的过程.几何画板软件为我们画图、测量、计算提供了很好的辅助.利用几何画板软件对复杂的问题进行初步研究、获得猜想,是常见的研究起点.利用几何画板软件,发现当点C 从点B 向射线BM 的方向移动时,∠ACO 的度数先变大后变小,且∠ACO 取到的最大值约为19.47°(如图3).进一步计算,发现此时sin ∠ACO ≈0.33.∠OCA =19.47°∠CAO =35.58°sin∠OCA =0.33M ABCO图3猜想:如图3,当∠ABM =90°,点O 是AB 的中点时,射线BM 上存在点C ,使得∠ACO 取到最大值,此时sin ∠ACO =13.三、从“数”的角度验证猜想通过利用几何画板软件进行探究,发现点C 的位置决定了∠ACO 的大小,而点C 的位置可以用BC 的长度来刻画,所以继续探究的思路是用BC 的长度表示sin ∠ACO.为了研究方便,不妨设AB =2,BC =x ,根据勾股定理,得OC 2=1+x 2,AC 2=4+x 2.因为S △ACO =12AC ·OC ·sin ∠ACO =12AO ·BC ,所以sin ∠ACO =x x 4+5x 2+4=14因为x 2+4x 2≥4,所以当x 2=4x 2,即x =2时,x 2+4x 2的最小值为4.所以得到sin ∠ACO ≤13,即当BC =2时,sin ∠ACO 取最大值13,猜想得证.四、从“形”的角度验证猜想前面我们从“数”的角度验证了猜想,接下来我们从“形”的角度来思考.抓住变化过程中不变的关系是研究几何问题的常用方法.进一步观察图形,我们发现当点C 的位置发生改变时,∠ACO 所对的边AO 的长度始终没有发生变化.即角度在变,角度所对的边不变.这让我们联想到了圆中同弦所对的角.构造过A ,C ,O 三点的⊙D.如图4,若⊙D 与射线BM 相交,设另一个交点为点E.在线段CE 上任意取一点F (除点C ,E 外),连接AF ,OF ,根据圆内角大于同弧所对的圆周角,可得∠AFO >∠ACO.故可知此时∠ACO 的度数并没有取得最大值.图4图5如图5,若⊙D 与射线BM 相切于点C ,在射线BM 上任意取一点G (除点C 外),连接AG ,OG ,根据圆外角小于同弧所对的圆周角,可得∠AGO <∠ACO.故此时∠ACO 取到最大值,于是得到第一个有价值的结论.结论1:∠ACO 取到最大值的充要条件是过A ,C ,O 三点的⊙D 与射线BM 相切.接下来,求此时∠ACO 的正弦值及BC 的长.可以沿用前面的解题思路,分别求出线段AO ,OC ,AC ,BC 的长度,再利用△ACO 的面积求解.解法1:如图6,连接DC ,AD ,作DH ⊥AO.H O ABCDM图6不妨设AO =BO =1,则AH =OH =12,BH =32.因为⊙D 与射线BM 相切于点C ,所以DC ⊥BC.因为∠B =90°.··57所以四边形BCDH为矩形.所以AD=DC=BH=32.在Rt△ADH中,由勾股定理,得DH=2.所以BC=DH=2.由勾股定理,得OC=3,AC=6.由S△ACO=12AC·OC·sin∠ACO=12AO·BC,代入解得sin∠ACO=13.显然,求解过程还是有些复杂,不妨进一步思考,此图形还有什么特殊性可以应用?从圆的视角看,⊙D与射线BM相切,∠ACO为圆周角,解法豁然开朗.解法2:利用圆周角定理,可以转化到圆心角进行求解,可得∠ADH=∠ACO.所以sin∠ACO=sin∠ADH=AHAD=13.利用圆幂定理,可得BC2=BO·BA.解得BC=2.解法2抓住了问题的本质,解法也更优化、更简洁.“数”和“形”两种思考方法都能验证猜想,可见这也是我们解决几何问题的一般思路.对比两种思路,从“数”的角度思考,往往需要设未知变量,再利用勾股定理、相似、面积关系、三角函数等,列出未知变量与所求量之间的关系,然后用代数的方法求解;从“形”的角度思考,往往需要根据图形的结构,抓住图形中不变的关系,构建出几何模型,再根据图形性质求解.用“数”的方法容易想到,但计算较复杂;用“形”的方法比较直观,计算也相对简单,但是要弄清楚几何模型结构有一定的难度,需要的知识综合度高,也需要一定的逻辑推理.数形结合的思想方法在教学中有其育人价值,在解题教学中我们应让学生经历基本的活动经验,这样才能培养学生必需的基本数学思想.五、追本溯源其实,本问题在数学史中已经存在,称为“米勒问题”.德国数学家米勒于1471年提出“塑像问题”:有一个高a米的塑像立在一个高b米的底座上,一个人朝它走去(人的高度忽略不计),问此人应站在离塑像底座多远的地方,才能使塑像看上去最大(即视角最大)?根据题意画出图形,如图7,AO为雕像,BO为底座,点C表示人,求∠ACO最大时,BC的长.ABO图7这与我们研究的问题非常相似,只是点O的位置不再是中点,这为我们进一步研究问题提供了思路,即可以改变图形的条件,使之更具一般性,进而获得一般性的结论,这是我们进一步研究几何问题的方向.六、改变条件进一步探究1.改变点O的位置受“米勒问题”的启发,我们可以改变点O的位置,使之一般化,为了研究的连贯性,不妨设AB=2,AO=n(0<n<2),这样点O在线段AB上就具有一般性了,本质上与“米勒问题”是等价的.因为结论1与点O在线段AB上的位置无关,所以结论1仍成立.如图8,当⊙D与射线BM相切于点C时,∠ACO取得最大值.此时,易得AH=n2,DC=BH=2-n2.所以AD=DC= 2-n2,sin∠ACO=sin∠ADH=AH AD=n4-n.根据圆幂定理,得BC=BO·BA=4-2n.显然当n=1,即点O是AB的中点时,sin∠ACO的最大值为13,此时BC=2.但是这只是其中的一种特殊情况,于是得到第二个有价值的结论.HOA BCDM图8··58结论2:如图8,设∠ABM =90°,AB =2,点O 是线段AB 上一点,AO =n (0<n <2),则在射线BM 上存在点C ,使得∠ACO 取到最大值,且此时sin∠ACO =n 4-n,BC =4-2n.2.改变∠ABM 的大小此题条件里动点C 所在的射线BM 与AB 垂直,显然条件中的位置比较特殊.若从这个角度改变条件,当射线BM 与AB 不垂直,即∠ABM ≠90°时,相当于“米勒问题”中的雕像及底座与地面不垂直时,那么结论2是否仍成立?因为∠ABM ≠90°,所以四边形DCBH 不再是矩形,即DC ≠BH.求半径的解法相应会有所改变,猜想sin ∠ACO 的值与∠ABM 的度数有关.因为结论1与∠ABM 的大小无关,所以结论1仍然成立.∠ACO 取到最大值时,过A ,C ,O 三点的⊙D 与射线BM 相切,故圆幂定理仍然适用,所以BC =BO ·BA =4-2n.所以可得第三个有意义的结论.结论3:设∠ABM =α(0°<α<180°),AB =2,点O 是线段AB 上一点,AO =n (0<n <2),则射线BM 上存在点C ,使得∠ACO 取到最大值,且此时BC =4-2n ,sin ∠ACO 的值与∠ABM 的度数无关.接下来,求sin ∠ACO.因为∠ABM 有锐角和钝角两种情况,所以要分两种情形分类进行研究.情形1:如图9,当0°<α<90°时,⊙D 与射线BM相切于点C.根据前面的猜想sin ∠ACO 会与α有关,为了将α用上,所以考虑作垂线构造直角三角形.作DH ⊥AO 于点H ,BE ⊥AB 交DC 的延长线于点E ,作DF ⊥BE 于点F.M O AB CD EF GH图9易证∠CBE =∠EDF =90°-α,DF =BH =2-n 2.所以DE =DF cos ()90°-α=4-n 2sin α,CE =BC ·tan ()90°-α=4-2n ·tan ()90°-α,AD =DC =DE -CE =4-n 2sin α-4-2n ·tan ()90°-αsin∠ACO =sin∠ADH =AH AD =n sin α4-n -24-2n cos α.情形2:如图10,当90°<α<180°时,⊙D 与射线BM 相切于点C.同样作DH ⊥AO 于点H ,作BE ⊥AB 交DC 于点E ,作DF ⊥BE 交BE 的延长线于点F.H A B CDOEF M图10易证∠CBE =∠EDF =α-90°,DF =BH =2-n 2.所以DE =DF cos ()α-90°=4-n 2sin α,CE =BC ·tan ()α-90°=4-2n ·tan ()α-90°,AD =DC =DE +CE =4-n 2sin α+4-2n ·tan()α-90°sin∠ACO =sin∠ADH =AH AD 发现两种情形最后结果的表达式是一致的,而把α=90°代入,得sin∠ACO =n 4-n.与之前的计算结果一致,可见角度在变,结果的表达式不变,得到了变化过程中不变关系的本质,于是得到了问题的一般性结论.结论4:设∠ABM =α(0°<α<180°),AB =2,点O 是线段AB 上一点,AO =n (0<n <2),则射线BM 上存在点C ,使得∠ACO 取到最大值,且此时BC =4-2n ,sin∠ACO =3.当射线BM 改为直线BM 时,相当于“米勒问题”中人可以站到雕像的背面进行观察.如图11,当点C 在直线BM 上移动时,由前面的研究可知,当点C 在射线BM 1和BM 2上时,分别有一个点C 1和点C 2,使得∠AC 1O 和∠AC 2O 在各自的射线上取到最大值,那么∠AC 1O 和∠AC 2O 哪个更大一些呢?显然,当BM ⊥AB 时,BC 1=··59BC 2,由对称性可知∠AC 1O =∠AC 2O.当BM 与AB 不垂直时,不妨设∠ABC 1=α(0°<α<90°),则∠ABC 2=180°-α.根据结论4,可以得到sin ∠AC 1O =sin ∠AC 2O =因为0<cos α<1,所以sin ∠AC 1O >sin ∠AC 2O.所以∠AC 1O >∠AC 2O.得到结论5.M 2OAB MC 1C 2M 1图11结论5:如图11,当点C 在直线BM 上时,设AB =2,点O 是线段AB 上一点,AO =n (0<n <2),如果直线BM 与线段AB 所成的较小的夹角为∠ABM 1(0°<∠ABM 1≤90°),则点C 一定在射线BM 1上,使得∠ACO 取到最大值,且此时BC =4-2n ,sin∠ACO =七、解后思考回顾整个研究过程,通过图形的变化将一个确定的图形变为不确定的图形,从而获得研究对象.而对于变化中规律的研究,入手比较难,这时信息技术为化解难点提供了帮助.借助几何画板软件,不仅能方便地展示图形变化的过程,而且可以通过教师有意识地控制帮助学生观察影响变化的要素及其关系,从而获得初步的猜想.接着,从“数”和“形”两个角度验证了该猜想,进一步体会到几何问题在“数”和“形”上的统一,体会到数形结合思想在解题中的重要作用.在引出“米勒问题”后,通过进一步改变条件——点的位置变化、角度的大小变化、射线变为直线等,发现了在条件变化过程中不变的结论.通过这样的解题教学研究可以让学生进一步体会到研究几何问题的一般方法——从简单到复杂,从特殊到一般.整个研究过程,具备学习素材的真实性,问题的开放性,学习过程的探索性,学习手段的操作性,探索过程的动态化、可视化,学习体验的形象化、可表达,学习结果的创造性.这些都有利于在今后的学习中,提高学生发现问题和解决问题的能力,进而实现几何解题教学的育人价值.参考文献:[1]王红权.“高考真题分析”习题课的教学实践与思考[J ].中小学数学(高中版),2015(4):20-23.[2]章建跃.研究三角形的数学思维方式[J ].数学通报,2019,58(4):1-10.··60。

中考数学解答题解题思路与书写规范要求

中考数学解答题解题思路与书写规范要求

中考数学解答题解题思路与书写规范要求中考数学解答题共有八道大题,其中技能部分占五道题,另一道应用题,一道探究题或方法迁移性问题,一道综合题.从历年的考试情况来看,前五道技能性问题对于中上等学生得分率较高,学生能明白考察的知识与解题的思路.但失分的原因多数是因为书写的不规范(缺少主要步骤、排列性混乱等)所造成,这也是教师在复习教学时重思路方法忽视书写要求所产生的共性问题.从时间的运用上看,这五道技能性问题还存在不重视方法的选择上,走远路解答误时费劲应用题的失分主要还是找不出题目中的数量关系或解错方程不等式造成.探究性问题或方法迁移性问题失分的原因是不明确解题的思路,在方法规律的转化上不能很好的运用.综合性问题的失分原因主要是观察能力与操作能力不能很好的发挥,只重视计算与证明的重要性,忽视观察与操作环节,进而找不到突破口,造成思维上的短路. 第一解答题:(代数类——实数代数式运算与方程不等式求解) (1)分式的化简与求值:根据《课标》的要求,分式的运算分式的个数不得超过三个,所以中考试题多以三个或两个分式为主,主要考察分式的通分,整式的因式分解,分式的约分等。

通常的解题程序是:先把分子与分母能分解因式的进行因式分解,同时把小括号内的分式通分合并;再把除法转化为乘法运算,最后准确约分即可. 求值时改变了直接给出未知数的具体数字的模式,通常给出未知数的取值范围,首先要根据分式成立的意义确定什么数不能取,进而选择可行数代入求值. 例如:先化简),x 4x (x2x 4x 4x 22-¸-+-然后从5x 5<<-的范围内选取一个合适的整数作为x 值代入求值. 21)2)(2()2()2)2)(2()2()222+=-+×--=-+¸--=x x x x x x x x x x x x x ((解:原式 由题意可知:x ≠0且x ≠±2,故在5x 5<<-中取x=1时,时, 原式=.31211=+ 说明: ①学生在书写容易多写浪费时间,如第一步骤中只进行通分把第一分式照|5-1)5-3-5+9-5-1=1-3+5+9-51134942-ac b所以原方程的根为x 1=25,x 2=-1. 注意:容易漏掉的步骤有只计算b 2-4ac 的值忘记判断正负性. 例如2:解二元一次方程组îíì-=-=+②①22343x 2y x y . 解:①³2+②³3得:13x=2,即x=132.把x=132代入②得:y=1316. 所以原方程组的解为:.1316132ïïîïíì==y x 例如3:求不等式组3(2)81522x x x x ì--ïí->ïî≤ ②①的整数解.的整数解. 解:解不等式①得:x ≥-1,解不等式②得:x<2. 把这两个解集表示在数轴上为:把这两个解集表示在数轴上为: 所以原不等式组的解集为:所以原不等式组的解集为: -1≤x <2. 故原不等式组的整数解为:-1,0,1. 注意:容易出错的步骤是解不等式不等号的方向问题,画数轴上不准确,还有就是解完不等式后对下一问忽略. 第二解答题(几何类——全等三角形证明与特殊四边形的判断与证明以及相关基本计算):《课标》明确指出:几何题证明的难度不得超过证明定理的难度.因此,本题的几何问题多以直观判断图形的形状,题的几何问题多以直观判断图形的形状,判断图形间的关系,判断图形间的关系,判断图形间的关系,证明三角形全等和证明三角形全等和证明特殊四边形为主.近两年来,在此基础上加入了简单的图形计算内容.解决这类问题的基本程序是:类问题的基本程序是:先利用工具验证并直观判断图形的形状或关系,先利用工具验证并直观判断图形的形状或关系,先利用工具验证并直观判断图形的形状或关系,再寻找并再寻找并证明两个三角形全等进而得所证问题,计算时多利用三角形的有关性质即可. 例如1:如图,四边形ABCD 是平行四边形,△AB ’C 和△ABC 关于AC 所在的直线对称,AD 和B ’C 相交于点O ,连接BB ’.(1)请直接写出图中所有的等腰三角形(不| | | |-1 0 1 2 ● ○ OB'ABCD添加字母);(2)求证:△AB ’O ≌△CDO .解:(1)图中等腰三角形有:△ABB /,△CBB /,△OAC; (2)因为四边形ABCD 是平行四边形,所以有∠ABC=∠ADC,AB=CD. 又因为△AB ’C 和△ABC 关于AC 所在的直线对称,所在的直线对称,所以有∠ABC=∠AB /C,AB=AB /.即∠ADC =∠AB /C ,CD =AB/. 在△AB ’O 和△CDO 中,因为∠ADC =∠AB /C ,,∠AOB /=∠COD , CD =AB /, 所以△AB ’O ≌△CDO .例如2: 如图,在梯形ABCD 中,中,AD AD AD∥∥BC,BC,延长延长CB 到点E ,使BE=AD,BE=AD,连接连接DE 交AB 于点M.(1)(1)求证:求证:△AMD AMD≌△≌△≌△BME;(2)BME;(2)BME;(2)若若N 是CD 的中点,且MN=5,BE=2,MN=5,BE=2,求求BC 的长的长. .证明:(1)∵)∵AD AD AD∥∥BC,BC,∴∠∴∠ADM=∠E. 又∵∠AMD=∠EMB, BE=AD, ∴△∴△AMD AMD AMD≌△≌△≌△BME.BME.BME.(2)(2)由(由(由(11)可知:△)可知:△AMD AMD AMD≌△≌△≌△BME BME BME,,∴DM=ME,又N 是CD 的中点,∴MN 为△为△DEC DEC 的中位线的中位线. . 即MN=)(2121BC BE EC +=,代入MN=5,BE=2MN=5,BE=2,解得:,解得:,解得:BC=8. BC=8. 说明:说明:①如果图形借助特殊四边形时,要先从特殊四边形的性质入手得出需要的结论作为后续证明的条件;如果图形中含有折叠、为后续证明的条件;如果图形中含有折叠、旋转或平移时,旋转或平移时,旋转或平移时,要根据图形变换的全要根据图形变换的全等性得出需要的结论作为后续证明的条件;等性得出需要的结论作为后续证明的条件;选择条件除上述两方面外,选择条件除上述两方面外,选择条件除上述两方面外,也要关注也要关注图形中的隐藏条件如对顶角、公共角、公共边等图形中的隐藏条件如对顶角、公共角、公共边等. .②书写时,可用文字语言描述②书写时,可用文字语言描述((例1)1),也可用符号语言描述(例,也可用符号语言描述(例2);书写因果关系时,一定在因为的后边为题目中结出的已知条件一定在因为的后边为题目中结出的已知条件(或者说照抄题目中的相关条(或者说照抄题目中的相关条件),在所以的后边一定是根据某定理得出的结论,在所以的后边一定是根据某定理得出的结论. .③针对图形的计算问题,③针对图形的计算问题,首先要根据数学知识写出相关的结论首先要根据数学知识写出相关的结论首先要根据数学知识写出相关的结论(即用符号表示数(即用符号表示数量关系),再代入数值计算方可,再代入数值计算方可. . ④常见的书写问题有:④常见的书写问题有:利用角的关系时喜欢用三个大写字母表示,利用角的关系时喜欢用三个大写字母表示,利用角的关系时喜欢用三个大写字母表示,不会用数字表不会用数字表示费时不直观还容易抄写错误;示费时不直观还容易抄写错误;把基本推理在心中完成,把基本推理在心中完成,把基本推理在心中完成,进而把其得到的结论当进而把其得到的结论当条件直接应用;有关图形的计算时不讲明道理直接用数字运算等条件直接应用;有关图形的计算时不讲明道理直接用数字运算等. .D A M C B N E 第三解答题(统计概率类——统计图表完善,样本估计总体状况计算问题):《课标》指出:经历收集、整理、描述和分析数据的活动;会制作扇形统计图,能用统计图直观、有效地描述数据;能计算中位数、众数、加权平均数,会计算简单数据的方差;会计算简单数据的方差;能画频数直方图,能画频数直方图,能利用频数直方图解释数据中蕴涵的信息;可以通过样本平均数,样本方差推断总体平均数和总体方差;能通过列表、画树状图等方法列出简单随机事件所有可能的结果,以及指定事件发生的所有可能结果,知道可以用频率来估计概率能结果,知道可以用频率来估计概率. .根据课标要求,近几年中考中这部分知识解答题的考察,主要包括统计图表完善或制作,计算相关统计量并用统计量分析数据状况,计算相关统计量并用统计量分析数据状况,利用统计和概率的思利用统计和概率的思想用样本估计总体,计算简单事件的概率等想用样本估计总体,计算简单事件的概率等. .解题的一般程序是:先从统计图表中获取相关信息,通过计算完善统计图表;再根据统计图表获取相关信息,表;再根据统计图表获取相关信息,通过计算得出样本的相关统计量或频率,通过计算得出样本的相关统计量或频率,通过计算得出样本的相关统计量或频率,运运用统计和概率的思想判断并计算总体的有关问题;最后利用排列的方法计算简单随机事件的概率随机事件的概率. .例如1: 5月31日是世界无烟日,某市卫生机构为了了解“导致吸烟人口比例高的主要原因”,随机抽样调查了该市部分18~65岁的市民,下图是根据调查结果绘制的统计图,根据图中信息解答下列问题:(1)这次接受随机抽样调查的市民总人数为 . (2)图1中的m 的值是的值是 . (3)求图2中认为“烟民戒烟毅力弱”所对应的圆心角度数. (4)若该市18~65岁的市民约为200万人,请你估算其中认为导致吸烟人中比正府对公共场所吸烟的监管力度不够人们对吸烟的容忍度大其它对吸烟危害健康认识不足烟烟民戒烟毅力弱420 m m 210 240 项目项目人数人数图1 A B C D E E 16% A 28% B 21% C 21% D 图2 例高的最主要原因是“对吸烟危害健康认识不足”的人数. 解:(1)从统计图中不能发现,A 类即有人数420人且占28%,E 类即有人数240人且占16%,故可从中任取一项得调查的总人数为:420÷28%=150028%=1500(人)(人)(人). . 注:从运算的难度上看选“注:从运算的难度上看选“E E ”计算较为简便”计算较为简便..(2)由()由(11)知抽查的总人数为1500人,从扇形图中知“人,从扇形图中知“B B ”类对象占总人数的21%21%,故有,故有m=1500m=1500³³21%=315(21%=315(人人).(3)由图1知“烟民戒烟毅力弱”的人数为210人,总人数为1500人,所以“D ”所对应圆心角的度数为:004.503601500210=´. (4)由扇形图可知:对“对吸烟危害健康认识不足”占调查的比例为21%,所以可以估计该市18~65岁的市民约为200万人中“对吸烟危害健康认识不足”的人数为:200万³21%=42万. 例如2:为更好地宣传“开车不喝酒,喝酒不开车”的驾车理念,某市一家报社设计了如右的调查问卷(单选)。

中考数学几何题突破解题技巧

中考数学几何题突破解题技巧

中考数学几何题突破解题技巧数学几何是中考数学中的一大难题。

许多同学在几何题上遇到困难,觉得难以理解和解题。

今天我们就来分享一些突破解题的技巧,帮助同学们在中考几何题中取得更好的成绩。

一、几何基本概念的理解和掌握在解几何题之前,首先要掌握几何基本概念。

例如,点、线、面及其相互关系是几何学的基本元素,几何图形的分类和性质也是我们解题过程中必须要了解的内容。

只有对这些基本概念和知识掌握得扎实,才能在解题时运用自如,准确地理解和描述问题。

二、准确绘制几何图形解几何题时,正确绘制几何图形是非常重要的一步。

在绘制图形时,要注意几何图形的相对位置和比例关系,保证图形的准确性。

同时,可以通过画辅助线、标注和标记等方法,更好地理解和解题。

绘制准确的几何图形对于解题过程的推理和证明有着重要的影响。

三、应用几何定理和性质几何题的解题过程中,运用几何定理和性质是非常重要的。

同学们要熟悉并掌握几何定理,灵活地应用到解题中去。

例如,利用三角形的重心性质、全等三角形的性质、平行线的性质等等。

掌握这些几何定理和性质,可以大大简化解题过程,提高解题效率。

四、运用几何分析和推理解几何题时,需要通过几何分析和推理来解决问题。

同学们可以通过观察、比较、推导、推理等方法,分析图形的性质和问题的特点,找到问题的解题思路。

在推理过程中,也可以利用条件、结合定理和性质来得到结论,解决问题。

五、练习和总结几何题的解题技巧需要通过不断的练习和总结来提高。

同学们可以多做几何题,尤其是一些经典的例题,熟悉和掌握题型的解题思路和方法。

通过练习,可以更加熟悉和熟练地运用几何定理和性质。

同时,在解题过程中可以总结经验和技巧,形成自己的解题方法。

六、思维开阔,勇于创新几何题的解题过程中,需要同学们思维开阔,勇于创新。

有时候,问题的解法可能不只有一个,要善于发现不同的解题思路。

同时,还要勇于尝试和探索新的解题方法,对于复杂的几何问题,可以尝试运用平面几何与向量、解析几何等其他数学知识相结合,从不同的角度进行思考和解决。

初中三角形总复习+中考几何题证明思路总结

初中三角形总复习+中考几何题证明思路总结

初中三角形总复习【知识精读】1. 三角形的定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

2. 三角形中的几条重要线段:(1)三角形的角平分线(三条角平分线的交点叫做内心)(2)三角形的中线(三条中线的交点叫重心)(3)三角形的高(三条高线的交点叫垂心)3. 三角形的主要性质(1)三角形的任何两边之和大于第三边,任何两边之差小于第三边;(2)三角形的内角之和等于180°(3)三角形的外角大于任何一个和它不相邻的内角,等于和它不相邻的两个内角的和;(4)三角形中,等角对等边,等边对等角,大角对大边,大边对大角;(5)三角形具有稳定性。

4.⋅S SABE∆基础。

5. 三角形边角关系、性质的应用【分类解析】例1. 锐角三角形ABC 中,∠C =2∠B ,则∠B 的范围是( ) A. 1020︒<<︒∠B B. 2030︒<<︒∠B C. 3045︒<<︒∠B D. 4560︒<<︒∠B分析:因为∆ABC 为锐角三角形,所以090︒<<︒∠B 又∠C =2∠B ,∴︒<<︒0290∠B ∴︒<<︒045∠B又∵∠A 为锐角,()∴=︒-+∠∠∠A B C 180为锐角 ∴+>︒∠∠B C 90∴>︒390∠B ,即∠B >︒30 ∴︒<<︒3045∠B ,故选择C 。

例2. 选择题:已知三角形的一个外角等于160°,另两个外角的比为2:3,则这个三角形的形状是( ) A. 锐角三角形B. 直角三角形C. 钝角三角形D. 无法确定分析:由于三角形的外角和等于360°,其中一个角已知,另两个角的比也知道,因此三个外角的度数就可以求出,进而可求出三个内角的度数,从而可判断三角形的形状。

解:∵三角形的一个外角等于160° ∴另两个外角的和等于200° 设这两个外角的度数为2x ,3x ∴+=23200x x 解得:x =40 2803120x x ==, 与80°相邻的内角为100° ∴这个三角形为钝角三角形 应选C例3. 如图,已知:在∆ABC 中,AB AC ≤12,求证:∠∠C B <12。

中考数学证明题解题技巧

中考数学证明题解题技巧

中考数学证明题解题技巧在中考数学考试中,证明题所占比重较大,而解决证明题需要一定的技巧和方法。

本文将介绍一些中考数学证明题解题技巧,帮助同学们更好地应对这一类型的题目。

一、梳理题意解决证明题的第一步是仔细阅读并梳理题意。

理解题目要求,并明确所要证明的结论。

通常,证明题会给出一些已知条件和结论,我们需要运用已知条件推导出结论。

因此,确保对题目要求和已知条件的理解十分重要。

二、运用已知条件在证明题中,已知条件是我们解题的基础。

在运用已知条件时,我们要善于观察和发现问题中隐藏的信息,并将其与所要证明的结论进行联系。

有时,已知条件的几何意义可以给我们启示,可以通过画图等方式来辅助理解和推导。

三、利用几何性质和定理几何性质和定理是解决证明题的有力工具。

掌握一些基本的几何性质和定理,能够帮助我们更好地理解和推导已知条件。

例如,对于一些角关系的问题,我们可以利用垂直角、对顶角等性质进行推导。

四、采用反证法反证法是证明题中常用的一种方法。

当我们无法通过已知条件直接推导出结论时,可以尝试采用反证法。

假设结论不成立,然后推导出与已知条件矛盾的结论,从而证明所要证明的结论是正确的。

五、举反例有时,通过举出一个具体的反例可以推翻所要证明的结论。

如果我们在尝试证明过程中发现了一个特殊情况,该情况下结论不成立,那么结论就是错误的。

通过举反例,可以帮助我们更好地理解问题和规律。

六、逻辑推理和演绎思维在解决证明题时,逻辑推理和演绎思维是必不可少的。

我们需要善于运用逻辑关系,通过推理和演绎来建立证明的思路和框架。

将问题分解为小块,逐步推导,最终得到所要证明的结论。

七、归纳总结在解决证明题后,我们应该及时归纳总结解题方法和技巧。

记录下解题思路、经验和注意事项,以便于以后的学习和复习。

通过不断的总结和反思,我们能够逐渐提高解决证明题的能力。

总结:中考数学证明题是考察学生逻辑思维、推理能力和几何观察力的重要题型。

通过运用正确的解题技巧和方法,便能在考试中从容应对这一类型的题目。

中考数学解题技巧---构造三角形全等

中考数学解题技巧---构造三角形全等

中考数学解题技巧——构造三角形全等 (马铁汉)遇到有关线段的计算或证明时,经常需要将线段替换转移,常用的方法有作轴对称(在求线段之和、线段之差最值中)、旋转三角形(特殊三角形背景下的三条线段之和问题)、构造全等三角形。

关于作轴对称和旋转三角形这两种方法用的较多,且易掌握,前面解题经验中已有介绍,这里就不啰嗦了;关于构造全等三角形方法用得较少,不易掌握,下面通过几个中考真题作简单介绍。

现有图形中找不到解题途径时,联想问题背景及已知和所求之间的联系,可以考虑构造全等三角形建立起已知与所求之间的桥梁。

例1、(2021武汉16).如图(1),在△ABC 中,AB =AC ,∠BAC =90°,边AB 上的点D 从顶点A 出发,向顶点B 运动,同时,边BC 上的点E 从顶点B 出发,向顶点C 运动,D ,E 两点运动速度的大小相等,设x =AD ,y =AE +CD ,y 关于x 的函数图象如图(2),图象过点(0,2),则图象最低点的横坐标是__21-.分析: 这里要求两条线段AE 、CD 之和,可以用x 的代数式表示CD=21x +和22-12x ⎛⎫+ ⎪ ⎪⎝⎭,从而得到y 关于x 的函数2221-12y x x ⎛⎫=++ ⎪ ⎪⎝⎭烦,不容易解决问题。

简单的方法是通过转化使两条线段连在一起,用几何方法解决函数问题。

这里的转化就需要构造全等。

如图(3)作BN ⊥BC ,使BN=AC ,连接EN.则△BEN ≌△ADC∴ DC=ENy =AE +CD=AE+EN如图(4),当A 、E 、N 三点在同一直线上时, y 最小。

此时,作AM ⊥BC 于点M , AM EM BN BE = 由图像知,AB=AC=1,AM=BM=MC=12∴ 11-22=1x x∴ 21x =-还有一种转化方法,如图(5),作HA ∥BC ,且HA=AB则△ABE ≌△HAD ∴AE=DH 当H 、D 、C 在同一直线上时y=HD+DC 最小,如图(6)。

初中数学证明题常见辅助线作法及几何规律,三角形、圆、四边形全都有,102条规律做题不愁!

初中数学证明题常见辅助线作法及几何规律,三角形、圆、四边形全都有,102条规律做题不愁!

初中数学证明题常见辅助线作法及几何规律,三角形、圆、四边形全都有,102条规律做题不愁!颜老师说:人们从来就是用自己的聪明才智创造条件解决问题的,当问题的条件不够时,添加辅助线构成新图形,形成新关系,使分散的条件集中,建立已知与未知的桥梁,把问题转化为自己能解决的问题,这是解决问题常用的策略。

初中几何常见辅助线作法歌诀人说几何很困难,难点就在辅助线。

辅助线,如何添?把握定理和概念。

还要刻苦加钻研,找出规律凭经验。

三角形图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

要证线段倍与半,延长缩短可试验。

三角形中两中点,连接则成中位线。

三角形中有中线,延长中线等中线。

四边形平行四边形出现,对称中心等分点。

梯形里面作高线,平移一腰试试看。

平行移动对角线,补成三角形常见。

证相似,比线段,添线平行成习惯。

等积式子比例换,寻找线段很关键。

直接证明有困难,等量代换少麻烦。

斜边上面作高线,比例中项一大片。

3月24日初中数学圆半径与弦长计算,弦心距来中间站。

圆上若有一切线,切点圆心半径连。

切线长度的计算,勾股定理最方便。

要想证明是切线,半径垂线仔细辨。

是直径,成半圆,想成直角径连弦。

弧有中点圆心连,垂径定理要记全。

圆周角边两条弦,直径和弦端点连。

弦切角边切线弦,同弧对角等找完。

要想作个外接圆,各边作出中垂线。

还要作个内接圆,内角平分线梦圆。

如果遇到相交圆,不要忘作公共弦。

内外相切的两圆,经过切点公切线。

若是添上连心线,切点肯定在上面。

要作等角添个圆,证明题目少困难。

辅助线,是虚线,画图注意勿改变。

假如图形较分散,对称旋转去实验。

基本作图很关键,平时掌握要熟练。

解题还要多心眼,经常总结方法显。

切勿盲目乱添线,方法灵活应多变。

分析综合方法选,困难再多也会减。

虚心勤学加苦练,成绩上升成直线。

除了上边方便记忆的顺口溜之外,颜老师还为大家整理了不同几何图形的做法及规律,有相交线、平行线、三角形、四边形及圆几部分,共102条规律,可以说做题时遇到的都包括在这里哦~线、角、相交线、平行线规律1.如果平面上有n(吃2)个点,其中任何三点都不在同一直线上,那么每两点画一条直线,一共可以画出k n(n-1)条。

中考数学几何证明方法总结

中考数学几何证明方法总结

中考数学几何证明方法总结在中考数学中,几何证明题是许多同学感到头疼的部分。

但只要掌握了有效的方法和技巧,就能轻松应对。

下面,我将为大家总结一些常见的中考数学几何证明方法。

一、综合法综合法是从已知条件出发,通过一系列的推理和运算,最终得出结论的方法。

这是最基本也是最常用的方法。

例如,已知一个三角形的两条边和它们的夹角,要证明这个三角形的面积。

我们可以从已知条件出发,利用三角形面积公式 S = 1/2 ×两边之积 ×夹角的正弦值,逐步推导出面积的具体数值。

在使用综合法时,要善于将已知条件进行合理的组合和运用,找到它们之间的内在联系。

二、分析法分析法是从要证明的结论出发,逐步追溯到已知条件的方法。

比如说,要证明一个四边形是平行四边形,我们先假设它是平行四边形,然后根据平行四边形的性质,推导出需要满足的条件,再看这些条件是否与已知条件相符。

分析法的优点在于目标明确,能够迅速找到解题的思路和方向。

三、反证法反证法是先假设结论不成立,然后通过推理得出矛盾,从而证明原结论成立的方法。

例如,证明“在一个三角形中,不能有两个角是直角”。

我们先假设一个三角形中有两个角是直角,然后根据三角形内角和为 180 度,得出矛盾,从而证明原结论正确。

反证法常常用于那些直接证明比较困难的命题。

四、同一法同一法是当一个命题的条件和结论所指的对象都唯一存在时,通过证明所作的图形与已知图形全等或重合,从而证明命题成立的方法。

比如,要证明一个点是线段的中点,可以先作出通过这个点且平分线段的直线,然后证明所作直线与已知直线重合,从而得出这个点是中点的结论。

五、构造辅助线法在很多几何证明题中,合理地构造辅助线可以使问题变得简单明了。

比如,在证明三角形全等时,如果条件不足,可以通过作平行线、垂线、中线、角平分线等辅助线来创造全等的条件。

又如,在证明圆的相关问题时,常常连接圆心和切点、作弦心距等。

六、等量代换法利用等量关系进行代换,是证明几何命题的常用手段。

【中考冲刺】2020中考数学专题总复习:专题五 几何的证明与综合应用

【中考冲刺】2020中考数学专题总复习:专题五 几何的证明与综合应用

角三角形,∴DF= 2 AD,∴ DF = 2,∴ EB = 2.
AD
AD
栏目索引
栏目索引
方法技巧
与三角形有关的证明与综合应用主要涉及证三角形全等和相似,看到证明
线段相等,要想到全等,看到证明线段之间成比例,要想到三角形相似,这是一种
定性思维,其中三角形相似有以下几种基本结构.
常见 结构
A字型
X字型 母子型
栏目索引
DEB CDF, DBE CFD, ED DC,
∴△DBE≌△CFD(AAS),
∴EB=DF,∴EB=AD.
(3) EB = 2 .理由如下:作DF∥BC交AC于点F,如图3所示,同(1),得△DBE≌
AD
△CFD(AAS),∴EB=DF,∵△ABC是等腰直角三角形,DF∥BC,∴△ADF是等腰直
(2)DH⊥HG.证明:如图,延长GH交CD于点N,
栏目索引
∵FG⊥AD,CD⊥AD,∴FG∥CD.∴∠GFC=∠HCN,∠FGH=∠HNC.∴△FGH
∽△CNH.∴ FG = FH = GH ,
CN CH NH
又∵CH=FH,∴GH=HN,NC=FG.∴AG=FG=NC.又∵AD=CD,∴GD=DN,∴DH⊥
AG AC,
即∠GAB=∠CAE,在△GAB和△CAE中, GAB CAE,∴△GAB≌△CAE
AB AE,
栏目索引
(SAS), ∴∠ABG=∠AEC,又∵∠AEC+∠AME=90°,∴∠ABG+∠BMN=90°,∴∠BNM= 90°,即CE⊥BG,∴四边形CGEB是垂美四边形,由(2)得,CG2+BE2=CB2+GE2, ∵AC=4,AB=5, ∴BC=3,CG=4 2 ,BE=5 2 ,∴GE2=CG2+BE2-CB2=73,∴GE= 73 .

2024年中考数学几何证明技巧总结

2024年中考数学几何证明技巧总结

2024年中考数学几何证明技巧总结中考数学中的几何证明题一直是许多同学感到头疼的部分,但只要掌握了正确的技巧和方法,其实并没有想象中那么难。

下面就为大家总结一些 2024 年中考数学几何证明的实用技巧。

一、牢记基本定理和性质几何证明题的解答离不开各种定理和性质,比如三角形的内角和定理、勾股定理、平行四边形的性质、相似三角形的判定和性质等等。

同学们一定要将这些基础知识牢记于心,这样在解题时才能迅速找到思路。

例如,在证明三角形全等时,要清楚全等三角形的判定定理(SSS、SAS、ASA、AAS、HL),并且能够根据题目所给的条件,准确选择合适的判定方法。

二、学会识图与画图良好的识图能力是解决几何证明题的关键。

拿到一道题,首先要仔细观察图形,找出其中的隐含条件。

比如,两条平行线被第三条直线所截,同位角、内错角相等;等腰三角形底边上的高、中线、顶角平分线三线合一等等。

如果题目所给的图形不够清晰或者不利于解题,还可以自己动手重新画图。

在画图的过程中,可能会发现一些新的线索和关系。

三、添加辅助线当题目中的条件不足以直接得出结论时,添加辅助线往往能起到关键作用。

常见的辅助线有连接两点、作垂线、作平行线、延长线段等等。

比如,在证明三角形内角和为 180°时,可以通过作平行线将三角形的三个内角转化为平角;在证明梯形问题时,可以通过作高将梯形转化为三角形和矩形来解决。

四、运用逆向思维有时候从已知条件正向推导很难得出结论,这时可以尝试从结论出发,逆向思考需要什么条件才能得到这个结论,然后再看已知条件是否能够提供这些条件。

例如,要证明一个四边形是平行四边形,可以先思考平行四边形的判定条件,然后看题目中的条件是否能够满足其中的某一个判定条件。

五、多做练习题熟能生巧,只有通过大量的练习,才能真正掌握几何证明的技巧。

在练习的过程中,要注意总结不同类型题目的解题方法和规律,积累经验。

同时,做完一道题后,要认真反思自己的解题过程,看看有没有更简单的方法,或者自己在哪些地方容易出错,以便在今后的学习中加以改进。

中考数学几何证明题分类讲解

中考数学几何证明题分类讲解

中考数学几何证明题分类讲解一、【知识要点】1.几何证明是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很大作用。

几何证明有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。

这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。

2.掌握分析、证明几何问题的常用方法:(1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题的解决;(2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止;(3)两头凑法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。

3.掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。

在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。

二、【分类讲解】1、证明线段相等或角相等两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。

很多其它问题最后都可化归为此类问题来证。

证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分线的性质、等腰三角形的判定与性质等也经常用到。

例1.已知:如图1所示,∆ABC 中,∠=︒===C AC BC AD DB AE CF 90,,,。

是AB 中点,可考虑连结CD,易得CD AD =,∠=︒DCF 45。

从而不难发现∆∆DCF DAE≅证明:连结CDAC BCA BACB AD DBCD BD AD DCB B AAE CF A DCB AD CD=∴∠=∠∠=︒=∴==∠=∠=∠=∠=∠=90,,,,∴≅∴=∆∆ADE CDFDE DF说明:在直角三角形中,作斜边上的中线是常用的辅助线;在等腰三角形中,作顶角的平分线或底边上的中线或高是常用的辅助线。

中考数学几何题答题技巧讲解

中考数学几何题答题技巧讲解

中考数学几何题答题技巧讲解复习方法多元化心理学家研究发现,如果长时间内用同一种方法复习一门功课,大脑皮层某一部位就会形成保护性抑制,影响记忆效果。

大家知道中考数学几何题答题技巧吗?下面我们就给大家详细介绍一下吧!证明两线段相等1.两全等三角形中对应边相等。

2.同一三角形中等角对等边。

3.等腰三角形顶角的平分线或底边的高平分底边。

4.平行四边形的对边或对角线被交点分成的两段相等。

5.直角三角形斜边的中点到三顶点距离相等。

6.线段垂直平分线上任意一点到线段两段距离相等。

7.角平分线上任一点到角的两边距离相等。

8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。

9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。

10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。

11.两前项(或两后项)相等的比例式中的两后项(或两前项)相等。

12.两圆的内(外)公切线的长相等。

13.等于同一线段的两条线段相等。

证明两个角相等1.两全等三角形的对应角相等。

2.同一三角形中等边对等角。

3.等腰三角形中,底边上的中线(或高)平分顶角。

4.两条平行线的同位角、内错角或平行四边形的对角相等。

5.同角(或等角)的余角(或补角)相等。

6.同圆(或圆)中,等弦(或弧)所对的圆心角相等,圆周角相等,弦切角等于它所夹的弧对的圆周角。

7.圆外一点引圆的两条切线,圆心和这一点的连线平分两条切线的夹角。

8.相似三角形的对应角相等。

9.圆的内接四边形的外角等于内对角。

10.等于同一角的两个角相等证明两直线平行1.垂直于同一直线的各直线平行。

2.同位角相等,内错角相等或同旁内角互补的两直线平行。

3.平行四边形的对边平行。

4.三角形的中位线平行于第三边。

5.梯形的中位线平行于两底。

6.平行于同一直线的两直线平行。

7.一条直线截三角形的两边(或延长线)所得的线段对应成比例,则这条直线平行于第三边。

中考几何题解题技巧

中考几何题解题技巧

中考几何题解题技巧中考几何题作为数学学科的重要部分,对于学生的成绩有着至关重要的影响。

由于几何题的题型多样,要求学生具备丰富的空间想象力和严谨的逻辑思维能力,因此对于许多学生来说是一个不小的挑战。

掌握正确的解题技巧,能够帮助学生轻松应对各种几何题目,提高解题效率,从而取得好成绩。

一、常见几何题型概述在中考数学试卷中,常见的几何题型主要包括:角的证明、线段的证明、三角形的证明、立体图形的证明等。

这些题型着重考察学生的空间观念和演绎能力。

二、解题技巧与策略角、线段、三角形问题在解决这类问题时,首先要明确题目要求,然后运用相关的定理和公式进行证明。

如角平分线定理、勾股定理、全等三角形判定定理等。

在解题过程中要注意逻辑严谨,每一步都要有明确的依据。

立体图形问题立体图形问题要求学生具备一定的空间想象力和推理能力。

在解决这类问题时,可以尝试将立体图形转化为平面图形,从而简化问题。

此外,要充分考虑图形的对称性、平行性、垂直性等特点,寻找解题突破口。

运用代数方法求解在一些几何题目中,可以通过建立方程或者函数关系来解决。

如角度的度数、线段的长度、三角形的面积等都可以转化为代数问题,运用方程或者函数求解。

三、注意事项与误区纠正学生在面对几何问题时,常常会出现以下误区:忽视定理的适用条件许多学生在使用定理时,不注意检查定理的适用条件,导致定理使用不当或者根本无法使用。

因此,在使用定理之前,一定要仔细阅读定理的适用条件。

跳跃步骤一些学生在解题时,为了图省事或者节省时间,会跳跃一些必要的步骤。

然而,这样的做法往往会导致逻辑断裂,使整个证明过程失去说服力。

因此,在解题时,一定要按照步骤逐一进行。

答案不完整由于部分学生在解题时存在头重脚轻的情况,导致最后的结论没有完整的表述或者干脆没有结论。

这种情况失分是非常可惜的。

因此,在解题时,一定要注意结论的完整性和正确性。

四、实战演练与案例分享例1:如图,点E、F在线段AD上,且△ABC≌△EDF,若∠D=50°,则∠B的度数为()A.80°B.60°C.100°D.90°或80°(分析)由全等三角形的性质得出对应角相等,再由平行线的性质得出答案即可.(解答)解:∵$\bigtriangleup ABC$≌$\bigtriangleup EDF$,∴$\angle D = \angle B = 50^{\circ}$,故可得$\angle B = 180^{\circ} -50^{\circ} \times 2 = 80^{\circ}$故选A.。

2020年九年级数学中考经典几何题讲义系列:截长补短

2020年九年级数学中考经典几何题讲义系列:截长补短

中考经典几何题讲义系列:截长补短有一类几何题其命题主要是证明三条线段长度的“和”或“差”及其比例关系。

这一类题目一般可以采取“截长”或“补短”的方法来进行求解。

所谓“截长”,就是将三者中最长的那条线段一分为二,使其中的一条线段与已知线段相等,然后证明其中的另一段与已知的另一段的大小关系。

所谓“补短”,就是将一个已知的较短的线段延长至与另一个已知的较短的长度相等。

然后求出延长后的线段与最长的已知线段的关系。

有的是采取截长补短后,使之构成某种特定的三角形进行求解。

截长法:(1)过某一点作长边的垂线(2)在长边上截取一条与某一短边相同的线段,再证剩下的线段与另一短边相等。

……补短法(1)延长短边。

(2)通过旋转等方式使两短边拼合到一起。

……几种截长补短解题法类型我们大致可把截长补短分为下面几种类型;类型①a±b=c类型②a±b=kc类型③±a b c类型④c²=a·b对于类型①,可采取直接截长或补短,绕后进行证明。

或者化为类型②证明。

对于②,可以将a±b与c构建在一个三角形中,然后证明这个三角形为特殊三角形,如等边三角形,等腰直角三角形,或一个角为30°的直角三角形等。

对于类型③,一般将截长或补短后的a±b与c构建在一个三角形中,与类型②相同。

实际上是求类型②中的k值。

对于类型④,将c²=a·b化为ca=bc的形式,然后通过相似三角形的比例关系进行证明。

在证明相似三角形的过程中,可能会用到截长或补短的方法。

例:B A在正方形ABCD中,DE=DF,DG⊥CE,交CA于G,GH⊥AF,交AD于P,交CE延长线于H,请问三条粗线DG,GH,CH的数量关系方法一(好想不好证)B A方法二(好证不好想)B AM例题不详解。

(第2页题目答案见第3、4页)E(1)正方形ABCD中,点E在CD上,点F在BC上,∠EAF=45o。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档