单回路控制系统的参数整定

合集下载

实验 6:气体压力 PID 单回路控制系统的设计与整定

实验 6:气体压力 PID 单回路控制系统的设计与整定

实验6:气体压力PID单回路控制系统的设计与整定1、测试实验目的1)掌握压力PID单回路控制系统的常用方法。

2)熟悉压力PID单回路控制系统组态。

3)掌握压力PID控制器参数整定方法。

2、实验原理1)压力作用于单位面积上的垂直力,工程上称为压力,物理学中称为压强。

压力依据零点参考压力的不同,分为绝对压力、表压力、压力差、负压力(真空)和真空度。

绝对压力:以完全真空为零标准所表示的压力。

表压力:以大气压为零标准所表示的压力,等于高于大气压力的绝对压力与大气压力之差。

大气压力:一个标准大气压是在纬度45度,温度为0℃,重力加速度为9.80665m/s2海平面上,空气气柱重量所产生的绝对压力,其值是101325Pa。

压差:除大气压力以外的任意两个压力的差值。

负压:绝对压力小于大气压时,大气压力与绝对压力之差为负压。

负压的绝对值称为真空。

真空度:绝对压力小于大气压时的绝对压力。

压力测量常用的单位有:①帕斯卡(Pa),其物理意义是,1牛顿的力作用于1平方米的面积上的压强(力)。

工程中常用MPa表示压力,1 MPa=106 Pa,②工程大气压(kgf/cm2),垂直作用于每平方厘米面积上的力,以公斤数为计量单位。

工程上常用kg/cm2表示。

1 kgf/cm2=9.80665×105 Pa=0.980665 MPa。

③物理大气压(atm),即上面所述的标准大气压。

④毫米汞柱(mmHg)、毫米水柱(mmH2O),垂直作用于底面积上的水银柱或水柱的高度为计量单位。

1 atm=760 mmHg。

许多生产过程都是在不同的压力下进行的,有些需要很高的压力,例如,高压聚乙烯、合成氨生产过程等,有些需要很高的真空度。

压力是化学反应的重要参数,不但影响到反应平衡关系,也影响到反应速率。

生产过程中的其它参数也经常通过压力间接测量,例如,流量、液位、温度等可以转换为压力进行测量。

2)压力的测量压力(压差)的测量方法主要有,液体式、弹性式、活塞式、电动式(电感、电容、电位、应变、压电、霍尔、力平衡、电涡流等)、气动式、光学式(光纤、光干涉、光电、激光等)。

Honeywell-DCS-控制回路PID参数整定方法

Honeywell-DCS-控制回路PID参数整定方法

Honeywell-DCS-控制回路PID参数整定方法Honeywell PKS系统控制回路PID参数整定方法鉴于目前一联合装置仪表回路自控率比较低,大部分的回路都是手动操作,这样不但增加了操作员的工作量,而且对产品质量也有一定的影响,特编制了此PID参数整定方法。

修改PID参数必须有“SUPV(班长)”及以上权限权限,具体权限设置切换方法如下;一、打开要修改的控制回路细目画面,翻到下图所示的页面(Loop Tune),修改PID控制回路整定的三个参数K,T1,T2;到强,对容量滞后有明显的作用,但是对纯滞后没有效果。

四、控制器的选择方法(1)P控制器的选择:它适用于控制通道滞后较小,负荷变化不大,允许被控量在一定范围内变化的系统;(2)PI控制器的选择:它适用于滞后较小,负荷变化不大,被控量不允许有余差的控制系统;(3)PID控制器的选择:它适用于负荷变化大,容量滞后较大,控制质量要求又很高的控制系统,比如温度控制系统。

五、PID参数整定的方法一般在工程应用中采用经验凑试法。

经验凑试法在实践中最为实用。

在整定参数时,必须认真观察系统响应情况,根据系统的响应情况决定调整那些参数。

观察系统响应效果,可以通过查看控制回路细目画面中的实时趋势曲线,衰减曲线最好是4:1,即前一个峰值与后一个峰值的比值为4:1。

经验值:在实际调试中,只能先大致设定一个经验值,然后根据调节效果修改,这里的P代表比例度,P=1/K。

总之,在整定时不能让系统出现发散振荡,如出现发散振荡,应立即切为手动,等系统稳定后减小放大倍数、增大积分时间或减小微分时间,重新切换到自动控制。

放大倍数越小,过渡过程越平稳,但余差越大。

放大倍数越大,过渡过程容易发生振荡。

积分时间越小,消除余差就越快,但系统振荡会较大,积分时间越大,系统消除余差的速度较慢。

微分时间太大,系统振荡次数增加,调节时间增加,微分太小,系统调节缓慢。

控制器参数凑试法的步骤:因为比例作用是基本的控制作用,因此,首先把比例度凑试好,待过渡过程已基本稳定,然后加积分作用消除余差,最后加入微分作用进一步提高控制质量,基本步骤如下:(A)对P控制器,将放大倍数放在较小的位置,逐渐增大K,观察被控量的过渡过程曲线,直到曲线满意为止;(B)对PI控制器,先置T1=0,按纯比例作用整定放大倍数使之达到4:1衰减曲线;然后将K缩小(10~20%),将积分时间T1由大到小逐步加入,直到获得4:1衰减过程;(C)对PID控制器,将T2=0;先按PI作用凑试程序整定K,T1参数,然后将放大倍数增大到比原值大(10~20%)位置,T1也适当减小之后,再把T2由小到大逐步加入,观察过渡曲线,直到获得满意的过渡过程。

单回路控制系统概述

单回路控制系统概述

单回路控制系统概述
设定值r 偏差e 调节`器
u
调节阀
干扰 f (t)
μ
被控过程
测量值x
测量变送器
y(t) 被调参数
对于过程控制系统设计和应用来说,控制方案的设计和 调节器参数的整定是其中两个重要内容。如果控制方案设计 不正确,仅凭调节器参数的整定是不可能获得较好的控制质 量的;若控制方案很好,但是调节器参数整定不合适,也不 能使系统运行在最佳状态。
⑷ 执行器 执行器的图形符号是由执行机构和调节机构的图形符号
组合而成的。
单回路控制系统
单回路控制系统概述
2.仪表位号
在检测控制系统中,构成回路的每个仪表(或元件)都用仪表位 号来标识。仪表位号由字母代号组合和回路编号两部分组成.首 字母表示被控变量,后继字母表示仪表的功能。回路的编号由 工序号和顺序号组成,一般用3-5位阿拉伯数字表示。
单回路控制系统
单回路控制系统概述
1.1 单回路控制系统的构成
单回路控制系统示例
液位控制系统
温度控制系统
压力控制系统
单回路控制系统
单回路控制系统概述
1.2 控制系统的工程表示
工艺控制系统流程图(管道仪表流程图):
液位控制系统
温度控制系统
压力控制系统
带测控点工艺流程图是自控设计的文字代号、图形 符号在工艺流程图上描述生产过程控制的原理图, 是控制系统设计、施工中采用的一种图示形式。
国家行业标准HG20505-92过程检测和控制系统用文字代号和图形符号
单回路控制系统
单回路控制系统概述
一些常用的图形符号和文字代号
1.图形符号
过程检测和控制系统图形符号包括测量点、连接线(引线、信 号线)和仪表圆圈等。 ⑴ 测量点

PID自动控制系统参数整定实验报告

PID自动控制系统参数整定实验报告

T13. PID自动控制系统参数整定(化工仪表与自动化,指导教师:卢红梅)实验一:一阶单容上水箱对象特性测试实验实验二:上水箱液位PID整定实验一、实验目的1)、通过实验熟悉单回路反馈控制系统的组成和工作原理。

2)、分析分别用P、PI和PID调节时的过程图形曲线。

3)、定性地研究P、PI和PID调节器的参数对系统性能的影响。

4)、通过实验熟悉单回路反馈控制系统的组成和工作原理。

5)、分析分别用P、PI和PID调节时的过程图形曲线。

6)、定性地研究P、PI和PID调节器的参数对系统性能的影响。

二、实验设备THKJ100-1型过程控制实验装置配置:上位机软件、计算机、RS232-485转换器1只、串口线1根、实验连接线。

型参数为串联釜数N三、实验原理实验一原理:阶跃响应测试法是系统在开环运行条件下,待系统稳定后,通过控制器或其他操作器,手动改变对象的输入信号(阶跃信号)。

同时,记录对象的输出数据或阶跃响应曲线,然后根据已给定对象模型的结构形式,对实验数据进行处理,确定模型中各参数。

实验二原理:图13.1单回路上水箱液位控制系统图13.1为单回路上水箱液位控制系统,单回路调节系统一般指在一个调节对象上用一个调节器来保持一个参数的恒定,而调节器只接受一个测量信号,其输出也只控制一个执行机构。

本系统所要保持的恒定参数是液位的给定高度,即控制的任务是控制上水箱液位等于给定值所要求的高度。

根据控制框图,这是一个闭环反馈单回路液位控制,采用工业智能仪表控制。

当调节方案确定之后,接下来就是整定调节器的参数,一个单回路系统设计安装就绪之后,控制质量的好坏与控制器参数选择有着很大的关系。

合适的控制参数,可以带来满意的控制效果。

反之,控制器参数选择得不合适,则会使控制质量变坏,达不到预期效果。

因此,当一个单回路系统组成好以后,如何整定好控制器参数是一个很重要的实际问题。

一个控制系统设计好以后,系统的投运和参数整定是十分重要的工作。

单回路控制系统整定实验报告

单回路控制系统整定实验报告

单回路控制系统整定实验报告本文是对单回路控制系统整定实验的总结和分析,主要包括实验目的、实验原理、实验过程、实验结果以及实验分析等方面的内容。

一、实验目的本实验的主要目的是掌握单回路控制系统整定方法,了解控制系统的稳态误差和动态响应特性,提高实际应用控制系统的能力。

二、实验原理单回路控制系统是一种基本的控制系统形式,它由被控对象、传感器、执行机构、控制器和控制信号等组成。

例如,温度控制系统、速度控制系统、压力控制系统等都是单回路控制系统的应用。

在通过控制器使被控对象产生控制输出信号的过程中,存在稳态误差和动态响应特性问题,对其进行整定是控制系统设计中重要的环节。

稳态误差是指控制器输出的控制信号与被控对象实际输出之间的误差。

当被控对象达到稳定状态时,控制器输出的控制信号与被控对象实际输出之间的误差称为稳态误差,在实际控制系统设计中,应尽可能使稳态误差达到最小。

动态响应特性是指控制系统对负载扰动、控制信号变化等外部干扰的响应能力。

在实际应用控制系统中,需要考虑控制系统的动态响应特性,以此保证系统稳定性和控制效果。

控制系统的整定就是调整控制器参数,使系统的稳态误差和动态响应特性达到最优状态,从而获得最佳控制效果。

三、实验过程本实验是基于MATLAB/Simulink软件进行的模拟实验。

实验系统模型:本实验模拟一个简单的单回路负反馈控制系统,其模型如图所示。

其中,控制器采用比例积分控制器(PI控制器),其控制方程为:$$u(t) = K_p e(t) + K_i \int_0^t e(τ) \, dτ$$传感器和被控对象之间的关系用传递函数表示为:$$G(s) = \frac{1}{s(1+0.5s)}$$控制器的参数Kp和Ki需进行整定。

实验过程中,先通过手动调节的方式获得基本的参数范围,再通过曲线法和频率法对其进行精细调整。

曲线法:首先设置一个阶跃参考信号,观察系统的单位阶跃响应曲线,根据曲线特征调整控制器参数。

单回路控制系统的调试

单回路控制系统的调试

单回路控制系统
单回路控制系统的调试
1.2 调节器参数的工程整定
整定的任务:根据被控过程的特性,确定PID调节器
的比例度 、积分时间 TI以及微分时间 TD 的大小。
在简单过程控制系统中,调节器的参数整定通常以系统 瞬态响应的衰减率 0.75 ~ 0.9为主要指标,以保证系统具 有一定的稳定裕量。另外还应满足系统稳态误差、最大动 态偏差(或超调量)和过渡过程时间等其它指标。
过程控制
单回路控制系统
单回路控制系统的调试
单回路控制系统的调试
1.1 控制系统的投运 1.2 调节器参数的工程整定
单回路控制系统
单回路控制系统的调试
单回路控制系统的调试
一旦控制系统按设计的要求连好,线路经过检查正确 无误,所有仪表经过检查符合精度要求并已运行正常 ,即可着手进行控制系统的调试,包括控制系统的投 运和调节器参数的整定。
单回路控制系统
单回路控制系统的调试
3.反应曲线法(动态特性参数法)
反应曲线法是利用系统广义过程的阶跃响应曲线 对调节器参数进行整定,是一种开环整定方法。
单回路控制系统
有自衡能力的广义被控过程
G(s) K es Ts 1
K y / ( ymax ymin ) x / (xmax xmin )
整定的实质就是通过调整调节器的参数,使其特性与被控
对象特性相匹配,来改善系统的动态和静态特性,以达到
最佳的控制效果。 理论计算整定法—— 要求已知过程的数学模型
整定方法
工程整定方法—— 一般不要求知道对象特性
单回路控制系统
单回路控制系统的调试
1.临界比例度法(闭环整定)
具体步骤:
1.首先将调节器的积分时间置于最大,微分时间置零,比例度置为较大的数值

单回路控制系统的PID调节解读

单回路控制系统的PID调节解读
de T t d = (μ Td -积分时间常数
用传递函数表示为s T s E s s W d D ==
( ( (μ
1、若e(t为单位阶跃,则
d d D T s s T s W =⋅=1 ( ( (t T t d δμ=
由于阶跃信号在t=0时刻有一个阶跃,其他时刻均不变化所以微分环节对阶跃信号的响应只在t=0时产生一个响应脉冲。
自动控制仿真调试材料李军
山东电力研究院热控所
2010-7-29
单回路控制系统的PID调节
一、自动控制系统简介
(1自动控制:在没有人直接参与的情况下,利用控制器使被控对象的被控量
自动地按预先给定的规律去进行。
(2自动控制系统:是由起控制作用的自动控制装置和被控制器控制的生产设
备通过信号的传递、联系所构成的系统。简言之,就是指被控
t
μTd
(四)三种控制作用的比较图2-42过渡过程曲线曲线1是配比例控制器的控制过程。由于比例控制规律具有控制及时的特点,所以控制过程时间较曲线2短,动态偏差也较小,因此控制过程结束存在静态偏差。通过减小控制器的比例系数可减小静态偏差,但会使系统的稳定性下降。曲线3是配比例积分控制器的控制过程。由于积分控制规律能消除静态偏差,所以控制作用能最终消除扰动对被调量的影响,实现无差控制。然而积分作用的控制不及时,又使控制过程的动态偏差加大,过渡过程时间加长(与曲线1相比),相对而言系统的稳定性下降。因此,积分作用引入到比例控制器后,控制器的比例带应适当加大(减少Kp),以弥补积分作用对控制过程稳定性的影响。曲线5是配比例积分微分控制器的控制过程。微分控制是一种超前控制方式,其实质是阻止被控量的一切变化。适当的微分作用可收到减小动态偏差,缩短控制过程时间的效果,这样在采用比例积分微分控制器时,又可适当减小比例带和积分时间。三、三种基本控制作用小结优点比例作用缺点动作速度快,能使控制过程趋于稳定单独使用时,产生静态偏差单独使用时,会使控制过程变得振荡,甚至不稳定不能单独使用积分作用微分作用能使被控量无静态偏差能有效的减少动态偏差比例控制作用是最基本的控制作用,而积分和微分作用为辅助控制作用。比例作用贯彻于整个控制过程之中,积分作用则体现在控制过程的后期,用以消

第四节单回路控制系统

第四节单回路控制系统

第四节单回路控制系统在热工生产过程控制中,最基本的且应用最多的单回路控制系统,其他各种复杂控制系统都是在单回路系统的基础上发展起来的,而且许多复杂控制系统的整定都利用了单回路控制系统的整定方法,可以说单回路控制系统是过程控制系统的基础。

一、单回路控制系统的组成及初步设计单回路控制系统的组成原理方框图如图3-44所示,它是仅有一个测量变送器,一个调节器和一个执行器(包括调节阀),连同被控对象组成的闭环负反馈控制系统。

图1-26 单回路控制系统组成原理方框图1、被调量的选择在图1-26中,被调量是表征生产过程是否符合工艺要求的物理量,在热工生产过程中主要是温度、压力、流量、化学成分等。

一般情况下,欲维持的工艺参数就是系统的被调量,如火力发电厂锅炉过热蒸汽温度控制系统的任务就是维持锅炉过热器出口蒸汽温度,所以汽温控制系统的被调量就是过热器出口汽温。

但是生产过程中,有些工艺参数目前还没有获得直接的快速测量手段,如火电厂进入磨煤机的原煤干燥程度的测量。

这种情况下往往采用间接测量手段,如采用磨煤机入口介质的温度来代表原煤的干燥程度。

以间接参数作为系统的被调量,要求被调量与实际所需维持的工艺参数之间为单值函数关系,否则要采取相应的补偿措施。

对于那些虽有直接测量手段,但所测得的信号过于微弱或迟延较大的情况,不如选用间接参数作为系统的被调量。

为提高测量的灵敏度,减小迟延,应采用先进的测量方法,选择合理的取样点,正确合理地安装检测元件。

2、控制量的选择选择什么样的控制量去克服扰动对被调量的影响呢?原则上是选择工艺上允许作为控制手段的变量作为控制量,一般不应选择工艺上的主要物料或不可控制的变量作为控制量。

例如:火力发电厂锅炉负荷控制系统,其被调量是主蒸汽压力,而影响主蒸汽压力的主要因素是汽轮机进汽量和锅炉燃料量,前者是电力生产要求所确定的,因而不能作为控制量,而只能选择燃料量作为控制量。

给定值 调节器 对象被调量 - μ 扰动 扰动 图1-28 单回路调节系统 3、控制通道和扰动通道单回路控制系统的组成如图1-27所示,图中W 01(s )为对象的传递函数,它是包括了检测元件、测量变送器、执行机构和调节阀在内的广义对象特性;W c (s )为调节器的传递函数,D 为扰动信号,W 02(s )为被调量与扰动信号间的传递函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单回路控制系统的参数整定
实验要求:
(1)了解调节器特性的实验测试方法
(2)掌握依据飞升特性曲线求取对象动态特性参数和调节器参数的方法
(3)熟悉单回路控制系统的工程整定方法
实验内容:
(1)在 Simulink 中搭建含该被控对象的单回路控制系统,其中输入为单位阶跃信号、单位负反馈、调节器选用 PID控制规律 (提示:PID环节用 Simulink 库中自带的)
(2)采用稳定边界法整定调节器参数,并给出 P、PI、PID三种调节规律下的单回路控制系统的输出曲线
Kp=4.78 Pm=0.2092 (Kp=1/Pm)
Tm=156.1-84.11=71.99s
P调节:
Kp=1/(2*Pm)=1/2*4.78=2.39
PI调节:
Kp=1/(2.2*Pm)=1/2.2*4.78=2.173
Ki=Kp/Ti=2.173/(0.85*71.99)=0.0355
PID调节:
Kp=1/(1.7*Pm)=1/1.7*4.78=2.81
Ki=Kp/Ti=2.81/(0.5*71.99)=0.078 Kd=Kp*Ti=2.81*0.125*71.99=25.286
(3)比较、分析实验结果
(4)加分项目:采用衰减曲线法整定调节器参数衰减比为4:1 时。

相关文档
最新文档