稀土元素地球化学

合集下载

元素周期表中的稀土元素性质解析

元素周期表中的稀土元素性质解析

元素周期表中的稀土元素性质解析元素周期表是化学家们对元素进行分类和归纳的重要工具。

在这个表中,稀土元素是一组特殊的元素,它们的性质独特而丰富。

本文将对稀土元素的性质进行解析,探讨它们在科学研究和工业应用中的重要性。

稀土元素是指周期表中镧系和锕系两个连续的元素系列。

它们的原子序数从57到71,以及90到103。

稀土元素的共同特点是外层电子结构比较复杂,容易形成稳定的化合物。

这也是为什么稀土元素在许多领域中都有广泛的应用。

首先,稀土元素在材料科学领域中扮演着重要的角色。

由于稀土元素具有特殊的电子结构,它们可以形成多种不同的化合物,这些化合物具有特殊的物理和化学性质。

例如,稀土元素可以用于制备高温超导材料,这些材料在低温下具有极低的电阻。

此外,稀土元素还可以用于制备磁性材料,这些材料在磁场中表现出强磁性。

因此,稀土元素在电子器件和磁性材料的制备中具有重要的应用价值。

其次,稀土元素在环境科学中也发挥着重要作用。

稀土元素在地球化学循环中扮演着重要角色,它们可以作为地球化学指示物来研究地球的演化和环境变化。

此外,稀土元素还可以用于环境污染的治理。

例如,稀土元素可以用作催化剂,促进有害气体的转化和降解。

因此,稀土元素在环境保护和治理中具有重要的应用潜力。

此外,稀土元素还在生物医学领域中发挥着重要作用。

稀土元素可以用于制备生物标记物和荧光探针,用于生物分析和成像。

例如,稀土元素可以用于制备荧光染料,这些染料在细胞和组织中具有较强的荧光信号,可以用于研究生物分子的定位和功能。

此外,稀土元素还可以用于制备荧光探针,用于疾病的诊断和治疗。

因此,稀土元素在生物医学研究和临床应用中具有广阔的前景。

最后,稀土元素还在冶金工业中发挥着重要作用。

稀土元素可以用于制备高强度的合金材料,这些材料具有优异的力学性能和耐腐蚀性。

此外,稀土元素还可以用于改善金属的熔点和流动性,提高金属的冶炼和加工性能。

因此,稀土元素在冶金工业中具有重要的应用价值。

地球化学 (14)

地球化学 (14)
半径比较接近;
REE的较大半径削弱着共价键性和静电的相互作 用, 成为阻止REE形成稳定络合物的主要因素之 一。溶液中三价REE离子能同CO23-,Br+,I-, NO3-和SO42-等组成离子对,形成碳酸盐,硫酸盐, 氯化物和氟化物型络合物. ;
在富CO2溶液中REE极活动。 实验证明HREE在共 存硅酸盐和碳酸盐熔体(岩浆熔离)之间优先富集于 碳酸盐熔体中;在共存富CO2蒸气相中REE更加富 集;
尽管REE化学行为相似, 还是能通过某些成岩和 成矿过程发生彼此分离。这是因电子构型对它们 离子价态和半径施加影响的结果,也与REE在造 岩矿物配位多面体类型众多和大小变化有关。
2. REE价态
REE是强正电性元素, 以离子键为特征, 只含极 少共价成分。电离顺序是先移去6s亚层上两个电 子,然后丢失1个5d或4f电子,因为5d和4f电子在 能量上相对接近于1个6s电子。设想再从4f移去1 个,即第4个电子,但是这个电子电离能太高, 不易移去。因此REE在化学和地球化学上均显示 三价离子状态,只有Eu和Yb可呈2价, Ce和Tb可 呈4价。原因:Eu2+和Tb4+具有半充满4f亚层, Yb2+具有全充满4f亚层,Ce4+具有贵气体氙(Xe) 电子构型,这些电子构型可以提高该价态离子的 稳定性。
变价离子(Eu,Ce等)不同价态的比例取决于 体系的成分、氧逸度、温度和压力;
3.REE的配位和离子半径
矿物中REE占据多种多样的配位多面体,从六次 到十二次,甚至更高的配位均有。较小的稀土元 素占据六次配位位置,但这种情况在矿物中少见。
一般REE在矿物中的配位要大些,最常见的配位 是七次到十二次,如榍石中为七次,锆石中为八 次,独居石中为九次,褐帘石中为十一次和钙钛 矿中为十二次。

稀土元素分配型式及地球化学参数的计算

稀土元素分配型式及地球化学参数的计算

一、实习目的由于稀土元素的原子结构、原子半径、离子半径及化合价的相似性,导致它们在自然界中常常紧密共生在一起。

因镧系收缩的缘故,使得稀土元素的离子半径从La→Lu逐渐减小,于是在岩浆过程中,这些元素在固相和液相间的分配呈现出明显的规律性变化。

Ce和Eu在自然界具有变价(Ce4+、Eu2+)的特征,Ce 和Eu的相对富集与亏损程度往往反映了特殊的地质背景。

本次实习要求掌握稀土元素的计算和作图方法,理解稀土元素的富集程度、分馏程度的地质意义,掌握Eu的亏损与富集的地质背景。

二、实习内容某地区的岩浆岩种类极为发育(表1—1和表1—2),请画出各岩类的稀土配分曲线图、结合稀土元素参数进行地质过程分析。

两种方法所得到的稀土元素参数表1—1 岩浆岩稀土元素成分表(×10-6)注:1-橄榄苏长岩,2-钾长花岗岩,3-H型花岗岩,4-A型花岗岩,5-石英闪长岩(M型花岗岩)。

稀土元素由某单位等离子光谱方法分析。

表1—2 岩浆岩稀土元素成分表(×10-6)注:表中数据由中子活化方法分析一、基本原理稀土元素通常指的是镧系元素的(La 、Ce 、Pr 、Nd 、Pm 、Sm 、Eu 、Gd 、Tb 、Dy 、Ho 、Er 、Tm 、Yb 、Lu ,其中Pm 在自然界无天然同位素),由于稀土元素的原子结构、原子半径、离子半径(RE 3+变化于0.86Å—1.14Å)及化合价的相似性使得它们在自然界往往紧密共生。

因镧系收缩造成稀土元素的离子半径从La →Lu 逐渐减小,Ce 和Eu 在自然界具有变价(Ce 4+、Eu 2+)的特征,以及介质(岩石、土壤、矿物等)的不同而引起稀土元素在自然界的分离。

为便于研究稀土元素在某介质中的分配型式,必须排除“偶数规则”的影响,最常用的方法是利用球粒陨石丰度值对稀土元素进行标准化。

这里向大家推荐W.V .Boynton(1984)提出的球粒陨石丰度值(×10-6):La 0.31;Ce 0.808;Pr 0.122;Nd 0.6;Sm 0.195;Eu 0.0735;Gd 0.259;Tb 0.047;Dy 0.322;Ho 0.0718;Er 0.21;Tm 0.0324;Yb 0.209;Lu 0.0322。

稀土元素在地球化学样品中的含量分析

稀土元素在地球化学样品中的含量分析

186管理及其他M anagement and other稀土元素在地球化学样品中的含量分析彭 萌(四川省地质矿产勘查开发局成都综合岩矿测试中心,四川 成都 610081)摘 要:稀土元素存在于在地球化学样品中,且具有非常相似的物理化学特性,因此常作为研究地球化学的示踪剂。

本文主要对地球化学样品中稀土元素的分析方法进行介绍与研究,稀土分析主要应用现代仪器进行分析,现代仪器分析手段繁多,不同的实验分析所用到的化学仪器也不一样,本文从地球化学样品的特点入手,简单介绍现代仪器在地球化学样品分析中的技术应用,并着重介绍电感耦合等离子体质谱分析技术(ICP-MS)分析地球化学样品中稀土元素含量的方法。

关键词:稀土元素;地球化学样品;含量;特征 中图分类号:X53 文献标识码:A 文章编号:11-5004(2020)17-0186-2收稿日期:2020-09作者简介:彭萌,男,生于1983年,汉族,四川成都人,大学本科,工程师,研究方向:岩矿分析。

地球化学样品组分复杂,不同元素在不同的样品中含量相差较大,实验分析的物质种类繁多,问题也多种多样。

在使用现代仪器分析实验的过程中,要对实验数据和仪器操作慎之又慎。

由于地球化学样品分析的物质品类广,影响分析结果的因素也比较多,这就造成了无机化学的分析难度大,所以如何合理应用现代仪器分析地球化学样品,得出准确的实验数据和结论,体现出现代仪器分析的实际价值。

稀土元素主要指的是镧系元素以及和镧系元素密切相关的钪(Sc)、钇(Y),共17种元素总称为稀土元素(RE)。

La (镧),Ce (铈),Pr (镨),Nd (钕),Pm (钷),Sm (钐),Eu (铕)称为铈组稀土(轻稀土);Gd (钆),Tb (铽),Dy (镝),Ho (钬),Er (铒),Tm (铥),Yb (镱),Lu (镥),Sc,Y 称为钇组稀土(中重稀土)。

稀土元素含量分析是地质科学研究最常用的方式之一。

稀土元素地球化学[精]

稀土元素地球化学[精]

稀土元素分组
• 根据稀土元素的分离工艺,又可将它们 分为三组,
• 即铈组稀土、铽组稀土和钇组稀土,分 别称为轻、中、重稀土。
• 铈组有La,Ce,Pr,Nd,Pm,Sm, • 铽组有En,Gd,Tb,Dy, • 钇组有Y,Ho,Er,Tm,Yb,Lu。
稀土元素概述
• 三价稀土元素的离子半径和Ca2+很接近, 很容易以各种类质同象形式进入岩浆作 用变质作用和沉积作用中广泛出现的含 钙矿物中。
• 在吸附能力强的粘土、铁-铝-锰沉积物,有机质和铁有机质等沉积物中富铈组稀土等等。
• 正是由于稀土元素作为既很相似、又有所不同的一组 元素,在自然界的地质作用和各种物理化学环境中的 特殊行为,使得有可能根据稀土元素的分离、变化作 为地球化学指示剂,去解释各种成岩成矿过程。
稀土元素丰度表示法
• 在稀土元素地球化学研究工作中,除了用稀土总量和 各单个稀土含量直接列表来表示所研究对象的稀土元 素含量丰度外,常用作图方法形象地表示,这就是所 谓“增田—科里尔(Masuda-Coryell)图解,是由他们 二人分别提出的。
• 由于电离势低,稀土元素呈明显碱性。 其碱度处于Mg(OH)2和Al(OH)3之间, 这是稀土元素广泛进入到钙的铝硅酸盐 矿物中的原因。
稀土元素地球化学
• 稀土元素倾向于形成极性键和共价键, 因而具有形成络合物的性质。
•这
存在时,容易形成络合物而迁移。
•尽管稀土元素具有很相近的物理化学性质,由于 电子构型的规则变化、镧系收缩等,各稀土元素 之间仍存在一些性质上的微小不同,造成稀土元 素在自然界中发生某些分离。
稀土元素配分模式
• 3.平坦型(或球粒陨石型) • 丰度曲线呈现近乎水平,既不显示重稀土富集、

稀土元素地球化学

稀土元素地球化学

第四章、稀土元素沉积地球化学
• ——陶瓷工业领域:稀土可以加入陶瓷和瓷釉之 中,减少釉和破裂并使其具有光泽。稀土更主要 用做陶瓷的颜料,由于稀土元素有未充满的4f电 子,可以吸收或发射从紫外、可见到红外光区不 同波长的光,发射每种光区的范围小,导致陶瓷 的颜色更柔和、纯正,色调新颖,光洁度好。如 黄色、紫罗兰色、绿色、桃红色、橙色、棕色、 黑色等。稀土氧化物可以制造耐高温透明陶瓷 (应用于激光等领域)、耐高温坩埚(冶金)。 • ——电光源工业领域:稀土作为荧光灯的发光材 料,是节能性的光源,特点是光效好、光色好、 寿命长。比白炽灯可节电75—80%。
第四章、稀土元素沉积地球化学
第四章、稀土元素沉积地球化学


1.什么是稀土元素:
以往由于分析技术水平低,误认为他们在地壳 中很稀少,另外它们一般发现于富集的风化壳上, 呈土状,故名稀土。实际上稀土并不稀,REE (稀土元素)的地壳丰度为0.017%,其中Ce、 La、Nd的丰度比W、Sn、Mo、Pb、Co还高。中 国是稀土大国,我国的稀土矿尤为丰 富。
第四章、稀土元素沉积地球化学
• ——高温超导材料:近几年研究表 明,许多单一稀土氧化物及其某些 混合稀土氧化物是高温超导材料的 重要原料。一旦高温超导材料进入 实用,整个世界将起翻天覆地的变 化。目前,我国在稀土超导材料的 成材研究方面取得了有意义的突破。
第四章、稀土元素沉积地球化学
• 二、河水中的稀土元素
第四章、稀土元素沉积地球化学
• ——精密陶瓷:氧化钇部分稳定的氧化镐是性能十分优异 的结构陶瓷,可制作各种特殊用途的刀剪;可以制作汽车 发动机,因其具有高导热、低膨胀系数、热稳定性能好、 在1 650℃下工作强度不降低,导致发动机马力大、省燃料 等优点。 • ——催化剂:稀土除用于制造石油裂化催化剂外,广泛应 用于很多化学反应,如稀土氧化物LaO3、Nd2O3和Sm2O3用于 环己烷脱氢制苯,用LnCoO3代替铂催化氧化氨制硝酸。并 在合成异戊橡胶、顺丁橡胶的生产中作为催化剂。 • 汽车尾气需要将CH、CO氧化,对NOX进行还原处理,以 解决目前城市空气污染问题。稀土元素是汽车尾气净化催 化剂的主要原料。我市化工研究院在这方面有很强的优势, 可推动形成一个汽车尾气净化器产品。

稀土元素地球化学特性及分布规律考核试卷

稀土元素地球化学特性及分布规律考核试卷
D.河流搬运作用
20.下列哪个稀土元素在陨石中的含量较高?()
A.镧
B.铕
C.铈
D.钇
二、多选题(本题共20小题,每小题1.5分,共30分,在每小题给出的四个选项中,至少有一项是符合题目要求的)
1.稀土元素的地球化学特性包括以下哪些?()
A.分馏效应
B.淋滤效应
C.富集效应
D.稳定效应
2.下列哪些因素影响稀土元素在沉积物中的分布?()
C.钕
D.镧
17.稀土元素在煤炭中的分布规律与下列哪个因素有关?()
A.煤炭的成熟度
B.煤炭的硫含量
C.煤炭的挥发分
D.煤炭的灰分
18.下列哪个稀土元素在超基性岩中相对富集?()
A.镧
B.铕
C.铈
D.钇
19.稀土元素在河流沉积物中的分布规律与下列哪个因素有关?()
A.河流流速
B.河流径流量
C.河流侵蚀作用
A.过渡元素
B.碱金属
C.稀有气体
D.稀土元素
2.稀土元素地球化学特性中,哪一个特性是指稀土元素在地球化学过程中不易被淋滤迁移?()
A.分馏效应
B.固定效应
C.富集效应
D.淋滤效应
3.下列哪个稀土元素在地球表面的平均含量最高?()
A.铕
B.钕
C.铈
D.镧
4.稀土元素的电子排布特点是什么?()
A.外层电子全满
3.氧化还原状态
4.独立矿物,类质同象替代
5.温度,压力,流体活动
6.递减
7.内蒙古
8.成熟度
9.吸附
10.生物吸收,生物沉淀
四、判断题
1. ×
2. ×
3. √
4. √

稀土元素地球化学

稀土元素地球化学

Sm
0.007 0.05
Eu
0.007 0.05
Dy
0.013 0.15
Er
0.026 0.23
Yb
0.049 0.34
Lu
0.045 0.42
Data from Rollinson (1993).
Cpx Garnet Plag Amph Magnetite
0.031 0.042 0.071 0.29
活动大陆边缘岩浆岩 的稀土元素配分型式
大陆碱性岩浆岩的 稀土元素配分型式
3.2c 岩浆过程的鉴别与模拟计算
F
溶体
源岩含80%橄榄石、 10%斜长石、10% 单斜辉石
源岩
残留体
石榴石二辉橄 榄岩部分熔融
第四部分
微量元素地球化学研究 的主要思路和方法综述
微量元素地球化学研究的主要思路和方法综述
0.056 0.001 0.148 0.544 2
0.092 0.007 0.082 0.843 2
0.230 0.026 0.055 1.340 2
0.445 0.102 0.039 1.804 1
0.474 0.243 0.1/1.5* 1.557 1
0.582 1.940 0.023 2.024 1
4.2 元素协变图
22
Al2O3
17
10
MgO
5
12
FeO* 10
5
0 15
10 CaO
5
0
6
Na2O
4
0 4
3
K2O
2
2
1
0
0
45 50 55 60 65 70 75 45 50 55 60 65 70 75

稀土元素在地球化学样品中的含量分析

稀土元素在地球化学样品中的含量分析

稀土元素在地球化学样品中的含量分析摘要:地球化学样品中的稀土元素,具有相似的物化特性,常用来作为地球化学研究的示踪剂。

本文研究了地球化学样品中稀土元素含量的分析方法,稀土元素分析采用现代仪器设备进行,手段丰富多样。

从地球化学样品中稀土元素含量分析的特点与方法入手,介绍仪器分析的技术应用,以期为地球化学研究提供参考。

关键词:稀土元素;地球化学样品;含量分析地球化学样品的成分较为复杂,不同元素在不同样品中呈现的物化性质及含量都有所差别。

通过实验来分析地球化学样品中的物质种类,遇到的问题比较复杂。

当前地球化学样品分析大量引入了现代仪器,对仪器的操作和实验数据的分析应仔细谨慎。

地球化学样品分析的物质品类非常广泛,影响分析准确性的因素较多,提高了分析难度,应合理利用现代仪器展开分析,得出准确数据,推导正确的结论,体现现代仪器分析和分析技术的价值。

稀土元素含量测定分析可辅助地球化学样品研究。

稀土元素指的是镧系元素以及与之密切相关的两种元素,共17种元素。

一、稀土元素含量分析在地球化学样品研究中的意义当今稀土元素在战略矿藏储备上的重要意义已经越来越为人们所重视。

我国作为稀土资源大国,近年来在稀土资源的勘探、开采、生产、贸易领域深入耕耘,取得了较大成就,受到多方瞩目。

稀土元素被誉为“工业维生素”,在工业生产领域得到广泛应用。

而稀土在地球化学分析中也占据重要的地位,可以作为示踪剂,对于地球化学研究、地质理论研究、矿产勘探研究等有着极强的推动作用。

稀土元素和地球的地质发展过程联系紧密,参与了地球地质各个阶段的变化,通过测算和分析稀土元素的含量可以了解地球地质变化过程,为地质研究提供参考。

当前测算稀土元素含量采用的电感耦合等离子体质谱分析技术有以下作用:首先,稀土元素在地球化学样品中的含量分析可以通过仪器精确定量。

稀土元素分析的定量化能够解释地球的地质环境和条件,判断其中是否存在矿藏,有助于矿产资源的勘探开发。

根据不同的分析目的,采用不同的分析手段,对不同元素展开同位素分析,通过合理运用分析技术和分析手段来实现分析目的。

元素在地球中的演化特征及演化规律

元素在地球中的演化特征及演化规律

元素在地球中的演化特征及演化规律摘要:元素在地球中特别是在上地壳中的演化规律,前人已经研究的很多了,相关的文献也异常丰富。

而利用稀土元素演化特征来探讨岩石、矿物甚至矿床成因,是地质科研及找矿工作的一个有效手段,作者也刚刚学习过《地球化学》这门课,因此结合所学和搜集的相关资料,本文将重点探讨稀土元素在地球演化中的特征,演化规律以及应用。

关键词:稀土元素、演化特征、规律稀土就是化学元素周期表中镧系元素——镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu),以及与镧系的15个元素密切相关的元素——钪(Sc)和钇(Y)共17种元素,称为稀土元素。

其中61号元素Pm(钷)同位素衰变太快,自然界尚未测定出来,故应用中只利用其14个元素。

由于同族元素钇(Y)的地球化学性质与稀土元素相似且密切伴生,故通常把钇也归于此类,用REE或TR 示之。

稀土元素多数呈银灰色,有光泽,晶体结构多为HCP或FCC。

性质较软,在潮湿空气中不易保存,易溶于稀酸。

原子价主要是正三价(铈正四价较稳定,镨和铽也有极个别的四价氧化物,钐、铕、镱有二价化合物),能形成稳定的配合物及微溶于水的草酸盐、氟化物、碳酸盐、磷酸盐及氢氧化物等。

在三价稀土氧化物中,氧化镧的吸水性和碱性与氧化钙相似,其余则依次转弱。

三价稀土的化学性质除钪的差异较显著外,其余都很相似,所以分离较难。

一般把稀土元素分为两组,即La(57)-Eu(63)为轻稀土或铈族稀土,用LREE示之;Gd(64)-Lu(71)为重稀土,一般把钇(Y)计入重稀土,故又称钇族稀土,用HREE 或Y示之。

但也有把稀土元素划分为三组的,即轻稀土(LREE,La-Nd)、中稀土(MREE,Sm-Ho)及重稀土(HREE,Er-Lu),但一般均采用二分法2常用稀土元素特征指数此处只列出了常用稀土元素特征指数的种类、计算方法及其指示意义,致于造成其变异的原因,将有专文报道。

稀土元素

稀土元素

稀土元素地球化学通过研究地质体中稀土元素的组成特点,来探讨、形成条件以及、月球、等的形成和演化过程。

稀土元素(REE或TR)是指元素周期表中57号到71号的镧系元素和39号元素钇。

从镧到铕为铈组(轻稀土),从钆到镥及钇为钇组(重稀土)。

稀土元素在自然界的丰度和分布地壳中稀土元素的丰度为0.34~31ppm,总量为112ppm。

稀土元素在陨石、月球、地球各种岩石中的分布有如下规律。

①在岩浆岩中,从超基性岩→基性岩→中性岩→酸性岩→碱性岩,稀土元素总含量增加。

基性、超基性岩相对富含重稀土,酸性岩,尤其是碱性岩富含轻稀土。

②在中,以泥质岩石(如页岩)稀土含量最高,碳酸盐类(如)稀土含量最低。

③稀土元素在地壳中的分布不均匀。

地壳稀土组成相当于英云闪长岩,太古宙后地壳相当于花岗闪长岩。

大陆地壳稀土元素总量高,相对富轻稀土;大洋地壳稀土元素含量较低,相对富重稀土。

上地壳稀土元素含量高,相对富含轻稀土;下地壳稀土含量低,相对富含重稀土。

④地球的稀土元素丰度与球粒陨石相似,原始地幔的稀土元素含量约为普通球粒陨石的1.9~2.6倍。

⑤稀土元素在月表各种岩石中的含量相当于地球的3~10倍。

克里普岩(一种富钾、稀土和磷的岩石)稀土总含量达500ppm以上。

⑥球粒陨石稀土元素总含量为数个ppm,铁陨石稀土元素含量最低。

⑦河水、海水中稀土元素含量很低,总量低于1ppm,重稀土含量高于轻稀土。

稀土元素在自然样品中的分布特点可以用图解来表示。

将样品的稀土元素含量对球粒陨石标准化,取其对数值为纵坐标,以原子序数为横坐标作图,称为增田科里尔图解。

地球各种岩石的稀土元素分布形态绝大多数是两条直线性线段或一条完整的直线,即呈对数线性分布。

根据铕和铈的分布特征,可划分为5种类型(见图[稀土元素分布类型]):①铕亏损型,铕呈负异常,分布曲线在铕处为一谷形,如花岗岩;②铕富集型,铕呈正异常,分布曲线在铕处为一峰,如斜长岩;③平坦型(或球粒陨石型),分布曲线为平滑直线,铕无异常,如大洋拉斑玄武岩;④铈亏损型,分布曲线在铈处为一谷,铈呈明显亏损,如海水,现代海洋沉积物及某些铁建造;⑤铈富集型,富铈,分布曲线在铈处为一峰,如海洋中锰结核。

13-微量元素地球化学

13-微量元素地球化学
基性岩、基性岩、中性岩至酸性岩,ΣREE值逐渐增高。 相对于碳酸岩,沉积岩中细粒碎屑岩和砂岩ΣREE值较 高,主要反映富集REE副矿物和粘土矿物选择性吸附的 结果,而非源区特征。因此,对于变质岩和壳源岩浆 岩,ΣREE能对其原岩或源岩的性质进行定性的指示。
1000
碳酸盐岩
La/Yb
100
沉积岩 钙质泥岩
N
EuN,SmN和GdN均为相应元素实测值的球粒陨石标
准化值。δEu(或Eu/Eu*)>1为正异常,δEu<1为负
异常,δEu=1无异常。
4.稀土元素地球化学
A negative Eu anomaly is typical of many
continental rocks, as well as most sediments and seawater.
上次课回顾
3.岩浆过程中微量元素定量模型
两花岗岩体,经采样,测得La、Sm含量(ppm)分别为:
样 品
花岗岩A
花岗岩B
La 7.5 11.0 33.1 38.2 20.5 42.3 50.2 30.8 38.4 68.5
Sm 6.0 4.5 5.8 6.2 6.1 8.4 10.1 7.9 5.97 13.9
REE球粒陨石标准化图 解,表示Eu异常的计算
4.稀土元素地球化学
δEu(或Eu/Eu*)计算以曾田彰正-科里尔图解为根据,
无Eu异常时,Eu的应有含量值为标准化曲线上旁侧
两个元素Sm和Gd的丰度值以内差法求得。δEu(或
Eu/Eu*)按下式得出:
δEu = Eu/Eu*=
EuN
(
Sm
2
Gd
)
4.稀土元素地球化学

地球化学稀土元素配分分析

地球化学稀土元素配分分析

《地球化学》实习测验REE图表处理及参数计算一、实习目的1、掌握稀土元素组成模式图的制作方法。

2、掌握表征稀土元素组成的基本参数。

3、培养独立查阅文献及处理数据的能力。

二、基本原理1、稀土元素组成模式图1、原子序数为横坐标2、标准化数据为纵坐标3、对数刻度2、表征稀土元素组成的基本参数3、稀土总量4、轻重稀土比值5、轻稀土分异指数6、重稀土分异指数7、铕、铈异常三、实习测验内容1、绘制各类侵入岩的稀土元素组成模式图;2、计算各类侵入岩稀土元素组成的基本参数;3、对已绘制的图表和计算出的数据进行解释。

4、在以上实习内容掌握之后,自行查阅文献一篇,并进行以上3项操作。

四、实习测验步骤1、根据查阅文献数据,找到自己想要的数据表1 蒙库铁矿床岩石、矿石、矿物稀土元素成分分析(ppm)2、选出自己要的数据建立表格表2 稀土元素组成模式图(ppm)3、对数据进行球粒陨石标准化表3球粒陨石标准化后稀土元素组成模式图(ppm)图1 蒙库铁矿床稀土元素配分图5、计算稀土元素基本参数表4 表征稀土元素组成的基本参数6、数据及图表的解析(1)绿帘石:∑REE=266.49ppm,表明稀土元素含量较高;LR/HR=4.98,表明轻重稀土元素间发生了较大的分异,轻稀土元素相对富集;(La/Sm)N=2.26,(Gd/Lu)N=1.47,显示轻重稀土元素内部都发生了分异作用,轻稀土元素分异更明显。

Eu异常值=1.23,为强正异常;Ce异常值=0.95,表明Ce基本无异常;稀土元素配分模式为轻稀土富集,重稀土相对亏损的右倾型,图像具有左陡右缓特点,Eu正异常明显特征。

(2)磁铁矿矿石:∑REE=10.75ppm,表明稀土元素含量较低;LR/HR=3.15,表明轻重稀土元素间发生了较大的分异,轻稀土元素相对富集;(La/Sm)N=1.47,(Gd/Lu)N=0.88,显示轻重稀土元素内部都发生了分异作用,轻稀土元素分异更明显。

稀土元素地球化学

稀土元素地球化学
共16个元素。
La
2. 稀土元素的分组
Ce
Pr
2.1 二分法
Nd
Pm
1)轻稀土元素 (LREE,ΣCe族稀土)
Sm
Eu
从La到Eu7个元素
Gd
Tb
2)重稀土元素 (HREE ,ΣY族稀土)
Dy
从Gd到Lu+Y 9个元素
Ho
Er
Tm
Yb
Y
La
2. 稀土元素的分组
Ce
2.2 三分法
Pr
Nd
1)轻稀土元素 (LREE)
全部的REE均显示稳定的正3价状态
2. 稀土元素的离子价态
Eu:[Xe]4f76s2 Eu2+ Yb:[Xe]4f146s2 Yb2+
Ce:[Xe]4f15d16s2 Ce4+
Tb:[Xe]4f96s2
Tb4+
第三节 稀土元素地球化学
一、稀土元素的主要性质
(一)稀土元素及其分组
La-Lu+Y, LREE,HREE,MREE
第三节 稀土元素地球化学
一、稀土元素的主要性质
(一)稀土元素及其分组
La-Lu+Y, LREE,HREE,MREE
(二)稀土元素的性质
1 电子构型 2 离子价态 3 离子半径 4 稀土元素的元素置换 5 稀土元素的分配系数
5. 稀土元素的分配系数
1)特定矿物REE分 配系数的模式一 般不变,数值上 看,富硅体系一 般高于基性体系。
一、稀土元素的主要性质
(一)稀土元素及其分组
La-Lu+Y, LREE,HREE,MREE
(二)稀土元素的性质
第三节 稀土元素地球化学

稀土元素地球化学全解

稀土元素地球化学全解

第五章 稀土元素地球化学
稀有元素类型的划分
•主体稀有元素:Li、Rb、Cs、Be、Nb、Ta、Zr、Hf (8个亲石元素)
•Li—氢弹材料、宇航固体燃料添加剂
•Be—航天工业;Nb、Ta—钢铁工业 •稀土元素:镧系元素+Y •分散元素:In、Ga、Ge、Cd、Se、Te、Tl、Re、Sc (主要是亲硫元素) In2O3—液晶显示器
第五章 稀土元素地球化学
(2)二个变价元素及其形成条件:Eu4f7最稳定,它 仅失去6s层上两个电子,呈Eu2+(Eu3+), Eu3++e还原为Eu2+,Eh0 = - 0.43伏特。 由于Eu2+与Ca2+晶体化学性质相似,往往可以使 Eu2+脱离REE3+整体,而单独活动,这样在岩浆早期富 Ca2+的环境中,斜长石一般含较高的Eu2+,形成斜长 石的“正铕异常”。 Ce正好相反,具有最不稳定的4f2电子充填,除 f2上二个电子,还有6s2二个电子都可丢失,故呈Ce4+ (Ce3+), 在强氧化条件下,Ce3+氧化为Ce4+, Ce4+与REE3+ 整体脱离,形成所谓的“负铈异d的丰度比W、
第五章 稀土元素地球化学
中国是稀土大国,我国的稀土矿尤为丰富 。
我国内蒙白云鄂博稀土矿
第五章 稀土元素地球化学
稀土元素氧化物是一种含量稀少的不溶氧 化物,于是便得名rare earth element(REE)。 此外,TR=terres rares 在拉丁文里也代表稀 土元素。
4f 5d 6s 4f9 6s2 10 2 4f 6s 11 2 4f 6s 4f12 6s2 4f13 6s2 14 2 4f 6s 14 1 2 4f 5d 6s
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

0.074
0.259 0.047 0.322
1.24
5.2 0.85 5.8
Ho
Er Tm Yb Lu Y
123.6111
125.2381 118.125 115.311 113.0303 93.36735
95.27778
103.3333 90.625 89.47368 85.75758 65.81633
•ቤተ መጻሕፍቲ ባይዱ
• LaN/SmN:反映了轻稀土之间的分馏程度。该值越大, 轻稀土越富集。 根据LaN/SmN可以对岩石进行分类。如根据LaN/SmN比 值,Schilling(1975a)将洋中脊玄武岩划分成三种类型: N型(正常型),LaN/SmN<1;稀土元素组成模式为亏 损型。 P(E)型,地幔柱型或异常型,LaN/SmN>1;富集型。 T型,过渡型;LaN/SmN≈1 • GdN/YbN:反映了重稀土之间的分馏程度。该值越小, 重稀土富集程度越高。有人用GdN/YbN比值将马提岩划 分成三个组。
• 在成矿研究中,常用未矿化或蚀变的岩石 为标准,了解成矿或蚀变过程中,稀土元 素的变化。
这种方法的优点
• 一般公认球粒陨石的轻-重稀土元素之间不存在 分异。 采用球粒陨石标准化模式图可使样品中各REE 间的任何程度的分异更清楚地显示出来。 克服奇偶原子序数的元素丰度不同所造成的 REE曲线锯齿状变化。 可以反映所研究样品相对于原始地球稀土组成 的地球化学分异作用。 直线斜率、形态和偏离直线的稀土元素的异常 地球化学行为,为成岩成矿机理研究,提供了 重要信息。
• ② LREE/HREE—轻重稀土元素比值 • 用途:能较好地反映REE的分异程度以及 指示部分熔融残留体和岩浆早期结晶矿物 的特征。是判断残留相或结晶相矿物组合 的重要依据。
③单元素轻重稀土元素比值
• • • LaN/YbN、LaN/LuN、CeN/ YbN: 是稀土元素球粒陨石标准化图解中分布曲线的斜率,它 反映了曲线的倾斜程度, LaN/YbN>1,曲线向右倾,富集轻稀土—酸性岩类; LaN/YbN≈1,曲线水平,属球粒陨石型—大洋拉斑玄武 岩;科马提岩; LaN/YbN<1,曲线向左倾斜,为亏损型—橄榄质科马 提岩。 (LaN/YbN,LaN/LuN、CeN/ YbN是样品中La、Yb、 Lu、Ce球粒陨石标准化值的比值。它们分别代表了轻稀 土元素和重稀土元素;而且其含量易于准确确定。
20
( S m / Y b )N
20
10
石榴石橄 榄岩源区
10
0 0 5 尖晶石橄 10 (Yb)N 15 20
0 0
榄岩源区
5
10 (Yb)N
15
20
典型幔源火山岩的(Sm/Yb)N-YbN图解
岩浆作用微量元素地球化学小结:
1. 稀土元素岩浆成因判别标志: (1) LREE: 源区富集-亏损与熔融程度 HREE: 源区性质 (2) 比值: (La/Yb)N, (La/Sm)N, (Sm/Yb)N (Gd/Yb)N (3)异常值 Eu 斜长石的指纹 Ce 氧化环境和海水作用标志
稀土元素地球化学的应用
金伯利岩 钾镁煌斑岩
样 品/ 球 粒陨 石
200 0 100 0
2
1-华北金伯利岩 2-华南钾镁煌斑岩
100
1
2
高度富集LREE -极低程度熔融 HREE强烈分馏 -源区存在石榴 石残留
10
1
1
La Pr Eu Tb Ho Tm Lu Ce Nd Sm Gd Dy Er Yb
汉诺坝玄武岩REE球粒陨石标准化配分模式图
3
a r u b u o
S
d e d y r b
分离结晶作用REE变化规律
岛 弧 火 山 岩
REE patterns for liquids by Rayleigh fractional crystallization modeling: a. from basalt to andesite, b. from andesite to dacite, and c. from dacite to type 1 rhyolite. Patterns with stars represent calculated liquid compositions.
④Eu/Eu*(Eu),Ce/Ce*(Ce)
Eu N Eu Sm N Gd N 2
Ce N Ce La N PrN 2
正异常δEu>1,在标准化图解中,Eu处出现”峰”
负异常δEu<1,在标准化图解中,Eu处出现”谷” 无异常δEu=1, 用途:是划分岩石类型和讨论成岩成矿条件的重要参数 例如:花岗岩可划分成 壳型:δEu平均值为0.46,为中等亏损; 壳幔型:δEu平均值为0.84,为弱亏损; 富碱侵入体型:δEu平均值小于0.30,强烈亏损。
20 0
• 大洋岛
样 品/球 粒 陨 石
10 0 50
冰岛
流纹岩
冰岛岩
玄武岩 拉斑玄武 岩
岩浆分离 结晶-REE 分配模式
10
3
La C e Pr Nd
Sm Eu Gd Tb Dy H o Er Y b
冰岛火成岩球粒陨石标准化REE分配曲线
0
0
汉诺坝 玄武岩
0
1
板 大内 陆 玄 武 岩
Sample/Chondrit
样 La Ce Pr Nd Sm

1 735.4839 730.198 326.2295 288.3333 180
2 638.7097 962.8713 313.1148 265 167.6923
3 648.3871 996.2871 299.1803 258.3333 164.6154
球 粒陨 石 0.31 0.808 0.122 0.6 0.195
微量元素蛛网图-判别岩浆源区性质
1-OIB型玄武岩 2-洋岛玄武岩 3-青藏高原新生 代钾玄岩系列 4-岛弧钙碱性玄武岩
不同类型火山岩原生地幔标准化蛛网图
• 不相容元素比值-比值源区判别图解
青藏高原新生代 •高Mg#火山岩源 区近似活动陆缘 性质; •钾玄质火山岩具 有OIB与活动陆 缘源区混合特征. 青藏高原新生代火山岩 岩浆源区性质判别图解
四 REE组成数据的表示方法
曾田彰正—科里尔(Masuda 1962 , Coryell 1963 ) 图解(球粒陨石标准化-原子序数图解法) 1.数据的标准化 • 样品中REE浓度/参照物REE浓度=标准化值,最常用 的参照物是球粒陨石(沉积岩常以北美页岩为标准) 然后以标准化值的对数值为纵坐标,以稀土元素按原 子序数排列为横坐标作图。 图解中稀土元素分布模式分类(三类): • 轻稀土富集型:分布曲线向右倾斜,轻稀土富集。 • 轻稀土亏损型:分布曲线向左倾斜,轻稀土亏损。 • 平坦型(球粒陨石型):轻重稀土富集不明显。 • 根据图解中Eu和Ce处曲线的形态,再划分出: • Eu /Ce亏损型、富集型、正常型。
三.表征REE组成的参数 (1)稀土元素总量(REE) (2)比值 • LREE/HREE • (La/Yb)N, (La/Lu)N , (Ce/Yb)N, • (La/Sm)N, (Gd/Lu)N (3)异常值 Eu/Eu*(Eu),Ce/Ce*(Ce)
• • •

① ∑REE—稀土元素总量 单位一般用10-6(ppm) 超基性→基性→中性→中酸性→碱性岩, ∑REE逐渐增加。 用途:判断某种岩石的母岩特征和区分岩 石类型。
北美页岩 (L.A.Haskin,1984) 32 73 7.9 33 5.7
Eu
Gd Tb Dy
123.5135
169.8842 137.6596 129.5031
174.3243
128.8136 116.5957 103.7267
109.8649
155.9846 121.9149 113.354



五 稀土元素地球化学的应用
洋 中 脊 玄 武 岩
LREE亏损 HREEN一般 为10-25 最高达80
部分熔融作用REE变化规律
石榴子石橄榄岩批式熔融的 玄武岩浆的稀土组成 源岩矿物组成- Ol : Opx : Cpx : Ga = 0.55:0.25: 0.11: 0.09
稀土元素地球化学的应用
金伯利岩-钾镁煌斑岩REE球粒陨石 标准化配分模式图
δEu负异常: •斜长石分离结晶 或 • 源区存在大量 斜长石残留
吉黑东部P2-T1碱长花岗岩REE 标准化模式图
300
Sample/C1 Chondrite
100
δEu负异常: •斜长石分离结晶 或 • 源区存在大量 斜长石残留
La Ce Pr Eu Tb Ho Tm Lu Nd Sm Gd Dy Er Yb
10
1
0.1
张广才岭A型花岗岩REE球粒陨石 标准化配分模式
30
Cr >300×10 -6
30
r M ean C
华南钾镁煌斑岩 华南钾镁煌斑岩 西藏白榴石玄武岩 -响岩 西藏白榴石玄武岩 -响岩 甘肃钾质超基性次火山岩 甘肃钾质超基性次火山岩 滇西新生代拉斑玄武岩 滇西新生代拉斑玄武岩
( S m / Y b )N
2 微量元素岩浆成因判别标志:
(1) 岩浆作用判别(分离结晶 部分熔融)
• • (2) • • •
强不相容元素-强相容元素判别标志 强不相容元素-不相容元素比值判别标志 岩浆源区性质判别 微量元素蛛网图-判别岩浆源区性质 强不相容元素-不相容元素比值 强不相容元素比值-比值判别 源区性质判别必需建立判别标志
108.75
110 102.8125 99.52153 98.18182 119.898
0.072
相关文档
最新文档