地球化学-稀土元素标准化计算

合集下载

地球化学-稀土元素标准化计算

地球化学-稀土元素标准化计算

表中数据为山东济南辉长岩、沂南花岗岩7件样品的REE组成(PPm)1, 用球粒陨石值对样品的REE组成进行标准化,作其分配模式图,对图件中表达的地球化学特征进行说明;2, 计算各样品的Eu/Eu* ,并对其地球化学意义进行说明;,3,假设辉长岩中造岩矿物的组成为:CPX45%, PL35%, OL20%。

结合课件中提供的REE在矿物和熔体间的分配系数,计算与辉长岩平衡的熔体的REE组成, 并作REE配分模式图。

解答:1如下表1-1为常用球粒陨石和原始地幔稀土元素组成,我采用C1球粒陨石数据(Sun & MCDOnough,1989)对样品的REE进行标准化,得到了下表1-2,再根据对样品REE标准化的数据进行作样品的分配模式图,得到了图1-1表1-1MJN0608MJNO607MJN0609MJN0606MYN0625MYN0625MYNO607La21. 055 25. 570 27. 38476 371489. 451 337.975464,135 Ce20, 261 24. 837 124.673 66 340 369* 281 254, 902 341. 503 Pr18. 421 22. 421 ΞL E7952; 421 235. 789 164, 211 205. 263 Nd17. 880 32. 270 21. 370 46. 467 165. 739 114. 347 131.692Sm14. 96717. 320 16. 60132.026 75. 163 50. 327 46. 993EU13. 793 14. 4S3 19. 130 27÷41424.138 16.897 21, 379Gd9. 732 11.290 IL 33S Ξ0.00035,961 25, 937 Γ 18,735Tb8. 824 9. 626 9. 626 17. 112 Ξ8, 34219, 786 11. 230 Dy7. 953 8. 7019. 094 16. 024 24. 291 16. 811 7. 795HO7. 067 7. 774 8. 12714. 311ΞC. S4S14. 841 6L 007Er 5. 921 6. 6477. 130 12, 085 181852 12. 50S 5. 498Tm 5. 098 5. 4&0 1 6. 275 10, &80 18, 039 IL 765 Γ 0. 490Yb 5. 588 6. 059 6. 706 12. 294 18, 647 12. 471 6. 176LU 5. 118 5. 118 5. 906 11. 024 16. 929IL 811 5. 906表1-2→-IJN06Q8 →-IJN0607IJN0609IJNO 606 T^iYNo &药 →-lYN0625 -^lYNO 607图1-1通过对样品配分模式图进行分析可知道,沂南花岗岩样品中富集轻稀土元素 而亏损重稀土元素,这与花岗岩的成分岩性有一定关系, 花岗岩为酸性岩,主要 矿物为长石、石英和云母,而这矿物主要富集轻稀土元素,并且从图中可以看出 EU 的负异常,说明在岩浆结晶形成花岗岩之前就有长石结晶出来,使岩浆呈EU的负异常。

稀土元素分配型式及地球化学参数的计算

稀土元素分配型式及地球化学参数的计算

一、实习目的由于稀土元素的原子结构、原子半径、离子半径及化合价的相似性,导致它们在自然界中常常紧密共生在一起。

因镧系收缩的缘故,使得稀土元素的离子半径从La→Lu逐渐减小,于是在岩浆过程中,这些元素在固相和液相间的分配呈现出明显的规律性变化。

Ce和Eu在自然界具有变价(Ce4+、Eu2+)的特征,Ce 和Eu的相对富集与亏损程度往往反映了特殊的地质背景。

本次实习要求掌握稀土元素的计算和作图方法,理解稀土元素的富集程度、分馏程度的地质意义,掌握Eu的亏损与富集的地质背景。

二、实习内容某地区的岩浆岩种类极为发育(表1—1和表1—2),请画出各岩类的稀土配分曲线图、结合稀土元素参数进行地质过程分析。

两种方法所得到的稀土元素参数表1—1 岩浆岩稀土元素成分表(×10-6)注:1-橄榄苏长岩,2-钾长花岗岩,3-H型花岗岩,4-A型花岗岩,5-石英闪长岩(M型花岗岩)。

稀土元素由某单位等离子光谱方法分析。

表1—2 岩浆岩稀土元素成分表(×10-6)注:表中数据由中子活化方法分析一、基本原理稀土元素通常指的是镧系元素的(La 、Ce 、Pr 、Nd 、Pm 、Sm 、Eu 、Gd 、Tb 、Dy 、Ho 、Er 、Tm 、Yb 、Lu ,其中Pm 在自然界无天然同位素),由于稀土元素的原子结构、原子半径、离子半径(RE 3+变化于0.86Å—1.14Å)及化合价的相似性使得它们在自然界往往紧密共生。

因镧系收缩造成稀土元素的离子半径从La →Lu 逐渐减小,Ce 和Eu 在自然界具有变价(Ce 4+、Eu 2+)的特征,以及介质(岩石、土壤、矿物等)的不同而引起稀土元素在自然界的分离。

为便于研究稀土元素在某介质中的分配型式,必须排除“偶数规则”的影响,最常用的方法是利用球粒陨石丰度值对稀土元素进行标准化。

这里向大家推荐W.V .Boynton(1984)提出的球粒陨石丰度值(×10-6):La 0.31;Ce 0.808;Pr 0.122;Nd 0.6;Sm 0.195;Eu 0.0735;Gd 0.259;Tb 0.047;Dy 0.322;Ho 0.0718;Er 0.21;Tm 0.0324;Yb 0.209;Lu 0.0322。

《地球化学》实验三稀土元素组成数据的表示

《地球化学》实验三稀土元素组成数据的表示

《地球化学》实验三稀土元素组成数据的表示一、实验目的1、掌握稀土元素组成模式图的制作方法。

2、掌握表征稀土元素组成的基本参数。

3、尝试利用稀土元素组成数据判断岩浆成岩过程。

二、实验原理1、稀土元素组成模式图原子序数为横坐标标准化数据为纵坐标对数刻度2、表征稀土元素组成的基本参数稀土总量轻重稀土比值轻稀土分异指数重稀土分异指数铕、铈异常3、判断岩浆成岩过程超岩浆元素(La)亲岩浆元素(Sm)图解:La/Sm-Sm三、实验内容1、绘制各类侵入岩的稀土元素组成模式图;2、计算各类侵入岩稀土元素组成的基本参数;3、若将各类侵入岩视为同一岩浆房相同演化过程的产物,尝试制作La/Sm-Sm图解。

四、实验步骤1、查阅相关数据;2、绘制稀土元素组成模式图;3、计算稀土元素组成基本参数;4、制作La/Sm-Sm图解。

五、实验要求每组完成一份实习报告。

实习内容资料来源:江南隆起带皖赣相邻区燕山期岩浆岩稀土对比研究袁峰, 周涛发,岳书仓,朱光,侯明金( 1. 合肥工业大学资源与环境工程学院, 安徽合肥230009; 2. 安徽省地质调查科学院, 安徽合肥230009)1.稀土元素组成模式图岩石样本La Ce Pr Nd Sm Eu Gd花岗岩10.000 21.000 2.700 11.000 2.800 0.230 2.600 花岗闪长岩36.000 69.000 8.000 34.000 6.300 1.370 6.200 花岗闪长斑岩38.000 71.000 7.100 33.000 6.400 1.200 4.000 石英斑岩13.640 21.980 3.480 10.290 1.810 0.540 1.210 英安斑岩48.330 89.230 10.810 10.810 6.430 1.430 3.720 安山玢岩48.940 83.360 10.090 10.090 5.470 1.330 3.600 Tb Dy Ho Er Tm Yb Lu花岗岩0.470 2.600 0.390 0.900 0.140 0.750 0.130 花岗闪长岩0.960 5.900 1.080 3.300 0.500 2.900 0.390 花岗闪长斑岩0.640 2.900 0.500 1.220 0.180 1.200 0.100 石英斑岩0.240 1.050 0.220 0.680 0.120 0.610 0.080 英安斑岩0.580 2.320 0.480 1.230 0.220 1.090 0.160 安山玢岩0.560 2.260 0.460 1.210 0.220 1.130 0.170La Ce Pr Nd Sm Eu Gd球粒陨石0.310 0.808 0.122 0.600 0.195 0.074 0.260 Tb Dy Ho Er Tm Yb Lu0.047 0.322 0.072 0.210 0.032 0.209 0.032 对数据进行球粒陨石标准化 La Ce Pr Nd Sm Eu Gd 29.41176 25.9901 22.13115 18.33333 14.35897 3.108108 10 105.8824 85.39604 65.57377 56.66667 32.30769 18.51351 23.84615 111.7647 87.87129 58.19672 55 32.82051 16.21622 15.38462 40.11765 27.20297 28.52459 17.15 9.282051 7.297297 4.653846 142.1471 110.4332 88.60656 18.01667 32.97436 19.32432 14.30769 143.9412 103.1683 82.70492 16.81667 28.05128 17.97297 13.84615 Tb Dy Ho Er Tm Yb Lu10 8.074534 5.416667 4.285714 4.375 3.588517 4.062520.42553 18.32298 15 15.71429 15.625 13.8756 12.1875 13.61702 9.006211 6.944444 5.809524 5.625 5.741627 3.125 5.106383 3.26087 3.055556 3.238095 3.75 2.91866 2.5 12.34043 7.204969 6.666667 5.857143 6.875 5.215311 5 11.91489 7.018634 6.388889 5.761905 6.875 5.406699 5.31252.表征稀土元素组成的基本参数岩石名称∑REE w (LREE)/w(HREE) w (La)/w(Sm) w (Gd)/w(Lu) δEu 花岗岩花岗闪长岩 花岗闪长斑岩石英斑岩 英安斑岩 安山玢岩3.判断岩浆成岩过程江南隆起带皖赣相邻区燕山期岩浆岩稀土元素:La/Sm-Sm图解花岗岩花岗闪长岩花岗闪长斑岩石英斑岩英安斑岩安山玢岩。

稀土元素地球化学

稀土元素地球化学

0.074
0.259 0.047 0.322
1.24
5.2 0.85 5.8
Ho
Er Tm Yb Lu Y
123.6111
125.2381 118.125 115.311 113.0303 93.36735
95.27778
103.3333 90.625 89.47368 85.75758 65.81633
•ቤተ መጻሕፍቲ ባይዱ
• LaN/SmN:反映了轻稀土之间的分馏程度。该值越大, 轻稀土越富集。 根据LaN/SmN可以对岩石进行分类。如根据LaN/SmN比 值,Schilling(1975a)将洋中脊玄武岩划分成三种类型: N型(正常型),LaN/SmN<1;稀土元素组成模式为亏 损型。 P(E)型,地幔柱型或异常型,LaN/SmN>1;富集型。 T型,过渡型;LaN/SmN≈1 • GdN/YbN:反映了重稀土之间的分馏程度。该值越小, 重稀土富集程度越高。有人用GdN/YbN比值将马提岩划 分成三个组。
• 在成矿研究中,常用未矿化或蚀变的岩石 为标准,了解成矿或蚀变过程中,稀土元 素的变化。
这种方法的优点
• 一般公认球粒陨石的轻-重稀土元素之间不存在 分异。 采用球粒陨石标准化模式图可使样品中各REE 间的任何程度的分异更清楚地显示出来。 克服奇偶原子序数的元素丰度不同所造成的 REE曲线锯齿状变化。 可以反映所研究样品相对于原始地球稀土组成 的地球化学分异作用。 直线斜率、形态和偏离直线的稀土元素的异常 地球化学行为,为成岩成矿机理研究,提供了 重要信息。
• ② LREE/HREE—轻重稀土元素比值 • 用途:能较好地反映REE的分异程度以及 指示部分熔融残留体和岩浆早期结晶矿物 的特征。是判断残留相或结晶相矿物组合 的重要依据。

稀土元素在地球化学样品中的含量分析

稀土元素在地球化学样品中的含量分析

186管理及其他M anagement and other稀土元素在地球化学样品中的含量分析彭 萌(四川省地质矿产勘查开发局成都综合岩矿测试中心,四川 成都 610081)摘 要:稀土元素存在于在地球化学样品中,且具有非常相似的物理化学特性,因此常作为研究地球化学的示踪剂。

本文主要对地球化学样品中稀土元素的分析方法进行介绍与研究,稀土分析主要应用现代仪器进行分析,现代仪器分析手段繁多,不同的实验分析所用到的化学仪器也不一样,本文从地球化学样品的特点入手,简单介绍现代仪器在地球化学样品分析中的技术应用,并着重介绍电感耦合等离子体质谱分析技术(ICP-MS)分析地球化学样品中稀土元素含量的方法。

关键词:稀土元素;地球化学样品;含量;特征 中图分类号:X53 文献标识码:A 文章编号:11-5004(2020)17-0186-2收稿日期:2020-09作者简介:彭萌,男,生于1983年,汉族,四川成都人,大学本科,工程师,研究方向:岩矿分析。

地球化学样品组分复杂,不同元素在不同的样品中含量相差较大,实验分析的物质种类繁多,问题也多种多样。

在使用现代仪器分析实验的过程中,要对实验数据和仪器操作慎之又慎。

由于地球化学样品分析的物质品类广,影响分析结果的因素也比较多,这就造成了无机化学的分析难度大,所以如何合理应用现代仪器分析地球化学样品,得出准确的实验数据和结论,体现出现代仪器分析的实际价值。

稀土元素主要指的是镧系元素以及和镧系元素密切相关的钪(Sc)、钇(Y),共17种元素总称为稀土元素(RE)。

La (镧),Ce (铈),Pr (镨),Nd (钕),Pm (钷),Sm (钐),Eu (铕)称为铈组稀土(轻稀土);Gd (钆),Tb (铽),Dy (镝),Ho (钬),Er (铒),Tm (铥),Yb (镱),Lu (镥),Sc,Y 称为钇组稀土(中重稀土)。

稀土元素含量分析是地质科学研究最常用的方式之一。

稀土元素地球化学[精]

稀土元素地球化学[精]

稀土元素分组
• 根据稀土元素的分离工艺,又可将它们 分为三组,
• 即铈组稀土、铽组稀土和钇组稀土,分 别称为轻、中、重稀土。
• 铈组有La,Ce,Pr,Nd,Pm,Sm, • 铽组有En,Gd,Tb,Dy, • 钇组有Y,Ho,Er,Tm,Yb,Lu。
稀土元素概述
• 三价稀土元素的离子半径和Ca2+很接近, 很容易以各种类质同象形式进入岩浆作 用变质作用和沉积作用中广泛出现的含 钙矿物中。
• 在吸附能力强的粘土、铁-铝-锰沉积物,有机质和铁有机质等沉积物中富铈组稀土等等。
• 正是由于稀土元素作为既很相似、又有所不同的一组 元素,在自然界的地质作用和各种物理化学环境中的 特殊行为,使得有可能根据稀土元素的分离、变化作 为地球化学指示剂,去解释各种成岩成矿过程。
稀土元素丰度表示法
• 在稀土元素地球化学研究工作中,除了用稀土总量和 各单个稀土含量直接列表来表示所研究对象的稀土元 素含量丰度外,常用作图方法形象地表示,这就是所 谓“增田—科里尔(Masuda-Coryell)图解,是由他们 二人分别提出的。
• 由于电离势低,稀土元素呈明显碱性。 其碱度处于Mg(OH)2和Al(OH)3之间, 这是稀土元素广泛进入到钙的铝硅酸盐 矿物中的原因。
稀土元素地球化学
• 稀土元素倾向于形成极性键和共价键, 因而具有形成络合物的性质。
•这
存在时,容易形成络合物而迁移。
•尽管稀土元素具有很相近的物理化学性质,由于 电子构型的规则变化、镧系收缩等,各稀土元素 之间仍存在一些性质上的微小不同,造成稀土元 素在自然界中发生某些分离。
稀土元素配分模式
• 3.平坦型(或球粒陨石型) • 丰度曲线呈现近乎水平,既不显示重稀土富集、

第4章稀土元素地球化学

第4章稀土元素地球化学

溶液贫Ce,河水和海水继承这种特征。海水中Ce停留时间最短
-50a,其它REE200-400a,现代海水强烈亏损Ce, 海洋褐色粘
土中等Ce负异常,深海沉积物弱亏损Ce。
• 锰结核Ce呈明显正异常。硅质岩δCe值: 大陆边缘0.67-1.35,平 均 1.09 , 深 海 0.50-0.67 , 平 均 0.60 , 洋 脊 附 近 0.22-0.38 , 平 均 0.30(Murray,1990,1994)。
1. REE组成模式图示
常用的REE组成模式图示有两类。包括对 样品中REE浓度以一种选定的参照物质中 相应REE浓度进行标准化。即将样品中每 种REE浓度除以参照物质中各REE浓度,
得到标准化丰度。然后以标准化丰度对数
为纵坐标,以原子序数为横坐标作图。
1. REE组成模式图示
(1)曾田彰正-科里尔(MasudaCoryell)图解 是地球化学中常用来表示REE 和其它微量元素组成模式的图 解。 元素浓度标准化参照物质为球 粒陨石。由曾田彰正和科里尔 创制,称为曾田彰正-科里尔 图解(地区+岩性+球粒陨石标 准化稀土元素分配模式图)。
图4-12 (上)岩石及其组成矿物中的REE丰度对球粒 陨石中的REE丰度标准化后与原子序数关系图;(
下)它的REE丰度对岩石中REE丰度标准化;
2. 表征REE组成的参数
(1) 稀土元素总量-∑REE
为各稀土元素含量的总和,以ppm为单位。多数情况下指 从La到Lu和Y的含量之和。有些学者用火花源质谱法分析稀 土元素含量,其∑REE数据不包括Y。∑REE对于判断某种岩 石的母岩特征和区分岩石类型均为有意义的参数。
4.4.3 REE的分配系数
REE在角闪石和不同岩 浆岩之间的分配系数随 熔体SiO2含量增加分配 系数增大,在玄武岩和 流纹岩熔体之间分配系 数相差一个数量级 (Rollinson1993)

地球化学稀土元素配分分析

地球化学稀土元素配分分析

地球化学稀土元素配分分析标准化管理部编码-[99968T-6889628-J68568-1689N]《地球化学》实习测验REE图表处理及参数计算一、实习目的1、掌握稀土元素组成模式图的制作方法。

2、掌握表征稀土元素组成的基本参数。

3、培养独立查阅文献及处理数据的能力。

二、基本原理1、稀土元素组成模式图1、原子序数为横坐标2、标准化数据为纵坐标3、对数刻度2、表征稀土元素组成的基本参数3、稀土总量4、轻重稀土比值5、轻稀土分异指数6、重稀土分异指数7、铕、铈异常三、实习测验内容1、绘制各类侵入岩的稀土元素组成模式图;2、计算各类侵入岩稀土元素组成的基本参数;3、对已绘制的图表和计算出的数据进行解释。

4、在以上实习内容掌握之后,自行查阅文献一篇,并进行以上3项操作。

四、实习测验步骤1、根据查阅文献数据,找到自己想要的数据表1 蒙库铁矿床岩石、矿石、矿物稀土元素成分分析(ppm)2、选出自己要的数据建立表格表2 稀土元素组成模式图(ppm)3、对数据进行球粒陨石标准化表3球粒陨石标准化后稀土元素组成模式图(ppm)图1 蒙库铁矿床稀土元素配分图5、计算稀土元素基本参数表4 表征稀土元素组成的基本参数6、数据及图表的解析(1)绿帘石:∑REE=,表明稀土元素含量较高;LR/HR=,表明轻重稀土元素间发生了较大的分异,轻稀土元素相对富集;(La/Sm)N=,(Gd/Lu)N=,显示轻重稀土元素内部都发生了分异作用,轻稀土元素分异更明显。

Eu异常值=,为强正异常;Ce异常值=,表明Ce基本无异常;稀土元素配分模式为轻稀土富集,重稀土相对亏损的右倾型,图像具有左陡右缓特点,Eu正异常明显特征。

(2)磁铁矿矿石:∑REE=,表明稀土元素含量较低;LR/HR=,表明轻重稀土元素间发生了较大的分异,轻稀土元素相对富集;(La/Sm)N=,(Gd/Lu)N=,显示轻重稀土元素内部都发生了分异作用,轻稀土元素分异更明显。

地球化学-稀土元素标准化计算

地球化学-稀土元素标准化计算

表中数据为辉长岩、沂南花岗岩7件样品的REE组成(ppm)1,用球粒陨石值对样品的REE组成进行标准化,作其分配模式图,对图件中表达的地球化学特征进行说明;2,计算各样品的Eu/Eu*,并对其地球化学意义进行说明;,3,假设辉长岩中造岩矿物的组成为:CPX45%,PL35%,OL20%。

结合课件中提供的REE在矿物和熔体间的分配系数,计算与辉长岩平衡的熔体的REE组成,并作REE配分模式图。

解答:1,如下表1-1为常用球粒陨石和原始地幔稀土元素组成,我采用C1 球粒陨石数据(Sun & McDonough,1989)对样品的REE进行标准化,得到了下表1-2,再根据对样品REE标准化的数据进行作样品的分配模式图,得到了图1-1表1-1表1-2图1-1通过对样品配分模式图进行分析可知道,沂南花岗岩样品中富集轻稀土元素而亏损重稀土元素,这与花岗岩的成分岩性有一定关系,花岗岩为酸性岩,主要矿物为长石、石英和云母,而这矿物主要富集轻稀土元素,并且从图中可以看出Eu的负异常,说明在岩浆结晶形成花岗岩之前就有长石结晶出来,使岩浆呈Eu 的负异常。

辉长岩的样品配分模式图表现出来的富集轻稀土元素没有沂南花岗岩样品那么显著,富集程度较低,这也与辉长岩的岩性成分有关,辉长岩中主要矿物为辉石和长石,长石富集轻稀土元素较为显著,而辉石相对较富集重稀土元素,但程度不是很显著,所以岩石总体表现较为富集轻稀土元素,但程度不是那么显著。

并且从图中可以看出Eu的正异常,只是不是很显著,说明长石结晶出来使岩石呈Eu的正异常。

2,Eu/Eu*=2×Eu/(Sm+Gd)(其中Eu、Sm、Gd都是为球粒陨石标准化值),根据这个求出各样品中的Eu/Eu*,如下表1-3:表1-3由上表中的Eu/Eu*值可知的辉长岩为Eu的正异常,说明在岩浆结晶时,长石和辉石先结晶出去形成辉长岩,而长石中富集Eu元素,所以在辉长岩中Eu 为正异常,而后期岩浆因长石的结晶分异而呈Eu的负异常,并且逐渐向酸性过渡,结晶形成酸性岩。

稀土元素的生物地球化学循环

稀土元素的生物地球化学循环

稀土元素的生物地球化学循环稀土元素是指在自然界中分布较为稀少的元素,存在于哑铃状元素周期表的第三个周期中,包括锕系和镧系元素。

稀土元素具有一系列特殊的物理和化学性质,例如良好的磁性、较高的硬度、较高的熔点、较强的稳定性和良好的电学和光学性能,因此在工业、电子、农业和医学等领域具有广泛的应用前景。

稀土元素的生物地球化学循环对环境和生态系统具有重要的影响,因此深入了解稀土元素的生物地球化学循环机制和影响因素具有重要的研究价值和应用前景。

稀土元素的循环路径稀土元素在自然界中存在于岩矿、土壤、水体和生物体中。

岩矿是稀土元素的主要存储和释放方式,其中以花岗岩、玄武岩、火山岩等构成的深层岩石是稀土元素的主要富集体。

稀土元素在地质过程中的富集主要是由于石榴石、长石、角闪石等矿物对稀土元素的亲和性差异所导致,同时还与流体热液和液态石墨中稀土元素的溶解度有关。

岩矿中的稀土元素在地球化学循环中会随着地质作用的变化而释放,形成稀土元素的物质循环的一个重要环节。

稀土元素在水体中主要以溶液的形式存在,同时也可以附着在悬浮颗粒和底泥中。

水体中稀土元素的浓度受到季节变化和地理位置等因素的影响。

稀土元素也可以被生物体吸收和富集,例如在水生生物体中,稀土元素可以被藻类吸收并进一步富集在微小浮游动物中,形成陆海转换流和沉积作用的一个重要环节。

稀土元素在环境中的循环和生物作用过程是稀土元素生物地球化学循环的重要环节。

显微藻、硅藻、蓝藻和绿藻等水生植物对稀土元素的富集作用已被广泛研究。

例如,国内外研究表明,稀土元素在水生植物中的分布模式受到生物-环境因素的共同影响。

与其他营养元素相比,稀土元素在生物有机体中的含量较低,但仍然起到了重要的生物作用和环境影响作用。

稀土元素的生物作用和环境影响主要包括以下几个方面。

首先,稀土元素在光合作用、呼吸作用、有机物合成和能量转化等方面具有生物催化作用,对生物体代谢活动的调节具有重要作用。

其次,稀土元素的不同含量对水生生物的生长、繁殖和寿命等具有影响。

稀土元素在地球化学样品中的含量分析

稀土元素在地球化学样品中的含量分析

稀土元素在地球化学样品中的含量分析摘要:地球化学样品中的稀土元素,具有相似的物化特性,常用来作为地球化学研究的示踪剂。

本文研究了地球化学样品中稀土元素含量的分析方法,稀土元素分析采用现代仪器设备进行,手段丰富多样。

从地球化学样品中稀土元素含量分析的特点与方法入手,介绍仪器分析的技术应用,以期为地球化学研究提供参考。

关键词:稀土元素;地球化学样品;含量分析地球化学样品的成分较为复杂,不同元素在不同样品中呈现的物化性质及含量都有所差别。

通过实验来分析地球化学样品中的物质种类,遇到的问题比较复杂。

当前地球化学样品分析大量引入了现代仪器,对仪器的操作和实验数据的分析应仔细谨慎。

地球化学样品分析的物质品类非常广泛,影响分析准确性的因素较多,提高了分析难度,应合理利用现代仪器展开分析,得出准确数据,推导正确的结论,体现现代仪器分析和分析技术的价值。

稀土元素含量测定分析可辅助地球化学样品研究。

稀土元素指的是镧系元素以及与之密切相关的两种元素,共17种元素。

一、稀土元素含量分析在地球化学样品研究中的意义当今稀土元素在战略矿藏储备上的重要意义已经越来越为人们所重视。

我国作为稀土资源大国,近年来在稀土资源的勘探、开采、生产、贸易领域深入耕耘,取得了较大成就,受到多方瞩目。

稀土元素被誉为“工业维生素”,在工业生产领域得到广泛应用。

而稀土在地球化学分析中也占据重要的地位,可以作为示踪剂,对于地球化学研究、地质理论研究、矿产勘探研究等有着极强的推动作用。

稀土元素和地球的地质发展过程联系紧密,参与了地球地质各个阶段的变化,通过测算和分析稀土元素的含量可以了解地球地质变化过程,为地质研究提供参考。

当前测算稀土元素含量采用的电感耦合等离子体质谱分析技术有以下作用:首先,稀土元素在地球化学样品中的含量分析可以通过仪器精确定量。

稀土元素分析的定量化能够解释地球的地质环境和条件,判断其中是否存在矿藏,有助于矿产资源的勘探开发。

根据不同的分析目的,采用不同的分析手段,对不同元素展开同位素分析,通过合理运用分析技术和分析手段来实现分析目的。

地球化学调查样品—稀土元素的测定—ICP 多道直读光谱法

地球化学调查样品—稀土元素的测定—ICP 多道直读光谱法

FHZDZDQHX0006 地球化学调查样品稀土元素镧铈镨钕钐铕钆铽镝钬铒铥镱镥钇的测定ICP多道直读光谱法F-HZ-DZ-DQHX-0006地球化学调查样品—稀土元素的测定—ICP多道直读光谱法1 范围本方法适用于水系沉积物及各种类型地球化学样品中稀土元素的测定。

测定检出限为(µg/g):La 0.002,Ce 0.027,Pr 0.014,Nd 0.01,Sm 0.01,Eu 0.0017,Gd 0.007,Tb 0.003,Dy 0.0013,Ho 0.0012,Er 0.09,Tm 0.0019,Yb 0.0004,Lu 0.024,Y 0.0006。

2 原理以ICP作为激发源相匹配的多道直读光谱仪相结合。

试样经碱熔,水提取,加入三乙醇胺络合铁、铝等元素,并经萃淋树脂分离富集后,可同时测定15个稀土元素。

3 试剂3.1 P507萃淋树脂柱φ8mm×80mm。

3.2 三乙醇胺提取液(1+19),100mL溶液中加入20mg氯化镁作共沉淀剂。

3.3 间安黄指示剂水溶液,3g/L。

3.4 锇酸钠溶液,3g/L。

3.5 一氯乙酸-乙酸钠缓冲溶液,pH 2.4。

取50g一氯乙酸溶于440mL纯水中,加入25g结晶乙酸钠。

3.6 杂质洗脱液,20g/L氯化钠与10g/L一氯乙酸混合液。

3.7 盐酸 3mol/L,4mol/L。

4 仪器4.1 ICP多道直读光谱仪,60+1通道,焦矩0.75m,带有光谱移位器,自动背景校正,元素间相互干扰校正软件以及结果打印等功能。

4.2 射频发生器,输出功率1000W,反射功率<5W。

4.3 进样系统:用蠕动泵进样,高盐雾化器。

氩气流量:冷却气17 L/min,载气0.4 L/min,试液提升量3mL/min。

积分时间10s,每个试样测定3次,取其平均值。

5 试样的制备将样品粉碎至粒度100µm~74µm,在室温下自然风干,待用。

08第四章第三节稀土元素地球化学

08第四章第三节稀土元素地球化学

板 大内 陆 玄 武 岩
a r u b u o d e d y r b
l/itareSophndCm
汉诺坝玄武岩REE球粒陨石标准化配分模式图
分离结晶作用-

REE变化规律




REE patterns for liquids by Rayleigh fractional crystallization modeling: a. from basalt to andesite, b. from andesite to dacite, and c. from dacite to type 1 rhyolite. Patterns with stars represent calculated liquid compositions.
稀土元素的地球化学
(二) REE组成数据的表示方法 1.数据的标准化 2.REE组成模式图-球粒陨石标准化模式图
一般公认球粒陨石的轻-重稀土元素之间不 存在分异。 采用球粒陨石标准化模式图可使样品中各 REE间的任何程度的分异更(1)稀土元素总量(REE) (2)比值 • LREE/HREE • (La/Yb)N, (La/Lu)N , (Ce/Yb)N, • (La/Sm)N, (Gd/Lu)N (3)异常值 Eu/Eu*(Eu),Ce/Ce*(Ce)
δEu负异常: •斜长石分离结晶
或 • 源区存在大量
斜长石残留
吉黑东部P2-T1碱长花岗岩REE 标准化模式图
Sample/C1 Chondrite
300 100
10
1
0.1 La Pr
Eu Tb Ho Tm Lu
Ce Nd Sm Gd Dy Er Yb

元素在地球中的演化特征及演化规律

元素在地球中的演化特征及演化规律

元素在地球中的演化特征及演化规律摘要:元素在地球中特别是在上地壳中的演化规律,前人已经研究的很多了,相关的文献也异常丰富。

而利用稀土元素演化特征来探讨岩石、矿物甚至矿床成因,是地质科研及找矿工作的一个有效手段,作者也刚刚学习过《地球化学》这门课,因此结合所学和搜集的相关资料,本文将重点探讨稀土元素在地球演化中的特征,演化规律以及应用。

关键词:稀土元素、演化特征、规律稀土就是化学元素周期表中镧系元素——镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu),以及与镧系的15个元素密切相关的元素——钪(Sc)和钇(Y)共17种元素,称为稀土元素。

其中61号元素Pm(钷)同位素衰变太快,自然界尚未测定出来,故应用中只利用其14个元素。

由于同族元素钇(Y)的地球化学性质与稀土元素相似且密切伴生,故通常把钇也归于此类,用REE或TR 示之。

稀土元素多数呈银灰色,有光泽,晶体结构多为HCP或FCC。

性质较软,在潮湿空气中不易保存,易溶于稀酸。

原子价主要是正三价(铈正四价较稳定,镨和铽也有极个别的四价氧化物,钐、铕、镱有二价化合物),能形成稳定的配合物及微溶于水的草酸盐、氟化物、碳酸盐、磷酸盐及氢氧化物等。

在三价稀土氧化物中,氧化镧的吸水性和碱性与氧化钙相似,其余则依次转弱。

三价稀土的化学性质除钪的差异较显著外,其余都很相似,所以分离较难。

一般把稀土元素分为两组,即La(57)-Eu(63)为轻稀土或铈族稀土,用LREE示之;Gd(64)-Lu(71)为重稀土,一般把钇(Y)计入重稀土,故又称钇族稀土,用HREE 或Y示之。

但也有把稀土元素划分为三组的,即轻稀土(LREE,La-Nd)、中稀土(MREE,Sm-Ho)及重稀土(HREE,Er-Lu),但一般均采用二分法2常用稀土元素特征指数此处只列出了常用稀土元素特征指数的种类、计算方法及其指示意义,致于造成其变异的原因,将有专文报道。

13-微量元素地球化学

13-微量元素地球化学
基性岩、基性岩、中性岩至酸性岩,ΣREE值逐渐增高。 相对于碳酸岩,沉积岩中细粒碎屑岩和砂岩ΣREE值较 高,主要反映富集REE副矿物和粘土矿物选择性吸附的 结果,而非源区特征。因此,对于变质岩和壳源岩浆 岩,ΣREE能对其原岩或源岩的性质进行定性的指示。
1000
碳酸盐岩
La/Yb
100
沉积岩 钙质泥岩
N
EuN,SmN和GdN均为相应元素实测值的球粒陨石标
准化值。δEu(或Eu/Eu*)>1为正异常,δEu<1为负
异常,δEu=1无异常。
4.稀土元素地球化学
A negative Eu anomaly is typical of many
continental rocks, as well as most sediments and seawater.
上次课回顾
3.岩浆过程中微量元素定量模型
两花岗岩体,经采样,测得La、Sm含量(ppm)分别为:
样 品
花岗岩A
花岗岩B
La 7.5 11.0 33.1 38.2 20.5 42.3 50.2 30.8 38.4 68.5
Sm 6.0 4.5 5.8 6.2 6.1 8.4 10.1 7.9 5.97 13.9
REE球粒陨石标准化图 解,表示Eu异常的计算
4.稀土元素地球化学
δEu(或Eu/Eu*)计算以曾田彰正-科里尔图解为根据,
无Eu异常时,Eu的应有含量值为标准化曲线上旁侧
两个元素Sm和Gd的丰度值以内差法求得。δEu(或
Eu/Eu*)按下式得出:
δEu = Eu/Eu*=
EuN
(
Sm
2
Gd
)
4.稀土元素地球化学

稀土元素地球化学

稀土元素地球化学
共16个元素。
La
2. 稀土元素的分组
Ce
Pr
2.1 二分法
Nd
Pm
1)轻稀土元素 (LREE,ΣCe族稀土)
Sm
Eu
从La到Eu7个元素
Gd
Tb
2)重稀土元素 (HREE ,ΣY族稀土)
Dy
从Gd到Lu+Y 9个元素
Ho
Er
Tm
Yb
Y
La
2. 稀土元素的分组
Ce
2.2 三分法
Pr
Nd
1)轻稀土元素 (LREE)
全部的REE均显示稳定的正3价状态
2. 稀土元素的离子价态
Eu:[Xe]4f76s2 Eu2+ Yb:[Xe]4f146s2 Yb2+
Ce:[Xe]4f15d16s2 Ce4+
Tb:[Xe]4f96s2
Tb4+
第三节 稀土元素地球化学
一、稀土元素的主要性质
(一)稀土元素及其分组
La-Lu+Y, LREE,HREE,MREE
第三节 稀土元素地球化学
一、稀土元素的主要性质
(一)稀土元素及其分组
La-Lu+Y, LREE,HREE,MREE
(二)稀土元素的性质
1 电子构型 2 离子价态 3 离子半径 4 稀土元素的元素置换 5 稀土元素的分配系数
5. 稀土元素的分配系数
1)特定矿物REE分 配系数的模式一 般不变,数值上 看,富硅体系一 般高于基性体系。
一、稀土元素的主要性质
(一)稀土元素及其分组
La-Lu+Y, LREE,HREE,MREE
(二)稀土元素的性质
第三节 稀土元素地球化学

稀土元素原始地幔标准化计算公式

稀土元素原始地幔标准化计算公式

稀土元素原始地幔标准化计算公式
稀土元素原始地幔标准化计算公式的研究是地球化学领域的重要课题之一。


土元素是指具有原子序数为57-71的一系列元素。

它们在地壳中分布广泛,对于地
球科学和地质学的研究具有重要意义。

原始地幔标准化计算公式是一种方法,用于研究地球内部的化学成分变化,特别是地幔的成分。

原始地幔标准化计算公式主要基于稀土元素的浓度比值。

它的计算公式如下:
X/Y = (X/Y)sample / (X/Y)chondrite
其中,X和Y代表两种稀土元素,(X/Y)sample代表样本中X和Y的浓度比值,(X/Y)chondrite代表矿物群球粒陨石中X和Y的浓度比值。

原始地幔标准化计算公式的目的是将地球内部的化学成分与标准的地质样本进
行比较。

通过这种比较,地球化学家可以深入了解地球内部的物质循环、岩石形成和地球演化过程。

标准化计算公式使得不同地质样品之间的比较更加准确,消除了样品大小和地球历史的影响。

在稀土元素原始地幔标准化计算公式中,矿物群球粒陨石被选择为标准样品,
因为它们被认为是距离地幔最接近的岩石类型。

通过将地球内部的样品与矿物群球粒陨石进行比较,我们可以确定地球内部各个区域的化学差异。

总而言之,稀土元素原始地幔标准化计算公式是一种重要的地球化学计算方法,用于研究地球内部的化学成分变化。

通过这种方法,我们可以更深入地了解地球的演化过程和内部地质活动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

表中数据为山东济南辉长岩、沂南花岗岩7件样品的REE组成(ppm)
1,用球粒陨石值对样品的REE组成进行标准化,作其分配模式图,对图件中表达的地球化学特征进行说明;
2,计算各样品的Eu/Eu*,并对其地球化学意义进行说明;
,3,假设辉长岩中造岩矿物的组成为:CPX45%,PL35%,OL20%。

结合课件中提供的REE在矿物和熔体间的分配系数,计算与辉长岩平衡的熔体的REE组成,并作REE配分模式图。

解答:
1,如下表1-1为常用球粒陨石和原始地幔稀土元素组成,我采用C1 球粒陨石数据(Sun & McDonough,1989)对样品的REE进行标准化,得到了下表1-2,再根据对样品REE标准化的数据进行作样品的分配模式图,得到了图1-1
表1-1
表1-2
图1-1
通过对样品配分模式图进行分析可知道,沂南花岗岩样品中富集轻稀土元素而亏损重稀土元素,这与花岗岩的成分岩性有一定关系,花岗岩为酸性岩,主要矿物为长石、石英和云母,而这矿物主要富集轻稀土元素,并且从图中可以看出Eu的负异常,说明在岩浆结晶形成花岗岩之前就有长石结晶出来,使岩浆呈Eu 的负异常。

济南辉长岩的样品配分模式图表现出来的富集轻稀土元素没有沂南花岗岩样品那么显著,富集程度较低,这也与辉长岩的岩性成分有关,辉长岩中主要矿物为辉石和长石,长石富集轻稀土元素较为显著,而辉石相对较富集重稀土元素,但程度不是很显著,所以岩石总体表现较为富集轻稀土元素,但程度不是那么显著。

并且从图中可以看出Eu的正异常,只是不是很显著,说明长石结晶出来使岩石呈Eu的正异常。

2,Eu/Eu*=2×Eu/(Sm+Gd)(其中Eu、Sm、Gd都是为球粒陨石标准化值),根据这个求出各样品中的Eu/Eu*,如下表1-3:
表1-3
由上表中的Eu/Eu*值可知山东济南的辉长岩为Eu的正异常,说明在岩浆结晶时,长石和辉石先结晶出去形成辉长岩,而长石中富集Eu元素,所以在辉长岩中Eu为正异常,而后期岩浆因长石的结晶分异而呈Eu的负异常,并且逐渐向酸性过渡,结晶形成酸性岩。

可以推测这样品为同源岩浆所形成,主要是形成
时间不同导致Eu异常不同和岩性的不同。

3,根据课件可查出REE在CPX、PL、OL等矿物和熔体间的分配系数,如下表
1-4:
表1-4
在根据总分配系数的公式计算出REE在辉长岩中的总分配系数,如下表1-5:
表1-5
再根据固体、熔体和总分配系数之间的关系式计算出熔体中REE的组成,得
到数据如下表1-6,再C1 球粒陨石数据(Sun & McDonough,1989)对熔体的REE
进行标准化用计算结果如下表1-7,对其有进行作配分模式图,得到图1-2:
MJN0606
MJN0609
MJN0608
MJN0607
La 58.023 70.465 75.465 210.465
Ce 60.784 74.510 74.020 199.020
Nd 27.833 34.667 33.267 72.333
Sm 5.264 6.091 5.839 11.264
Eu 0.827 0.869 1.148 1.644
Tb 0.713 0.778 0.778 1.382
Er 2.037 2.287 2.453 4.158
Yb 8.120 8.803 9.744 17.863
Lu 0.325 0.325 0.375 0.7
表1-6
MJN0606
MJN0607 MJN0609
MJN0608
La 244.824 297.321 318.418 888.039
Ce 99.321 121.748 120.947 325.195
Nd 59.600 74.231 71.235 154.889
Sm 34.408 39.817 38.164 73.623
Eu 14.264 14.977 19.791 28.349
Tb 19.057 20.790 20.790 36.960
Er 12.311 13.818 14.823 25.124
Yb 47.763 51.785 57.315 105.078
Lu 12.795 12.795 14.764 27.560
表1-7
图1-2。

相关文档
最新文档