自旋电子学与自旋电子器件简述
自旋电子学与自旋器件
自旋电子学与自旋器件自旋电子学是一门研究自旋电子在材料中运动和相互作用的学科,自旋器件则是通过利用自旋电子在材料中的特性设计和制造的电子器件。
本文将探讨自旋电子学的基本概念、自旋器件的分类以及其在现代科技领域的应用。
一、自旋电子学的基本概念自旋是电子的一种属性,类似于地球上物体的旋转。
电子的自旋可以看作是围绕其自身轴心旋转产生的磁矩。
自旋电子学研究的重点在于如何控制和利用电子的自旋,以实现信息的存储和传输。
在自旋电子学中,自旋电子可以被视为一种具有两个自旋态的粒子,即自旋“上”和自旋“下”。
通过施加磁场或利用特殊材料的相互作用,可以使电子在两种自旋态之间进行转换,这就是自旋翻转。
二、自旋器件的分类根据自旋器件的功能和工作原理,可以将其分为自旋阀、自旋场效应器件和自旋传感器。
1. 自旋阀自旋阀是利用自旋选择性的非磁性材料与磁性材料之间的界面耦合效应,实现电子自旋的注入和控制。
自旋阀可以用于构建自旋电子学器件中的自旋输运和调控单元。
2. 自旋场效应器件自旋场效应器件是一种利用电场调控电子自旋输运的器件。
它通过在材料中引入外加电场,调节自旋电子在材料中的能级分布,从而控制电子的自旋转变和输运。
3. 自旋传感器自旋传感器是一种利用自旋电子特性感测外部物理量或环境变化的器件。
通过监测自旋电子在材料中的状态变化,可以实现对温度、磁场、电压等物理量的测量和监测。
三、自旋电子学在现代科技领域的应用1. 自旋磁电子学自旋磁电子学是自旋电子学的一个重要研究方向。
它利用自旋自旋转变和磁性材料的相互作用,实现磁性存储器件和磁性传感器的控制与调节。
自旋磁电子学在信息存储、计算和通信等领域具有广泛的应用前景。
2. 自旋输运与量子计算自旋输运是自旋电子学的核心内容之一,其目标是实现自旋信息的传输与控制。
自旋电子学中的自旋传输和调控单元可以用于构建量子比特和量子电路,用于实现量子计算和量子通信。
3. 自旋电子学与磁效应材料自旋电子学与磁效应材料的研究相互关联,相互促进。
自旋电子学的发展及其应用
自旋电子学的发展及其应用自旋电子学是一种新兴的研究领域,它涉及到自旋在电子学中的应用。
自旋电子学的发展可以追溯到20世纪60年代,当时科学家发现自旋可以在半导体中传递电信号。
然而,这个领域的真正飞跃是在21世纪初,随着新型材料和技术的发展,自旋电子学开始迎来了蓬勃的发展。
本文将从自旋电子学的基础原理、材料和技术发展、以及自旋电子学在实际应用中的优势等方面,详细介绍自旋电子学的发展及其应用。
一、自旋电子学的基础原理自旋电子学是基于自旋的量子属性,研究自旋在材料中的行为和特性,包括自旋的产生、传输、控制和检测。
自旋是电子的一种固有属性,可以看作是电子围绕自身旋转的一种特殊运动状态。
自旋有两种可能的取向,即上自旋和下自旋。
在外磁场的作用下,上自旋和下自旋的能量不同,因此可以通过磁场来控制自旋的取向。
二、自旋电子学的材料和技术发展随着自旋电子学的不断发展,研究人员已经发现了一些材料,这些材料具有优异的自旋特性,例如:铁磁性材料、半导体材料、自旋霍尔效应材料等。
在技术方面,研究人员已经发明了一些新的技术,例如:磁隧道结构技术、磁电阻技术、磁性记忆技术等,这些技术为自旋电子学的发展提供了有力的支持。
三、自旋电子学的应用自旋电子学已经被广泛应用于电子学和信息技术领域,具有广泛的应用前景。
下面列举了一些自旋电子学的应用:磁性存储器:磁性存储器是自旋电子学应用的一种重要形式,它可以实现高速读写、高密度存储和低功耗等优点。
自旋电子器件:自旋电子器件是利用自旋电子学的原理设计的器件,它具有高速、低功耗、稳定性好等特点,可以应用于处理器、存储器和通信设备等领域。
自旋电子输运:自旋电子输运是指利用自旋电子学的原理,设计实现一些新型的电子器件和传感器,用于探测、测量和传输电信号,例如自旋电荷泵、自旋输运晶体管等。
自旋电子学在量子计算中的应用:量子计算是一种全新的计算方式,自旋电子学中的自旋量子位可以用来存储量子信息,实现量子计算。
自旋电子学中的自旋转移矩效应与自旋电子器件研究新进展
自旋电子学中的自旋转移矩效应与自旋电子器件研究新进展自旋电子学是一门相对较新的物理学分支,涉及自旋电子的操控和应用。
自旋转移矩效应是自旋电子学中的一个重要现象,它在自旋电子器件的研究和应用中发挥着关键作用。
本文将详细解读自旋转移矩效应的基本定律、实验准备和过程,并探讨其在自旋电子器件研究中的新进展和应用。
自旋转移矩效应(spin-transfer torque,简称STT)是指自旋极化电流对磁矩的转移作用。
在自旋电子学中,电流携带的自旋极化可引起磁矩的移动和翻转,从而实现自旋信息的读写和存储。
STT的研究对于自旋电子器件的发展具有重要意义。
首先,我们可以从磁体的逆磁电阻效应(GMR)开始解读STT的基本定律。
GMR现象表明,当电流通过一个具有磁性层的金属多层膜时,由于自旋极化电流的存在,电阻将与磁自旋方向有关。
这一效应被用于读取磁性存储介质中的自旋信息。
STT则进一步利用了这种磁性层中的自旋极化电流,通过施加一个垂直磁场,使得磁矩沿着特定方向旋转,实现了自旋信息的写入。
在进行STT实验前,我们需要准备一些实验装置和材料。
首先,需要制备一些磁性多层薄膜样品,其中包含磁性层和非磁性层,用于观察STT效应。
其次,需要配置一台实验仪器,如霍尔效应测量仪,用于测量和分析自旋极化电流和磁矩的变化。
最后,还需要一些实验材料,如电路板、导线和稳压电源等。
实验的过程如下:首先,将制备好的磁性多层薄膜样品固定在实验装置中,并连接电路板和电流源。
然后,通过电流源施加一定大小的电流并选择合适的频率,以产生自旋极化电流。
接着,通过霍尔效应测量仪测量电流和磁矩的变化,以获得STT效应的相关数据。
最后,根据实验数据分析自旋极化电流对磁矩的转移作用,并进一步探究其在读写自旋信息中的应用。
自旋转移矩效应在自旋电子器件的研究中有着广泛的应用。
例如,自旋转移矩随机存储器(ST-RAM)利用STT效应实现了高速、低功耗和非易失性的自旋极化数据存储。
自旋电子学与自旋电子器件
自旋电子学与自旋电子器件自旋电子学是一门研究将电子的自旋运动作为信息的载体进行存储、传输和操作的学科。
自旋电子器件则是应用自旋电子学原理开发的电子器件。
自旋电子学与自旋电子器件的发展具有重要的科学意义和应用价值,本文将从理论原理、器件分类以及未来发展方向等方面进行阐述。
一、理论原理自旋电子学是基于电子的自旋运动而建立的一种新型电子学理论。
电子除了具有电荷属性外,还具有自旋属性,自旋可以理解为电子围绕自身轴的旋转运动。
在经典物理学中,自旋可以类比为地球绕自转轴旋转。
自旋的特点在于它具有两种取向,分别为上旋(spin up)和下旋(spin down)。
这两种取向可以表示为"1"和"0",即可以用来储存和传输信息。
二、器件分类根据实际应用需求,自旋电子器件可以分为几个不同的分类。
常见的自旋电子器件包括自旋电子存储器、自旋场效应晶体管(spin field-effect transistor, Spin-FET)以及自旋逻辑门等。
1. 自旋电子存储器自旋电子存储器是一种利用自旋自由度实现信息存储的设备。
其中最典型的是自旋隧穿磁阻(spin-tunneling magnetoresistance, STT-MRAM)存储器。
其原理是通过调控自旋电子在磁隧道结构中的隧穿电流,实现对存储信息的读写操作。
STT-MRAM存储器具有非易失性、高速写入和低功耗等优势,被广泛应用于电子产品的存储领域。
2. 自旋场效应晶体管自旋场效应晶体管是一种利用自旋转移效应进行电子输运的器件。
通过在半导体材料中引入磁性材料,在电场调控下实现自旋电子流的控制。
自旋场效应晶体管具有高速、低功耗和可控性强等特点,被广泛应用于自旋逻辑电路和自旋电子通信等领域。
3. 自旋逻辑门自旋逻辑门是一种基于自旋操控实现逻辑运算的器件。
传统的电子逻辑门是基于电荷操控的,而自旋逻辑门则是利用自旋电子的上旋和下旋状态作为输入和输出。
自旋电子学概述
自旋电子学概述自旋电子学是一门研究电子自旋运动和相关现象的学科领域。
自旋电子学在物理学、材料科学和电子工程等领域具有重要的理论和实际应用价值。
本文将简要介绍自旋电子学的起源、基本概念以及应用前景。
一、起源自旋电子学最早可以追溯到20世纪初。
美国物理学家斯特恩在1922年的实验中首次观测到电子的自旋。
自旋被认为是电子的基本属性之一,其类似于物体的自旋,但又有所不同。
自旋除了带有磁矩,还具有量子性质,如量子态叠加和纠缠等。
二、基本概念1. 自旋电子学中的自旋:自旋是描述电子旋转角动量的量子性质。
常见的自旋取值有“上自旋”和“下自旋”,分别对应自旋向上和向下。
2. 自旋电子学中的磁性:自旋和磁性密切相关,自旋带有磁矩。
通过利用电子自旋来操控和感知材料的磁性,可以实现磁存储、磁传输和磁传感等应用。
3. 自旋电子学中的自旋轨道耦合:自旋轨道耦合是指自旋和电子轨道运动之间的耦合效应。
它可以通过磁场、电场和材料的对称性等因素来调控。
自旋轨道耦合是实现自旋电子学功能的重要基础。
三、应用前景自旋电子学具有广阔的应用前景,以下列举几个重要的研究方向和应用领域:1. 自旋电子学器件:利用自旋来实现信息的存储、传输和处理是自旋电子学的重要应用之一。
例如,自旋晶体管、自旋场效应晶体管等器件可以用于高效的信息存储和处理。
2. 磁存储技术:自旋电子学在磁存储领域具有广泛的应用。
通过调控电子自旋来实现高密度、高速度的磁性存储,可以有效解决传统磁存储技术面临的挑战。
3. 自旋电子学材料:自旋电子学的发展离不开新型的自旋电子学材料。
例如,具有自旋劈裂特性的材料可以用于自旋传输和自旋滤波器件。
4. 量子自旋系统:自旋电子学与量子信息领域的交叉也是一个研究热点。
利用电子自旋来实现量子比特的存储和操作,有望实现量子计算和量子通信的突破。
四、总结自旋电子学作为一门新兴的学科领域,对于未来信息技术的发展具有重要意义。
随着研究的深入和技术的不断突破,自旋电子学有望在信息存储、传输和处理等领域发挥重要作用。
电子工程中的自旋电子学理论
电子工程中的自旋电子学理论自旋电子学理论是电子工程中的一个重要研究领域,其研究对象是电子的自旋,而不是电子的电荷。
随着磁性存储技术的快速发展,自旋电子学理论已被广泛应用于电子器件和计算机技术等领域。
本文将重点探讨自旋电子学理论的定义、原理及其在电子工程中的应用。
一、自旋电子学理论的定义自旋电子学理论是描述自旋与磁性相互作用的一种物理理论,主要应用于磁性材料的研究与应用,以及磁性存储设备的制造与优化。
在自旋电子学理论中,电子不仅具有电荷,而且具有自旋。
自旋指的是电子固有的自旋磁矩,是电子运动方向的磁场。
通过控制电子自旋,可以控制材料的磁性。
二、自旋电子学理论的原理首先要了解自旋的基础概念:自旋是电子的内禀属性,类似于固定轨道运动和角动量。
自旋有两个可能的方向,即“上”和“下”,可以用“+1/2”和“-1/2”表示。
在一个磁场中,电子会受到与自己自旋方向相反的力,这个力被称为磁场作用力。
因此,在一个磁场中,自旋方向相同的电子会向磁场区域集中,而相反的电子会分散在区域中。
自旋电子学理论还包括两个重要的概念:自旋极化和自旋电流。
自旋极化是指电子自旋朝向相同的概率比自旋朝向相反的概率更高。
自旋电流是指在一个导体中存在自旋向一侧的电子流。
自旋电子学理论在这两个概念的基础上,发现了一些有用的现象。
三、自旋电子学在电子工程中的应用1. 磁性存储器自旋电子学在磁性存储器中应用非常广泛。
在传统的硬盘驱动器中,数据是存储在一个矩形磁区中,每个磁区代表一个比特。
在新型的自旋电子学硬盘中,数据被存储在一个小型磁区中,即自旋填充层(Spintronic layer)。
自旋填充层包括两个分离的层,可以分别控制电子的自旋方向和运动方向。
这种技术比传统磁性存储器更加紧密和容量更大。
2. 自旋电流器件自旋电流器件是自旋电子学的一种应用,其原理是利用自旋电流控制磁性材料的自旋方向。
一个自旋电流器件由两个磁层隔着一个绝缘层组成,自旋电流会从一个层流入另一个层。
物理学中的自旋电子学与自旋电子输运
物理学中的自旋电子学与自旋电子输运近年来,随着纳米科技的快速发展,自旋电子学作为一门新兴的跨学科研究领域,引起了物理学界的广泛关注。
自旋电子学主要研究电子的自旋特性以及与材料中的晶格结构和自旋轨道相互作用的关系。
自旋电子学的研究领域涵盖了自旋相关器件、自旋输运和自旋电子学材料等方面。
其中,自旋输运是该领域的核心问题之一。
自旋输运是指通过外加电场或磁场来操控电子的自旋状态,实现自旋信息的传输和处理。
与传统的电子输运不同,自旋输运中的电子不仅仅携带电荷,还携带着自旋信息。
在自旋电子学中,最重要的概念是自旋。
自旋是电子的一个内禀属性,类似地球围绕自转轴旋转一样。
电子的自旋可以有两个状态,即自旋上和自旋下。
这种自旋上和自旋下的超小量子态可以用来编码信息,实现自旋计算和存储。
因此,研究自旋电子学对于开发下一代信息存储与处理技术具有重要意义。
在自旋电子学领域,自旋输运的研究是非常关键的。
自旋输运可以通过材料的自旋轨道相互作用来实现。
自旋轨道相互作用是指电子的自旋与运动轨道的相互耦合。
这种相互作用使得电子的自旋方向受到了限制,从而影响了电子的输运行为。
自旋电子学中的自旋输运可以分为两种类型:弹性自旋输运和非弹性自旋输运。
弹性自旋输运是指电子在输运过程中不改变自旋状态。
非弹性自旋输运则是指电子在输运过程中发生自旋翻转。
研究者们通过设计特殊的材料结构和施加外加电场或磁场来控制自旋输运的过程,实现自旋的操控和传输。
自旋电子学的研究对于物理学的发展具有重要的影响。
通过自旋电子学的研究,科学家们可以开发出更小、更快、更高效的电子器件,实现更强大的计算和存储能力。
此外,自旋电子学的研究还有助于解决能源和环境问题。
例如,自旋电子学材料可以应用于磁性存储器件和磁性传感器,实现高密度数据存储和高灵敏度的磁场探测。
值得注意的是,自旋电子学研究领域还面临一些挑战。
首先,要寻找稳定的自旋电子学材料,并且能够在常温下实现自旋输运。
其次,要解决自旋输运中的自旋损失和噪声问题,提高自旋传输的效率和稳定性。
自旋电子学与自旋电子器件简述
自旋电子学与自旋电子器件简述陈闽江,邱彩玉,孙连峰(国家纳米科学中心 器件研究室 北京 )一、引言2007年10月,瑞典皇家科学院宣布,将该年度诺贝尔物理学奖授予在1988年分别独立发现纳米多层膜中巨磁电阻效应的法国Albert Fert 教授和德国Peter Grunberg 教授。
其随后的应用不啻为革命性的,因为它使得计算机硬盘的容量从几十兆、几百兆,一跃而提高了几百倍,达到几十G 乃至上百G 。
越来越多的人开始了解这个工作及其对我们生活的影响,并意识到这个工作方向的重要意义。
1988年在磁性多层膜中发现巨磁电阻效应(Giant Magnetoresistance ,GMR),1993年和1994年在钙钛矿锰氧化物中发现庞磁电阻效应(Colossal Magnetoresistance ,CMR),特别是1995年在铁磁性隧道结材料中发现了室温高隧穿磁电阻效应(Tunneling Magnetoresistance ,TMR)以及后续形成的稀磁半导体等研究热潮,这些具有里程碑意义的人工合成磁性材料的成功制备和深入研究,不仅迅速推动了近20年凝聚态物理新兴学科——自旋电子学(spintronics)的形成与快速发展,也极大地促进了与自旋极化电子输运相关的磁电阻材料和新型自旋电子学器件的研制和应用。
中国科学院物理研究所朱涛研究员表示:“Albert Fert 和Peter Grunberg 种下了一粒种子,随着20世纪90年代应用的突破,这粒种子长成了一棵小苗——自旋电子学,这是一个成长很快、前景广阔的磁学分支。
”二、电子自旋与自旋电子学要阐明自旋电子学,就不得不先简述一下电子自旋这一概念。
电子自旋不是电子的机械自转,电子自旋及磁矩是电子本身的内禀属性,所以也被称为内禀角动量和内禀磁矩。
它们的存在标志电子还有一个新的内禀自由度。
所以电子状态的完全描述不但包括空间三个自由度的坐标(r ),还必须考虑其自旋状态。
固体物理学基础晶体的自旋电子学与自旋子态
固体物理学基础晶体的自旋电子学与自旋子态自旋电子学作为固体物理学的重要分支,研究自旋电子在固体材料中的行为和相互作用。
自旋是电子的固有属性之一,与电子的电荷密切相关。
通过探究自旋电子在晶体中的行为,科学家们逐渐揭示了自旋电子学的丰富多样性和潜力。
在这个领域中,自旋子态是一个引人注目的研究对象,它们是可以操控和操纵的自旋激发态。
本文将深入探讨晶体的自旋电子学和自旋子态。
一、晶体中的自旋电子学晶体是由周期性排列的原子或分子组成的固体材料。
在晶体中,电子的自由度受到晶格结构的限制和调控。
当电子在晶格中运动时,晶格中的周期性势场会对其产生作用,导致电子的动量和能量量子化。
与自由空间中的电子不同,晶体中的电子可以在能带中取离散的能量值,形成能带结构。
在晶格中,电子的自旋也受到晶格调制的影响。
自旋可以理解为电子围绕自身旋转所产生的磁矩。
晶体中的电子自旋与电荷密切相关,因此可以通过外加电磁场来操控电子的自旋状态。
例如,通过磁场可以改变电子自旋的定向,在固态系统中产生磁化效应。
二、自旋子态的概念与特性自旋子态是由自旋激发引起的一种电子激发态。
自旋子态在固体物理学和自旋电子学中具有重要的研究意义。
通过在晶体中引入自旋非线性相互作用,可以形成一系列自旋子态。
自旋子态可以通过多种手段进行操控,包括外部磁场、自旋极化光激发等。
自旋子态通常具有长寿命和强耦合性质。
由于自旋子态不仅与自旋自由度相关,还与晶格和其他自旋激发相互作用,因此其行为更复杂多样。
自旋子态可以被看作是自旋电子学中的“粒子”,具有自己的能级、自旋角动量等性质。
三、自旋子态的应用与前景自旋子态在固态材料中具有广泛的应用前景。
首先,自旋子态可以作为信息载体传递和处理信息。
借助自旋子态的长寿命和耦合性质,可以实现自旋逻辑门和自旋量子比特的操作,为量子计算和量子通信提供新的思路和方法。
其次,自旋子态在自旋电子学器件中具有巨大的潜力。
传统的电子学器件基于电荷的传输和控制,而自旋子态可以提供更快速、更节能的信息处理方式。
自旋电子学的原理及应用
自旋电子学的原理及应用自旋电子学是一种新型电子学,它有着非常独特的原理和应用。
与传统电子学不同,自旋电子学可以通过控制电子的自旋来实现信息的存储和传输,同时还可以用于磁性材料的设计和制造。
本文将从自旋电子学的原理和应用两个方面进行阐述。
一、自旋电子学的原理自旋电子学是通过对电子自旋的控制实现信息传递和存储的一种新型电子学。
自旋是电子的一种基本性质,类似于电子的电荷和质量,但与电荷和质量不同的是,自旋是一个量子数,它表示电子的自旋角动量。
自旋有两个方向,分别为“上自旋”和“下自旋”。
自旋电子学的基本原理是,通过控制电子的自旋,可以实现信息的存储和传输。
自旋的控制是通过磁场实现的。
在磁场的作用下,电子的自旋会发生偏转,进而产生一个“自旋极化”的效应,即自旋向上的电子和自旋向下的电子在数量上不再相等,这就为信息存储和传输提供了可能。
自旋电子学的另一个重要原理是磁性材料中的自旋极化。
磁性材料中的自旋由于磁相互作用而定向,进而导致自旋极化现象的产生。
这个现象可以被用于磁性材料的设计和制造。
二、自旋电子学的应用自旋电子学的应用广泛,涵盖了信息技术、材料科学和物理学等领域。
以下是自旋电子学的几个常见应用。
1. 磁存储器磁存储器是自旋电子学最为广泛的应用之一。
磁存储器的工作原理是基于磁性材料中的自旋极化现象。
利用磁场可以将磁性材料中的自旋定向,这就实现了信息的存储。
磁存储器具有容量大、读写速度快、耐久性强等优点,被广泛应用于计算机、移动设备等电子产品中。
2. 自旋电荷分离器自旋电荷分离器是一种能够将电子的自旋和电荷分离的器件,也是自旋电子学中的重要应用之一。
它的工作原理是通过一定的材料结构和电场作用,将自旋极化的电子在材料中运动时,自旋和电荷的运动方向不同,进而发生分离。
自旋电荷分离器具有快速响应、高效率、低功耗等优点,被广泛用于传感器、运算器等领域。
3. 磁电隔离磁电隔离是利用自旋电子学中的自旋-轨道耦合现象实现的一种隔离效应。
量子力学在材料科学中的前沿研究方向
量子力学在材料科学中的前沿研究方向量子力学作为一门基础物理学科,一直在不断拓展人类对自然世界的认知。
在材料科学领域,量子力学的研究对于理解和控制材料的性质具有重要意义。
随着科学技术的进步,人们不断发现新的研究方向,以期能够开发出更加先进和功能性的材料。
本文将介绍一些量子力学在材料科学中的前沿研究方向。
1. 量子态工程量子态工程是根据量子力学原理设计和控制材料的一种方法。
通过精确控制材料的组成、结构和形态,人们能够调控和优化其物理和化学性质。
例如,通过调整材料中的原子排列方式,可以实现量子隧道效应或调节电子的输运性质。
量子态工程对于开发出高效的能源材料和新型的电子器件具有重要意义。
2. 自旋电子学自旋电子学是一门基于电子自旋的新型电子学科。
相比传统的电子学,自旋电子学不仅可以利用电子的电荷,还可以利用其自旋。
自旋电子学的研究涉及到材料的磁性和自旋耦合效应。
通过调控材料中的自旋耦合,人们希望开发出更加高效和低功耗的自旋电子器件,例如自旋晶体管和自旋逻辑门电路。
3. 量子纠缠量子纠缠是量子力学中的一个重要概念,描述了量子系统之间的纠缠状态。
在材料科学中,研究人员希望利用量子纠缠来实现材料之间的相互作用和信息传递。
通过将材料进行量子纠缠,人们可以制备出具有特殊性质的材料,例如超导体和拓扑绝缘体。
量子纠缠还可以应用于量子通信和量子计算领域,为信息处理提供了新的可能性。
4. 量子仿真量子仿真是利用量子力学原理模拟和研究材料的性质和行为。
传统计算方法在处理复杂的量子系统时往往效率较低,而利用量子仿真可以更加准确地描述和预测材料的行为。
通过利用量子仿真,人们可以研究材料的能带结构、光谱性质和反应动力学等。
量子仿真在材料设计和发现新材料方面具有潜在的应用价值。
综上所述,量子力学在材料科学中的研究方向涉及量子态工程、自旋电子学、量子纠缠和量子仿真等领域。
这些研究方向的目标是利用量子力学原理来设计和控制材料的性质,以期开发出更加先进和功能性的材料。
电子自旋与自旋电子学的物理基础
电子自旋与自旋电子学的物理基础自旋是描述电子的一种量子性质,它是电子固有的角动量,类似于物体的自转。
自旋在电子学领域起着至关重要的作用,特别是在自旋电子学中。
本文将介绍电子自旋及其与自旋电子学的物理基础。
一、电子自旋的基本概念与性质电子自旋是描述电子的一种内禀角动量,它没有经典物理学的对应物。
电子的自旋取值为1/2或-1/2,表示两个相反的自旋状态,分别称为自旋“上”态和自旋“下”态。
自旋“上”态用符号↑表示,自旋“下”态用符号↓表示。
电子自旋与电子的轨道运动是相互独立的,即电子可以具有不同的自旋态,而处于相同轨道。
这意味着一个能级最多可以容纳两个电子,分别处于上自旋态和下自旋态。
这就是著名的泡利不相容原理,否定了多个电子同时处于相同状态的可能性。
二、自旋电子学的基本思想自旋电子学是利用电子的自旋来操控和传输信息的一种新兴领域。
自旋电子学的基本思想是通过利用电子自旋的两个状态来表示信息的“0”和“1”。
与传统的电子学(即利用电子的电荷来传输信息)相比,自旋电子学具有更低的能耗和更高的速度。
在自旋电子学中,常用的一种方法是通过磁性材料来实现对自旋的操控,这种材料被称为磁性隧道结。
磁性隧道结由两层磁性材料之间夹着一层非磁性材料组成。
当施加适当的电压时,电子可以在磁性材料之间通过隧道效应进行转移,从而实现对自旋的操控。
三、自旋传输与自旋扭曲效应自旋传输是自旋电子学中的关键技术之一。
在自旋传输中,电子的自旋信息在材料中的输运过程中得以保持。
这与传统的电子输运不同,传统电子输运中,电子受到碰撞等因素的影响,自旋信息很容易被破坏。
自旋传输的实现离不开自旋扭曲效应。
自旋扭曲效应是指由于材料中存在非均匀磁场或自旋轨道耦合等因素,导致电子的自旋在空间中发生扭曲。
这种自旋扭曲可以用来操控和传输自旋信息。
四、应用与展望自旋电子学具有广泛的应用前景。
一方面,它可以用于构建更快、更低功耗的电子器件,如自旋晶体管、自旋存储器等,以满足现代信息技术对高性能电子器件的需求。
电子器件中自旋电子学的研究和应用
电子器件中自旋电子学的研究和应用随着现代电子工业的不断发展,越来越多的电子器件涌入了市场并被人们广泛使用。
在这些电子器件中,自旋电子学正逐步崭露头角,成为一个备受瞩目的研究领域。
自旋电子学作为一种新兴的研究方向,既有基础理论的探索,也有实际应用的开发。
本文主要从自旋电子学的基础理论、实验方法和最新应用方面阐述其研究现状和未来展望。
一、自旋电子学的基础理论自旋电子学是基于自旋电子的特性来研究电子器件的一门学科。
所谓自旋,是指电子固有的一个属性,类似于电荷、质量等物理量。
与电子的电荷不同,自旋(通常用符号S表示)具有方向性,可以是“上旋”,也可以是“下旋”。
在自旋电子学中,人们不仅仅探讨电子的电荷属性,更加注重电子的自旋属性,并通过控制自旋属性,来实现电子器件的控制和调控。
基于自旋的电子器件,最初源于对磁性材料的研究。
人们发现,在磁性材料中,电子需要同时具有自旋和向心向力才能在材料中存在,而在非磁性材料中,电子只需要具有向心向力就能存在。
由此可以看出,自旋和磁场密切相关。
此后,人们逐渐发展出一系列基于自旋的电子器件,如自旋晶体管、磁隧道结等。
二、自旋电子学的实验方法自旋电子学要想得到开发和应用,就必须在实验上进行探索和研究。
由于自旋电子的特殊性质,需要研究人员在实验中掌握一些特殊的技术手段和控制方法。
以下是自旋电子学的几种实验方法。
1. 磁吸收实验磁吸收实验是自旋电子学中最重要的实验方法之一。
该方法是通过对样品施加微弱的外加磁场来测定电子的自旋方向,从而了解材料性质。
磁吸收实验可以反映出样品中自旋向上的电子数占总电子数的比例,从而测定出自旋极化率。
2. 磁性共振实验磁性共振实验也是自旋电子学中常用的实验方法之一,它是通过对样品在恒定的外加磁场下施加一定的射频场,使得处于磁共振状态的电子发生能量吸收和放出,进而测定样品的性质。
3. 光学反演实验光学反演实验是一种利用逆光学原理测量自旋元激发的方法,可以通过极化光在样品中传播后所产生的旋转角度,得出样品中自旋元的旋转方向。
自旋电子学的综述
自旋电子学及其在半导体中的应用摘要:自旋电子学主要研究电子自旋在固体物理中的作用,是一门结合磁学与微电子学的新兴交叉学科。
其研究对象包括电子的自旋极化、自旋相关散射、自旋弛豫以及与此相关的性质及其应用等。
本文简单介绍了自旋电子学的概念及其内容综述了自旋电子学目前的研究,尤其是半导体自旋电子学,集中讨论了使电子的自旋特性在半导体中获得应用,在半导体器件中实现自旋极化、注入、传送、操作和检测,最后对自旋电子器件的应用进行了展望。
关键词:自旋电子学自旋阀磁隧道结半导体自旋电子学一.名词解释1.自旋电子学[1](spintronics)也称为磁电子学,是一门磁学和微电子学相交叉的新兴的学科,它研究具有某一自旋状态(自旋向上或自旋向下)的电子的输运特性,是当前凝聚态物理的热点领域之一。
众所周知,电子除了带有电荷的特性外,还具有自旋的内禀特性,对于普通金属和半导体,自旋向上和自旋向下的电子在数量上是一样的,所以传统的金属电子论往往忽略电子的自旋自由度。
2.半导体自旋电子学[2]电子同时具有电荷和自旋两种属性,电子的电荷属性在半导体材料中获得极大的应用,推动了电子技术、计算机技术和信息技术的发展。
使电子的自旋特性在半导体中获得应用,在半导体器件中实现自旋极化、注入、传送、操作和检测,成为人们最关注的问题。
最初人们企图用铁磁金属与半导体材料直接欧姆接触,把极化自旋流注入到半导体材料中去,但是由于肖特基势垒太高,注入效率极低。
为了克服肖特基势垒,只有两个办法:寻找磁性半导体材料或利用隧道效应。
二.自旋电子学的起源1857年Thomson发现了在多晶结构的Fe中,具有各向异性磁电阻效应[3](anisotropy magnetore.sistance,AMR),而传统的微电子学的研究对象是普通金属和半导体,所以在研究电子的输运过程中,往往忽略电子的自旋。
20世纪50年代人们在研究超导体时,将电子的自旋引入,认为参与超导输运的准粒子是费米面附近两个自旋相反,动量也相反的电子所组成的库柏对,建立了著名的BCS 理论,但是BCS理论虽然将电子的自旋自由度引入到输运过程中,但是在库柏对中,电子是成对出现的,并没有去严格区分两种不同自旋的电子在输运中的差别。
固体物理学中的电子自旋与自旋材料
固体物理学中的电子自旋与自旋材料电子自旋在固体物理学中扮演着重要的角色,而自旋材料则具有独特的电子自旋性质。
本文将介绍电子自旋的基本概念,探讨自旋材料的研究进展,并展望自旋材料在未来的应用前景。
一、电子自旋的基本概念电子自旋是描述电子运动状态的一个属性,类似于地球绕轴旋转的自转。
与电子的电荷和质量不同,电子自旋是一个量子性质,只能取两个离散的值:向上自旋和向下自旋,分别用↑和↓表示。
电子自旋与电荷、质量等物理量不同,不直接参与电子在原子核周围的轨道运动。
然而,电子自旋对于电子之间的相互作用以及材料的物理性质却有重要影响。
例如,在磁性材料中,电子自旋的相对定向决定了材料的磁性行为。
二、自旋材料的研究进展自旋材料是指具有特殊自旋性质的材料。
通过控制电子自旋,可以实现自旋电子学,这是一种利用电子自旋而非电荷进行信息处理和存储的新兴技术。
1. 磁性材料中的自旋磁性材料是研究自旋材料中最为重要的一类。
宏观上,磁性材料可以分为铁磁材料、反铁磁材料和顺磁材料。
铁磁材料由于内部电子自旋相互平行,表现出强磁性。
反铁磁材料中电子自旋方向相邻,自旋磁矩方向相互抵消,呈现出弱磁性。
顺磁材料则是由于自旋随机方向产生的稳定磁矩而表现出磁性。
2. 自旋电子学自旋电子学是一门研究利用电子的自旋进行信息处理和存储的学科。
自旋器件是自旋电子学中的核心技术,包括自旋阀、自旋晶体管等。
通过利用电子自旋的量子属性,自旋器件可以实现低功耗、高速度和高密度的信息处理。
3. 自旋霍尔效应自旋霍尔效应是固体物理学中一个重要的现象,描述了电荷运动中自旋与电荷耦合的效果。
当电子在磁场中运动时,由于自旋的存在,会出现两种通过材料的不同自旋态电子所带电荷的方向不同的现象,即自旋上型和自旋下型。
它们在材料中的运动会产生不同的电荷积累效果,从而形成自旋极化,产生自旋电流。
三、自旋材料的应用前景自旋材料具有广阔的应用前景,尤其在自旋电子学领域。
1. 自旋输运自旋输运是自旋电子学中的基础研究课题之一,主要研究自旋电子在材料中的传输过程。
自旋电子学的基本原理及应用
自旋电子学的基本原理及应用自旋电子学是一门涉及自旋概念的科学,利用电子的自旋状态进行信息传递和存储。
它是物理学和电子工程学相结合的新领域,随着科技和工业的发展,自旋电子学的应用在日常生活中越来越广泛。
下面本文将从自旋电子学的基本原理和应用入手,为大家详细阐述这一主题。
一、自旋电子学基本原理1. 电子自旋与磁性电子是电荷与自旋的带电质点,而自旋是电子具有的一种内禀角动量。
在自旋量子数中,每个电子有两个可取值,即自旋向上为“↑”或自旋向下为“↓”。
在物理学中,磁性是由带电粒子产生的磁矩所引起的现象。
而电子的自旋就是带有磁矩的粒子,因此电子具有磁性。
2. 电子的自旋和磁性关系磁性和自旋有一定的关系,当电子自旋方向相同时,它们的电子磁矩向量相加,磁性比较强,反之当它们的自旋方向相反,相互抵消,磁性减小或消失。
对于固体中的电子,电子的自旋状态具有某种统计规律,即泡利不相容原理,两个具有相同自旋方向的电子无法占据同一个能级,而相反方向的电子可以互相占据同一个能级。
3. 自旋电子学的发展自旋电子学的起源可以追溯到20世纪初的氢原子实验,而自旋电子学真正成形是在上世纪60年代,在固体中发现了自旋共振现象后,自旋电子学得以研究和应用。
在几十年的发展过程中,自旋电子学在晶体电子学、磁学、材料科学、信息技术等领域中取得了显著的成就,如磁性存储器、自旋电子晶体管分别应用在计算机等电子设备中。
二、自旋电子学的应用1. 磁性存储器自旋电子学相关技术在磁性存储器领域得到了广泛的应用,如硬盘、U盘等,这些设备都是采用磁性记忆单元实现信息存储的。
在磁性存储器中,使用通过外部磁场操控电子自旋状态形成的自旋电流,可以读写和删除存储数据,速度比传统基于电子激发的方式快得多。
2. 自旋电子晶体管传统晶体管是一种通过控制电子通道中电子的电流实现电子信息处理的半导体器件。
与之相比,自旋电子晶体管不是依靠电流而是依靠自旋来控制电子的传输。
自旋电子晶体管的制作需要特殊的材料和工艺,优点是低功耗、高速率、量子系统等,被视为下一代半导体器件的最有前景的技术之一。
自旋电子学
自旋电子学
1 自旋电子学
自旋电子学是电子技术的一个重要分支,其基础是自旋学。
自旋
学研究电子的自旋及相关的能量。
自旋电子学探讨如何利用自旋来实
现电子计算机和设备的效能提升。
自旋电子学总结了微纳米制程技术、磁控技术、量子力学理论等
综合性的知识,从而可以使用自旋来控制电子的行为。
研究团队将传
统的电子电路和最小特征尺寸材料和技术结合起来,以构建小到几个
原子尺寸的自旋电子网络,来实现电子位能转换等功能。
很多学者认为自旋电子学有望改变传统电子计算机的效能。
由于
自旋电子技术具有节能、耐候性、静电放电抗性等特征,在存储能源、生物传感器、智能尾翼励磁、地面支撑和医疗解决方案等领域都具有
重要的应用前景。
自旋电子学的核心是将自旋技术用于传统的电子器件,有助于优
化电子表现,从而可以节省能源消耗、提高芯片尺寸等。
许多企业和
研究机构正在研究自旋芯片的实现,以实现芯片的高效新技术。
概而言之,自旋电子学是将自旋投入到电子领域十分重要的一部分,它可以提高效率促进能源节约,是新技术发展的一个必要方向。
自旋电子学与自旋电子器件简述
自旋电子学与自旋电子器件简述自旋电子学是近年来快速发展的一种新兴研究领域。
它是基于电子的自旋而不是电荷构建新型电子器件的一种技术途径。
相比传统电子学,在较低的功耗下实现较高的速度和存储密度等方面具有优势。
本文将简述自旋电子学技术及其应用的一些领域。
自旋电子学技术自旋电子学技术主要研究材料中的电子自旋和磁性互作用,以及它们之间的耦合机制。
在自旋电子学技术中,可以利用一些特殊材料(如磁隧道结构)将电子自旋转化为电流和电压信号,从而将信息原用于计算和存储。
磁隧道结构是自旋电子学技术中最为常用的器件,它利用了电子的自旋和磁性作用。
该结构主要由两个磁性层和一个薄的隧道隔离层组成。
两个磁性层的磁化方向可以沿任意方向,通过控制电荷注入后的电子自旋沿隧道隔离层通过,来进行信息存储和处理。
自旋电子器件的应用领域自旋电子学技术可以被应用于多种领域,包括信息存储、计算等领域。
信息存储在信息存储领域,自旋电子学技术被应用于磁性隧道结合存储器(MTJ-RAMs)和自旋转移磁性存储器(STT-RAMs)等器件中。
这些存储器可实现高速读写和大容量存储。
计算在计算领域,自旋电子学技术被应用于逻辑门电路的实现。
自旋逻辑门可以通过控制磁性隧道结构内电子自旋的反转来实现布尔逻辑运算。
相比传统计算机逻辑门,自旋逻辑门具有较高的运算速度和较低的能耗。
传感器和无线通讯自旋电子学技术还可以被应用于传感器和无线通讯等领域。
例如,磁性隧道结合传感器(MTJ-Sensors)可以用于磁场、压力、应变等的感测。
自旋电子器件的未来展望自旋电子学在信息存储和计算领域快速发展。
它已经成为下一代电子器件的潜在替代品。
具有极高的集成度和能源效率,而像磁隧道结构这种简单器件,就已经实现了数据存储、数据的交换和及基于数据的分析。
未来,自旋电子学有可能能够更好发挥,从而推进电子学科学上的新进展,为我们的生活带来更多的便利和进步。
自旋电子学技术的发展为信息处理、计算等领域提供了全新的思路。
电子行业电子的自旋
电子行业中电子的自旋1. 引言电子是电子行业中最基本的粒子之一,其自旋是描述电子与磁场相互作用的重要性质。
在电子行业中,研究电子的自旋对于开发新型电子器件和实现更高效的电子技术具有重要意义。
本文将探讨电子行业中电子的自旋相关的概念、原理和应用。
2. 电子自旋的概念和基本原理2.1 电子自旋的定义电子是带有电荷和质量的基本粒子,而自旋是电子固有的角动量。
电子的自旋被量子力学描述为一个内禀角动量,其大小和方向由自旋量子数表示。
电子的自旋量子数可为$\\pm\\frac{1}{2}$,分别表示自旋向上和自旋向下。
2.2 电子自旋的测量电子的自旋无法直接观测,但可以通过测量其对应的物理量来间接获得信息。
例如,经典的Stern-Gerlach实验利用磁场梯度作用于电子,在均匀磁场中,电子的自旋会导致其在空间中分裂成两束,从而实现了对电子自旋的测量。
2.3 自旋与磁矩的关系电子的自旋与其磁矩密切相关。
根据量子力学的描述,电子的磁矩与自旋的关系可以通过以下公式表示:\begin{equation} \vec{\mu} = g \mu_B\frac{\vec{S}}{\hbar} \end{equation}其中,$\\vec{\\mu}$表示电子的磁矩,g是无量纲的Landé g因子,$\\mu_B$是玻尔磁子,$\\vec{S}$表示电子的自旋矢量,$\\hbar$是普朗克常数除以$2\\pi$。
3. 电子自旋的应用3.1 自旋电子学自旋电子学是利用电子的自旋来实现信息存储、传输和处理的新型技术。
与传统电子器件相比,自旋电子学具有更快的开关速度、更低的能耗和更高的集成度。
自旋电子学在存储器件、逻辑电路和传感器等领域有着广泛的应用前景。
3.2 量子计算量子计算是利用量子力学中的量子叠加和量子纠缠等特性来进行信息处理的新兴领域。
电子的自旋作为量子比特的候选之一,对于量子计算的实现具有重要意义。
研究表明,利用电子的自旋作为量子比特可以大幅提高计算速度和存储容量。
自旋电子学和自旋流
评述自旋电子学和自旋流沈顺清(香港大学物理系 香港)摘 要 传统的电子学完全忽略了电子自旋,这使人们在探索未来半导体工业发展时有了新的契机和可能的研究方向.自旋电子学旨在利用电子自旋而非传统的电子电荷为基础,探讨研发新一代电子产品的可能性.文章简单介绍了自旋电子学的动机、物理基础以及研究内容,并重点介绍了在自旋电子学器件中起关键作用的自旋流.文章从自旋流的定义、它能产生的物理性质和最近有关自旋流探测的理论和实验进展等三个方面进行阐述.关键词 自旋电子学,自旋流,量子自旋Spi n tron i cs and Spi n CurrentSHEN Shun 2Q ing(D epart m ent of Physics,The U niversity of Hong Kong,Pokfulam Road,Hong Kong,China )Abstract Conventional electr onics co mp letely ignores the electr on s p in,which p rovides us with an unp rece 2dented chance and new starting point t o exp lore the future of the modern sem iconductor and infor mation industry .Sp intr onics,or s p in 2based electr onics,ai m s t o exp loit the subtle and m ind 2bending es oteric quantum p r operties of the electr on t o develop a new generation of electr onic devices .In this paper the motivation,fundamental physics,and scope of s p intr onics will be briefly addressed .The s p in current,one of the essential concep ts in s p intr onics,will be discussed in detail,intr oducing its definiti on,physical effects,and recent theoretical and experi mental p rogress .Keywords s p intronics,s p in current,quantum s p in3 香港研究赞助局基金(批准号:HK U0742/06P )资助项目2007-09-10收到初稿,2007-10-31收到修改稿 Email:sshen@hkucc .hku .hk1 自旋电子学80年前,英国天才理论物理学家狄拉克将新生的量子力学和爱因斯坦的相对论结合,建立了相对论量子力学,成功地解释了电子为什么会具有一种特别的磁性或角动量,即自旋(电子自旋的基本性质见表1).自此,人们清楚地认识到电子不仅带有质量和基本电荷,还带有内禀自旋.在过去80多年里,量子力学的建立和发展使我们对物质的构成和结构,特别是电子的能带结构有了定量的认识.这为半导体晶体管的发明以及半导体工业的建立和快速发展提供了坚实的基础.到上个世纪70年代,传统的电子微处理器和电路被打包到半导体晶片上形成集成电路,随后单个微处理器的尺寸迅速减小.作为指标性的参数,半导体晶片上单位面积的晶体管和电阻数目,在过去的三四十年间,由最初的每12个月到目前的每18个月翻一番.这个指数增长的所谓摩尔定理归纳了半导体和信息工业的发展速度,使原本体积庞大的计算机变成了人们日常生活中不可缺少的用品和工具.这种迅速发展也使半导体晶片上的晶体管快速逼近纳米尺度.由于它不可能小于单个原子,这已变成大规模集成电路发展不可克服的物理极限.与此同时,有限尺度的物理器件引起的热耗散也是集成电路的一大障碍.在思考半导体工业发展方向和新的出路的时候,人们惊讶地发现现在几乎所有的电子产品都只利用了电子的电荷来传输能量和信息.作为电子内禀性质的自旋,除了材料磁性和简单的能级简并外,几乎被完全忽略.这使我们在探索未来半导体工业发展时有了新的契机和可能的研究方向.表1 电子自旋的基本性质(1)电子除了质量和电荷外,还有一个内禀角动量,叫自旋;(2)每个电子自旋都有任意的两个方向.每个自旋的大小为± ( 为Planck常数).当固体中所有的电子自旋指向一个方向时,就形成我们熟知的铁磁体;(3)在磁场中,电子自旋平行或反平行于磁场时,电子具有不同的能量;(4)定向运动的电子形成电流.在通常的电流中,电子自旋的指向是无规的,没有自旋的性质;(5)定向相干运动的电子自旋形成自旋流.在自旋电子器件中,自旋流是传输和控制自旋的载体和动力. 自旋电子学旨在利用电子自旋而非传统的电子电荷为基础,研发新一代电子产品.它不仅对信息工业有着重要影响,而且对电子输运和调控等基础物理研究提供了新的课题,是目前凝聚态和材料物理研究的一个重要领域.简单地说,自旋电子学的原动力可以总结为一句话:传统的电子学完全忽略了电子自旋[1].在日常的家用电器中导电电子的自旋取向是无规的:50%电子自旋向上,50%电子自旋向下.换句话说,电子的自旋完全没有起作用.1988年,超薄多层磁性金属薄膜中巨磁阻效应(G MR)的发现,标志着一个新时代的开始.通常金属都有磁阻效应,当磁场加到金属样品上时,因为洛伦兹力的作用或霍尔效应会改变电流的运动方向,从而引起样品电阻发生改变.当电子开始绕磁场转动时,若没有散射,它对电流没有贡献;当散射发生后,由于电场产生的初始速度会影响下一个回旋轨道.弛豫时间越长(低电阻),磁场作用在电阻上的效应就越大,通常的磁阻率Δρ/ρ∝(H/ρ)2(ρ为电阻,H 为磁场).一般的金属像铁(Fe)和钴(Co)的磁阻率分别可达到0.8%和3.0%.这个性质早已应用到磁探头上读取磁盘记录.1988年,Baibich等人[2]发现,在FeCr磁性多层膜中,磁阻率在T=4.2K时可达到50%,这是当时所知的最高值的10倍以上.在这个实验中,铁磁性的铁层的厚度为30—60!,由非铁磁性的厚度为9—60!的铬层隔开,铁磁层通过非铁磁层反铁磁般地耦合起来.当外加磁场约为20k Oe时,铁磁层会沿一个方向极化.当铁磁层反铁磁般地耦合时,它的电阻大于加上外场后的结果.铁磁层间的反铁磁耦合的强弱与非铁磁铬层的厚度有关.1990年,Parkin等人[3]发现层间反铁磁耦合的强弱随中间层的厚度振荡,因此巨磁阻效应是可调控的.巨磁阻效应并不依赖于电流相对于磁化强度的方向,而是取决于邻近铁磁层磁化强度的相对方向.一个最重要的特征是,当中间隔离层的厚度大于电子的平均自由程(约10n m)后,巨磁阻效应就消失了.这表明相邻铁磁层决定了自旋散射机制.由于磁性和非磁性膜的厚度在电子的平均自由程内,当磁性层中磁化强度平行时,会增加电子的平均自由程,反平行时,会减弱电子的平均自由程,这就导致了巨磁阻效应.这个效应成功地应用于敏感的磁探头设计,极大地提高了磁探头的灵敏度.从此人们开始意识到量子自旋及其输运在电子仪器的研究和应用中的重要性.后来还发现了磁阻率更高的隧穿磁阻效应(T MR)[4].这些效应已广泛应用于磁感应器等商业产品中.在巨磁阻效应发现后不久,美国普渡大学的Datta和Das提出了一种新型的场效应晶体管(field effect transist or)[5].这种晶体管的两个电极,即“源”和“漏”是具有铁磁性的.连接两极之间的半导体通道是由半导体异质结形成的二维电子气.由于电极是铁磁的,期待进入该通道的电子是自旋极化的.电子自旋通过该通道并不受到杂质等的散射,当一个门电压加到晶体管上后,它可以通过电子的自旋轨道耦合控制自旋的进动,进而控制连接两极电流中电子自旋的取向.当电子到达“漏”电极时,如果电子自旋与电极的极化方向一致时,电子就可顺利地进入电极;相反,如果电子自旋与电极的极化方向相反时,电子就不能进入电极.这就实现了晶体管的“开”和“关”.传统的晶体管是利用门电压来控制两极间的电流.大的门电压可以改变电子的运动方向从而切断两极之间的电流,来实现晶体管的“开”和“关”.Datta和Das的晶体管与普通的晶体管相比,它们有相同的结构,所不同的是,前者是利用门电压来改变电子自旋的方向,而后者是利用门电压来改变电子的运动方向.相比之下,改变电子自旋方向所需的能量远比用于改变电子运动方向要小,而且时间更短,效率更高.这个极具创意的思想引起了广泛的重视,它已具有目前自旋电子学器件所要求的特性:(1)它依赖于自旋极化的载流子或电子自旋;(2)运动的自旋可有效地输运和穿透界面;(3)所有的电子自旋可保留足够长的时间以致能完成所需的物理操作.不过到目前为止,这种自旋场效应晶体管还没有在任何实验室中实现.评述在前面提到的两个例子中,一个是金属薄膜的巨磁阻效应,一个是半导体的场效应晶体管.近十几年来,金属的自旋电子学器件得到了快速发展和广泛应用,成为自旋电子学研究的一股重要的推动力.巨磁阻效应和隧穿磁阻效应都可以用自旋输运的两通道图像来理解[6].这种处理并没有要求电子自旋相干.所以总的说来,在金属自旋电子学器件中,我们还没有利用电子自旋的相干性.最近的实验,如电流诱导的磁化强度进动、金属中的自旋霍尔效应等,都实现了相干的自旋电子性质.相信不久的将来,它们会有更广泛的应用.另一方面,由于半导体中电子的自旋相干长度远长于金属中电子的自旋相干长度,使我们更期待半导体在自旋电子学的发展中起到更大的作用.与此同时,利用成熟的半导体工艺也是一个重要原因.在自旋电子学的研究中,简单地说有三个基本的课题:(1)自旋的注入:怎样产生极化的电子或量子自旋态是实现自旋电子学器件的第一步;(2)自旋的操控:怎样利用外场调控电子自旋的量子状态,从而实现所需的物理操作;(3)自旋的探测:成功探测自旋的相干状态是利用量子自旋的必须手段.自旋电子学是实用性较强的学科,带有明确的功利性.由于电子自旋是相对论和量子论相结合的产物,它本身包含了许多基本的课题,但被传统的半导体理论所忽略.对自旋的深入研究,使我们有机会更深入地了解量子力学的基本原理.本文并不打算全面介绍自旋电子学发展现状,我们只集中介绍实现自旋电子学所不可缺少的一个物理量“自旋流”.从自旋流的定义、它所产生的物理性质和最近有关自旋流探测的实验进展等三个方面来阐述.2 自旋流和自旋轨道耦合由于电子带有电荷,电子的定向运动会产生电流,它可以传输能量和信息.虽然电子同时具有内禀的自旋,在一般的电子器件中,导电电子的自旋取向是完全无规的.从整体来看,电子自旋完全没有产生任何物理的效应.在引进自旋流的概念之前,我们首先回顾一下在多体理论中是如何定义电流的.原则上说,任何多体系统在外场中的哈密顿量可写为H=∑i,σ12m p i-ecAσ2+∑i≠jV ij,式中右边,前者是动能项,后者是相互作用项.我们知道电子的速度算子vσ=∑i p i-ecAσ/m≡-ce・9H9Aσ,σ=↑,↓是自旋指标,在这里我们有意引进了与自旋相关的矢势Aσ,以便定义自旋流.原则上说,如果能解出系统的能量本征值E(A↑,A↓),我们就能算出相关的电流je=-e(v↑+v↓)=-e9E9A↑+9E9A↓.但一般来说,电磁场的矢势Aσ是和自旋无关的,A↑=A↓,以致相关的电流也和自旋无关,v↑=v↓.所以我们一般只有电流而没有所谓的自旋流.在考虑了电子自旋后,如果说自旋向上的电子速度不等于自旋向下的速度,例如v↑=-v↓,我们发现系统的电流je≡0,但是很显然,(v↑-v↓)≠0.这个量与电流无关,但可以用来描述电子自旋的运动.考虑电子自旋的单位为 /2,自旋流可以定义为js=2(v↑-v↓).这里我们说自旋向上或向下,实际上已经确定了自旋的方向.理论上说,如果矢势是自旋相关的,A↑≠A↓,这样系统就有可能产生自旋流.在多体系统中,矢势怎样才能和自旋相关呢?从自旋的起源来说,它是一种相对论的量子效应.这自然引导我们从相对论量子力学的基本原理来重新检讨相关的问题.通常电子自旋只和外磁场发生相互作用,即Zee man耦合.而电子自旋和外电场的相互作用是通过所谓的自旋轨道耦合来实现的.自旋轨道耦合首先是在原子物理中被认识到的,可以从经典理论定性地理解:当电子绕着原子核运动时,相对电子来说,带正电的原子核绕着电子运动.运动的原子核产生一个环状的电流.这个电流会在电子处于的原点产生一个垂直于环面的磁场.这个磁场作用在电子自旋上,导致所谓的自旋轨道耦合.考虑到相对论的量子修正,它的大小为ΔV=12m2c21r9V9r S・(r×p)=12m2c2( V×p)・S,式中V为电子和原子核之间的库仑相互作用.这个效应将电子的自旋S与电子的动量p和外场V耦合在一起.从相对论量子力学的观点来看,这个效应来源于正负电子状态之间的相互作用.2m c2实际上反映了正负电子态之间的能隙,大小为1个Me V.通常这个效应比较小,只会在原子体系中出现,例如对原子光谱的影响.虽然在单个原子中,自旋轨道耦合是比较微弱的,但它在某些晶格体系中得到了放大.在固体晶格中,由于晶格的周期性,电子的能谱在倒格矢空间中会形成一定的能带结构.如果晶格系统不具有空评述间反射对称性,自旋轨道耦合在一些特定的区域会得到放大.例如,在破坏了结构对称性的半导体I n 2Ga A s/I n A l A s 二维电子气中,在Γ点附近的电子会感受到强烈的自旋轨道耦合,即Rashba 作用H =p22m+λ(p ×σ)z ,耦合系数λ具有速度量纲[7].一个典型的数量级为λ~10-4c (c 是光速),耦合系数λ反比于半导体中导带和价带之间的能隙.这个值通常是1e V 的量级,和单原子中正负电子之间的能隙相比,整整小了6个数量级.换句话说,在这个系统中,自旋轨道耦合放大了6个数量级,它所导致的能级劈裂已在实验中观测到.这个系数本身可以通过外场来调节.从这样一个具有自旋轨道耦合的系统中,电子的速度算子为v =1mp +ecA σ,(A σ=λm cez ^×σ).我们发现,自旋轨道耦合会导致一个自旋相关的矢势[8].结合电流和自旋流的定义,我们可以说,自旋轨道耦合可以为系统提供一个自旋相关的矢势,这个矢势为自旋流的产生提供了可能.自旋流有它特有的性质.首先它是一个张量,J αs = 2{σα,v},不仅取决于电子的运动方向,还取决于电子自旋的极化方向.不同的极化方向会产生不同的物理结果.一般的电流J e =-ev 在时间反演下,t →-t ,速度v →-v ,而电荷将维持不变,即e →e .这个性质决定了j e →-j e ,即在时间反演下,电流要改变方向.而对于自旋流J αs = 2{σα,v},由于自旋在时间反演下σ→-σ,因此在时间反演下自旋流是不变的.这个性质的本身决定了自旋流是低耗散的,甚至为无耗散的.这一点可以从有阻尼的谐振子运动方程来理解:m x ¨=-kx +λx ・.能量耗散来源于阻尼项λx ・.当λ=0时,谐振子的能量是守恒的,而运动方程在时间反演下是不变的.当阻尼项出现后,它破坏了时间反演进而引起了能量耗散.然而,自旋是否引起耗散的问题,目前还是个有意义的课题.在自旋霍尔效应中,电流所导致的自旋流是无耗散的,但电流本身是有耗散的.一般来说,自旋本身和系统晶格的耦合是相当弱的,与声子本身没有直接的作用,所以传输中的自旋流的耗散,如果有的话,应该是很低的,这也是自旋流优点之一.自旋流另一个特点是它的非守恒性.由于自旋本身不像电荷那样是守恒的,现在所定义的自旋流都是不守恒的.在物理学中,所有的守恒流都对应一个对称性,如电流守恒是有U (1)对称性的.破坏自旋流守恒的因素很多,如杂质散射、自旋轨道耦合及核自旋等.自旋流的非守恒性导致有关自旋流定义的争论[9].本文作者的意见是,关键是要看非守恒的自旋流是否是物理的.随着近期的实验观察证实它是可以产生可观察的物理现象,这个问题答案应该肯定的.下一个问题是,自旋流的存在范围.我们并不期待自旋流能像电流一样用高压电线来长距离传输,它的应用只会在介观或纳米尺度的电子器件中,所以自旋流的应用尺度应该是限制在自旋相干长度内.对于半导体材料而言,是几个或几百个微米之间.现在已有实验数据表明,半导体异质结中自旋相干长度是可通过外场来调节的.因此,寻找具有超长的自旋相干长度的半导体材料是自旋电子学的发展方向之一.3 自旋流产生的物理效应要控制和利用自旋流,首先需要了解自旋流能产生哪些物理效应.在过去几年中,我们对自旋的性质有了深入的研究和理解,特别是有关自旋霍尔效应的研究使自旋流成为目前凝聚态物理中的一个重要课题.3.1 自旋流与电场由B i ot 2Savart 定理可知,电流可在空间中产生一个环绕电流的磁场.与之相对应的是一个磁偶极矩的流可以产生一个电偶极矩场,这个电场是可以计算的.一个简单的方法是将自旋流设想为正负两种磁“荷”±q mc 相对运动,而两种磁场的距离为δ.当δ→0+和q mc →+∞,我们可以得到一个有限的磁偶极矩m =q mc δm ^(m ^为流极化方向).这样自旋流可唯象地看成一组运动的磁偶极矩,每个磁偶极矩会产生磁场[10].在洛伦兹变换下,这个磁场就会转化为电场.对于自旋流J m δV 而言,它产生的电场分布为E =∫μ4πJ m d V ×1R 3m ^-3R (R ・m^)R2.这个电场较小,但还是可观测的.3.2 自旋流在电场下的运动在电动力学中,我们知道电流在磁场的作用下会感受到切向的洛伦兹力F =j c ×B .那么作为对应,自旋流是否会在电场下感受到任何经典作用力呢?本文作者研究发现[8],作为非相对论极限下的结果,自旋轨道耦合会导致一项依赖于自旋和外场评述的反常速度δv=e4m2c2σ×ε.从海森伯运动方程和量子力学的对应原理,我们可以推出一个类似牛顿力学第二定律的算子方程.对应于任何量子态而言,我们发现m〈d vd t〉=e2│ε│4m2c2Jεs×ε,其中自旋流定义为沿电场方向极化,Jεs=4〈{v,σ・εε}〉.像电流一样,多体系统的自旋流可为一个宏观量.这个结果表明,自旋流在电场下感受到的力正比于沿电场方向极化的自旋流的大小和电场的平方,力的方向垂直于电场和自旋流的流向.这一点十分类似于洛伦兹力,但由于该力正比于电场的平方,又完全不同于洛伦兹力.对于自由电子而言,这个力是非常微弱的,但对于调控量子自旋来说,它已是足够产生可观测的效应.例如它仍可看作电子波包蠕动(zitterbe wegung)的物理起源.半导体系统为检测这个相对论量子效应提供了可行的平台.相比于正电子和负电子之间的能隙2m c2=1.06Me V,一个典型的导带和价带电子之间能隙只有e V量级.自旋轨道耦合是反比于能带间的能隙,因此半导体中有可能存在较大的自旋轨道耦合,从而产生可观测的物理结果.对于具有Rash2 ba作用的系统,H R=λ(p xσy-p yσx),它等价于一个有效电场垂直于二维平面的体系.电子是限制在二维范围内运动,这个体系的自旋切向力为F=4m2λ22J z s×z^.3.3 自旋流与自旋积累自旋流产生的一个直接的物理结果是自旋流在边界条件下会产生自旋积累.由于自旋积累本身不像电荷积累会产生一个电场或其他的动力,它只能靠自旋扩散来达到平衡.因此自旋扩散长度和自旋弛豫时间在自旋积累问题中是十分重要的.一般来说,自旋流Jαs和自旋密度分布Sα(r)可以用一个连续性方程来描述[11]9Sα9t+ ・Jαs=-Sατs- ρτ,其中ρτ是力矩偶极密度.对于一个平衡态来说,自旋密度不随时间变化.在系统体内,自旋流和力矩密度的散度都是均匀的,但在边界上自旋流应该为零.这样从体内到边界 ・Jαs 是不为零的,从而在边界会产生非均匀的自旋分布Sα(r)≠0.从物理上说,只有自旋扩散才能平衡体内的自旋流.通常我们引进自旋相关的化学势μσ来描述扩散过程.扩散方程的形式为[12]2(μξ(r)-μψ(r))=μξ(r)-μψ(r)D2,其中D为扩散系数.这个方程的解取决于边界条件和体内自旋流分布.一般来说,自旋分布的幅度正比于体内自旋流的大小,而分布按幂指数衰减e-r/D.扩散长度决定了自旋积累的范围.3.4 自旋流的散射效应纯自旋流是具有时间反演不变性的.当它受到自旋相关的杂质或势垒散射时会产生电流或电势差.一个最简单的图像是,观察纯自旋流通过一个自旋相关的一维势垒的散射.这个势垒的自旋劈裂可以由外磁场产生.假设自旋向上的势垒高于自旋向下的的势垒,这样对于具有相同动量的电子来说,自旋向上的电子的透射系数Tξ会小于自旋向下的透射系数Tψ.假设纯自旋流由两组自旋不同而运动相反的电子组成,其结果是产生的电流正比于(Tξ-Tψ).自旋流可以通过逆的自旋霍尔效应产生电流.由于散射机理不同可分为内禀和外在的两种.外在机理是由杂质势或Mott散射引起的[13].一般说来,杂质势是具有自旋轨道耦合的,即LS耦合,V=ξ(r)L・S.如果角动量方向确定,对于不同自旋的电子,由于〈L・S〉的数值不同,所以受到的散射是不对称的,这个性质是英国物理学家Mott早在1929年发现的.因此,自旋流受到这种杂质势的散射会产生一个横向的电流.对于有限宽的条状样品,由于边界的限制,可以产生霍尔电压.另一类内禀机制是由源于电子能带相关的自旋轨道耦合引起的[14].对于具有破坏结构反射对称性的二维电子气,垂直平面极化的自旋流在强烈的Rashba自旋轨道耦合作用下会产生自旋切向力,F=4m2λ22J z s×z^,在弛豫时间(τ)近似下,会产生一个垂直于自旋流的漂移速度〈vy〉4mλ22J z sτ,从而形成霍尔电流.进一步的研究表明,对于介观系统(小于自旋相干长度)而言,自旋流的自旋极化方向和自旋轨道耦合的对称性对散射效应起了决定性作用.例如平面内极化的自旋流在Rashba系统中产生不同形评述式的电流效应[15].4 自旋流的产生和测量在过去几年里,关于自旋流的产生和测量无论在理论方面还是在实验方面都取得了重大的突破.在理论方面,H irsch重新讨论了自旋霍尔效应[16],电流基于杂质散射可产生自旋流以及自旋流产生电流的现象.进一步研究发现,破坏反射对称性的能带结构也可产生内禀的自旋霍尔效应[17,18].这些效应的讨论为自旋流的测量提供了理论基础和方向.已经有几个实验组用不同的方法成功地完成了自旋流的注入和探测.本文将介绍产生自旋流的方法以及相关的实验结果.这些方法是基于自旋霍尔效应的电注入法,利用铁磁电极的侧向非局域几何注入法,和利用偏振光照射的光注入法.从测量手段来说,主要有光测量和电测量两大类.4.1 自旋霍尔效应和电注入自旋流自旋霍尔效应提供了一种方便和有效的产生自旋流的方法.当系统加上一个外电场时,由于自旋轨道耦合的作用,一个顺磁体系可以产生一个垂直于电场的自旋流.这个自旋流的极化方向垂直于电场和流向的平面.早期的理论预测的自旋流是由自旋向上和向下的电子受到杂质势的不对称散射而产生的,被称为外在的自旋霍尔效应[13,16].近期的研究表明,能带结构本身由于自旋轨道耦合引起的劈裂,在没有杂质散射的情况下,也能产生横向的自旋流,被称为内禀的自旋霍尔效应[17,18].这个效应是将电流转化为自旋流.同样的原因,也可将自旋流转化为电流.第一个用电场产生自旋流的报告来自美国UCLA的Awschal om小组在Ga A s和I nGa A s薄膜上的光学测量[19].在样品大小为77×300μm2长条上,加上几个mVμm-1量级的电场,他们用扫描Kerr旋转方法测量样品边缘的由于电场产生的自旋分布.实验显示样品两边的自旋积累的方向是相反的,符合自旋霍尔效应的预测.由于Ga A s样品没有破坏结构反射对称性,这个效应应该是由杂质散射引起的.而自旋积累本身也是由杂质势引起的扩散机制产生的.这个实验并没有直接测量自旋流,而是测量自旋流引起的自旋积累.与此同时,英国剑桥的W underlich等人利用(A l,Ga)A s/GaA s样品,由一个二维空穴气体和一个二维电子气体的边缘形成了p2n结型的发光二极管[20].二维空穴气体破坏了结构反射对称性而产生强烈的自旋轨道耦合.当电流通过该层时,在边缘的载流子(电子和空穴)复合会发出光子.该实验是通过测量发光二极管在通过电流后产生的光的圆偏振度,它是和载流子的自旋极化成正比的.实验结果表明,该发光二极管发出的光有一定的偏振度.这个实验结果可以由电子能带的自旋轨道耦合引起自旋流来解释,其机制是内禀的.台湾大学的实验小组在I nGa N/Ga N超晶格中,通过截面荧光光谱的偏振度的测量,确定电流引起的自旋极化,证实了自旋霍尔效应.他们还进一步发现材料内部张力对该效应的影响[21].4.2 侧面非局域注入自旋流侧面非局域几何结构的自旋注入和探测始于1985年.Johns on和Silsbee利用两个铁磁电极接在铝(A l)条上,自旋极化的电流可以从一个铁磁电极注入,在注入点附近会产生非平衡的自旋积累[22].由于扩散的原因,自旋积累会逐渐扩散开去,形成自旋分布.自旋积累可通过测量第二个铁磁电极上的电压而推导出来.Jedema等人[23]在薄膜器件中,利用非局域结构,在室温下完成了自旋的注入和探测.相关技术在不同的系统中都得到了应用.最近,美国哈佛大学的Valenzuela和Tinkha m利用这个方法成功地完成了纯自旋流的注入和探测[24].他们将铁磁电极接到铝条上,利用磁性隧穿效应将极化电流成功地注入到铝条中.这个极化的电流会引起费米面附近的化学势的自旋劈裂.自旋相关的化学势的非均匀分布可产生极化的电流.化学势在空间是连续分布的,在注入点附近,自旋上下不同的化学势是劈裂开的.由于另一端没有电流流过,不同自旋的化学势只能是大小相等,符号相反.由于扩散的作用,化学势会在自旋相干长度内趋于相等.这个非均匀的化学势分布导致一个自旋流的出现.自旋流只出现在距注入点有效自旋相干长度的范围内.自旋流的测量是利用反自旋霍尔效应.自旋流受到自旋轨道耦合的散射,形成横向电流.他们通过测量霍尔电流成功地证实这种方法可注入纯自旋流.值得注意的是,这个实验是利用了扩散的原理,可以在室温下实现.日本的Sait oh等人[25]利用这种技术在铝中观察到自旋霍耳效应.Ki m ura等人[26]利用相类似的原理,在铂(Pt)的样品中和室温下观测到自旋霍尔效应.他们还验证了自旋霍尔效应和反自旋霍尔效应之间的Onsager关系.另一个重要的结果是,他们测评述。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
自旋电子学与自旋电子器件简述陈闽江,邱彩玉,孙连峰(国家纳米科学中心 器件研究室 北京 100190)一、引言2007年10月,瑞典皇家科学院宣布,将该年度诺贝尔物理学奖授予在1988年分别独立发现纳米多层膜中巨磁电阻效应的法国Albert Fert 教授和德国Peter Grunberg 教授。
其随后的应用不啻为革命性的,因为它使得计算机硬盘的容量从几十兆、几百兆,一跃而提高了几百倍,达到几十G 乃至上百G 。
越来越多的人开始了解这个工作及其对我们生活的影响,并意识到这个工作方向的重要意义。
1988年在磁性多层膜中发现巨磁电阻效应(GiantMagnetoresistance ,GMR),1993年和1994年在钙钛矿锰氧化物中发现庞磁电阻效应(Colossal Magnetoresistance ,CMR),特别是1995年在铁磁性隧道结材料中发现了室温高隧穿磁电阻效应(Tunneling Magnetoresistance ,TMR)以及后续形成的稀磁半导体等研究热潮,这些具有里程碑意义的人工合成磁性材料的成功制备和深入研究,不仅迅速推动了近20年凝聚态物理新兴学科——自旋电子学(spintronics)的形成与快速发展,也极大地促进了与自旋极化电子输运相关的磁电阻材料和新型自旋电子学器件的研制和应用。
中国科学院物理研究所朱涛研究员表示:“Albert Fert 和Peter Grunberg 种下了一粒种子,随着20世纪90年代应用的突破,这粒种子长成了一棵小苗——自旋电子学,这是一个成长很快、前景广阔的磁学分支。
”二、电子自旋与自旋电子学要阐明自旋电子学,就不得不先简述一下电子自旋这一概念。
电子自旋不是电子的机械自转,电子自旋及磁矩是电子本身的内禀属性,所以也被称为内禀角动量和内禀磁矩。
它们的存在标志电子还有一个新的内禀自由度。
所以电子状态的完全描述不但包括空间三个自由度的坐标(r ),还必须考虑其自旋状态。
更确切地说,要考虑自旋在某给定方向(例如z 轴方向)的投影的两个可能取值的波幅,即波函数中还应该包含自旋投影这个变量(习惯上取为),Z S 从而记为。
与连续变量r 不同,只能取两个离散值。
(,)Z r s ψZ S 2± 接下来,认识电的和磁的相互作用在强度上的差异和不同的特点,可以了解自旋电子学的潜力。
电荷周围存在电场,通过静电力和其他电荷发生相互作用,这种相互作用是强的和长程的。
在常见的半导体中,两个相距5的元电A荷间的相互作用能可达0.2eV ,它正比于距离的倒数。
1V 的电压可使载流子1r 改变1eV 的能量。
然而距离为5的一对电子自旋之间的磁偶极耦合能却只有A约eV 量级。
与静电相互作用相比,它是短程的。
在高达1T 的磁通密度下,710-自旋的能量变化只有eV 量级。
和静电相互作用相比,磁的相互作用要小几510-个数量级。
就存储应用而言,磁相互作用的短程性和弱的相互作用能意味着低功耗和高存储密度,因为靠得很近的磁量子位仍可以保持相互的独立性。
虽然电子自旋有这么多的优点可被利用,但是二次大战之后,世界文明的发展都只和电子学有关系,人们从不关心电子的磁性(电子自旋)。
经过多年发展,小到手表,大到宇宙,电子的电性有了充分利用,但是磁性一直沉睡着。
直到1988年,巨磁电阻效应的发现,第一次揭示了电子自旋的作用,因而具有重大的科学意义。
现在的超大规模集成电路在1平方厘米的面积上可以集成107~108个电子元件。
而目前公认的器件最小尺度是20纳米,一旦小于这个尺寸,传统的工作原理如欧姆定理等就会失效,量子效应则开始起作用。
量子效应是几率性、不可预测的,将导致器件工作不稳定。
要想突破这个尺寸限制,就必须利用电子的自旋,把自旋作为信息储存、处理、输运的主体。
自旋电子学是基于操纵和控制自旋的电子学。
它或将自旋(或磁性)作为信息的载体,通过电流或电压进行操控;或将自旋或磁场作为操控电荷或电流信息的手段。
操纵电子自旋是指控制自旋的布局,或操控载流子集合的自旋的相,或对单个电子或少数电子自旋进行相干操控。
自旋电子学可同时利用电子的自旋和电荷的性质,以实现电子学的功能或量子计算。
自旋电子学的研究对象包括电子的自旋极化、自旋相关散射、自旋弛豫以及与此相关的性质及其应用等。
目前,自旋电子学的基础研究和应用开发都为物理学、材料科学和电子工程学等领域提供了广阔的发展天地。
按照美国加州大学Awschalom 教授的观点,自旋电子学器件可分为三个层次:一是基于铁磁性金属的器件;二是将自旋注入半导体器件;三则是单电子自旋器件。
目前进入应用的器件(如GMR 自旋阀)还只处于第一层次;对于自旋控制和自旋极化输运的了解处于较为肤浅的阶段;对各种新现象、新效应的理解基本上只是半经典的和维象的。
因此,自旋电子学的发展还面临很多更大的挑战,当然,机遇与挑战是并存的。
三、基于铁磁金属的自旋电子器件对于普通金属和半导体,自旋向上和自旋向下的电子在数量上是一样的,所以传统的金属电子论往往忽略电子的自旋自由度。
但是对于铁磁金属,情况则不同。
在铁磁金属中,电子的能带分成两个子带,自旋向上子带和自旋向下子带。
这两个子带形状几乎相同,只在能量上有一个位移,这是由于铁磁金属中存在交换作用的结果。
正是由于两个子带在能量上的差别,使得两个子带的占据情况并不相同。
在费米面处,自旋向上和自旋向下的电子态密度也是不同的。
这样在铁磁金属中,参与输运的两种取向的电子在数量上是不等的,所以传导电流也是自旋极化的。
同时由于两个子带在费米面处的电子态密度不同,不同自旋取向的电子在铁磁金属中受到的散射也是不同的。
因此在系统中,如果存在铁磁金属,两种自旋取向的电子的输运特性也有着显著的差别。
基于铁磁金属的自旋电子器件正是利用上述的电子特性设计而成的。
巨磁电阻(GMR )效应 早在1857年W.Thomson (开尔文勋爵)就在铁和镍中发现了磁电阻效应,即在磁场作用下,磁性金属内部电子自旋方向发生改变而导致电阻改变的现象。
由于磁化方向的导电电阻升高而垂直方向的电阻降低,故称之为各向异性磁电阻(Anisotropic Maganetoresistance ,AMR )。
磁电阻的相对比值磁致电阻(Magnetoresistance ,MR )可表示为:。
和分别为有磁场作用下和磁场为零时的电阻。
0()H H MR R R R R R =∆=-H R 0R MR 值随磁场增大而增大,最后达到饱和。
但铁磁金属与合金的饱和磁电阻值很小,只有约1%~5%。
1988年,Fe/Cr 金属多层膜在外磁场中电阻变化率高达50%的巨磁电阻效应(GMR )被发现, 各国科学家开始从理论和实验上对多层膜GMR 效应展开了广泛而深入的研究。
GMR 产生机制取决于非铁磁层两边的铁磁层中电子的磁化(磁矩)方向,用于隔离铁磁层的非铁磁层,只有几个纳米厚,甚至不到一个纳米。
当这个隔离层的厚度是一定的数值时,铁磁层的磁矩自发地呈现反平行;而加到材料的外磁场足够大时,铁磁材料磁矩的方向变为相互平行。
电子通过与电子平均自由程相当厚度的纳米铁磁薄膜时,自旋磁矩的取向与薄膜磁化方向一致的电子较易通过,自旋磁矩的取向与薄膜磁化方向不一致的电子难以通过。
因此,当铁磁层的磁矩相互平行时,载流子与自旋有关的散射最小,材料有最小的电阻。
当铁磁层的磁矩为反平行时,与自旋有关的散射最强,材料的电阻最大,从而使磁电阻发生很大变化。
自旋阀(Spin-valve ,SV ) 对于反铁磁耦合的多层膜,需要很高的外磁场才能观察到GMR 效应,故并不适用于器件应用。
在GMR 效应基础上人们设计出了自旋阀,使相邻铁磁层的磁矩不存在(或只存在很小的)交换耦合。
自旋阀的核心结构是两边为铁磁层,中间为较厚的非铁磁层构成的GMR 多层膜。
其中,一边的铁磁层矫顽力大,磁矩固定不变,称为被钉扎层;而另外一层铁磁层的磁矩对小的外加磁场即可响应,为自由层。
由于被钉扎层的磁矩与自由层的磁矩之间的夹角发生变化导致GMR 的电阻值改变。
如此,在较低的外磁场下相邻铁磁层磁矩能够在平行与反平行排列之间变换,从而引起磁电阻的变化。
自旋阀结构的出现使得巨磁电阻效应的应用很快变为现实。
最常用的“顶部钉扎自旋阀”(top spin-valve )的具体结构如图一所示:其中,缓冲层(buffer layer ),可使镀膜有较佳的晶体成长方向,也称之为种子层。
自由层(free layer ),由易磁化的软磁材料所构成。
中间夹层反铁磁性铁磁性铁磁性非磁性材料图一 自旋阀(SV )叠层结构示意图(spacer ),为非铁磁性材料,目的为于无外加磁场时,让上下两铁磁层无耦合作用。
被钉扎层(pinned layer ),被固定磁化方向的铁磁性材料。
钉扎层(biasing layer ),用于固定“被钉扎层”磁化方向的反铁磁性材料。
这种非耦合型自旋阀的优点有:⑴磁电阻变化率对外磁场的响应呈线性关系,频率特性好;⑵饱和场低,灵敏度高。
虽然自旋阀结构的磁电阻变化率不高,通常只有百分之几,但饱和场较低,使磁场灵敏度大大提高;⑶自旋阀结构中铁磁层的磁矩的一致转动,能够有效地克服巴克豪森效应,从而使信噪比提高。
与超晶格GMR 一样,自旋阀磁电阻的来源仍归结于磁性层/非磁性层界面处的自旋相关电子散射。
自旋阀中出现GMR 效应必须满足这样的条件:①传导电子在铁磁层中或在铁磁/非铁磁界面上的散射概率必须是自旋相关的;②传导电子可以来回穿过两铁磁层,并能够记住自己的自旋取向,即自旋平均自由程大于隔离层厚度。
磁隧道结(Magnetic Tunnel Junctions, MTJ ) 非磁层为绝缘体或半导体的磁性多层膜即磁性隧道结。
通常,磁性隧道结是由两层纳米磁性金属薄膜(FM )和它们所夹的一层氧化物绝缘层(I )所组成的三明治结构(FM/I/FM ),I 的厚度约为1~1.5纳米,如图二所示:这种磁性隧道结在横跨绝缘层的电压作用下,其隧道电流和隧道电阻依赖于两个铁磁层磁化强度的相对取向。
如果两铁磁电极的磁化方向平行,则一个电极中费米能级处的多数自旋态电子将进入另一个电极中的多数自旋态的空态,同时少数自旋态电子也从一个电极进入另一个电极的少数自旋态的空态。
即磁化平行时,两个铁磁电极材料的能带中多数电子自旋相同,费米面附近可填充态之间具有最大匹配程度,因而具有最大隧道电流。
如果两电极的磁化反平行,则一个电极中费米能级处的多数自旋态的自旋角动量方向与另一个电极费米能级处的少数自旋态的自旋角动量平行,隧道电导过程中一个电极中费米能级处占据多数自旋态的电子必须在另一个电极中寻找少数自旋态的空态,因而其隧道电流变为最小。
通过绝缘层势垒的隧穿电子是自旋极化的,可观测到大的隧穿磁电阻(TMR)。