柔性制造系统技术
柔性制造系统技术PPT
特点:柔性好;适用于多品种中小批量生产
新技术:数控技术、计算机编程技术等
2020/4/10
11
二、发展历程的第二种划分方法(五个阶段)
3、第三阶段(1965年-):柔性制造,包括计算机直接 控制(DNC)、FMS和FMC。
特点:柔性、高效率;适用于多品种中小批量生产 ;
新技术:GT,DNC,FMS,监控技术……
管理、控制和优化。
2020/4/10
4
三、柔性自动化制造技术在功能上的含义
可 用 TQCSEF 模 型 来 描 述 柔 性 自 动 化 制 造
技术的目标。
•T(Time)——时间,加速新产品研制,缩短交货 期
•Q(Quality)——质量
•C(Cost) ——成本
•S(Service)——服务
•E(Environment)——环保
1、1936年美国通用汽车公司工作人员认为:在一个生产 过程中,机器之间的零件转移不用人去搬运就是“自动化 ”。即:以机械代替人力操作,自动完成特定的作业。
2、随着计算机的出现和应用,自动化的概念扩展为:用 机器包括计算机代替或辅助人的体力劳动和脑力劳动,按 照需求和目标,灵活、自动地完成特定的作业。
1990年4月由日本倡导。 特点:集成日本的企业技术、欧共体的精密工
程技术、美国的系统技术等
以上介绍五个阶段,是国外发达国家的发展历程。我国 与国外发达国家相比,有所滞后,目前正在努力跟进。
2020/4/10
13
作业
1、柔性自动化制造技术的发展先后经历了哪 五个阶段?
(1)刚性自动化 (2)数控加工 (3)柔性制造 (4)计算机集成制造系统 (5)智能制造系统
1、第一阶段(1913年-):刚性自动化,包括刚性生产 线和自动单机。
现代制造技术第6章 柔性制造技术
统所决定的。
第6章 柔性制造技术
目前,在 FMS 上加工的零件可分为两大类、一类为棱体类 零件、如箱体、框架等;另一类为回转体零件。表6-1 所示加 工单元机床配置。
表6-1加工单元机床配置
加工零件类型 箱体类 回转体类 箱体类+回转体类 特殊类 机床配置 CNC加工中心 CNC车削中心、 CNC磨床 CNC加工中心+CNC车削中心 专用CNC机床
1.加工系统的作用和机床设备的选用 FMS 是一个计算机化的自动制造系统,能以最少的人工干 预加工任一范围零件族的零件。在FMS中,用于把原料转变为 最后产品的机床设备与夹具、托盘和自动上下料机构等机床附 件一道共同构成了FMS的加工系统。加工系统是FMS最基本的 组成部分,FMS的加工能力很大程度上是由它所包含的加工系
形式(串并联)三种,其特征如图6-10所示。
第6章 柔性制造技术
机床配置形式与特征比较
特征
互替形式
互补形式
混合形式
简图
生产柔性
低
中
高
生产率
低
高
中
技术利用率
低
中
高
系统可靠性
高
低
中
投资强度比
高
低
中
图6-10 机床配置形式和特征比较
第6章 柔性制造技术
6.2.2 机床辅具及自动上下料装置
1. 机床夹具 在机床上装夹工件所使用的工艺装备称为机床夹具。 FMS机床夹具的合理选用具有如下主要作用:易于保证加 工精度,并使一批工件的加工精度稳定;缩短辅助时间,提高 劳动生产率,降低生产成本;减轻工人操作强度,降低对工人 的技术要求;扩大机床的工艺范围,实现一机多能;减少生产 准备时间,缩短新产品试制周期。
柔性制造系统的关键技术及发展趋势
柔性制造系统的关键技术及发展趋势【摘要】柔性制造系统是一种灵活、高效的生产系统,在工业生产中具有重要意义。
本文首先介绍了柔性制造系统的重要性和定义,然后从智能控制技术、数据分析与人工智能技术、机器人技术、传感技术等方面分析了柔性制造系统的关键技术。
接着讨论了柔性制造系统的发展趋势,包括自主化和智能化、高度集成化与模块化、模块化制造与定制化制造的结合、网络化与数字化生产等。
最后探讨了柔性制造系统的未来发展方向、在工业生产中的应用前景以及对提升生产效率的意义。
通过本文的内容,读者可以更深入地了解柔性制造系统,并认识到其在现代工业生产中的重要性和发展前景。
【关键词】柔性制造系统, 关键技术, 发展趋势, 智能控制技术, 数据分析, 人工智能技术, 机器人技术, 传感技术, 自主化, 智能化, 高度集成化, 模块化, 定制化制造, 网络化, 数字化生产, 未来发展方向, 应用前景, 生产效率1. 引言1.1 柔性制造系统的重要性柔性制造系统是当今工业生产领域中备受关注的重要技术。
其重要性主要体现在以下几个方面:柔性制造系统可以提高生产效率和灵活性。
通过将传统的生产线转变为可调整、自适应的制造系统,可以更快速地适应市场需求的变化,实现生产计划的灵活调整,提高生产效率。
柔性制造系统有助于降低生产成本。
传统生产线需要大量的人力和设备投入,而柔性制造系统则可以通过智能化控制和优化配置,实现自动化生产,降低人力成本,减少资源浪费,从而降低生产成本。
柔性制造系统还可以提升产品质量和可靠性。
通过引入先进的智能控制技术和数据分析技术,可以实现对生产过程的精准监控和调整,从而确保产品质量和生产稳定性。
柔性制造系统的重要性在于其可以带来生产效率的提升、成本的降低、产品质量和可靠性的提升,为工业生产领域带来更大的竞争优势和发展空间。
随着技术的不断进步和应用的深入推广,柔性制造系统将在未来发挥越来越重要的作用。
1.2 柔性制造系统的定义柔性制造系统是一种能够根据不同生产要求灵活调整和适应的生产系统。
《智能制造加工技术》第5章 柔性制造技术
3. FMS的优点及效益
1、柔性制造能力强; 2、设备利用率高; 3、减少了设备成本与占地面积; 4、减少了直接生产工人,提高了劳动生产率; 5、减少了在制品数量,提高了对市场的反应能力; 6、产品质量得以提高; 7、FMS可以逐步地实现实施计划。
5.1.1 FMS的物料管理
物料的储运系统是柔性制造系统中的一个重要组成部分。一个工件从毛坯
堆跺机
图示为双柱式堆跺机是一种 可在自动立体仓库高层货架巷 道轨道上穿梭行走,并堆高层 货架的物料仓位存取物品的专 用起重设备。为刚性起见,通 常采用框架结构。堆跺机通常 由行走机构、升降机构、货台 与装卸托盘、框架、导向机构、 控制系统和安全保护装置等组 成。
自动化仓库的计算机控制
自动化仓库的含义包括仓库管理自动化和入库、出库的作业自动化。仓库管 理自动化包括对货箱、账目、货格及其他信息管理的自动化,入库、出库的作 业自动化包括货箱或物料的自动识别、自动认址、货格状态的自动检测以及堆 垛机动作的自动控制。
3、柔性制造系统(FMS)
包括2台以上的CNC、FMM或FMC组成,其控制与管理功能比 FMC强,规模比FMC大,对数据管理和通信网络要求高。
4、柔性制造生产线(FML)
其加工设备在采用通用数控机床的同时,更多地采用数控组合 机床,如数控专用机床、可换主轴箱机床、模块化多动力头数控机 床等,工件输送线多为单线、固定,柔性较低、专用性强、生产率 高,相当于数控化的自动生产线,一般用于少品种、中大批量生产、 可以说,FML相当于专用FMS。
3.FMS的发展状况 FMS是先进制造技术的一部分,在欧美、日本、俄罗斯 有较大的发展;
1985年世界各国已投入运行的FMS有500多套,88年近 800套,90年超过1000套,目前约共有4000多套FMS在 运行;
柔性制造系统的工作原理
柔性制造系统的工作原理
柔性制造系统的工作原理基于以下几个方面:
1. 自动化:柔性制造系统利用自动化技术,包括机器人、传感器、计算机控制等,实现生产过程的自动化操作。
这种自动化操作可以大大提高生产效率,并提供高质量的产品。
2. 机器交互:柔性制造系统将不同的机器设备和工作站连接起来,通过网络和通信技术实现彼此之间的交互。
这种交互可以促进信息的共享和流动,使得生产过程更加协调和高效。
3. 灵活性:柔性制造系统具有高度的灵活性,可以根据生产需求快速调整生产线的配置和布局。
例如,可以通过更换工装、调整程序等方式实现不同产品的生产,从而适应快速变化的市场需求。
4. 数据管理:柔性制造系统通过传感器和计算机控制系统收集和管理生产过程中产生的数据。
这些数据可以用于优化生产过程、提高产品质量、实现故障检测和预测等。
同时,数据的分析和处理也可以提供管理决策的支持。
综上所述,柔性制造系统的工作原理主要包括自动化、机器交互、灵活性和数据管理等方面。
通过这些原理的应用,柔性制造系统可以提供高效、灵活和智能化的生产方案。
柔性制造系统的关键技术及发展趋势
柔性制造系统的关键技术及发展趋势【摘要】柔性制造系统是指能够灵活应对不同生产需求的生产系统。
本文首先介绍了柔性制造系统的概念和重要性,随后探讨了柔性制造系统中的关键技术,包括智能化技术、传感器技术和机器学习。
这些技术的应用使得生产过程更加智能化和高效化。
文章还分析了柔性制造系统的发展趋势,指出未来的发展方向和市场前景。
最后强调了柔性制造系统在现代制造业中的重要性,为提高生产效率和灵活性提供了重要支持。
随着技术的不断进步,柔性制造系统将在未来发挥越来越重要的作用。
【关键词】柔性制造系统、关键技术、智能化技术、传感器技术、机器学习、发展趋势、未来发展方向、市场前景、重要性1. 引言1.1 柔性制造系统的概念柔性制造系统是一种利用先进的软件、硬件和控制技术,使生产设备可以根据不同产品的要求,自动灵活地调整和改变生产方式的制造系统。
它可以根据市场需求和生产计划,实现生产线的自动化、柔性化和智能化,从而提高生产效率和产品质量。
柔性制造系统能够快速适应不同产品的生产需求,降低生产成本,缩短交货周期,提高生产效率,增强企业的竞争力。
它可以通过实时监控、自动化调整和灵活排产,实现生产过程的高度自动化和智能化,从而有效应对市场变化和客户需求的快速变化。
柔性制造系统的核心理念是灵活性和智能化,通过优化生产流程和提高生产效率,实现生产过程的高度自动化和智能化,从而使企业具备更强的市场适应能力和竞争力。
柔性制造系统已经成为现代制造业发展的重要趋势,对推动工业化升级和提升企业核心竞争力具有重要意义。
1.2 柔性制造系统的重要性柔性制造系统的重要性体现在多个方面。
柔性制造系统可以有效提升生产效率,减少生产成本,提高产品质量和灵活性。
柔性制造系统可以满足客户个性化需求,缩短产品上市时间,提升市场竞争力。
柔性制造系统可以帮助企业更好地应对市场变化和快速定位生产方向,提高企业的反应速度和灵活性。
柔性制造系统还可以提高企业内部协作效率,优化资源配置,推动企业管理创新。
柔性制造系统在工业生产中的应用
柔性制造系统在工业生产中的应用随着工业制造技术的不断发展,柔性制造系统被越来越广泛地应用于工业生产中。
它不仅能够提高生产效率和质量,还能够降低生产成本,满足快速变化的市场需求。
本文将从柔性制造系统的概念、特点、分类以及应用等方面来探讨它在工业生产中的应用。
一、柔性制造系统的概念和特点柔性制造系统是为了适应市场需求,提高制造效率而开发的一种先进制造技术,它是一种具有高度自治、弹性和适应性的生产系统。
柔性制造系统的主要特点如下:1.可配置性柔性制造系统可以根据需求灵活地实现多种不同的生产任务。
2.自适应性柔性制造系统能够自动调整生产过程中的参数和条件,以优化生产过程。
3.动态性柔性制造系统可以根据市场需求和客户要求灵活地适应生产变化。
4.互操作性柔性制造系统可以与其他制造系统进行无缝整合,以实现高效协作和协同生产。
二、柔性制造系统的分类根据主要组成部分不同,柔性制造系统可以分为以下几类:1. 车间级柔性制造系统车间级柔性制造系统是工业生产中最常见的柔性制造系统类型,它通常由一组用于生产、输送和监控产品的设备组成。
这种系统的主要目标是提高生产效率和质量。
2. 生产单元级柔性制造系统生产单元级柔性制造系统是一种更高级别的系统,它由多个车间级柔性制造系统组成,可以根据客户需求灵活地组合和调整生产流程,以实现更高效的生产。
3. 工厂级柔性制造系统工厂级柔性制造系统是最高级别的柔性制造系统,它由多个生产单元级柔性制造系统组成,可以实现完整的生产流程,包括订单管理、库存管理和生产调度等。
三、柔性制造系统在工业生产中的应用柔性制造系统在工业生产中有广泛的应用,包括以下几个方面:1. 汽车制造汽车制造是一个高度精细的生产过程,需要各种不同的设备和技术来完成。
柔性制造系统可以使汽车制造商更轻松地调整生产流程、提高生产效率和质量。
2. 电子制造电子制造是一个高度自动化的生产过程,需要高度灵活的生产线和设备。
柔性制造系统可以使电子制造商更轻松地实现批量生产和快速响应市场需求。
机械制造产业的柔性制造系统工作原理
机械制造产业的柔性制造系统工作原理柔性制造系统(Flexible Manufacturing System,简称FMS)是机械制造产业中一种先进的生产组织方式,旨在提高生产效率、降低成本、提高产品质量和灵活性。
本文将介绍柔性制造系统的工作原理,并探讨其在机械制造产业中的应用。
一、柔性制造系统的定义及特点柔性制造系统是由多个数控机床、自动化设备、机器人、输送设备、仓储设备、计算机及网络组成的集成自动化生产系统。
其具有以下特点:1. 高度集成:柔性制造系统通过网络和计算机技术将各种设备和系统紧密连接,实现设备之间的信息交互和协调运作。
2. 多样化生产:柔性制造系统能够自动完成各种工艺流程,实现小批量、多样化、高效率的生产方式。
3. 自适应能力强:柔性制造系统能够根据产品的设计要求和市场需求,自主地进行工艺调整和流程变化,提高生产适应性和灵活性。
4. 高度自动化:柔性制造系统中各设备均具备高度自动化水平,能够自主完成各种操作,减少人工干预。
二、柔性制造系统的工作原理柔性制造系统基于计算机控制和信息技术,通过物流系统和信息系统的协同配合,实现生产过程的自动化、高效化和灵活化。
其工作原理主要包括以下几个方面:1. 自动化生产设备在柔性制造系统中,多个数控机床、自动化设备和机器人等设备通过网络连接,在计算机的控制下实现各种生产操作。
这些设备能够自动切换和调整工作状态,以满足生产任务和要求。
2. 信息管理系统柔性制造系统依赖于信息管理系统,通过传感器、计算机及网络等技术,实现对生产过程的监控和管理。
信息管理系统能够实时采集、处理和传输各种数据,进行生产计划的编制、设备调度的优化以及生产状态的监控。
3. 物流系统柔性制造系统的物流系统负责物料和零部件的输送和仓储管理,以确保生产过程的连续性和高效性。
物流系统通过输送设备、仓储系统和自动导引车等工具,将物料从一个工序转移到另一个工序,减少了物料的运输时间和人工干预。
柔性制造系统的优点
柔性制造系统的优点柔性制造系统(Flexible Manufacturing System)是一种集成了自动化设备、计算机控制和智能化技术的先进制造系统。
与传统的生产线相比,柔性制造系统具有许多独特的优点。
本文将探讨柔性制造系统的优点,并解释为什么越来越多的企业选择使用柔性制造系统来提升其生产效率和竞争力。
1. 生产灵活性柔性制造系统允许企业根据需求进行快速调整和重组生产线。
这种灵活性使企业能够快速适应市场变化和客户需求的变化。
它能够处理多种类型的产品和批量大小,而不需要停机进行设备或工艺的更改。
这样,企业就可以更快地推出新产品,并根据市场需求进行生产优化。
2. 节约成本柔性制造系统通过自动化和集成的生产流程,能够减少人力和物料的浪费,从而降低生产成本。
相比传统的生产线,柔性制造系统可以更好地优化资源利用,减少库存和运输成本。
此外,柔性制造系统还能提供实时数据分析和生产监控,帮助企业及时发现和解决生产中的问题,避免不必要的损失。
3. 提高生产效率柔性制造系统通过自动化和智能化的技术,实现了高效的生产流程。
它能够同时进行多种工序,减少机器和工人之间的等待时间,从而提高生产效率。
柔性制造系统还可以通过优化排程和调度,最大限度地提高生产线的利用率。
这种高效性不仅可以缩短生产周期,还可以提高产品质量和一致性。
4. 提高产品质量柔性制造系统通过自动化和智能化技术,减少了人为因素对产品质量的影响。
它能够实时监控生产过程,并及时发现和纠正潜在的问题。
柔性制造系统还可以通过自动化检测和质量控制,确保产品符合规范和标准。
这样,企业可以提供更高质量的产品,增加客户满意度,树立良好的品牌形象。
5. 创新能力柔性制造系统具有高度的可配置性和可扩展性,使企业能够更快速地实现生产线的改进和创新。
它可以方便地引入新的工艺和技术,提供更多的生产选择和灵活性。
柔性制造系统还可以支持数据驱动的生产过程优化和决策,帮助企业更好地应对市场挑战和竞争压力。
柔性制造系统、柔性制造单元和成组技术的发展及其应用
三、未来展望
未来,柔性制造技术将会朝着智能化、自动化、绿色化等方向发展。智能化 制造将会实现更加精准、高效的生产,自动化制造将会减少人工干预和错误率, 绿色化制造将会实现资源优化利用和社会可持续发展。
四、结论
四、结论
现代柔性制造技术是一种灵活、高效的制造技术,它能够适应不断变化的市 场需求和消费趋势,提高生产效率、降低成本、提高产品质量和缩短产品开发周 期。随着科技的不断发展,柔性制造技术将会迎来更加广阔的发展前景。未来, 企业需要不断提高柔性制造技术的水平和效率,以适应市场的变化,实现可持续 发展。
一、柔性制造系统的概念和组成部分
柔性制造系统(Flexible Manufacturing System,FMS)是一种集自动化、 数字化、精益化于一体的制造系统。它涵盖了生产设备、物料运输、信息处理等 各个方面,能够在不同的生产条件下快速、灵活地生产出满足市场需求的高品质 产品。
一、柔性制造系统的概念和组成部分
一、现代柔性制造技术
现代柔性制造技术的核心是数字化制造,它包括计算机辅助设计、制造执行 系统、数控机床、机器人等。这些数字化设备和系统可以通过互联网和物联网实 现互联互通,从而形成一个智能化的制造系统。在这个系统中,生产流程可以根 据市场需求进行快速调整,生产计划可以实时更新,生产资源可以得到优化配置。
基本内容
目前,柔性制造技术已经发展到了一个相对成熟的阶段。在应用领域方面, 柔性制造技术主要应用于定制化、多样化产品的生产,如汽车零部件、3C电子产 品、医疗器械等。这些领域的产品更新换代迅速,要求制造企业具备快速响应市 场变化的能力。而柔性制造技术的应用正好能够满足这一需求,实现快速、灵活 的产品生产。
二、柔性制造系统的应用
二、柔性制造系统的应用
机械制造中的柔性制造系统研究报告
机械制造中的柔性制造系统研究报告一、引言在当今竞争激烈的制造业领域,满足市场多样化和个性化的需求成为企业生存和发展的关键。
传统的刚性制造系统在应对产品快速更新换代和小批量多品种生产时显得力不从心,而柔性制造系统(Flexible Manufacturing System,FMS)的出现为解决这些问题提供了有效的途径。
二、柔性制造系统的定义与组成(一)定义柔性制造系统是一种由计算机控制的、能够在一定范围内适应加工对象变化的自动化制造系统。
它将数控机床、工业机器人、自动搬运车、自动化仓库等设备通过自动化输送系统连接起来,并在中央控制系统的统一管理下协调工作。
(二)组成1、加工系统通常由若干台数控机床或加工中心组成,是 FMS 的核心部分,负责完成各种零件的加工任务。
2、物流系统包括自动化输送设备(如传送带、自动导引小车等)、自动化存储设备(如立体仓库)以及搬运机器人等,负责原材料、在制品和成品的运输和存储。
3、控制系统是 FMS 的大脑,负责对整个系统进行调度、监控和管理,确保各设备之间的协调运行。
4、刀具管理系统负责刀具的存储、调配和监控,保证加工过程中刀具的及时供应和正常使用。
三、柔性制造系统的特点与优势(一)特点1、灵活性能够快速适应产品品种和生产批量的变化,无需对设备进行大规模的调整和改造。
2、自动化程度高实现了从原材料到成品的全过程自动化生产,减少了人工干预,提高了生产效率和产品质量。
3、可重构性系统的设备和布局可以根据生产需求进行重新组合和调整,以适应不同的生产任务。
(二)优势1、提高生产效率通过优化生产流程和减少设备调整时间,能够显著缩短生产周期,提高设备利用率。
2、降低生产成本减少了在制品库存和废品率,同时降低了人力成本和设备维护成本。
3、提高产品质量自动化生产过程能够保证产品质量的稳定性和一致性,减少人为因素的影响。
4、增强企业竞争力能够快速响应市场需求,为企业赢得更多的订单和市场份额。
十四.柔性制造系统(FMS)
刀具: 模块式(TMS):刀柄,刀杆,接长杆,接上套,刀夹,刀 模块式(TMS):刀柄,刀杆,接长杆,接上套,刀夹,刀 体,刀头,刀刃等. 整体式(TSG):镗铣类整体数控工具系统 整体式(TSG):镗铣类整体数控工具系统 夹具:统一基准,敞开性好 夹具:统一基准,敞开性好
– – 托盘:运输载体,各单元的接口. 托盘:运输载体,各单元的接口. 组合夹具:
ISO托盘的标准:ISO/DIS8526-1(2) ISO托盘的标准:ISO/DIS8526完全标准化的元件组合而成. 基本元件8 基本元件8大类:基础件,支承件,定位件,导向件,压紧 件,紧固件,合件,其他件. 两大类型: 槽系组合夹具:键和槽定位. 孔系组合夹具:孔,销定位.
1.
理想的FMS应具有8 理想的FMS应具有8种柔性:
运行柔性 系统处理其局部故障并维持继续生产原定工件族的 能力 6. 批量柔性: 在成本核算上适应不同批量的能力 7. 扩展柔性: 根据生产需要方便地模块化进行组建和扩展能力 8. 生产柔性: 系统适应生产对象变换的范围和综合能力5.二, Nhomakorabea成和类型:
基本组成: 1. 由计算机控制和管理 2. 采用了CNC控制为主的多台加工设备和其 采用了CNC控制为主的多台加工设备和其 他生产设备. 3. 系统中的加工设备和生产设备通过物料输 送装置连接.
FMS基本组成 FMS基本组成
FMS的两个主要特点:柔性和自动化 FMS的两个主要特点:柔性和自动化
智能制造中的柔性制造技术研究
智能制造中的柔性制造技术研究一、引言随着全球制造业的快速发展和不断升级,智能制造已成为推动制造业转型升级的重要途径。
其中,柔性制造技术是智能制造中的重要组成部分,具有很强的灵活性和适应性。
本文将从柔性制造技术的定义、特点以及在智能制造中的应用等方面进行阐述。
二、柔性制造技术的定义与特点1. 定义柔性制造技术是指在生产制造过程中,能够快速适应不同产品、不同规格、不同批次的生产需求,从而实现生产过程的灵活性和智能化。
2. 特点(1)自适应性:柔性制造系统具备自动识别、自动加工、自动控制和自动调整等特点,能够自动适应生产任务的变化和调整生产过程的参数,提高了生产效率和质量。
(2)多样化:柔性制造系统可以适应不同的生产要求,能够生产多种类型、多批次、多规格的产品。
(3)高效性:柔性制造系统采用智能化、自动化技术,能够提高生产效率,减少物料浪费和能源损耗。
(4)适应性:柔性制造系统可以根据市场需求,灵活调整生产能力,提高市场竞争力。
三、柔性制造技术在智能制造中的应用1. 智能装备制造柔性制造技术可以实现智能装备制造中的快速定制、多品种生产和自适应生产等功能。
通过智能加工设备的自动化和智能化,可以提高产品加工质量、缩短生产周期、降低生产成本。
2. 智能制造流程控制柔性制造技术可以实现智能制造过程的统一管控,通过灵活地调整生产任务和工艺参数,实现生产过程的自适应控制和调度,降低制造成本、提高生产效率。
3. 智能仓储物流管理柔性制造技术可以实现智能仓储物流管理中的快速配送、智能分拣和自动化运输等功能。
通过智能化的仓储物流管理系统,可以实现物流信息的实时监控和快速响应,提高物流效率和降低物流成本。
4. 智能制造质量控制柔性制造技术可以实现智能制造过程中的自动化检测、智能控制和自动调整等功能,通过实时监控质量数据和自动化控制,可以实现生产过程的优化控制,提高生产质量和出品率。
四、柔性制造技术发展趋势1. 制造模式智能化将柔性制造技术与智能制造技术融合,实现制造流程的全面智能化,从而提高制造效率、精度和灵活性。
计算机集成制造技术柔性制造系统
计算机集成制造技术柔性制造系统1. 引言随着科技的不断发展,计算机集成制造技术已经在制造业中得到广泛应用。
柔性制造系统(Flexible Manufacturing System,简称FMS)作为计算机集成制造技术的一种重要应用,已经成为现代制造业中的关键组成部分。
本文将介绍计算机集成制造技术柔性制造系统的概念、特点、优势以及在实际应用中可能面临的挑战。
2. 柔性制造系统的概念柔性制造系统是指利用计算机控制和自动化技术来实现对多品种、小批量生产的一种生产方式。
它通过灵活的生产能力和自动化设备的配合,能够快速地适应市场需求的变化,提高生产效率和产品质量。
柔性制造系统通常由计算机控制的机器设备、计算机网络、传感器、执行器等组成。
它能够自动调整生产线的组成和工艺流程,实现多种产品的生产,并能根据生产需求进行自主调整。
3. 柔性制造系统的特点柔性制造系统具有以下特点:•多品种生产能力:柔性制造系统能够通过调整设备和工艺流程,适应多种产品的生产需求。
•小批量生产能力:柔性制造系统能够实现快速转换,并且能够适应小批量的生产需求。
•自动化程度高:在柔性制造系统中,大部分的生产过程都是通过计算机控制和自动化设备实现的,减少了人为操作的错误和劳动强度。
•生产效率高:柔性制造系统通过自动化和优化的工艺流程,能够提高生产效率,减少生产时间和资源的浪费。
4. 柔性制造系统的优势柔性制造系统具有以下优势:•提高生产效率:柔性制造系统能够实现生产过程的自动化和优化,提高生产效率,降低生产成本。
•更快的产品上市时间:柔性制造系统能够快速适应市场需求的变化,减少了产品的研发和上市时间,提高了企业的竞争力。
•降低库存成本:柔性制造系统能够根据需求进行调整,减少了库存的积压,降低了库存成本。
•提高生产质量:柔性制造系统能够通过自动化和优化的工艺流程,减少了人为操作的错误,提高了产品的质量。
5. 柔性制造系统的挑战柔性制造系统在实际应用中也面临一些挑战:•技术要求高:柔性制造系统的建设和运行需要高水平的技术和专业知识,对人员的要求较高。
柔性制造系统技术概述
柔性制造系统技术概述一、柔性制造系统的产生和特点1、产生背景:(1)市场变化导致中小批量、多品种生产方式成为需要。
市场竞争的加剧及顾客需求的多样化,导致传统的以规模效应带动成本降低的刚性生产线不再适应市场的变化。
•刚性生产线忽略了可能增加的库存而带来的成本的增加;•1973年石油危机,使大批量生产的缺点暴露。
(2)科学技术的进步推动了自动化程度和制造水平的提高。
•NC、CNC、DNC•CAD、CAM•GT、CAPP•ROBOT2、柔性自动化制造技术的产生•世界上公认的第一条柔性制造系统是英国莫林(Molin)机床公司1967年建成的“Molin System-24”;•20世纪70年代末和80年代初,计算机辅助管理物料自动搬运,刀具管理和计算机网络、数据库技术的发展以及CAD/CAM技术的成熟,出现了更加系统化、规模更加扩大的柔性制造系统。
•20世纪80年代末,FMS已经成为一项成熟的技术,并在世界范围得到广泛应用。
3、我国FMS的研究状况我国采取引进和开发相结合的方针,引进箱体类零件、旋转体件及钣金件加工FMS的全部或部分硬件技术。
•1984是我国研制FMS的起步时间,比国外晚了17年。
我国第一套FMS系统是由北京机床研究所于1985年10月开发完成的(JCS-FMS-1),用于加工数控机床直流伺服电机中的主轴、端盖、法兰盘、壳体和刷架体等,它由5台国产加工中心、日本富士电机公司的AGV(自动导引车)及4台日本产的机器人组成,其控制系统由FANUC提供,据分析它的投资回收期约为两年半。
•1983年-1985年,在国家的支持下北京第一机床厂、湖南江麓机床厂、郑州纺织机械厂、广西柳州开关厂等一些单位分别率先从德国、日本进口了国内第一批FMS。
•1985年后在国家机电部“七五”重点科技攻关项目的支持和国家863高技术发展计划自动化领域的工作的带动下,FMS得到极大的重视和发展,进入了自行开发和部分进口的交叉阶段。
柔性制造系统fms的原理与实现
柔性制造系统fms的原理与实现柔性制造系统(FMS)是一种自适应性高、可变性强的生产系统,它通过集成自动化技术、信息技术和通讯技术,实现对生产过程的灵活控制和管理。
FMS的原理可以总结为以下几个核心要点:1. 集成化:FMS由多个设备和工作站组成,包括数控机床、机器人、传送带等,这些设备通过网络进行连接和通信,实现集成化操作和控制。
2. 自动化:FMS中的设备和工作站通常都是自动化的,可以通过编程和控制系统来实现自动操作和运行。
这种自动化能够提高生产效率,降低人力成本。
3. 灵活性:FMS具有高度的灵活性,能够根据生产需求和变化的市场需求进行调整和适应。
通过改变设备配置和调整作业流程,FMS能够适应不同的产品和生产批量。
4. 数据化:FMS采集和处理大量的生产数据,包括设备状态、生产进度、质量指标等。
通过对这些数据进行分析和监控,可以实现生产过程的优化和效率提升。
FMS的实现主要包括以下几个方面:1. 设备集成:FMS需要将不同类型的设备和工作站进行集成和连接,建立起统一的通信网络和控制系统。
这可以通过标准化的接口和协议来实现。
2. 控制系统:FMS的控制系统是实现自动化和灵活控制的关键,它需要能够对设备进行编程和控制,实现自动化生产流程的调度和监控。
现代FMS通常采用计算机控制系统和软件来实现。
3. 数据管理:FMS需要对大量的生产数据进行管理和分析,以便实现生产过程的优化和效率提升。
这可以通过数据库和数据分析软件来实现。
4. 人机交互:FMS的运行和管理需要与人员进行交互和协作。
这可以通过人机界面和控制面板来实现,使操作员能够对FMS进行监控和控制。
总而言之,FMS通过集成化、自动化、灵活性和数据化的原理和实现,能够实现高效、灵活、可变的生产过程,提高生产效率和产品质量,适应变化的市场需求。
智能制造技术10-柔性制造系统fms
02 柔性制造系统(FMS)概述
FMS的定义与特点
定义
柔性制造系统(FMS)是一种高度自动化的 制造系统,能够快速、高效地生产多种中 小批量、多品种、结构复杂的产品。
降低成本
通过批量生产,降低单位产品的成本。
高度自动化
采用计算机控制技术,实现制造过程的自 动化和智能化。
高效率
通过优化生产流程,减少生产环节,提高 生产效率。
航空航天制造
FMS可以应用于航空航天制造环节,实现复杂部 件的自动化生产和检测,提高生产效率。
3
食品加工
FMS可以应用于食品加工环节,实现自动化生产 线和包装线,提高生产效率和卫生质量。
06 未来智能制造技术的发展 趋势与展望
人工智能与机器学习在智能制造中的应用
自动化决策
01
利用机器学习算法对生产数据进行实时分析,自动调整生产参
数据分析与优化技术
数据挖掘
利用数据挖掘技术,发现数据中的模式和规律, 为生产决策提供支持。
仿真优化
通过仿真技术,对生产过程进行模拟和优化,提 高生产效率和降低成本。
实时优化
利用实时优化技术,对生产过程进行在线优化, 提高生产过程的稳定性和可靠性。
04 FMS的优点与挑战
FMS的优点
高灵活性
FMS能够快速适应不同类 型和数量的产品生产,满
FMS的主要特点
可快速调整生产过程,适应多品种、小批量生产需求;具有高自动化、高柔性、 高生产效率等优势。
背景介绍
随着市场需求多样化、个性化的发展 ,传统制造模式难以满足快速变化的 市场需求。
FM强企 业竞争力等方面具有重要作用,成为 制造业转型升级的重要方向。
灵活性
能够适应市场需求变化,快速调整生产工 艺和产品结构。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
18
2.1.3 制造自动化技术发展趋势
• 制造敏捷化 使企业面临市场竞争作出快速响应;
• 制造网络化 实现制造过程的集成,实现异地制造、 远程协调作业; • 制造虚拟化 保证产品和制造过程一次成功,尽早发 现设计与生产中可避免的缺陷和错误; • 制造智能化 扩大、延伸、部分取代人类专家在制造 过程中的脑力劳动,以实现优化的制造过程。 • 制造全球化 市场国际化,产品制造跨国化,制造资 源跨国家的协调、共享和优化利用; • 制造绿色化 使产品从设计、制造、使用到报废处理 全生命周期中,对环境影响最小,资源利用率最高。
首页 上页 下页 末页 结束
物流
物流
物流,信息流
ቤተ መጻሕፍቲ ባይዱ
通过机、电、液 以硬件为基础,以软 不仅针对具体操作和 气等硬件控制方式 件为支持,改变程序即 工人的体力劳动,而且 实现,因而是刚性 可实现所需的转变,因 涉及脑力劳动以及设计、 的,变动困难 而是柔性的 经营管理等各方面 继电器程序控制 数控技术,计算机控 系统工程,信息技术, 技术,经典控制论 制,GT,现代控制论 计算机技术,管理技术
对象--多品种小批量甚至单件生产自动化; •综合自动化 经营管理、开发设计、加工装配、质量保证自动化,CIMS 、CE、LP、AM等。
7
机械加工自动化
三种自动化形式比较
比较项目 刚性自动化 柔性自动化
综合自动化 减轻工人劳动强 减轻工人劳动强度, 除左外,提高设计 度,节省劳动力, 节省劳动力,保证加工 工作与管理工作效率 实现目标 保证加工质量,降 质量,降低生产成本, 和质量,提高对市场 低生产成本 缩短产品制造周期 的响应能力 控制对象 特点
16
加工时间 制造周期 5%
30%
运输与等待时间
95% 70%
加工时间
切削 调整、装夹、对刀、检测等
多品种、中小批量生产的时间分配
首页 上页 下页 末页 结束
17
首页 上页 下页 末页 结束
5、柔性制造自动化制造技术的深度与广度 FMC --FML--FMS; 但物流自动化设备投资在整个 FMS的投资中占有相当 大的比例,因此 FMS 的应用受到其投资大、见效慢和可靠 性相对较差等不足的限制。 DNC具有投资小、见效快和可靠性高等优点,近年来 研究较为活跃。 6、适应现代生产模式的制造环境 JIT; CE; LP; AM…… 7、加工系统的复合化和智能化 日本提出了智能完备制造系统(HMS);
汽车后桥齿轮箱加工自动线
9
制造自动化技术的主要形式
50年代 柔性自动化
首页 上页 下页 末页 结束
焊接机器人
70年代
综合自动化
10
综合自动化
二、发展历程的第二种划分方法(五个阶段)
1、第一阶段(1913年-):刚性自动化,包括刚性生产 线和自动单机。 该阶段技术在20世纪40年代已经相当成熟。 特点:大批量生产;仅适用于单一品种 新技术:继电器程序控制组合机床 2、第二阶段(1930-):数控加工,包括数控和计算机 数控。 其中数控在 20 世纪 50-70 年代发展迅速并已成熟, 70-80年代计算机数控加工取代了数控加工。
第二章 柔性制造系统技术
一、学习要求
1、了解:柔性制造系统的产生和特点; 2、掌握:柔性制造系统的定义、组成及类型。
二、学习要点
首页 上页 下页 末页 结束
1、柔性制造系统的产生、特点; 2、FMS的定义、组成及类型; 3、物料运送装置; 4、加工中心的分类及其换刀方式、刀库类型。
1
第一节 制造自动化技术概述
首页 上页 下页 末页 结束
14
三、柔性自动化制造技术的研究现状
1、集成技术和系统技术 研究热点。 CIMS:信息集成和功能集成; CE:过程集成; AM:企业间集成; 2、人机一体化系统
首页 上页 下页 末页 结束
全盘自动化和无人化工厂或车间曾经是制造自动化发 展的目标。在对无人制造中出现的问题进行反思的基础上, 人们重新认识了人在柔性自动制造系统中有着机器不可替 代的重要作用。 将人作为系统结构中的有机组成部分。
20
第二节 柔性制造系统技术概述
一、柔性制造系统的产生和特点
1、产生背景:
(1)市场变化导致中小批量、多品种生产方式成为需要。
市场竞争的加剧及顾客需求的多样化,导致传统的以规模效应 带动成本降低的刚性生产线不再适应市场的变化。
•刚性生产线忽略了可能增加的库存而带来的成本的增加; •1973年石油危机,使大批量生产的缺点暴露。
关键技术
CAD/CAM系统, 自动机床、组合 NC机床,加工中心, 典型系统 MRPⅡ,CIMS 机床,机械手,自 工业机器人,DNC, 与装备 动生产线 FMC,FMS 应用范围 大批大量生产 多品种、中小批量生产 各种生产类型
8
制造自动化技术的主要形式
20年代
刚性自动化
首页 上页 下页 末页 结束
首页 上页 下页 末页 结束
P16 (1)-(5) 了解,自学。
25
二、FMS的定义、组成和类型
首页 上页 下页 末页 结束
(2)科学技术的进步推动了自动化程度和制造水平的提高。
•NC、CNC、DNC •CAD、CAM
•GT、CAPP
•ROBOT
21
2、柔性自动化制造技术的产生
•世界上公认的第一条柔性制造系统是英国莫林(Molin)机
床公司1967年建成的“Molin System-24”; •20世纪70年代末和80年代初,计算机辅助管理物料自动搬 运,刀具管理和计算机网络、数据库技术的发展以及 CAD/CAM技术的成熟,出现了更加系统化、规模更加扩大的
1、 1936年美国通用汽车公司工作人员认为:在一个生产 过程中,机器之间的零件转移不用人去搬运就是“自动化 ”。即:以机械代替人力操作,自动完成特定的作业。
首页 上页 下页 末页 结束
2、随着计算机的出现和应用,自动化的概念扩展为:用 机器包括计算机代替或辅助人的体力劳动和脑力劳动,按 照需求和目标,灵活、自动地完成特定的作业。
1990年4月由日本倡导。
特点:集成日本的企业技术、欧共体的精密工程技 术、美国的系统技术等
首页 上页 下页 末页 结束
以上介绍五个阶段,是国外发达国家的发展历程。我国 与国外发达国家相比,有所滞后,目前正在努力跟进。
13
作业
1、柔性自动化制造技术的发展先后经历了哪 五个阶段? (1)刚性自动化 (2)数控加工 (3)柔性制造 (4)计算机集成制造系统 (5)智能制造系统
15
三、柔性自动化制造技术的研究现状
3、单元系统及其技术 单元系统:以一台或多台数控加工设备与物料储运系 统为主体,在计算机统一控制下,可进行多品种、中小批 量零件自动化加工生产的机械加工工艺系统的总称。
是CIMS的重要组成部分。
首页 上页 下页 末页 结束
4、制造过程中的计划与调度 在多品种、中小批量生产中,加工时间仅占生产时间 的约5%,其余 95%均为周转等待时间;加工时间中真正进 行切削的时间不足30% 。
5
四、柔性自动化制造技术的内涵
•自动化:自动去完成特定的作业。 •制造自动化(狭义):生产车间内,产品机械加工、 装配和检验过程的自动化; •制造自动化(广义):包含产品设计、企业管理、 加工装配和质量控制等产品制造全过程综合集成自 动化。
首页 上页 下页 末页 结束
•制造自动化意义:显著提高劳动生产率、提高产品 质量、降低制造成本、提高经济效益,改善劳动条 件、提高劳动者的素质、有利于产品更新、带动相 关技术的发展、提高企业的市场竞争能力。
4、第四阶段(1973-):计算机集成制造系统CIMS
首页 上页 下页 末页 结束
CIMS在20世纪80年代以来发展迅速。 特点:强调系统性和集成性; 新技术:现代制造技术、管理技术、计算机技术、 自动化技术、信息技术、系统工程技术……
12
二、发展历程的第二种划分方法(五个阶段)
5、第五阶段( 1991 年-):智能制造系统( IMS ),包 括计算机直接控制(DNC)、FMS和FMC。
首页 上页 下页 末页 结束
19
2.1.4 制造自动化技术涉及的相关内容
1、数控技术与系统
数控相关课程已学习,本门课程不再讲述
2、柔性制造系统
本章主要内容
3、工业机器人
本门课程第5章讲述
首页 上页 下页 末页 结束
4、自动检测与监控技术
部分内容在《机械测试技术》或《传感器》相关课程中已讲述,本章在介绍 刀具监控时将简要介绍。
首页 上页 下页 末页 结束
23
•1985年后在国家机电部“七五”重点科技攻关项目的支持 和国家863高技术发展计划自动化领域的工作的带动下, FMS 得到极大的重视和发展,进入了自行开发和部分进口的交叉 阶段。 •1988年北京机床研究所为天津减速机厂提供的加工减速机 机座的JCS-FMS-2系统是全部自行开发和配套的,它标志着 我国已具有自主开发FMS系统的实力。
首页 上页 下页 末页 结束
管理、控制和优化。
4
三、柔性自动化制造技术在功能上的含义
可用TQCSEF模型来描述柔性自动化制造技术
的目标。
•T ( Time ) —— 时间,加速新产品研制,缩短交货 期 •Q(Quality)——质量
首页 上页 下页 末页 结束
•C(Cost) ——成本 •S(Service)——服务 •E(Environment)——环保 •F(Flexible)——柔性
2.1.1 制造自动化技术的广义内涵 2.1.2 柔性自动化制造技术的发展历程及现状
首页 上页 下页 末页 结束
2.1.3 柔性自动化制造技术发展趋势
2.1.4 制造自动化技术涉及的相关内容