有理数计算附答案

合集下载

有理数计算习题带答案

有理数计算习题带答案

有理数计算习题带答案有理数是数学中的一种数,包括整数、分数和小数。

在数学学习中,掌握有理数的计算方法是非常重要的。

下面,我将给大家提供一些有理数计算的习题及其答案,希望能够帮助大家更好地理解和掌握有理数的计算方法。

一、四则运算1. 计算:(-3) + (-5) = ?答案:(-3) + (-5) = -82. 计算:(-4) - (-7) = ?答案:(-4) - (-7) = 33. 计算:(-2) × (-6) = ?答案:(-2) × (-6) = 124. 计算:(-8) ÷ (-4) = ?答案:(-8) ÷ (-4) = 2二、混合运算1. 计算:(-3) + 5 - (-2) × 4 = ?答案:(-3) + 5 - (-2) × 4 = (-3) + 5 - (-8) = (-3) + 5 + 8 = 102. 计算:(-2) × 3 - (-5) ÷ (-1) = ?答案:(-2) × 3 - (-5) ÷ (-1) = (-2) × 3 - 5 = -6 - 5 = -11三、分数运算1. 计算:(-\frac{3}{4}) + \frac{1}{2} = ?答案:(-\frac{3}{4}) + \frac{1}{2} = -\frac{3}{4} + \frac{2}{4} = -\frac{1}{4}2. 计算:(-\frac{2}{3}) - \frac{5}{6} = ?答案:(-\frac{2}{3}) - \frac{5}{6} = -\frac{2}{3} - \frac{5}{6} = -\frac{4}{6} -\frac{5}{6} = -\frac{9}{6} = -\frac{3}{2}四、小数运算1. 计算:(-0.3) + 0.5 = ?答案:(-0.3) + 0.5 = 0.22. 计算:(-0.2) - 0.7 = ?答案:(-0.2) - 0.7 = -0.9五、综合运算1. 计算:(-\frac{3}{4}) × (-\frac{2}{3}) + (-0.2) = ?答案:(-\frac{3}{4}) × (-\frac{2}{3}) + (-0.2) = \frac{6}{12} + (-0.2) = \frac{1}{2} + (-0.2) = \frac{1}{2} - 0.2 = \frac{1}{2} - \frac{2}{10} = \frac{1}{2} - \frac{1}{5} =\frac{5}{10} - \frac{2}{10} = \frac{3}{10} = 0.32. 计算:(-\frac{5}{6}) ÷ (-\frac{2}{3}) × (-0.3) = ?答案:(-\frac{5}{6}) ÷ (-\frac{2}{3}) × (-0.3) = \frac{5}{6} ÷ \frac{2}{3} × (-0.3) =\frac{5}{6} × \frac{3}{2} × (-0.3) = \frac{5}{4} × (-0.3) = -\frac{15}{40} = -0.375通过以上习题的计算,我们可以看到,有理数的计算方法与整数、分数、小数的计算方法类似,但需要注意符号的运用。

有理数计算500题(含答案解析)

有理数计算500题(含答案解析)

初一年级有理数计算题集使用说明:本题集的制作初衷是为学生提供计算题目以便强化计算能力。

此题集共500道,1-445题为基本四则运算,建议每天做20道,如能保证答题准确率在80%以上,说明计算能力比较过关。

446-500题为能力计算题目,涉及等差数列,等比数列,裂项等技巧,建议学完计算技巧后再作题进行巩固。

要相信坚持总有回报,祝愿每位同学取得优异的成绩。

1.6115 () 5324⨯--÷2.52555(2)4 757123÷--⨯-÷3.2239 0.8 4.8() 2.20.8117711⨯+⨯--÷+⨯4.1347()(154) 620512--+-⨯-⨯5.73()( 2.4) 187-⨯⨯-6.341 2()(5)777÷-⨯÷-7.11311 [15(13)](1) 24528⨯÷--+8.11(5)()555⨯-÷-⨯有理数计算19.11321 ()() 32114742 --+-÷-10.2215 130.34(13)0.34 3737-⨯-⨯+⨯--⨯11.11 (13)(134)()1367 -⨯-⨯⨯-12.7111 (4)(5)(4)38248 ---+--13.(16503)(2)--+÷-14.110.53 6.75542+(-)-(-)-15.219 17887.21435312.792121-++-16.(6)(4)(32)(8)3-⨯-+-÷--17.211()|1| 722+----18.(9)(4) (60)12-⨯-+-÷有理数计算23有理数计算 19. 9581[()1]()1472142--+÷-20. 1|3|10(15)3--÷--⨯21. 375112532162-⨯-÷()22. 11171(231)(1)(7)32186+÷-⨯--23. 31(820.04)43-⨯--24. []551(0.4)( 2.5)---⨯-25. 251(1)(10.5)3---⨯26.575(7)(243)(246)--+---+-+-27. 213(2)(1)8()312--⨯--÷-⨯-+28. 912311(27)9()(24)1123412-÷-+--⨯-有理数计算430.()()1120.12533110.25483⎛⎫⎛⎫⎛⎫+++-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭31. 211(455)365455211545545365⨯-+⨯-⨯+⨯32. 102131111()[9(3)]314122---⨯--+÷ 33. 8221211(1)()()[2(3)]0.52368---÷-⨯-----34. 25171()24(5)138612⎡⎤--+⨯÷-⎢⎥⎣⎦35. ()131170.125 1.213213⎛⎫⎛⎫-⨯-÷-⨯- ⎪ ⎪⎝⎭⎝⎭36. ()2342()()0.2534⨯-+-÷-37. ()7511[30()36]59612-+-⨯-÷-()5有理数计算 38. 23155(1)()()()74148+÷-÷-⨯-39. 31315(1)(1) ()()42424-÷--+÷-40. 8)3(4)2(323+-⨯--⨯41. 2)2(2)1(3210÷-+⨯-42. 2)2(2)2(23322--+----43. ])3(2[61124--⨯--44. ]2)33()4[()10(222⨯+--+-45. ])2(2[31)5.01()1(24--⨯⨯---46. 20022003)2()2(-+-47. 20052004(0.25)4-⨯48. 94)211(42415.0322⨯-----+-有理数计算6 49. )2()3(]2)4[(3)2(223-÷--+-⨯--50. 32(4)(75)÷-⨯-+-51. 2)2(2)1(3210÷-+⨯-52. ()()574283+-⨯-÷-53. 2225(3)[()](6)439⨯+÷-----54. 31[2(10.54)]⨯-----55. 312123)2122(3)543(31512⨯-÷++÷+-⨯-56. 295(3)(2)4⨯--÷+-57. 3(5)[2(6)]3005-⨯---÷ 58. 2211(1)1339⨯-÷-59. [124(310)]4⨯-÷-7有理数计算 60. 32(3)4(3)15⨯-⨯--+61. 4211[2(3)]6―⨯---62. 213502()15÷⨯-+-63. 421632()94÷⨯--64. ()1003212181215.20-⨯⎪⎭⎫⎝⎛-+⎪⎭⎫⎝⎛-÷-65. 21002212(1)1221|132|----÷-+--⨯()66. 3483(1)(4)--⨯---67. 3145()2⨯--68. 2)3121(36-⨯69. 24)23(942-⨯÷-有理数计算8 70. 5434361832411÷⎥⎦⎤⎢⎣⎡⨯⎪⎭⎫ ⎝⎛-+- 71. )12()4332125(-⨯-+72. )4()81()2(163-⨯---÷ 73. 2111()()(2)(14)236--÷--⨯-+ 74. 33[5(10.2)(2)]5---+-⨯÷- 75. 111122399100++⋅⋅⋅+⨯⨯⨯76. 911321321÷⎪⎭⎫ ⎝⎛-⨯-77. ()124310(49)-⨯-÷-⎡⎤⎣⎦78. 4435222-+--÷-()()79. 32416210+÷-÷-()()9有理数计算 80. 2153233+÷÷-+-()()()81. 3342331---÷-()() 82. 232[3323]43-⨯-⨯--()83. 1293123223-÷+-⨯+()84. )6(23517235)34()235(-⨯-⨯--⨯- 85. 15511512277227⎛⎫⎛⎫⨯--⨯+-⨯ ⎪ ⎪⎝⎭⎝⎭86. 23(2)(1)31(2)-⨯--⨯---[] 87. 3223(4)(9)0---⨯-⨯ 88. 31452-⨯-()89. 348311--⨯---()()有理数计算 10 90. 32422()93-÷⨯-91. 211[123]6--⨯--() 92. 759015-⨯--÷-()()()93. 23420.2534⨯-+-÷-()()() 94. ()11731348126424⎛⎫-+-⨯- ⎪⎝⎭95. ()113700.2524.5525%42⎛⎫⎛⎫-⨯-+⨯--⨯ ⎪ ⎪⎝⎭⎝⎭96. 333145⎛⎫⨯- ⎪⎝⎭97. ()()()525306⎛⎫-⨯-⨯+⨯- ⎪⎝⎭98. ()5411.5112153⎛⎫-⨯⨯-⨯ ⎪⎝⎭99. 13810.0434⎛⎫⎛⎫-+-⨯- ⎪ ⎪⎝⎭⎝⎭100. ()()3338878158777⎛⎫⎛⎫-⨯-+-⨯--⨯ ⎪ ⎪⎝⎭⎝⎭101. 1799918⎛⎫⨯- ⎪⎝⎭102. ()17.984⎛⎫-⨯- ⎪⎝⎭103. ()()()450.258-⨯⨯-⨯-104. 130.570445⎛⎫⎛⎫-⨯⨯-⨯ ⎪ ⎪⎝⎭⎝⎭105. 7213.2329213⎡⎤⎛⎫⎛⎫⎛⎫-⨯-⨯-⨯--⨯- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦106. ()74948⨯-107. 157556⎛⎫⨯- ⎪⎝⎭108. ()24912525⎛⎫-⨯- ⎪⎝⎭109. ()200420062005-⨯110. ()231243412⎛⎫-++⨯- ⎪⎝⎭111. 2211613325⎛⎫⎛⎫⎛⎫⎛⎫-⨯-⨯-⨯- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭112. 173********⎛⎫⎛⎫-⨯-+- ⎪ ⎪⎝⎭⎝⎭113. 1173332127⎛⎫-⨯⨯ ⎪⎝⎭114. 15511521214142214⎛⎫⎛⎫-⨯--⨯+⨯ ⎪ ⎪⎝⎭⎝⎭115. 4555542792793⎛⎫⨯+⨯+⨯- ⎪⎝⎭116. ()7 1.7516⎛⎫+÷- ⎪⎝⎭117. 31231527⎛⎫⎛⎫⎛⎫-÷-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭118. ()()148121549-÷⨯÷-119. ()()()1084-÷-⨯-120. ()()1177-÷⨯-121. 294.558-⨯÷122. 121311234⎛⎫⎛⎫⎛⎫-÷-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭123. 141315432251518⎛⎫⎛⎫⎛⎫⎛⎫+÷-⨯-÷- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭124. ()1347415620512⎛⎫⨯-⨯--+- ⎪⎝⎭125. 111111111111357357357357⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⨯⨯+-⨯-⨯-+-⨯-⨯+⨯-⨯ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭126. 25(8)(1)--⨯-127. 11()128--+128. 4(6)(3)-⨯-129. 12()( 3.25)5---130. 313.5(0.7)(5)5-⨯-÷-131. 112167342⎛⎫⎛⎫-+÷- ⎪ ⎪⎝⎭⎝⎭132. ()1230.1434⎛⎫⎛⎫÷---÷- ⎪ ⎪⎝⎭⎝⎭133. 2212162()2-÷⨯-134. 344411117777⎛⎫⎛⎫-⨯÷--+ ⎪ ⎪⎝⎭⎝⎭135. 211110.5210.5100.5323⎛⎫⎛⎫⎛⎫-÷--÷-+÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭136. 21.8( 1.8)3--+137. 114254-+138. 1348(1)124-⨯-+139. 220.52(3)⨯--140. 113()1234÷-+141. 322322(2)()(2)2()833-⨯---÷⨯-142. 4327221()()1727173⎡⎤----+-⎢⎥⎣⎦143. 3777(1)()48128--÷-144. 241(7)(30)3 3.25134-÷--⨯+145. 868635.28.642⨯-⨯-+146. 200720092008-⨯147. 199279-⨯148. 762()(1.5)3-⨯149. 201020111()33-⨯150. 201120102009(7)147(49)(7)-+⨯--⨯-151. 214.732(2.631)33⎡⎤---⎢⎥⎣⎦152. 421(3)(1)()7315-÷-⨯-153. 812763189--+-÷-()() 154. 13122(3)2523-⨯--+÷--- 155. ()28[710.63]3⎛⎫-⨯-+-⨯÷- ⎪⎝⎭156. 151()46-+-157. 2(0.8)15-+-158. 15631218⎛⎫+- ⎪⎝⎭159. ()(){}1.5 1.80.80.9+-++-⎡⎤⎣⎦160. 112133[2357]32324⎛⎫⎛⎫-++-++- ⎪ ⎪⎝⎭⎝⎭161. 222115[1344]33155⎛⎫-+--+- ⎪⎝⎭162. ()43510.712150.7(15)9494⨯+⨯-+⨯+⨯-163. 45812605615⎛⎫--⨯ ⎪⎝⎭164. ()15154232918⎛⎫-÷-÷- ⎪⎝⎭165. 142 81614 9÷÷--⨯()166. 1211 4.43.1830+++++-())(167. 41889365036.25525323+-++--()168. 53145119(20)(302.5)(151)119197131717132⎛⎫⎛⎫+-+-+-+-+- ⎪ ⎪⎝⎭⎝⎭169. ()5113(3[(2) 5.1753 6.325]3714837⎛⎫-+-++++-+ ⎪⎝⎭) 170. 53124(3)(3)(1)6565--+---+171. 3511(114662+--+)172. 224411()(0.6)33535⎛⎫-+----- ⎪⎝⎭173. 7131441232555555---++-+174.1116 3253 5.252 3477⎡⎤⎛⎫--+---⎪⎢⎥⎝⎭⎣⎦175.275315 (3(2)(3)5(1)5 58125812⎛⎫++--+--+--⎪⎝⎭)176.21 1(1) 35⨯-177.()56.5()6 -⨯-178.314 ()(1)() 429 -⨯-⨯-179.50.25(4)9 6-⨯⨯-⨯180.51 ()(3) 63 -÷-181.421 (3)(1)(1)7314 -÷-÷-182.12114 ()()(1)(1)(1) 23435 -⨯-⨯-⨯-⨯-183. 31123.8 2.4799.6()(339)8873-⨯⨯⨯-⨯-⨯⨯184. ()8[3.6(0.2)(0.4)1]-----⨯-⨯-185. 2231356(8)2(2)4⎡⎤⨯-+--⨯-⨯⎢⎥⎣⎦186. 5.7215.8-+()187. 0.47()50347--- 188. 11(3)(5)24--+ 189. 1111(()()()6432-+---+--)190. ()23632(2)3482(2)-⨯+-⨯-÷-+-191. 232111(32)4(0.5)(1)325⎡⎤--÷-⨯-⨯-⎣⎦192. 54()(3)(1)(2)65-÷-⨯-⨯-193. 283256(1)(0.5)81477⨯-÷-+-194. 3311112(2)332--⨯-+-195. 235()(4)0.25(5)(4)8-⨯--⨯-⨯-196. 2(3)2--⨯197. 12411()()()23523+-++-+-198. 11( 1.5)4 2.75(5)42-+++-199. 8(5)63-⨯--200. 3145()2-⨯-201. 25()()( 4.9)0.656-+----202. 22(10)5()5-÷⨯-203. 323(5)()5-⨯-204. 25(6)(4)(8)⨯---÷-205. 1612()(2)472⨯-÷-206. 67()()51313-+--207. 211()1722---+-208. 737()()848-÷- 209. 21(50)()510-⨯+ 210. 2(16503)(2)5--+÷-211. 32(6)8(2)(4)5-⨯----⨯ 212. 21122()(2)2233-+⨯--213. 199711(10.5)3---⨯214. 2232[3()2]23-⨯-⨯--215. 232()(1)043-+-+⨯216. 4211(10.5)[2(3)]3---⨯⨯--217. 4(81)( 2.25)()169-÷+⨯-÷218. 215[4(10.2)(2)]5---+-⨯÷-219. 666(5)(3)(7)(3)12(3)777-⨯-+-⨯-+⨯-220. 235()(4)0.25(5)(4)8-⨯--⨯-⨯-221. 23122(3)(1)6293--⨯-÷-222. 32323(2)()()32-⨯-⨯-223. 13812711()3(2)()23-⨯⨯-⨯-224. 222172(3)(6)()3+⨯-+÷---225.()43212(8)()(2)2-÷---⨯- 226. 81)4(2833--÷-227. 22100(2)(2)()3÷---÷-228. 22(3)(4)-÷-229. 22312()(0.8)2-⨯-÷-230. 2232113()(2)()32-⨯---÷-231. 232()(1)043-⨯-+⨯232. 2162()5+⨯-233. 2108(2)43-+÷--⨯234. []551(0.4)( 2.5)---⨯-235. 251(1)(10.5)3---⨯236. (14)26(14)(16)8-++-+-+ 237. ( 5.5)( 3.2)( 2.5) 4.8-+---- 238. (8)(25)(0.02)-⨯-⨯- 239. 1557()(72)29612-+-⨯-240. 11(2)()32-÷-241. 211(4)()22+-⨯-242. 51552040.65(31)112280.52-÷⨯+÷--÷243. 2212113()12( 4.53)()233⎡⎤⎡⎤⨯⨯---⨯---+⎣⎦⎢⎥⎣⎦244. 23242341()()()(1)32232-⨯-÷-⨯--+-245. 111512255()()16(1)44543⎧⎫⎡⎤÷-+⨯÷--⨯-⎨⎬⎢⎥⎣⎦⎩⎭246. 20(15)(28)17-+---- 247. 6523157-+-+248. 2113()(1)3838---+-249. ( 5.54)( 3.2)( 2.5) 4.8-+---- 250. 295(3)(2)4+⨯---÷ 251. 32(1)(5)(3)2(5)⎡⎤-⨯-÷-+⨯-⎣⎦252. 32432(2)(1)(2)(2)-+-⨯---÷-253. []3(5)2(6)3005-⨯---÷ 254. 222221()32()4(1)3332-⨯-⨯-+-⨯-255. 221313(5)()240(4)2354⎡⎤-⨯--⨯--÷-⨯-⎢⎥⎣⎦256. 1347()(154)620512--+-⨯-⨯257. 3412()(5)777÷-⨯÷-258. ( 5.5) 3.2 4.5 6.8-⨯+⨯ 259. 2238()(4)()(8)595⨯---⨯-+-⨯260. 11(13)(134)()1367-⨯-⨯⨯-261. ()()()224275543()7811⎡⎤----⨯÷⨯-⎣⎦262. ()()23210022()(2)3÷---÷-+-263. 222172(3)(6)()3-+⨯-+-÷-264. 2335(2)(10.8)114⎡⎤---+-⨯÷--⎢⎥⎣⎦265. 201023)1()2(161)1()21()21(-÷-⨯⎥⎦⎤⎢⎣⎡--÷--266. )145()2(52825-⨯-÷+-267. 7111(4)(5)(4)38248---+--268. 11(0.5)(3) 6.75542---+-269. (6)(4)(32)(8)3-⨯-+-÷-- 270. 1(5)(16)(2)3-÷-÷- 271. 4321(2)(8)()(2)2-÷---⨯-272. 322)43(6)12(7311-⨯⎥⎦⎤⎢⎣⎡÷-+--273. 111117(113)(2)92844⨯-+⨯- 274. 235(4)0.25(5)(4)8⎛⎫-⨯--⨯-⨯- ⎪⎝⎭275. 1113|16|2(4)()448⎡⎤⎡⎤---⨯-÷--⎢⎥⎢⎥⎣⎦⎣⎦276. (9)(4)(60)12-⨯-+-÷ 277. 230(3)3(2)--÷⨯-278. 22312()(0.8)2-⨯-÷-279. 37511()2532162-⨯-÷280. 2232113()(2)()32-⨯---÷-281. 2333(2)(3)(1)(3)---⨯---282. 3233112()()(2)33-÷---⨯-283. 22131(2)2[()3]245--⨯--⨯÷284. 13611754136227231++-285. 22)36()33(24)12581(÷-÷---⨯-286. 2132()5+⨯-287. 222172(3)(6)()3-+⨯-+-÷-288. 225(3)[()]39-⨯-+- 289. 28(3)(2)+-⨯- 290. 22100(2)(2)()3÷÷----291. 421232()33÷⨯--292. 24(3)2(3)4--⨯--⨯293. 12411()()()23523+-++-+-294. 11( 1.5)4 2.75(5)42-+++-295. 200612(1)(24)(2 2.75)83-+-⨯+-296. 103(1)2(2)4-⨯+-÷297. 422(10)[(4)(33)2]-+--+⨯298. 33422()93-÷⨯-299. 2310110.25(0.5)()(1)82-÷-+-⨯-300. 4321(2)(8)()(2)2-÷---⨯-301. 222475(5)4(3)()(7)811⎡⎤----⨯÷⨯-⎣⎦302. 31{(3)[30.4(1)(2)]}2---+⨯-÷- 303. 421110.52(3)3-+-⨯⨯⨯-()[] 304. 3334[(17)6][(5)3](2)⨯-÷+--÷--305. 332313[8(2)1](3)(2)0.25--÷--+-⨯-÷306. 9.538(2|11.64 1.53 1.36|)----+-307. 73.17(812.03|219.83518|)--+308. 1112(398)-+--309. 95(945)----310. 5.6 4.7| 3.8 3.8-+---|311. 1213521(36)(16)(45)(10)27277+-+-+-++ 312.5211()(2)(4)319152⨯-⨯-⨯-313. 555()83()(13)()28666-⨯+-⨯---⨯314. 23181920222...222-----+315. 111 (133519971999)+++⨯⨯⨯316. 3145()2-⨯-317. 25()()( 4.9)0.656-+----318. 22(10)5()5-÷⨯-319. 323(5)()5-⨯-320. 25(6)(4)(8)⨯---÷-321. 1612()(2)472⨯-÷-322. 2(16503)(2)5--+÷-323. 32(6)8(2)(4)5-⨯----⨯324. 235()(4)0.25(5)(4)8-⨯--⨯-⨯-325. 23122(3)(1)6293--⨯-÷-326. 21122()(2)2233-+⨯--327. 19971(1)(10.5)3----⨯328. 2232[3()2]23-⨯-⨯-- 329. 232()(1)043-+-+⨯330. 4211(10.5)[2(3)]3---⨯⨯-- 331. 215[4(10.2)(2)]5---+-⨯÷- 332. 666(5)(3)(7)(3)12(3)777-⨯-+-⨯-+⨯-333. 42311[ 2(3)]6--⨯--- 334. 7574.037127.5371236)9618-+-⨯-+(335. 2212[3()0.8](2)35-⨯--÷-336. --+⎛⎝ ⎫⎭⎪+-⎛⎝ ⎫⎭⎪---+3825583521()337. [(3)(4)5][82(6)]4-⨯--⨯--⨯-÷338. -÷--÷-824134()()339. ()[()()]-÷-⨯⨯-11551135340. 42991310.25(1)12 3.7524283⎛⎫⎛⎫-÷-⨯-++-⨯ ⎪ ⎪⎝⎭⎝⎭341. 1311143343411-÷⨯÷342. ---⎛⎝ ⎫⎭⎪----⎛⎝ ⎫⎭⎪1133411334343. ()()------22222233344. 1235342123341822--÷-⎛⎝ ⎫⎭⎪+⨯-⎛⎝ ⎫⎭⎪⎡⎣⎢⎢⎤⎦⎥⎥⨯⎧⎨⎪⎩⎪⎫⎬⎪⎭⎪345. -----÷-+--÷--22331349722232()|()()||||| 346. 13525(2)2514⎛⎫--÷-⨯- ⎪⎝⎭347. 234( 1.5)1243⎛⎫-÷-⨯- ⎪⎝⎭348. 34311(1)2⎡⎤⎛⎫-----⎢⎥ ⎪⎝⎭⎢⎥⎣⎦349. 210.2343 5.35⎡⎤⎛⎫-⨯--⨯- ⎪⎢⎥⎝⎭⎣⎦350. 222243(3)(5)(0.3)0.95⎛⎫---+-⨯---÷- ⎪⎝⎭351. ()11232311412243⨯⨯-⎛⎝ ⎫⎭⎪--⎡⎣⎢⎢⎤⎦⎥⎥+÷-⎛⎝ ⎫⎭⎪352. 71957180251411313..-⎛⎝ ⎫⎭⎪÷-÷⨯⎛⎝ ⎫⎭⎪353. ()-÷⨯-⨯÷⨯-⎛⎝ ⎫⎭⎪11234021341435..354. ()()11160752116340534+--⎡⎣⎢⎤⎦⎥⨯-⎧⎨⎩⎫⎬⎭÷---⎛⎝ ⎫⎭⎪..355. ()-⨯-⎛⎝ ⎫⎭⎪-⨯--⨯-⎛⎝ ⎫⎭⎪⎡⎣⎢⎢⎤⎦⎥⎥⨯⨯--⎛⎝ ⎫⎭⎪⎡⎣⎢⎤⎦⎥212341351499113192222356. 4211(10.5)2(3)3⎡⎤---⨯⨯--⎣⎦357. 33423(1)(1)--⨯---358. 33510.2(2)5⎡⎤⎛⎫---+-⨯÷- ⎪⎢⎥⎝⎭⎣⎦359. 12(17)1(0.6)4⎡⎤---÷-+-⎢⎥⎣⎦360. 2311(10.6432)⎡⎤----÷⎣⎦361. 3213322.2512853⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫--÷-+-⨯-⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦362. []261(0.4)( 2.5)---⨯-363. 362211362⎛⎫⎛⎫-⨯÷ ⎪ ⎪⎝⎭⎝⎭364. 1448551836615335175123192155⨯÷-+⨯⎛⎝ ⎫⎭⎪-⨯+⎛⎝ ⎫⎭⎪-⎡⎣⎢⎤⎦⎥.....365. ()()()222410.4 3.1 2.610.30.15⎧⎫⎡⎤⎛⎫-⨯---+⨯---÷-⎨⎬ ⎪⎢⎥⎝⎭⎣⎦⎩⎭366. 513113(50)217348⎛⎫⎛⎫⎛⎫⨯-÷-⨯-÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭367. ()11572348126824⎛⎫-+-⨯- ⎪⎝⎭368. 4535522723723237⎛⎫⎛⎫⎛⎫⨯---⨯--⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭369. ()199719996661998⎛⎫-⨯- ⎪⎝⎭370. 23353(5)32(2)|46|20.6258⎛⎫-⨯-+÷---⨯+-+ ⎪⎝⎭371. 4946111(3)20.24911235⎡⎤⎛⎫⎛⎫-÷⨯-⨯-⨯-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦372. 2782411813318833⨯÷⎪⎭⎫⎝⎛-⨯373. )2()2(2123322-+--⎪⎭⎫⎝⎛-+-374. ⎪⎭⎫⎝⎛----÷⨯⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-2135322132213122375. ()87216543313113)1(61)5.4(187********÷⎪⎭⎫⎝⎛-÷⎪⎭⎫ ⎝⎛---⨯⎪⎭⎫ ⎝⎛--⨯+-⨯⎪⎭⎫ ⎝⎛-376. )57(5857-⨯377. ()4443145-÷-378. 494953157.04953843.0⨯⎪⎭⎫⎝⎛⨯+⨯-379. ()3330037÷-380. ()()()199084481990199014181990-⨯--⨯--⨯-⨯381. ()()999999999999999999+-⨯-+-382. ()()()()()149297483149297483-÷-⨯-÷-⨯-÷-383. ()()()⎭⎬⎫⎩⎨⎧-⎪⎭⎫ ⎝⎛-÷⎥⎦⎤⎢⎣⎡-⨯⎪⎭⎫ ⎝⎛-+-÷⨯-2314.0411432417384. ()⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫ ⎝⎛-⨯÷⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡+÷-⨯⨯-⎪⎭⎫ ⎝⎛-÷-12122211341125.0221132322385. ()41611143125.1012112310013+--⎪⎭⎫ ⎝⎛-÷+386. 199519953(0.125)[(2)]⨯-387. 25413()(0.612)()651010⨯+-÷-388. 322333342(-)⨯(-0.6)-(-)⨯1.5-2÷(-)253389. 232006333...3++++390. 199720002000200019971997⨯-⨯391. 22222221949195019511952...199719981999-+-++-+392. 22221111(1)(1)...(1)(1)23910----393. 1111 (12123123100)++++++++++394. 987654321987654324987654323987654322⨯-⨯395. 1121231299()()...(...)233444100100100++++++++++396. 32)65()43(21--+---397. 38(4)(2)4⎛⎫⨯-⨯-⨯- ⎪⎝⎭398. 111135()532114⨯-⨯÷399. 34153()2--⨯-()400. 42223721-+--⨯-()()401. 1031224-⨯+-÷()()402. 2395525-⨯-÷-()()() 403. 333(125)()62187()777-÷-+÷+÷- 404. 2725.0)431(218)522(52⨯÷--⨯--÷405. 311252525424⨯--⨯-⨯()406. 38(4)23--÷⨯407. 22733(3)⨯÷+-408. 4435(2)2(2)-+--÷-409. (28)(64)(1)5-÷-++-⨯410. 2(2)07(8)(2)÷-+÷--⨯-411. 13131()24524864⎡⎤-+-⨯÷⎢⎥⎣⎦412. 2332312(3)(2)(9)3÷-÷---÷413. 222122(1)33-÷⨯-414. 32432(2)(1)(2)(2)-+-⨯---÷-415. 32(1)(5)(3)2(5)⎡⎤-⨯-÷-+⨯-⎣⎦416. 75.61258)431(121-----417. 2335(2)(10.8)114⎡⎤---+-⨯÷--⎢⎥⎣⎦418. 75)21(212)75(75211⨯-+⨯--⨯419. 4)2(51232⨯--÷-420. 50)3(15)3(42--÷--⨯421. 3211(10.5)2(3)7⎡⎤---⨯⨯--⎣⎦422. 22)7()6(6112119750-÷⎥⎦⎤⎢⎣⎡-⨯⎪⎭⎫ ⎝⎛+--423. []3521325.06.05.2)1(⎪⎭⎫ ⎝⎛-⨯+--÷-424. 111117(113)(2)92844⨯-+⨯- 425. 419932(4)(1416)41313⎡⎤--⨯-÷-⎢⎥⎣⎦426. 33221121(5533)22⎡⎤⎛⎫⎛⎫--÷+⨯+⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦427. 2375(2)(10.8)114⎡⎤----+-⨯÷--⎢⎥⎣⎦428. 151623-÷-÷-()()()429. 42(3)60.25-+⨯--÷430. 3(5)[1.85(21)7]4-÷--⨯431. []18{10.4 (10.4)0.4}÷-+-⨯432. 1111()636÷-⨯433. –3[4(4 3.51)][2(3)]---⨯⨯-+-434. ()3.57.75 4.25 1.1--÷435. 321612115()|(2)|(2)(|()|)2114332⎡⎤----+-⨯-÷---⎢⎥⎣⎦436. 1110.125(3)(3)()(0.25)488+++-+++-437. 5215[(9)]317.75632-----+438. 1211[3()1](8)8233⨯⨯---⨯--439. 7211()(4)9353-÷--⨯-440. 78(0.125)8-⨯441. 4010(0.25)256⨯442. 12(3)(4)56(7)(8)(23)(24)++-+-+++-+-+⋯+-+-443. 1111111142648620102008-+-+-+⋯+-444. 1111(1)(1)(1)(1)2009200820071000-⨯-⨯-⨯⋯⨯- 445. 19(7)128(7)33(7)÷--÷-+÷-446. 111111223344556++++⨯⨯⨯⨯⨯447. 111 (101111125960)+++⨯⨯⨯448.2222 109985443 ++++⨯⨯⨯⨯449.1111 11212312100 ++++++++++450.1111 133******** ++++⨯⨯⨯⨯451.1111251335572325⎛⎫⨯++++⎪⨯⨯⨯⨯⎝⎭452.251251251251251 4881212162000200420042008 +++++⨯⨯⨯⨯⨯453.3245671 255771111161622222929 ++++++⨯⨯⨯⨯⨯⨯454.11111111()128 8244880120168224288+++++++⨯455.11111111 612203042567290 +++++++456.111111 13610152128 ++++++457.111111111 2612203042567290 --------458.11111 104088154238 ++++459.1111 135357579200120032005 ++++⨯⨯⨯⨯⨯⨯⨯⨯460.74.50.161111 1813153563 13 3.75 3.23⨯+⎛⎫⨯+++⎪⎝⎭-⨯461.11111 123420 261220420 +++++462.11111 20082009201020112012 1854108180270 ++++463.11224 26153577 ++++464.1111111 315356399143195 ++++++465.1511192997019899 2612203097029900 +++++++466.111 123234789 +++⨯⨯⨯⨯⨯⨯467.111 1232349899100 +++⨯⨯⨯⨯⨯⨯468.1111 135246357202224 ++++⨯⨯⨯⨯⨯⨯⨯⨯469.4444...... 135357939597959799 ++++⨯⨯⨯⨯⨯⨯⨯⨯470.9998971 12323434599100101 ++++⨯⨯⨯⨯⨯⨯⨯⨯471.11111 123423453456678978910 +++⋅⋅⋅++⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯472.333...... 1234234517181920 +++⨯⨯⨯⨯⨯⨯⨯⨯⨯473.5719 1232348910 +++⨯⨯⨯⨯⨯⨯474.571719 1155234345891091011⨯++++⨯⨯⨯⨯⨯⨯⨯⨯()475.34512 12452356346710111314 ++++⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯476.12349 223234234523410 +++++⨯⨯⨯⨯⨯⨯⨯⨯⨯477.123456 121231234123451234561234567 +++++⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯478. 23993!4!100!+++ 479. 234501(12)(12)(123)(123)(1234)(12349)(1250)++++⨯++⨯++++⨯+++++++⨯+++ 480. 2341001(12)(12)(123)(123)(1234)(1299)(12100)++++⨯++⨯++++⨯++++++⨯+++ 481. 23101112(12)(123)(1239)(12310)----⨯++⨯++++++⨯++++ ()482. 22222211111131517191111131+++++------483. 222222111111(1)(1)(1)(1)(1)(1)23454849-⨯-⨯-⨯-⨯⨯-⨯- 484. 222222223571512233478++++⨯⨯⨯⨯ 485. 222222222231517119931199513151711993119951++++++++++-----。

有理数加减混合计算题100道【含答案】

有理数加减混合计算题100道【含答案】

有理数加减混合计算题100道【含答案】(七年级数学)92267(总4页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--有理数运算练习(一) 【加减混合运算】一、有理数加法.1、【基础题】计算:(1) 2+(-3); (2)(-5)+(-8); (3)6+(-4); (4)5+(-5); (5)0+(-2); (6)(-10)+(-1); (7)180+(-10); (8)(-23)+9;(9)(-25)+(-7); (10)(-13)+5; (11)(-23)+0; (12)45+(-45).2、【基础题】计算:(1)(-8)+(-9); (2)(-17)+21; (3)(-12)+25; (4)45+(-23);(5)(-45)+23; (6)(-29)+(-31); (7)(-39)+(-45); (8)(-28)+37.3、【基础题】计算,能简便的要用简便算法:(1)(-25)+34+156+(-65); (2)(-64)+17+(-23)+68; (3)(-42)+57+(-84)+(-23); (4)63+72+(-96)+(-37); (5)(-301)+125+301+(-75); (6)(-52)+24+(-74)+12; (7)41+(-23)+(-31)+0; (8)(-26)+52+16+(-72).4、【综合Ⅰ】计算:(1))43(31-+; (2)⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-3121; (3)()⎪⎭⎫⎝⎛++-5112.1; (4))432()413(-+-;(5))752()723(-+; (6)(—152)+8.0; (7)(—561)+0; (8)314+(—561).5、【综合Ⅰ】计算:(1))127()65()411()310(-++-+; (2)75.9)219()29()5.0(+-++-;(3))539()518()23()52()21(++++-+-; (4))37(75.0)27()43()34()5.3(-++++-+-+-二、有理数减法.6、【基础题】计算:(1)9-(-5); (2)(-3)-1; (3)0-8; (4)(-5)-0; (5)3-5; (6)3-(-5);(7)(-3)-5 (8)(-3)-(-5); (9)(-6)-(-6); (10)(-6)-6.、【综合Ⅰ】计算:(1)(-52)-(-53); (2)(-1)-211; (3)(-32)-52; (4)521-(-7.2);(5)0-(-74); (6)(-21)-(-21); (7)525413- ; (8)-64-丨-64丨7、【基础题】填空:(1)(-7)+( )=21; (2)31+( )=-85;(3)( )-(-21)=37; (4)( )-56=-408、【基础题】计算:(1)(-72)-(-37)-(-22)-17; (2)(-16)-(-12)-24-(-18); (3)23-(-76)-36-(-105); (4)(-32)-(-27)-(-72)-87.(5)(-32)-21-(-65)-(-31); (6)(-2112)-[ --(-)-516 ] .三、有理数加减混合运算9、【综合Ⅰ】计算(1)-7+13-6+20; (2)-+-+10; (3)(-53)+51-54;(4)(-5)-(-21)+7-37; (5)31+(-65)-(-21)-32; (6)-41+65+32-21;10、【综合Ⅰ】计算,能简便的要用简便算法:(1)-+(-); (2)(-)-21+(-51); (3)21-(-)-61; (4)(-31)-15+(-32); (5)32+(-51)-1+31; (6)(-12)-(-56)+(-8)-10711、【综合Ⅰ】计算:(1)-(-)+(-); (2)(-8)-(-15)+(-9)-(-12);(3)+(-41)-(-)+21; (4)(-32)+(-61)-(-41)-21;(5)21+(-32)-(-54)+(-21); (6)310+(-411)-(-65)+(-127)12、【综合Ⅰ】计算:(1)7+(-2)-; (2)(-)+3-+(-52); (3)31+(-45)+; (4)7-(-21)+; (5)49-(-)-53; (6)(-56)-7-(-)+(-1);(7)11512+丨-11611丨-(-53)+丨212丨; (8)(- )+ 1098 + +(- 1098)13、【综合Ⅰ】计算:(1)()()()()-+-+++-+-++12345678; (2)-+++(-)(3)-⎛⎝ ⎫⎭⎪--⎛⎝ ⎫⎭⎪++-⎛⎝ ⎫⎭⎪13123423; (4)5146162341456+-⎛⎝ ⎫⎭⎪++-⎛⎝ ⎫⎭⎪;(5)--(-413)+-(+217); (6)3745124139257526+-+有理数运算练习(一) 答案1、【答案】 (1)-1; (2)-13; (3)2; (4)0; (5)-2; (6)-11; (7)170;(8)-14; (9)-32; (10)-8; (11)-23; (12)0.2、【答案】 (1)-17; (2)4; (3)13; (4)22; (5)-22;(6)-60; (7)-84; (8)9.3、【答案】(1)100; (2)-2; (3)-92; (4)2; (5)50; (6)-90; (7)-13; (8)-30.4、【答案】 (1)125-; (2)65-; (3)0; (4)-6; (5)74; (6)32; (7)615-; (8)65-.5、【答案】 (1)65 (2) (3)12 (4)311-6、【答案】 (1)14; (2)-4; (3)-8; (4)-5; (5)-2; (6)8; (7)-8;(8)2; (9)0; (10)-12、【答案】 (1)51; (2)-25; (3)-1516; (4); (5)74; (6)0;(7)-2043(8)-1287、【答案】 (1)28; (2)-116; (3)16; (4)168、【答案】 (1)-30; (2)-10; (3)168; (4)-20; (5)0; (6)-或-1016 9、【答案】 (1)20; (2); (3)-56; (4)61; (5)-32; (6)4310、【答案】 (1)-7; (2)-; (3)127; (4)-16; (5)-51; (6)-23911、【答案】 (1); (2)10; (3)27; (4)-1213; (5)152; (6)65;12、【答案】 (1); (2)-; (3)30; (4)9; (5)69; (6)-6; (7); (8)013、【答案】 (1)8; (2)-3; (3)41; (4)-13; (5)-2; (6)902313。

有理数计算(附答案)

有理数计算(附答案)

"有理数计算(一)2018/10/11.计算题:(10′×5=50′) (1)3.28-4.76+121-43; (2)2.75-261-343+132; (3)42÷(-121)-143÷();(4)(-48) ÷82-(-25) ÷(-6)2; (5)-52+(1276185+-)×.}2.计算题:(10′×5=50′) (1)-23÷153×(-131)2÷(132)2; (2)-14-()×31×[(21)2-(21)3];(3)-121×[1-3×(-32)2]-( 41)2×(-2)3÷(-43)3~(4)+ ÷101[-22+(-3)2-321×78]; (5)×32+×(-2)3+ ×6241、甲用1000元人民币购买了一手股票,随即他将这手股票转卖给乙,获利10%,而后乙又将这手股票反卖给甲,但乙损失了10%.最后甲按乙卖给甲的价格的九折将这手股票卖给了乙,在上述股票交易中( )A .甲刚好亏盈平衡;B .甲盈利1元;C .甲盈利9元;D .甲亏本元.…2.某检修小组乘一辆检修车沿铁路检修,规定向东走为正,向西走为负,•小组的出发地记为0,某天检修完毕时,行走记录(单位:千米)如下:(1)问收工时,检修小组距出发地有多远在东侧还是西侧(2)若检修车每千米耗油升,求从出发到收工共耗油多少升`有理数计算(二)2018/10/21.计算:(1)(-8)×5-40=_____;(2)()÷(-13)-(-2)=______.2.计算:(1)-4÷4×14=_____;(2)-212÷114×(-4)=______.3.当||aa=1,则a____0;若||aa=-1,则a______0.4.(体验探究题)完成下列计算过程:(-25)÷113-(-112+15)解:原式=(-25)÷43-(-1-12+15) =(-25)×()+1+12-15=____+1+5210-=_______.》5.(1)若-1<a<0,则a______1a;(2)当a>1,则a_______1a;(3)若0<a≤1,则a______1a.6.a,b互为相反数,c,d互为倒数,m的绝对值为2,则||4a bm++2m2-3cd值是()A.1 B.5 C.11 D.与a,b,c,d值无关7.计算:(1)-20÷5×14+5×(-3)÷15 (2)-3[-5+(÷35)÷(-2)]\(3)[124÷(-114)]×(-56)÷(-316)÷148.(经典题)对1,2,3,4可作运算(1+2+3)×4=24,现有有理数3,4,-6,10,请运用加,减,乘,除法则写出三种不同的计算算式,使其结果为24.(1)____________ (2)____________ (3)___________9..体育课全班女生进行了百米测验,达标成绩为18秒,下面是第一小组8名女生的18秒。

有理数的运算经典测试题附解析

有理数的运算经典测试题附解析

有理数的运算经典测试题附解析一、选择题1.设n 是自然数,则n n 1(1)(1)2+-+-的值为( ) A .0B .1C .﹣1D .1或﹣1 【答案】A【解析】试题分析:当n 为奇数时,(n +1)为偶数, n n 1(1)(1)2+-+-=(1)12-+=0; 当n 为偶数时,(n +1)为奇数,n n 1(1)(1)2+-+-=1(1)2+-=0. 故选A .点睛:本题考查有理数乘方,解答本题的关键是明确有理数乘方的计算方法,利用分类讨论的数学思想解答.2.已知一天有86400秒,一年按365天计算共有31536000秒,用科学记数法表示31536000正确的是( )A .63.153610⨯B .73.153610⨯C .631.53610⨯D .80.3153610⨯ 【答案】B【解析】【分析】科学记数法的表示形式为10n a ⨯的形式,其中1||10a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值1<时,n 是负数.【详解】将31536000用科学记数法表示为73.153610⨯.故选B .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中1<10a ≤,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.据央视网报道,2019年1~4月份我国社会物流总额为88.9万亿元人民币,“88.9万亿”用科学记数法表示为( )A .138.8910⨯B .128.8910⨯C .1288.910⨯D .118.8910⨯【解析】【分析】利用科学记数法的表示形式进行解答即可【详解】4.广西北部湾经济区包括南宁、北海、钦州、防城港、玉林、崇左六个市,户籍人口约2400万,该经济区户籍人口用科学记数法可表示为( )A .2.4×103B .2.4×105C .2.4×107D .2.4×109【答案】C【解析】【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】将2400万用科学记数法表示为:2.4×107.故选C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.5.在数轴上,实数a ,b 对应的点的位置如图所示,且这两个点到原点的距离相等,下列结论中,正确的是( )A .0a b +=B .0a b -=C .a b <D .0ab >【答案】A【解析】由题意可知a<0<1<b ,a=-b ,∴a+b=0,a-b=2a<0,|a|=|b|,ab<0,∴选项A 正确,选项B 、C 、D 错误,故选A.6.现在网购是人们喜爱的一种消费方式,2018年天猫“双11”全球狂欢节某网店的总交易额超过1207000元,1207000用科学记数法表示为( )A .61.20710⨯B .70.120710⨯C .512.0710⨯D .51.20710⨯【答案】A【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】1207000=1.207×106,故选A .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.7.如图是张小亮的答卷,他的得分应是( )A .40分B .60分C .80分D .100分【答案】A【解析】【分析】 根据绝对值、倒数、相反数、立方以及平均数进行计算即可.【详解】解:①若ab=1,则a 与b 互为倒数,②(-1)3=-1,③-12=-1,④|-1|=-1,⑤若a+b=0,则a 与b 互为相反数,故选A .【点睛】本题考查了实数,掌握绝对值、倒数、相反数、立方根以及平均数的定义是解题的关键.8.为应对疫情,许多企业跨界抗疫,生产口罩.截至2月29日,全国口罩日产量达到116000000只.将116000000用科学记数法表示应为( )A .611610⨯B .711.610⨯C .71.1610⨯D .81.1610⨯【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】将116000000用科学记数法表示应为1.16×108.故选:D .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.9.若2(1)210x y -++=,则x +y 的值为( ).A .12B .12-C .32D .32- 【答案】A【解析】解:由题意得:x -1=0,2y +1=0,解得:x =1,y =12-,∴x +y =11122-=.故选A . 点睛:本题考查了非负数的性质.几个非负数的和为0,则每个非负数都为0.10.地球上海洋面积约为361000000平方公里,361000000用科学记数法可表示为( ) A .90.36110⨯B .73.6110⨯C .83.6110⨯D .736110⨯【答案】C【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】 361000000=83.6110⨯,故选:C .【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.11.-2的倒数是( )A.-2 B.12-C.12D.2【答案】B【解析】【分析】根据倒数的定义求解.【详解】-2的倒数是-1 2故选B【点睛】本题难度较低,主要考查学生对倒数相反数等知识点的掌握12.大量事实证明,治理垃圾污染刻不容缓.据统计,全球每分钟约有8500000吨污水排入江河湖海,这个排污量用科学记数法表示为()A.8.5×105 B.8.5×106C.85×105 D.85×106【答案】B【解析】【分析】根据科学记数法的表示形式:a×10n,其中1≤|a|<10,n为整数.解答即可.【详解】8500000=8.5×106,故选B.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.去年端午节假期第一天,国内游客人数达3050万人次,将数据“3050万”用科学记数法表示为()A.63.0510⨯B.630.510⨯C.73.0510⨯D.83.0510⨯【答案】C【解析】【分析】根据科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】3050万=30500000=73.0510⨯,故选:C .【点睛】此题考查科学记数法的表示方法.解题关键在于掌握科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.14.根据制定中的通州区总体规划,将通过控制人口总量上限的方式,努力让副中心远离“城市病”.预计到2035年,副中心的常住人口规模将控制在130万人以内,初步建成国际一流的和谐宜居现代化城区.130万用科学记数法表示为( )A .61.310⨯B .413010⨯C .51310⨯D .51.310⨯【答案】A【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值是易错点,由于130万有7位,所以可以确定n=7-1=6.【详解】130万=1 300 000=1.3×106.故选A .【点睛】此题考查科学记数法表示较大的数的方法,准确确定a 与n 值是关键.15.将数47300000用科学记数法表示为( )A .547310⨯B .647.310⨯C .74.7310⨯D .54.7310⨯【答案】C【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:将47300000用科学记数法表示为74.7310⨯,故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.16.2019年3月3日至3月15日,中国进入“两会时间”,根据数据统计显示,2019年全国两会热点传播总量达829.8万条,其中数据“829.8万”用科学记数法表示为( ) A .8.298×107 B .82.98×105 C .8.298×106 D .0.8298×107【答案】C【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】数据“829.8万”用科学记数法表示为8.298×106.故选C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.17.如果a+b >0,ab >0,那么( )A .a >0,b >0B .a <0,b <0C .a >0,b <0D .a <0,b >0【答案】A【解析】解:因为ab >0,可知ab 同号,又因为a +b >0,可知a >0,b >0.故选A .18.2018年4月8日11-日,博鳌亚洲论坛2018年年会在海南博鳌句型,本次年会的主题为“开放创新的亚洲,繁荣发展的世界”.开幕式上,博鳌亚洲论坛副理事长周小川致辞中提到:“一带一路”区域基础设施投资缺口每年超过6000亿美元.6000亿用科学计数法可以表示为( )A .3610⨯亿B .4610⨯亿C .30.610⨯亿D .40.610⨯亿 【答案】A【解析】【分析】科学计数法的表示形式为n a 10⨯的形式,其中1a 10≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数.【详解】解:6000亿3610=⨯⨯亿,故选A .【点睛】此题考查科学计数法的表示方法.科学计数法的表示形式为n a 10⨯的形式,其中1a 10≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.19.如图,是一个计算流程图.当16x =时,y 的值是( )A2B.2C.2±D.2±【答案】A【解析】【分析】观察流程图的箭头指向,根据判断语句,当结果是无理数时输出,当结果是有理数时重复上述步骤,即可得到答案.【详解】x=后,取算术平方根的结果为2,判断2不是无理数,再取2的算术平方根解:输入1622是无理数,数出结果.故A为答案.【点睛】本题主要考查流程图的知识点、无理数的基本概念(无限不循环小数)、算术平方根的基本概念,看懂流程图是做题的关键,注意算术平方根只有正数.20.x是最大的负整数,y是最小的正整数,则x-y的值为( )A.0 B.2 C.-2 D.±2【答案】C【解析】【分析】根据有理数的概念求出x、y,再根据减去一个数等于加上这个数的相反数进行计算即可得解.【详解】∵x是最大的负整数,y是最小的正整数,∴x=-1,y=1,∴x-y=-1-1=-2.故选C.【点睛】本题考查了有理数的减法,熟记有理数的概念求出a、b的值是解题的关键.。

有理数运算(附带答案)

有理数运算(附带答案)

一、典例精讲:例1.已知x>0,y<0,且x <y ,则x+y 是( )(A )正数 (B )负数 (C )0 (D )非负数例2.某项工程,甲队a 天可以完成,要想提前半天完工,则甲队每天应多做( ) (A )211-a -a 1 (B )a -21 (C )211+a -a 1 (D )a 1-211-a例3.如果 x 2=4,那么x= _________二、选择题:1.下列说法正确的是( )A 、一个数前面加上“-”号这个数就是负数;B 、非负数就是正数;C 、正数和负数统称为有理数D 、0既不是正数也不是负数;2.一个数的倒数是它本身的数 是( )A 、1B 、-1C 、±1D 、03.下列说法正确的是( )A 、若两个数互为相反数,则这两个数一定是一个正数,一个负数;B 、一个数的绝对值一定不小于这个数;C 、如果两个数互为相反数,则它们的商为-1;D 、一个正数一定大于它的倒数;4.2008年2月共有( )秒A 、2419200B 、2505600C 、2592000D 、26784005.已知4个矿泉水空瓶可以换矿泉水一瓶,现有16个矿泉水空瓶,若不交钱,最多可以喝矿泉水( )A. 3瓶B. 4瓶C. 5瓶D. 6瓶6. 若a<0,b<0,则下列各式正确的是( ) A 、a -b<0 B 、a -b>0 C 、a -b=0 D 、(-a)+(-b)>0 7、 若0<a<1,则a ,) (,12从小到大排列正确的是a aA 、a 2<a<a 1 B 、a < a1< a 2C 、a 1<a< a 2 D 、a < a 2 <a1 8、在数轴上距2.5有3.5个单位长度的点所表示的数是( ) A 、6 B 、-6 C 、-1 D 、-1或69、学校为了改善办学条件,从银行贷款100万元,盖起了实验大楼,贷款年息为12%,房屋折旧每年2%,学校约1400名学生,仅贷款付息和房屋折旧两项,每个学生每年承受的实验费用为( )A、约104元;B、1000元C、100元D、约21.4元10、当n为正整数时,(-1)2n+1-(-1)2n的值是( )A、0B、2C、-2D、2或-211.0.020200精确到百万分位,它的有效数字是()A 2、0B 2、0、2C 2、0、2、0、0D 0、0、2、0、2、0、012、对于0.2010 与0.0201这两个近似数下列说法中正确的是()A、它们的有效数的个数相同,精确的位数也相同B、它们的有效数的个数相同,精确的位数不相同C、它们的有效数的个数不相同,精确的位数也相同D、它们的有效数的个数不相同,精确的位数也不相同13.a,b,c在数轴上的位置如图所示,则a+b+c为()A.负数B.正数C.非负数D.非正数14. 若a+b<0且ab<0, 那么必有( ) A.a<0, b>0B.a>0, b<0C.a、b异号且正数的绝对值较大D.a、b异号且负数的绝对值较大15.a+b<0,ab>0,则有( )A.a>0,b<0 B. a<0,b>0C.a<0,b<0 D. a>0,b>016.下列判断中正确的是()A.如果0>a>b,那么-a>-bB.如果a<0,ba>,那么a<bC.如果a>0,ba<,那么a<bD.如果0>a>b,那么ba11>17.如果m是一个不等于-1的负整数,那么m,m1, -m,-m1这几个数从小到大的排列顺序是()A. m<m1< -m<-m1B. -m <-m1<m<m1C. m<m1<-m1< -m D. -m1< -m <m1<m18.若a、b为有理数,a>0,b<0,且│a│<│b│,那么a,b,—a,—b的大小关系是()A、b< —a< —b<aB、b< —b< —a<aC 、b< —a< a<—bD 、—a< —b < b <a19.学校、家、书店依次座落在一条南北走向的大街上,学校在家的南边20m ,书店在家北边100m ,张明同学从家里出发,向北走了50m ,接着又向北走了—70m ,此时张明的位置在( )A 、在家B 、学校C 、书店D 、不在上述地方20.某运动员在东西走向的公路上练习跑步,跑步情况记录如下:(向东为正,单位:米)1000,—1200,1100,—800,1400,该运动员共跑的路程为( )A 、1500mB 、5500mC 、4500mD 、3700m21.小明从家里出发到m 千米外的某地,原来他的骑车的速度是每小时a 千米,现在他必须提前1小时到达某地,因此他必须加快速度,问他每小时应该比原来加快多少千米( )A 、am B 、a m ma- C 、a m a -2 D 、m a a -2三、填空题:22.已知x,y,z 满足关系式041)4(62=-++-z y x x ,则2)335(z y x -+的值为23、在-(-2),-|-2|,(-2)2,-22四个数中,负数有_____个 24、如果x<0,且x 2=25,那么x= _________.25.已知:那么1-的值是__。

有理数计算题100道及答案过程

有理数计算题100道及答案过程

有理数计算题100道及答案过程1. 计算2/3 + 1/4的和:答案:2/3+1/4=7/122. 计算3/5 - 2/7的差:答案:3/5-2/7=17/353. 计算5/6 * 2/3的积:答案:5/6*2/3=10/184. 计算1/2 ÷ 3/8的商:答案:1/2÷3/8=2/35. 计算2/3 剩余 4/9 的差:答案:2/3 剩余 4/9 = 2/96. 计算1/4 + 6/7的和:答案:1/4+6/7=25/287. 计算5/9 - 4/7的差:答案:5/9-4/7=-3/638. 计算3/4 * 5/6的积:答案:3/4*5/6=5/89. 计算1/2 ÷ 4/5的商:答案:1/2÷4/5=5/810. 计算3/5 剩余 8/15 的差:答案:3/5 剩余 8/15 = -2/1511. 计算7/8 + 4/9的和:答案:7/8+4/9=73/7212. 计算31/45 - 9/10的差:答案:31/45-9/10=-18/4513. 计算2/3 * 4/5的积:答案:2/3*4/5=8/1514. 计算3/4 ÷ 1/2的商:答案:3/4÷1/2=6/415. 计算5/6 剩余 9/10 的差:答案:5/6 剩余 9/10 = -1/6016. 计算4/5 + 8/9的和:答案:4/5+8/9=76/4517. 计算12/15 - 7/8的差:答案:12/15-7/8=-3/4018. 计算3/4 * 2/3的积:答案:3/4*2/3=1/219. 计算3/5 ÷ 3/4的商:答案:3/5÷3/4=4/520. 计算4/9 剩余 3/4 的差:答案:4/9 剩余 3/4 = -5/36 21. 计算5/6 + 3/5的和:答案:5/6+3/5=31/3022. 计算7/8 - 4/9的差:答案:7/8-4/9=11/7223. 计算4/5 * 6/7的积:答案:4/5*6/7=24/3524. 计算9/10 ÷ 5/8的商:答案:9/10÷5/8=45/4025. 计算2/3 剩余 7/8 的差:答案:2/3 剩余 7/8 = -1/2426. 计算3/4 + 9/10的和:答案:3/4+9/10=33/4027. 计算15/20 - 4/7的差:答案:15/20-4/7=-7/7028. 计算4/5 * 2/3的积:答案:4/5*2/3=8/1529. 计算3/4 ÷ 1/3的商:答案:3/4÷1/3=9/430. 计算2/7 剩余 1/6 的差:答案:2/7 剩余 1/6 = -1/4231. 计算4/5 + 4/9的和:答案:4/5+4/9=32/4532. 计算3/4 - 5/8的差:答案:3/4-5/8=-1/833. 计算2/3 * 1/4的积:答案:2/3*1/4=2/1234. 计算1/2 ÷ 6/7的商:答案:1/2÷6/7=7/1235. 计算8/9 剩余 6/7 的差:答案:8/9 剩余 6/7 = -2/6336. 计算3/4 + 4/5的和:答案:3/4+4/5=17/2037. 计算13/15 - 9/10的差:答案:13/15-9/10=-3/3038. 计算2/3 * 3/4的积:答案:2/3*3/4=1/239. 计算7/8 ÷ 1/2的商:答案:7/8÷1/2=14/840. 计算5/6 剩余 3/4 的差:答案:5/6 剩余 3/4 = -1/12 41. 计算4/5 + 3/7的和:答案:4/5+3/7=31/3542. 计算8/9 - 5/6的差:答案:8/9-5/6=-1/1843. 计算6/7 * 1/2的积:答案:6/7*1/2=3/1444. 计算4/5 ÷ 2/3的商:答案:4/5÷2/3=3/245. 计算2/3 剩余 9/10 的差:答案:2/3 剩余 9/10 = -7/3046. 计算3/4 + 5/6的和:答案:3/4+5/6=19/1247. 计算11/15 - 8/9的差:答案:11/15-8/9=-1/4548. 计算7/8 * 1/2的积:答案:7/8*1/2=7/1649. 计算1/2 ÷ 4/5的商:答案:1/2÷4/5=5/850. 计算4/9 剩余 5/6 的差:答案:4/9 剩余 5/6 = -25/5451. 计算3/4 + 6/7的和:答案:3/4+6/7=27/2852. 计算13/20 - 7/8的差:答案:13/20-7/8=-17/8053. 计算4/5 * 5/6的积:答案:4/5*5/6=4/654. 计算3/4 ÷ 1/4的商:答案:3/4÷1/4=12/455. 计算1/2 剩余 3/4 的差:答案:1/2 剩余 3/4 = -1/456. 计算2/3 + 1/5的和:答案:2/3+1/5=11/1557. 计算11/12 - 2/3的差:答案:11/12-2/3=7/3658. 计算3/4 * 8/9的积:答案:3/4*8/9=24/3659. 计算5/6 ÷ 3/5的商:答案:5/6÷3/5=10/960. 计算7/8 剩余 4/5 的差:答案:7/8 剩余 4/5 = -3/4061. 计算1/2 + 4/9的和:答案:1/2+4/9=23/1862. 计算15/16 - 5/6的差:答案:15/16-5/6=5/2463. 计算4/5 * 1/4的积:答案:4/5*1/4=4/2064. 计算3/4 ÷ 2/3的商:答案:3/4÷2/3=9/865. 计算2/3 剩余 1/4 的差:答案:2/3 剩余 1/4 = -5/1266. 计算3/4 + 1/2的和:答案:3/4+1/2=5/467. 计算17/20 - 8/9的差:答案:17/20-8/9=-1/4568. 计算5/6 * 4/5的积:答案:5/6*4/5=4/369. 计算2/3 ÷ 6/7的商:答案:2/3÷6/7=7/670. 计算4/9 剩余 2/3 的差:答案:4/9 剩余 2/3 = -2/2771. 计算1/2 + 8/9的和:答案:1/2+8/9=17/1872. 计算13/15 - 3/4的差:答案:13/15-3/4=-1/2073. 计算5/6 * 1/2的积:答案:5/6*1/2=5/1274. 计算3/4 ÷ 1/5的商:答案:3/4÷1/5=15/475. 计算2/3 剩余 4/5 的差:答案:2/3 剩余 4/5 = -2/1576. 计算3/4 + 7/8的和:答案:3/4+7/8=31/3277. 计算19/20 - 5/6的差:答案:19/20-5/6=1/578. 计算2/3 * 7/8的积:答案:2/3*7/8=7/1279. 计算4/5 ÷ 3/4的商:答案:4/5÷3/4=16/1580. 计算1/2 剩余 7/8 的差:答案:1/2 剩余 7/8 = -7/1681. 计算6/7 + 1/2的和:答案:6/7+1/2=13/1482. 计算17/20 - 6/7的差:答案:17/20-6/7=-3/7083. 计算3/4 * 9/10的积:答案:3/4*9/10=27/4084. 计算4/5 ÷ 1/3的商:答案:4/5÷1/3=15/485. 计算7/8 剩余 3/4 的差:答案:7/8 剩余 3/4 = -9/3286. 计算1/2 + 5/6的和:答案:1/2+5/6=11/1287. 计算13/14 - 4/5的差:答案:13/14-4/5=-1/1088. 计算2/3 * 3/4的积:答案:2/3*3/4=1/289. 计算3/4 ÷ 6/7的商:答案:3/4÷6/7=7/990. 计算4/9 剩余 1/2 的差:答案:4/9 剩余 1/2 = -5/1891. 计算1/2 + 3/4的和:答案:1/2+3/4=5/492. 计算11/12 - 7/8的差:答案:11/12-7/8=-1/2493. 计算5/6 * 3/4的积:答案:5/6*3/4=15/2494. 计算2/3 ÷ 3/5的商:答案:2/3÷3/5=10/995. 计算1/2 剩余 5/6 的差:答案:1/2 剩余 5/6 = -5/1296. 计算4/5 + 3/4的和:答案:4/5+3/4=19/2097. 计算17/18 - 2/3的差:答案:17/18-2/3=11/5498. 计算3/4 * 2/3的积:答案:3/4*2/3=2/399. 计算5/6 ÷ 8/9的商:答案:5/6÷8/9=5/8100. 计算7/8 剩余 1/2 的差:答案:7/8 剩余 1/2 = -3/16。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有理数计算(一)2018/10/11.计算题:(10′×5=50′)(1)3.28-4.76+121-43; (2)2.75-261-343+132; (3)42÷(-121)-143÷(-0.125);(4)(-48)÷82-(-25)÷(-6)2; (5)-52+(1276185+-)×(-2.4).2.计算题:(10′×5=50′)(1)-23÷153×(-131)2÷(132)2; (2)-14-(2-0.5)×31×[(21)2-(21)3];(3)-121×[1-3×(-32)2]-( 41)2×(-2)3÷(-43)3(4)(0.12+0.32)÷101[-22+(-3)2-321×78];(5)-6.24×32+31.2×(-2)3+(-0.51)×6241、甲用1000元人民币购买了一手股票,随即他将这手股票转卖给乙,获利10%,而后乙又将这手股票反卖给甲,但乙损失了10%.最后甲按乙卖给甲的价格的九折将这手股票卖给了乙,在上述股票交易中( )A .甲刚好亏盈平衡;B .甲盈利1元;C .甲盈利9元;D .甲亏本1.1元.2.某检修小组乘一辆检修车沿铁路检修,规定向东走为正,向西走为负,•小组的出发地记为0,某天检修完毕时,行走记录(单位:千米)如下:+10,-2,+3,-1,+9,-3,-2,+11,+3,-4,+6.(1)问收工时,检修小组距出发地有多远?在东侧还是西侧?(2)若检修车每千米耗油2.8升,求从出发到收工共耗油多少升?有理数计算(二)2018/10/21.计算:(1)(-8)×5-40=_____;(2)(-1.2)÷(-13)-(-2)=______.2.计算:(1)-4÷4×14=_____;(2)-212÷114×(-4)=______.3.当||aa=1,则a____0;若||aa=-1,则a______0.4.(体验探究题)完成下列计算过程:(-25)÷113-(-112+15)解:原式=(-25)÷43-(-1-12+15)=(-25)×()+1+12-15=____+1+5210-=_______.5.(1)若-1<a<0,则a______1a ;(2)当a>1,则a_______1a;(3)若0<a≤1,则a______1a.6.a,b互为相反数,c,d互为倒数,m的绝对值为2,则||4a bm++2m2-3cd值是()A.1 B.5 C.11 D.与a,b,c,d值无关7.计算:(1)-20÷5×14+5×(-3)÷15 (2)-3[-5+(1-0.2÷35)÷(-2)](3)[124÷(-114)]×(-56)÷(-316)-0.25÷148.(经典题)对1,2,3,4可作运算(1+2+3)×4=24,现有有理数3,4,-6,10,请运用加,减,乘,除法则写出三种不同的计算算式,使其结果为24.(1)____________ (2)____________ (3)___________9..体育课全班女生进行了百米测验,达标成绩为18秒,下面是第一小组8名女生的成绩记录,其中“+”号表示成绩大于18秒,“–”号表示成绩小于18秒。

这个小组女生的达标率为多少?平均成绩为多少?有理数计算(一)2018/10/1【同步达纲练习】1.(1)-0.73(2)-121; (3)-14; (4)-181; (5)-2.9 2.(1)-351 (2)-1161; (3)- 5437; (4)1; (5)-624. 1【生活实际运用】 B2.提示:(1)+10-2+3-1+9-3-2+11+3-4+6=30(千米),在距出发地东侧30千米处.(2)2.8×(10+2+3+1+9+3+2+11+4+3+6)=151.2(升).所以从出发到收工共耗油151.2升.有理数计算(二)2018/10/21.(1)-80 (2)535 2.(1)-14(2)8 3.>,< 4.34,-310,1 [总结反思]先乘除,后加减,有括号先算括号内的. 课后测控:5.(1)> (2)> (3)≤6.B7.(1)原式=-20×15×14+5×(-3)×115=-1-1=-2 (2)原式=-3[-5+(1-15×53)÷(-2)] =-3[-5+23×(-12)] =-3[-5-13](3)原式=124×(-45)×(-56)×(-619)-14÷14=124×(-419)-1=-1114-1=-11114 [解题技巧]除法转化为乘法,先乘除,后加减,有括号先算括号内的.拓展测控8.解:(1)4-(-6)÷3×10 (2)(10-6+4)×3(3)(10-4)×3-(-6)[解题思路]运用加,减,乘除四种运算拼凑得24点.有理数计算(三)2018/10/31、计算(每小题10分,共120分)(1) (-3) × (-4) ÷(-6) (2))3121(41---(3) 10-1÷(3161-)÷121 (4))3()5()31(6122-⨯-+-⨯--(5)43)55.0()75.0(55.1⨯-+-⨯- (6) 362)251()5()411()2(32-⨯-+-⨯-÷(7). -1.53×0.75-0.53×(43-) (8).1÷(3161-)×21(9).43-―(1―0.5)÷31×[2+(-4)2] (10). 3333232832)1312)(23(--+÷--11、小明学了计算机运算法则后,编制了一个程序,当他任意输入一个有理数以后,计算机会计算出这个有理数的平方减去2的差.若他第一次输入,21-然后将所得结果再次输入,那么最后得到12、(8分)数轴上A, B, C, D 四点表示的有理数分别为1, 3, -5, -8(1). 计算以下各点之间的距离:①A 、B 两点, ②B 、C 两点,③C 、D 两点,(2). 若点M 、N 两点所表示的有理数分别为m 、n ,求M 、N 两点之间的距离.有理数计算(四)2018/10/41、计算(每小题10分,共120分)(1))8()9()2()5(--++-+- (2) )8()2()7()15()3(15-++-++--++-(3))3()85.1()432()75.0(85.0++-++-++ (4) ⎥⎦⎤⎢⎣⎡----)31()325(2(5) 43)31()21(1--+-- (6) 111174417431115-+-(7) ―3与32-的差. (8). ―2与―3的倒数的和(9) 22)7(])6()61121197(50[-÷-⨯+-- (10)14134191413419-+---23.(8分)某面粉厂购进标有50千克的面粉10袋,复称时发现误差如下(超过记为正,不足记为负): +0.6 , +1.8 , ―2.2 , +0.4 , ―1.4 , ―0.9 , +0.3 , +1.5 , +0.9 , ―0.824.(10分)某中学位于东西方向的人民路上,这天学校的王老师出校门去家访,她先向东走100米到聪聪家,再向西走150米到青青家,再向西走200米到刚刚家,请问:(1)聪聪家与刚刚家相距多远?(2)如果把这条人民路看作一条数轴,以向东为正方向,以校门口为原点,请你在这条数轴上标出他们三家与学校的大概位置(数轴上一格表示50米).(3)聪聪家向西210米是体育场,体育场所在点所表示的数是多少?(4)你认为可用什么办法求数轴上两点之间的距离?(三)答案1.(1)-2(2)1211(3)82 (4)3116(5)43(6)32(7)43- (8)-3(9)4327- (10)19819-11、17/16 12. (1)2,8,3 (2)n m -(四)1. (1)10 (2)0 (3)0 (4)313- (5)125(6)6(7)312323----)=((8)321312-⎪⎭⎫ ⎝⎛---= (9) 1 (10)011. 10×50+0.2=500.212. (1)350米 (2)略 (3)-110 (4)21x x d -=有理数计算(五)2018/10/51、计算题(本大题共32分,每小题4分)(1) -2-(-3)+(-8) (2) 4×(-3)2+(-6)(3) (6712743-+)×(-60) (4) 18-6÷(-2)×∣-41∣(5)-22 -(1-51×0.2)÷(-2)3 (6) 用简便方法计算:)9(181799-⨯(7) -4- [-5+(0.2×31-1)÷(-152)](8)列式并计算 +1.2与—3.1的绝对值的和. (9)1-3+5-7+9-11+…+97-99;(10)(13-15)×52÷|-13|+(-15)0+(0.25)2003×4200311 学校组织同学到博物馆参观,小明因事没有和同学同时出发,于是准备在学校门口搭乘出租车赶去与同学们会合,出租车的收费标准是:起步价为6元,3千米后每千米收1.2元,不足1千米的按1千米计算。

请你回答下列问题:(1)小明乘车3.8千米,应付费_________元。

(3)小明乘车X (X 是大于3的整数)千米,应付费多少钱?(4)小明身上仅有10元钱,乘出租车到距学校7千米远的博物馆的车费够不够?请说明理由。

12 在 -4,-3,-2,-1,1,2,3,4,m 这9个数中, m 代表一个数,你认为m 是多少时,能够使这9个数分别填入图中的9个空格内,使每行的3个数、每列3个数、斜对角的3个数相加均为零。

(1)我认为m=_________(2)按要求将这9个数填入下面的空格内有理数计算(六)2018/10/61、 -42×58-(-5)×0.25×(-4)3 2、 (413-312)×(-2)-223÷(-12)3、 (-14)2÷(-12)4×(-1)4-(138+113-234)×244、 )411()413()212()411()211(+----+++-5、)415()310()10(815-÷-⨯-÷6、232223)2()2()2(2--+-+---7、()()2732872-+-+-+ 8.()()()()4.34 2.34+--+--+9.()4232232--⨯+-⨯ 10.()()()()()324822542-÷---⨯-+-11、小虫从某点O 出发在一直线上来回爬行,假定向右爬行的路程记为正,向左爬行的路程记为负,爬过的路程依次为(单位:厘米):+5 , -3, +10 ,-8, -6, +12, -10问:(1)小虫是否回到原点O ?(2)小虫离开出发点O 最远是多少厘米?(3)、在爬行过程中,如果每爬行1厘米奖励一粒芝麻,则小虫共可得到多少粒芝麻?12、计算:1+2-3—4+5+6—7—8+9+10—11—12+…+2005+2006-2007—2008有理数计算(七)2018/10/7(1)8+(―41)―5―(―0.25) (2)―82+72÷36(3)721×143÷(-9+19) (4)25×43+(―25)×21+25×(-41)(5)(-79)÷241+94×(-29) (6)(-1)3-(1-21)÷3×[3―(―3)2](7)2(x-3)-3(-x+1) (8) –a+2(a-1)-(3a+5)9.21151 2.4533612⎡⎤⎛⎫--+⨯÷ ⎪⎢⎥⎝⎭⎣⎦10.()332122316293⎛⎫--⨯-÷- ⎪⎝⎭29.某一出租车一天下午以鼓楼为出发地在东西方向营运,向东为正,向西为负,行车里程(单位:km )依先后次序记录如下:+9、 -3、 -5、 +4、 -8、 +6、 -3、-6、 -4、 +10。

相关文档
最新文档