直流电源过载及短路保护电路
直流稳压电源原理

直流稳压电源原理1.整流电路:直流稳压电源通常使用变压器将交流电转换为较低的交流电压。
接下来,交流电通过整流电路,将交流电转换为直流电流。
经过整流的电流是脉动的,其中包含了交流电的频率成分。
2.滤波电路:为了消除整流电路中产生的脉动电流,需要使用滤波电路。
滤波电路通常使用电容器或电感器来滤除脉动电流中的交流成分,从而得到相对平坦的直流电流。
通过合理选择电容或电感元件的数值,可以实现较好的滤波效果。
3.稳压电路:稳压电路是直流稳压电源中最重要的部分。
它的作用是根据实际需要,对输出电压进行精确的调节和稳定。
常见的稳压电路包括三端稳压器、开关稳压器和线性稳压器。
其中,线性稳压器是最简单和常用的一种,通过调整稳压管或稳压芯片的工作状态,来控制输出电压的稳定性。
4.过载保护电路:为了保护直流稳压电源和被供电设备,通常需要设计过载保护电路。
过载保护电路可以监测并及时处理过载情况,以防止电源过载或短路等故障。
常见的过载保护电路包括过流保护、过压保护和过热保护等。
总结起来,直流稳压电源的原理就是将交流电转换为稳定的直流电,并通过滤波、稳压和过载保护等电路来实现。
这样可以保证供电设备得到稳定的直流电源,以确保其正常工作和性能。
除了以上介绍的基本原理,直流稳压电源还可以根据实际需求添加其他功能电路,例如短路保护、起动和停机控制、过电压保护和低压保护等。
不同类型的直流稳压电源在工作原理和电路设计上可能会有所不同,但主要目标都是提供稳定、可靠的直流电源,以满足不同设备的工作需求。
直流可调稳压电源的电流保护与短路保护设计

直流可调稳压电源的电流保护与短路保护设计在电子设备中,直流可调稳压电源起到了为其他电子元件或电路提供稳定的直流电压的重要作用。
然而,在使用直流可调稳压电源时,电流保护和短路保护是必不可少的功能,以确保电子设备的安全运行和保护电子元件不受损坏。
本文将重点讨论直流可调稳压电源的电流保护与短路保护的设计原理。
1. 电流保护设计直流可调稳压电源的电流保护设计是为了防止电流超过设定范围,从而保护电子元件和电路的安全运行。
常见的电流保护设计方式包括电流限制保护和过载保护。
1.1 电流限制保护电流限制保护通过对电源输出电流进行实时监测,当输出电流超过设定的最大电流值时,电源会自动降低输出电流,以保护电子元件不受过大电流损害。
电流限制保护通常通过可编程电流源或电流检测电路来实现。
可编程电流源可以根据需要调整输出电流的上限,而电流检测电路则可以对电源输出的电流进行实时监测。
1.2 过载保护过载保护是另一种常见的电流保护设计方式,它通过对电源输出电流进行快速检测,当输出电流超过设定的过载电流阈值时,电源会立即切断输出电流,以避免电源和电子元件受损。
过载保护可以使用电流检测电路和电子开关等组件来实现。
2. 短路保护设计短路保护是直流可调稳压电源中非常重要的一项保护功能。
短路通常指的是在负载端出现短接或低阻值情况,这可能导致电源输出电流急剧上升,从而对电源和电子元件造成损害。
因此,短路保护设计旨在及时检测并防止短路情况的发生。
2.1 短路检测短路保护的核心是对短路情况进行检测。
常见的短路检测方式包括电流检测、电压检测和功率检测等。
其中,电流检测是最常用的方法。
电流检测可以通过在电源输出端加入电流检测电阻来实现,当检测到输出电流急剧上升时,电源会立即切断输出电流。
2.2 短路保护动作当短路情况被检测到时,直流可调稳压电源应迅速切断输出电流,以保护电源和电子元件。
切断输出电流可以通过电子开关和短路保护电路来实现。
电子开关可以迅速切断输出电流,而短路保护电路则可以对电源进行控制,确保输出电流及时切断。
直流电源的组成部分及功能

直流电源的组成部分及功能
直流电源通常由以下几个组成部分构成:
1. 变压器:将输入的交流电压转换为所需的直流电压。
2. 整流电路:将交流电压转换为直流电压。
常见的整流电路有单相整流桥和三相整流桥。
3. 滤波电路:通过电容器或电感器等元件对输出的直流电压进行滤波,消除交流干扰,使输出电压更稳定。
4. 稳压电路:对输出的直流电压进行稳定,保持输出电压在一定范围内的变化。
5. 保护电路:包括过载保护、过热保护、短路保护等,用于保护电源和负载设备的安全。
6. 控制电路:控制电源的开关、稳压、保护等功能,保证电源的正常运行。
直流电源的功能包括:
1. 为电子设备提供稳定的直流电源:直流电源可以为各种电子设备提供稳定的直流电压和电流,确保设备正常工作。
2. 过载保护:通过过载保护电路,当负载电流超过设定范围时,直流电源会自动切断输出,保护负载设备和电源本身。
3. 稳定输出:通过稳压电路和滤波电路,直流电源可以稳定输出所需的直流电压,并保持输出电压在一定范围内的变化。
4. 防止干扰:通过滤波电路消除交流干扰,使输出电压纯净,减少对负载设备的干扰。
5. 提供可调节的输出电压和电流:一些直流电源可以根据需要调节输出电压和电流的大小,以适应不同负载的需求。
直流电动机控制电路

直流电动机控制电路一、直流电动机的启动1 .并励直流电动机的启动并励直流电动机的启动控制电路如图1-15所示。
图中,KAI 是过电流继电器,作直流电动机的短路和过载保护。
KA2欠电流继电器,作励磁绕组的失磁保护。
启动时先合上电源开关QS,励磁绕组获电励磁,欠电流继电器 KA2线圈获电,KA2常开触点闭合,控制电路通电;此时时间继电器 KT 线圈获电,KT 常闭触点瞬时断开。
然后按下启动按钮SB2,接触 器KMl 线圈获电,KMl 主触点闭合,电动机串电阻器R 启动;KMl 的常闭触点断开,KT 线圈断电,KT 常闭触点延时闭合,接触器KM2 线圈获电,KM2主触点闭合将电阻器R 短接,电动机在全压下运行。
2 .他励直流电动机的启动(见图1-16)图1-15并励直流电动机启动控制电路图1-16他励直流电动机启动控制 电路L 励磁绕组有电 合 gS ∣和QS?一 「KTl 和KT?线Iffl 有电—时间继电器KTo KT 2—— L 一有加触点断开 一KM2、KM3线圈无电—通、R 2电阻串入电枢电路~KM ∣自锁触点闭合KT j KT : KM KM KM按下按钮SB2 ~ KMl线圈有电--KMj常开触点闭合一电动机M 串入电阻降压启动J KMl常闭触点断开一时间继电器]I一KTl 和KT2线圈断电 -KTl触点先延时闭合一KM2线圈有电一——I J KM,常开触点闭合一Rl被短接—KT?延时闭合一KM3线圈有了工」KM3常开触点闭合一R2被短接一电动机M全压启动正常工作3.串励直流电动机的启动(见图1-17)图1-17串励直流电动机启动控制电路合上QS KTl线圈有电 ~ KTl常闭触点瞬时断开4:KM2线圈断电「上R p R2电阻全部串入电枢回路KMJ线圈断电一J. 自妹痴,士说人3L KM1自锁触点闭合按下钱钮SB] - KTl线圈有电一卜KMl常闭触点断开-η Lf KMl常开触点闭合—I厂广KT2线圈有电吸合 _ KT2常闭触点瞬时断开.L KTi线圈无电 ~ KTl常闭触点延时闭合 ~ KM2线圈有电 ------------------- J电动机M降压启动 ____________________________________________________ [KM2常开触点闭合—Rl被短接—KT2线圈断电一KT2常闭触点延时闭心1一.接触器KM Q线圈有电 -KM-常开触点闭合一网被短接 - 彳 J电动机正常运行请注意,串励直流电动机不允许空载启动,否则,电动机的高速旋转,会使电枢受到极大的离心力作用而损坏,因此,串励直流电动机一般在带有20%〜25%负载的情况下启动。
直流稳压电源短路保护报警电路设计

直流稳压电源 的发展 已有几十年的历史, 已从分立器件发展 到集成电路。 集成稳压电路具有体积小、 重量轻、 耗 电少、 寿 命 长等优点, 随着功率集成电路的发展, 集成稳压电路已有多个品 种、 多种型号问世 , 按输 出电压、 输出电流形成系列产品, 已成为 直流稳压电源的主流产品, 特别适用于小型电子设备使用。 几乎所有 的电子 电路都需要稳定 的直流 电源 ,在 检定检 修 电子设备 时,除了要有合适 的标准仪器外 ,还 必须 要有合 适 的直流 电源及 调节装置。在进行 电子设备维修 以及 在电子 类 的模拟及 数字等相关课程 的实验 、实 习中,经 常用 到直流 稳压 电源 。在操 作过程中难免有短路情况发 生。一般 的直流 稳压 电源 自身都有保护措施,使用 当中瞬 时发生输出端对地 短路 ,是不会立 即烧 毁集成稳压器 的,但长 时间短路是绝对 不允许 的。如果一旦发生短路就有报警 ,提 示使 用者立即切 断 电源 ,排除故障后重开 电源就能恢复正常输 出。 综合电路实验箱在电子技术实验室使用非常广泛, 有+ I 2 V , + 5 V , 一 1 2 V等几路输出, 数字实验电路还有一个 + 5 V电源插口。 许 多学生实验过程中不遵守操作规程, 因操作失误造成直流稳压电 源损坏 的现象经常发生, 具体 出现 以下三类错误: 一是电源直接 短路造成的严重过载而损坏电源电路, 此类错误的后果是损坏稳 压器、 整流二极管或变压器; 二是负载过重, 这往往是实习生由 于接线错误 , 如芯片的线接错, 虽没有直接短路, 但可能引起 电 流超过额定值, 若再加上没有及时排除故障, 通电时间过长, 而 损坏电路, 如损坏芯片, 进一步损坏 电源电路器件; 还有一种可能 是将 + 1 2 V或者 一 l 2 v电源插入到数字实验电路的 + 5 V电源插 口, 这样造成数字电路 ( 如高低电平信号形成电路, 数码信号显示电 路等等) 中的集成块损坏, 特别是 T T L集成 电路块的损坏。 因此 ,
直流供电系统的短路与短路保护.

第四节直流供电系统的短路与短路保护
飞机直流供电系统,由于导线绝缘损坏,可能造成发电机输出端短路。
短路电流的峰值常达到发电机额定负载的3.5 -- 8倍,其稳定值也能达到1.5--2.5倍。
这样大的短路电流不仅会损坏发电机和供电系统,对飞机本身也非常危险,因此必须采取有效的保护措施。
电压值U。
发电机在低转速,大负荷状态下短路,而且短路电阻越小时,短路电流的峰值越大;反之,短路电流的峰值就越小。
短路保护
对短路保护的要求是:某个电源输出端短路,即不应造成其他电源损坏,也不应损坏短路电源本身;保护装置本身的损坏,不应造成电源中断供电。
设计完全达到上述要求的保护装置是比较困难的。
目前飞机直流电源系统多采用熔断器实现短路保护。
过电压保护器中的过载保护功能,也能对短路故障起到一定的保护作用。
由此可见,保护装置在电路中的位置非常重要,若将两个NB-200保险丝改装在电流表分流器附近,在B点发生短路时,3个保险丝也会熔断,虽然保护了发电机和蓄电池,但全部汇流条都将中断供电,这样配置是不合理的。
常见的直流电源故障有哪些-解决直流电源常见故障的方法

常见的直流电源故障有哪些-解决直流电源常见故障的方法常见的直流电源故障有哪些-解决直流电源常见故障的方法直流系统的故障可能会引起所供馈线回路的连锁故障,因此正确、及时地消除直流系统故障缺陷十分重要。
下面,店铺为大家分享解决直流电源常见故障的方法,希望对大家有所帮助!电源负载能力差电源负载能力差是一个常见的故障,一般都是出现在老式或是工作时间长的电源中,主要原因是各元器件老化,开关管的工作不稳定,没有及时进行散热等。
此外还有稳压二极管发热漏电,整流二极管损坏等。
维修方法:用万用表着重检查一下稳压二极管,高压滤波电容,限流电阻有无变质等再仔细检查一下电路板上的所有焊点是否开焊,虚接等。
把开焊的焊点重新焊牢,更换变质的元器件,一般故障即可排除。
无直流电压输出,但保险丝完好这种现象说明开关电源未工作,或者工作后进入了保护状态。
维修方法:首先应判断一下开关电源的主控芯片UC3842是否处在工作状态或已经损坏。
判断方法是这样的:加电测UC3842的第7脚对地电压,若测第8脚有+5V电压,1,2,4,6脚也有不同的电压,则说明电路已起振,UC3842基本正常;若7脚电压低,其余管脚无电压或不波动,则UC3842已损坏。
UC3842芯片损坏最常见的是6,7脚对地击穿,5,7脚对地击穿和1,7脚对地击穿。
如果这几只脚都为击穿,而开关电源还是不能正常启动,则UC3842必坏,应直接更换。
若判断芯片未坏,则就着重检查开关功率管的栅极(G极)的`限流电阻是否开焊,虚接,变值,变质以及开关功率管本身是否性能不良。
除此之外,电源输出线也有可能断线或接触不良也会造成这种故障。
因此在维修时也应注意检查一下。
有直流电压输出,但输出电压过高这种故障往往来自于稳压取样和稳压控制电路出现故障所致。
在开关电源中,直流输出、取样电阻、误差取样放大器(如LM324,LM358等)、光耦合器(PC817)、电源控制芯片(UC3842)等电路共同构成了一个闭合的控制环路,任何一处出问题都会导致输出电压升高。
直流可调稳压电源的输出电流限制与保护机制

直流可调稳压电源的输出电流限制与保护机制引言:直流可调稳压电源作为一种常见的电子设备,用于提供稳定、可调的直流电压给其他电子元器件供电。
在实际使用中,为了保护电源本身以及负载电路,我们需要对输出电流进行限制和保护。
本文将探讨直流可调稳压电源的输出电流限制机制和保护机制。
1. 输出电流限制机制直流可调稳压电源的输出电流限制是为了防止输出负载电路过载或短路时对电源和负载造成损害。
以下是几种常见的输出电流限制机制:1.1 过流保护器过流保护器是一种常见的输出电流限制部件。
它通过检测输出电流的大小,并与预设的电流阈值进行比较,一旦输出电流超过阈值,保护器就会触发,及时切断输出电路,以保护电源和负载电路的安全。
过流保护器有多种类型,如熔断器、保险丝等。
1.2 电流检测电路电流检测电路是通过采集输出电流的信号,并通过电流传感器转换为电压信号进行检测。
一旦输出电流超过预设的阈值,电流检测电路会向控制电路发送信号,控制电路将根据该信号实施适当的限制措施,例如调整电源的输出电压或切断输出电路。
1.3 负载电流限制器负载电流限制器是一种被动式限流电路,通过在负载电路中添加电阻或电感等元器件来限制输出电流。
当负载电流达到限制器的阈值时,限制器会引入阻抗,减小输出电流,以达到限制电流的目的。
2. 输出电流保护机制除了输出电流的限制,直流可调稳压电源还需要一些保护机制来防止潜在的故障和损坏。
以下是几种常见的输出电流保护机制:2.1 过热保护过热保护是为了防止电源工作过程中因温度过高导致元器件损坏。
一般来说,直流可调稳压电源会加装温度传感器来监测芯片温度。
一旦温度超过设定的阈值,过热保护机制会触发,电源会进入保护状态,停止输出电流,并采取措施散热或降低输出功率。
2.2 短路保护短路保护是为了防止输出端出现短路故障时,电源和负载电路受到损坏。
当输出端短路时,短路保护机制会立即切断输出电路,以保护电源和负载电路的安全。
此外,一些电源还会提供额外的短路保护功能,如自动断电和闪烁指示灯等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直流电源过载及短路保护电路
保护电路的元器件只有1O个,具有电源短路保护、停电自锁、过负荷电流保护功能(过负荷电流大小可调节设定);电路原理图见附图。
接通直流电源VCC。
双色发光管发绿光。
指示直流电源正常。
电源短路保护功能:按下轻触开关K1。
三极管BGI基极经限流电阻R2得到高电平,BG1饱和导通,继电器J吸合,其常开触点J闭合,OUT端正常输出直流电源,发光管发橙色光。
在继电器J 吸合的同时,三极管BG2基极也被下拉成低电平,BG2导通,此时BGl保持导通,整个电路正常工作。
当OUT端发生短路时。
Vcc电压被下拉成近似为零伏(其实。
只要V et电压下降造成三极管BG1基极的电压低于O.7V时),三极管BG1退出饱和导通状态,继电器J释放。
停电自锁:当Vcc电源停电再来电时。
由于BG2基极通过继电器J的线圈处于高电平。
所以BG2截止。
BG1也截止。
继电器J不吸合,OUT端无直流电压输出。
过负荷电流保护:由于变压器存在内阻以及线路存在线电阻,所以。
在电源带上负荷的时侯,会出现电压下降的现象。
负荷越大电压下降也越大。
根据这种原理。
本电路由。
R2和w组成了分压器,分压点电压=W÷(R2+W)xVcc。
所以,当Vcc一定时,如W越小则分压点电压越低;反之。
R2和w是定值。
Vcc越低。
同样分压点电压也越低。
当分压点电压低于017V 时,三极管BGI截止。
继电器J释放,起到了限制负荷电流的作用。
本人采用市售1000mA/15V、800mA/12V、500mA/10V直流电源做实验。
用300W电阻丝作负载(把电阻丝的一端与电源地可靠接牢,并放在一块耐热板上。
然后把电流表的红表笔接在OUT输出端,再用黑表笔从电阻丝的一端贴紧。
慢慢滑向中段)。
调节W阻值。
在100mA一800mA都可以取得满意的保护作用。
电容C1的作用:
在实验制作过程中,未接C1时。
在多次关断并再接通电源Vcc的瞬间。
BG1有时会出现误导通现象,这主要是干扰和BG2可能存在的微小漏电流造成的。
利用电容两端电压不能突变的原理。
在BG1的基极并接上C1后,连续几十次关断并再接通电源Vcc.未再出现误导通现象。
另外,电位器w还起着在停电瞬间对Cl快速放电的作用。
避免电源Vcc在关、开时间极短的情况下。
由于c1的作用出现BG2延迟误导通的现象。