光纤知识及敷设标准

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概述

所谓光通信就是利用光波载送信息的通信.在载波技术方面,电磁波的通信已广泛应用于广播,电视等领域,本世纪末,随着数字技术的进步,出现了移动通信等数字无线电波技术.在另一方面,光波作为一种波长很短的无线电波,同样也得到技术突破,目前已成为新一代的有线通信载波.光通信技术的进步,推动了整个信息产业的飞速发展.

光纤发展概况

1960年,梅曼(T.H.Maiman)发明了红宝石激光器,产生了单色相干光,实现了高速的光调制.美国林肯实验室首先研制出利用氦氖激光器通过大气传输彩色电视,利用大气传输光信号具有以下的缺点:

气候严重影响通信,如雾天;大气的密度不均匀,传输不稳定;传输设备之间要求没有阻隔

利用大气传输光波的思想实际上是电磁波传输的技术,光波实质上是频率极高的电磁波(3×1014Hz),其通信的容量比一般的电磁波大万倍以上,如果光通信能够实现,它将具有划时代的意义.

早期,为了避免大气对光传输的干扰,研制了透镜光波导的技术,利用管子进行光传输,在一定距离上设置聚焦透镜,汇聚散射光和诱导光转折,但振动和温度又严重影响了光传输.这种思想,被后来采用直至成功研制成光导纤维.

1966年,英籍华人高锟(C.K.Kao)和Hockham实验证明利用玻璃可以制作光导纤维(Optic Fiber).但当时的玻璃衰减达1000dB/km,无法用于传输,后经过美国贝尔实验室主席Ian Ross,英国电信研究所(BTRL,BPO)和美国康宁玻璃公司(CORNING)的Maurer等合作,于1970年首先研制成功衰减为20 dB/km的光纤,取得重大突破.之后,各发达国家纷纷开展光纤通信研究,出现了多组成份玻璃光纤,塑料光纤,液芯光纤等,其中利用介质全反射原理导光的石英光纤被广泛采用.石英光纤衰减小,性能高,强度大

要实现长距离的光纤通信,必须减少光纤的衰减.高锟指出降低玻璃内过度金属杂质离子是降低光纤衰减的主要因素,1974年,光纤衰减降低到2 dB/km.1976年通过研究发现降低玻璃内的OH离子含量就出现地衰减的长波长双窗口:1.3μm和1.55μm.在1980年,1.55μm波长光纤衰减达到0.2 dB/km,接近理论值.80年代中,又发现水分和潮气长期接触光纤会扩散到石英光纤内,从而使光纤衰减增大且强度降低.于是采用注入油膏于光纤套管中隔绝水气,制成品质完善的光缆用于工程.

要实现大容量的通信,要求光纤有很宽的带宽.单模(SM:Single Mode)光纤的带宽最宽,是理想的传输介质.但是单模光纤纤芯很细,70年代工艺无法做到,因此,多模(MM:Multi Mode)光纤较早应用,光在多模光纤里各模式间存在光程差,造成输出的光信号带宽不宽.1976年日本研制成渐变型(又称自聚焦型,SELFCO)光纤,光纤的带宽达到KHz/km数量级.80年代,单模光纤研制成功,带宽增大到10 KHz/km,这一成就使大容量光通信成为可能,80年代中,零色散波长为1.55μm的光纤研制成功,光纤通信实现长距离超大容量传输.

70年代,光纤的低衰减窗口在近红外区0.85μm的短光波,光源采用GaAlAs(镓铝砷)注入式半导体激光器(LD:Laser Diode)),但是寿命很短.直到研制成功可连续运行的GaAlAs双异质结注入式激光器(Hayashi等),同时也发展了GaAlAs发光二极管(LED:Burrus),LED寿命长,价格低,但谱线宽,速率低,功率笑,属于非相干光源.80年代,研究出了InGaAsP(铟镓砷磷)长波长激光器和LED,现已广泛应用.

光检测器是光接收的主要器件,用于将光信号转变为电信号.主要有用于短波长的Si-PIN管和Si-APD雪崩光电二极管以及适用于长波长的InGaAs/InP的PIN管和APD管,还有Ge-APD 管.

由于工程上的需要,各式各样的光无源器件和光仪表也相应出现.如:光活动连接器,光衰减器,光纤熔接机和光时域反射测试仪等.

光纤通信

1976年,美国首先在亚特兰大建成距离为10公里,码率为44Mbit/s的光纤通信系统,80年代,许多国家都建成商用的通信系统.

在此中,发现利用激光器和多模光纤,当光纤机械振动则接收的光信号随机起伏,出现所谓"模式噪声",因此,用单模光纤的传输介质和激光器光源成为光纤通信的基本方式,80年代中,还发现FP型激光器不能维持单谱线相干性,使输出信号中带有"模分配噪声",从而使光纤的容量和传输距离受到限制,之后研究出动态单纵模激光器解决了此问题,如:分布反馈(DFB)激光器和更优良的量子阱激光器.这些技术的解决,使超过100km已上无中继,容量到达Gbit/s的光通信成为现实.

目前,全世界广泛应用光纤通信网络,光纤用量超过2000万km,建成了横跨太平洋,大西洋的海底光缆线路,见图1-2,国际上565Mbit/s高速光纤通信系统(可传送7680路双向电话)已广泛使用,2.4Gbit/s超高速系统也付诸商用.

70年代初,我国已开始光纤技术的研究.70年代末,制造出衰减为4dB/km,1.3μm波长的光纤,并能制造0.85μm的LED和LD以及Si-APD雪崩光电二极管,实验系统码率为8Mbit/s.

80年代初,开始研制长波长多模光纤,长波长激光器和PIN-FET光电检测组件.82年在武汉建立了13多公里的短波长,长波长实用市内线路,码率为8Mbit/s和34 Mbit/s.

80年代末,研制出单模光纤和140Mbit/s系统,88年在武汉建立了单模架空线路,距离为35公里.

1991年在合肥和芜湖间建成单模直埋线路,全长150km,从水下跨越长江.

现在,国内已广泛使用光纤通信,至今已敷设近60000km光缆.如北京-武汉-广州,北京-沈阳-哈尔滨国家干线光缆等,如图1-3所示.我国幅员广阔,光纤通信在不同的地理,气候环境中使用,在北方要求耐-40℃低温,在南方的架空光缆要抗台风与雷击,在西北沙漠地带,直埋光缆要防风沙的袭击,在华东经济发达地区,如在上海等建成了565Mbit/s的高速系统,在华中地区如武汉,则建成了跨长江的水下线路.我国现已有了一定规模的光纤通信产业,能生产光纤,光缆,光电器件,光端机和光仪表,国产光纤衰减能达到0.38 dB/km(1.3μm),其产量包括合资生产年约100000km,如侯马光缆厂,武汉长飞,成都西门子等.我国能生产少数国家才能生产的长波长激光器,PIN-FET和nGaAs/InP-PAD组件,寿命可达200000小时,满足商用要求.国产光端机的传输码率达到140Mbit/s,565Mbit/s(PDH系统),90年代随着SDH技术的发展,又相继推出了155Mbit/s,622Mbit/s甚至2.4Gbit/s的超高速系统,如"巨大中华"(巨龙,大唐,中兴和华为)等民族企业,其生产的光端机广泛应用于国家一级干线,二级干线(省级),本地网和市话网.随着接入网络(AN)技术的成熟,我国光纤通信技术将会更快速地发展.

未来光纤接入网络

相关文档
最新文档