高频课程设计 (LC正弦波振荡器)
高频电子线路实验正弦波振荡器
.太原理工大学现代科技学院高频电子线路课程实验报告专业班级信息13-1学号2013101269姓名指导教师颖实验名称 正弦波振荡器(LC 振荡器和晶体振荡器) 专业班级 信息13-1 学号 2013100 0 成绩 实验2 正弦波振荡器(LC 振荡器和晶体振荡器) 2-1 正弦波振荡器的基本工作原理 振荡器是指在没有外加信号作用下的一种自动将直流电源的能量变换为一定的波形的交变振荡能量的装置。
正弦波振荡器在电子领域中有着广泛的应用。
在信息传输系统的各种发射机中,就是把主振器(振荡器)所产生的载波,经过放大、调制而把信息发射出去。
在超外差式的各种接收机中,是由振荡器产生的一个本地振荡信号,送入混频器,才能将高频信号变成中频信号。
振荡器的种类很多。
从所采用的分析方法和振荡器的特性来看,可以把振荡器分为反馈式振荡器和负阻式振荡器两大类。
我们只讨论反馈式振荡器。
根据振荡器所产生的波形,又可以把振荡器氛围正弦波振荡器和非正弦波振荡器。
我们只介绍正弦波振荡器。
常用正弦波振荡器主要是由决定振荡频率的选项网络和维持振荡的正反馈放大器组成,这就是反馈振荡器。
按照选频网络所采用的元件不同,正弦波振荡器可以分为LC 振荡器、RC 振荡器和晶体振荡器等类型。
一、反馈型正弦波自激振荡器基本工作原理 以互感反馈振荡器为例,分析反馈型正弦自激振荡器的基本原理,其原理电路如图2-1所示; 当开关K 接“1”时,信号源Vb 加到晶体管输入端,这就是一个调谐放大器电路,集电极回路得到了一……………………………………装………………………………………订…………………………………………线………………………………………个放大了的信号Vf。
当开关K接“2”时,信号源Vb不加入晶体管,输入晶体管是Vf的一部分V’b。
若适当选择互感M和Vf的极性,可以使Vb和V’b大小相等,相位相同,那么电路一定能维持高频振荡,达到自激振荡的目的。
实际上起振并不需要外加激励信号,靠电路内部扰动即可起振。
lc调频振荡器设计课程设计
lc调频振荡器设计课程设计一、课程目标知识目标:1. 学生能理解LC调频振荡器的基本原理,掌握其电路构成及各部分功能。
2. 学生能掌握LC调频振荡器中电感L和电容C的计算方法,了解其对振荡频率的影响。
3. 学生能了解调频技术的基本概念,掌握LC调频振荡器的调频原理。
技能目标:1. 学生能运用所学知识,设计并搭建一个简单的LC调频振荡器电路。
2. 学生能通过实验,学会使用频率计、示波器等仪器进行振荡频率的测量,提高实验操作能力。
3. 学生能分析实验数据,掌握调整LC参数对振荡频率的影响,培养问题分析和解决能力。
情感态度价值观目标:1. 学生通过学习LC调频振荡器的设计,培养对电子技术的兴趣和热情。
2. 学生在小组合作完成设计任务的过程中,培养团队协作精神和沟通能力。
3. 学生通过实践操作,增强动手能力,提高创新意识和实践能力。
4. 学生能够关注电子技术在生活中的应用,认识到科技发展对人类社会的贡献。
课程性质:本课程为电子技术实践课程,结合理论教学和实验操作,帮助学生将所学知识应用于实际电路设计。
学生特点:学生为高年级电子专业学生,已具备一定的电子技术基础知识和实验操作能力。
教学要求:注重理论与实践相结合,提高学生的实际操作能力和问题解决能力。
在教学过程中,注重引导学生主动探究,培养学生的创新意识和团队合作精神。
通过课程目标的具体分解,为后续教学设计和评估提供明确方向。
二、教学内容1. 理论知识:- 介绍LC振荡器的基本原理,包括谐振电路的工作原理和振荡产生的条件。
- 讲解LC调频振荡器的电路构成,分析电路中各元件的作用。
- 深入阐述调频原理,包括变容二极管调频技术和LC参数调频技术。
2. 实践操作:- 指导学生进行LC调频振荡器电路的设计,包括选择合适的元件和计算LC参数。
- 安排实验操作,让学生动手搭建LC调频振荡器电路,并使用频率计、示波器等仪器进行频率测量。
- 引导学生分析实验数据,探讨LC参数变化对振荡频率的影响。
高频课程设计振荡器西勒
高频电子线路课程设计报告设计题目:LC正弦波振荡器的设计2014年 1月 10日目录一、设计任务与要求 (1)二、设计方案 (1)电感反馈式三端振荡器 (1)电容反馈式三端振荡器 (2)2.3克拉波电路振荡器 (3)西勒电路振荡器 (4)三、设计内容 (5)LC振荡器的基本工作原理................................................ . (5)西勒电路原理图及分析 (6)3.2.1振荡原理 (7)3.2.2静态工作点的设置 (7)西勒振荡器原理图 (8)仿真结果与分析 (8)3.4.1软件简介 (8)3.4.2进行仿真 (9)3.4.3仿真结果分析 (11)四、总结 (11)五、主要参考文献 (13)一、设计任务与要求在本课程设计中,为了熟悉《高频电子线路》课程,着眼于LC正弦波振荡器的分析和研究。
通过对电感反馈式三端振荡器(哈特莱振荡器)、电容反馈式三端振荡器(考毕兹振荡器)以及改进型电容反馈式振荡器(克拉波电路和西勒电路)的分析、对比和讨论,以达到课程设计的目的和要求。
在课程设计中,为了学习Multisim软件的使用,以及锻炼电子仿真的能力,我选用的仿真软件是版本,该软件提供了功能强大的电子仿真设计界面和方便的电路图和文件管理功能。
本课程设计中要求设计的正弦波振荡器能够输出稳定正弦波信号,输出频率可调范围为10~20MHz。
本设计中所涉及的仿真电路是比较简单的。
但通过仿真得到的结论在实际的类似电路中有很普遍的意义。
二、设计方案通过对高频电子线路相关知识的学习,我们知道LC正弦波振荡器主要有电感反馈式三端振荡器、电容反馈式三端振荡器以及改进型电容反馈式振荡器(克拉波电路和西勒电路)等。
其中互感反馈易于起振,但稳定性差,适用于低频,而电容反馈三点式振荡器稳定性好,输出波形理想,振荡频率可以做得较高。
由所学知识可知,西勒电路具有该电路频率稳定性非常高,振幅稳定,频率调节方便,适合做波段振荡器等优点。
LC正弦波振荡器的设计
*课程设计报告题目: LC正弦波震荡设计学生姓名:学生学号:系别:专业:届别:指导教师:1课程设计的任务与要求1.1 课程设计的任务正弦波振荡器广泛用于各种电子设备中。
正弦波振荡器不仅提供了振荡频率和振荡振幅的准确性和稳定性。
正弦波振荡器还是作为高频加热设备和医用电疗仪器中的正弦交变能源。
本次设计中,主要完成:(1)查阅相关文献资料,了解LC正弦波振荡器的相关知识;(2)确定设计方案、手工绘制电路原理图;(3)计算各个正弦波振荡器所对应的反馈系数和频率;(4)在Mutisim下绘制电路图,仿真验证并观察波形;(5)撰写课程设计说明书。
1.2 课程设计的要求本次设计中,使用电感、电容等器件设计两个LC正弦波振荡器,包括方案设计、电路设计和参数计算。
具体设计要求:(1)振荡频率fo =7MHz±0.5KHz;(2)频率稳定度Δf/fo≤10-1;(3)输出幅度大小稳定的比较。
1.3 课程设计的研究基础(1)原理分析反馈型振荡器是由放大器和反馈网络组成的一个闭合环路。
它由放大器和反馈网络两大部分组成。
放大器通常以某种选频网络(如振荡回路)作负载, 是一种调谐放大器;反馈网络一般是由无源器件组成的线性网络。
(2)平衡条件记闭环电压放大倍数 Ku(s),开环电压放大倍数 K(s),电压反馈系数 F(s),环路增益 T(s),反馈系数F′(jω)=-F(jω) 自激振荡的条件就是环路增益为1,即T(jω)=K(jω)F(jω)=1,通常又称为振荡器的平衡条件。
(3)起振条件为使振荡过程中输出幅度不断增加,应使反馈回来的信号比输入到放大器的信号大,即振荡开始时应为增幅振荡,即T(jω)>1,称为自激振荡的起振条件。
与平衡条件相应的,振荡器的起振条件又可细分为起振的振幅条件(|T(j ω)|>1)和相位条件(ψ(T)=ψ(K)+ψ(F)+ψ(F')=±2n π, n=0,1,2…),其中起振的相位条件即为正反馈条件。
LC正弦波振荡器
[在此处键入] 河南理工大学课程设计报告书[在此处键入]摘要在社会化程度越来越高的背景下,通讯工具在我们的生活中扮演了越来越重要的角色。
高频信号发生器主要用来向各种电子设备和电路提供了高频能量或高频标准信号,以便测试各种电子设备和电路的电气特性。
高频信号发生器主要是产生高频正弦振荡波,故电路主要是高频振荡电路构成。
振荡器的功能是产生标准的信号源,广泛应用于各类电子设备中。
所以,振荡器是电子技术领域中最基本的电子线路,也是从事电子技术工作人员必须要掌握的基本电路。
本次课程设计主要制作LC正弦波振荡器,采用晶体三极管构成正弦波振荡器,达到本次课程设计的目的。
并介绍了设计步骤,比较了各种设计的优缺点,总结了不同振荡器的性能特性。
关键字:通信高频信号正弦波振荡器目录一.设计任务与要求 (2)二.设计方案 (2)三.各部分设计及原理分析 (5)3.1 LC电感三点式(哈特莱振荡器) (5)3.2 电容三点式振荡器(考毕兹振荡器) (8)3.3电容三点式振荡器的改进型电路——克拉泼振荡器 (12)四.结论 (17)五.心得体会 (18)六.参考文献 (18)一.设计任务与要求正弦波振荡器广泛应用于各种电子设备中。
如,无线发射机中的载波信号源、超外接收机中的本地振荡信号源、电子测量仪器中的正弦波信号源、数字系统中的时钟信号等等。
正弦波振荡器是指不需要输入信号控制就能自动地将直流电转换为特定频率和振幅的正弦交变电压(电流)的电路。
它是各类电子设备的基础,若想做出一个完美的电子器件,必须要将最基本的电路设计好,因此我们选择了LC正弦波振荡器的设计。
选题目的:1、进一步熟悉正弦波振荡器的组成原理;2、观察输出波形,分析影响振荡器起振、稳定的条件;3、掌握振荡回路 Q 值对频率稳定度的影响及振荡器反馈系数不同时,静态工作电流 IEQ对振荡器起振及振幅的影响;4、比较改进型正弦波振荡器与克拉泼振荡器的性能,分析电路结构及元件参数的变化对振荡器性能的影响。
高频课设报告
LC振荡器的设计——通信电子线路课程设计一、课程设计内容LC振荡器的设计之西勒振荡器的设计二、课程设计目的及要求目的:振荡器是一种能自动地将直流电源能量转换为一定波形的交变振荡信号能量的转换电路。
要求:设计的正弦波振荡器能够输出稳定正弦波信号,输出频率可调范围为10~20MHz。
本设计中所涉及的仿真电路是比较简单的。
但通过仿真得到的结论在实际的类似电路中有很普遍的意义。
三、课程设计具体实现1、原理设计通过对高频电子线路相关知识的学习,我们知道LC正弦波振荡器主要有电感反馈三点式振荡器、电容反馈三点式振荡器以及改进型电容反馈式振荡器等。
其中电感反馈三点式易于起振,但稳定性差,适用于低频。
而电容反馈三点式振荡器稳定性好,输出波形理想,振荡频率可以做得很高。
由所学知识可知,西勒电路具有频率高、振幅稳定、频率调节方便等优点。
所以在本设计中拟采用西勒电路振荡器。
原理图及等效电路如图(a)(b)所示。
西勒电路是在克拉波电路的电感两端并联上一个电容得到的,有效地改善了克拉波电路可调范围小的缺点。
而且频率稳定性高,振幅稳定,频率调节方便,适合做波段振荡器。
2、参数计算合理地选择振荡器的静态工作点,对振荡器的起振,工作的稳定性,波形质量的好坏有着密切的关系。
-般小功率振荡器的静态工作点应选在远离饱和区而靠近截止区的地方。
根据上述原则,一般小功率振荡器集电极电流ICQ大约在0.8-4mA之间选取,故本实验电路中:选ICQ=2mA, VCEQ=6V,β=100 则有Re+Rc=(12-6)/2=3KΩ为提高电路的稳定性,取Re=1KΩ则Rc=2.1KΩ相应地取Rb1=5.1KΩ,Rb2=2.1KΩ,所以在本电路中,取R4=1KΩ,R1=2.1KΩ,R2=5.1KΩ,R3=2.1KΩ回路中的各种电抗元件都可归结为总电容C和总电感L两部分。
确定这些元件参量的方法,是根据经验先选定一种,而后按振荡器工作频率再计算出另一种电抗元件量。
LC正弦波振荡器设计
前言“高频电子线路”是电子、信息、通信类等专业的一门专业基础课,主要研究通信系统中发送设备和接收设备的各种高频单元电路的基本组成、功能和原理。
该课程是一门工程性和实践性很强的课程,除掌握教材所提供的必要基础知识外,还必须通过实践环节提高应用能力(如LC正弦波振荡器的设计与调试和仪器使用等)。
对于本课程,学生应注重基本概念、基本原理、基本分析方法和应用,要求达到:(1)明确高频电子线路的研究对象和典型应用;(2)理解与熟悉高频电路中各单元电路的组成、工作原理及分析方法;(3)能正确使用仪器对单元电路或组合电路进行调试、测试和检修;(4)掌握小型高频整机电路的一般设计方法。
LC正弦波振荡器的设计与调试方法是每个学生都应该掌握的,因为科学技术的发展,振荡器已经与人们的生活息息相关。
振荡器的出现给人类带来了远程通讯。
石英振荡器的出现带来了数字电信号的实现,电子技术和人类的生活息息相关。
一个性能更加优良的振荡器的问世,那么,他的发展前景是解决无线通信的通信质量、计算机速度、网络速度等现实问题以外,还要向噪声低,频率高,不受外界环境变化的影响提高性价比来为人类服务。
目录绪论课程设计的意义 (4)第一章设计任务书 (4)一. 设计目的 (4)二. 设计要求和步骤 (4)三.方案设计及选择 (4)1.振荡器的选择 (4)2.信号输出波形的仿真选择 (4)第二章单元电路设计与参数计算 (5)一. LC三点式振荡组成原理图 (5)二.起振条件 (5)三.频率稳定度 (5)四. LC振荡模块设计 (7)第三章总原理图及元器件清单 (12)一.总原理图 (12)二. 元件清单 (14)第四章调试步骤 (16)一. 按设计电路安装元器件 (16)二. 测试点选择 (16)三. 调试 (17)四. 实验结果与分析 (17)五. 频率稳定度 (18)第五章供参考选择的元器件 (18)第六章设计心得和体会 (18)第七章参考文献 (19)绪论课程设计的意义联系课堂所学知识,增强查阅、收集、整理、吸收消化资料的能力,为毕业设计做准备。
LC振荡器设计课程设计
LC振荡器设计课程设计一、课程目标知识目标:1. 理解LC振荡器的基本原理和工作机制;2. 掌握LC振荡器的电路组成和各部分功能;3. 学会使用公式计算LC振荡器的频率、品质因数等参数;4. 了解LC振荡器在不同应用场景下的设计要点。
技能目标:1. 能够正确绘制LC振荡器的电路图;2. 学会使用仿真软件对LC振荡器进行仿真测试;3. 能够根据实际需求,设计并搭建简单的LC振荡器电路;4. 掌握对LC振荡器性能进行评估的方法。
情感态度价值观目标:1. 培养学生对电子电路的兴趣和热情,增强学习动力;2. 培养学生团队协作精神,学会与他人共同解决问题;3. 培养学生严谨的科学态度,注重实验数据的真实性;4. 引导学生关注科技创新,认识到电子技术在实际应用中的价值。
课程性质:本课程为电子技术专业课程,旨在让学生掌握LC振荡器的设计和应用。
学生特点:学生具备一定的电子电路基础,具有较强的动手能力和求知欲。
教学要求:结合理论教学与实践操作,注重培养学生实际设计能力和创新能力。
通过本课程的学习,使学生能够达到上述课程目标,为后续相关课程的学习打下坚实基础。
二、教学内容1. LC振荡器基本原理:介绍LC振荡器的概念、工作原理,分析振荡条件,探讨维持振荡的必要条件。
教材章节:第二章第二节2. LC振荡器电路组成:讲解LC振荡器的电路结构,包括电感、电容元件,以及放大器的功能。
教材章节:第二章第三节3. LC振荡器参数计算:引导学生学会计算LC振荡器的频率、品质因数等关键参数。
教材章节:第二章第四节4. LC振荡器设计方法:介绍LC振荡器的设计步骤,分析影响振荡器性能的因素,如元件选择、电路布局等。
教材章节:第二章第五节5. 仿真软件应用:教授学生使用Multisim、Proteus等仿真软件对LC振荡器进行仿真测试。
教材章节:第三章第一节6. LC振荡器实践操作:指导学生根据设计要求,搭建LC振荡器电路,并进行性能测试。
高频课程设计_高频电感三点式正弦波振荡器
摘要 (1)1 设计目的及任务要求 (2)1.1 设计目的 (2)1.2 任务要求 (2)1.3 软件简介 (2)2 理论基础 (3)2.1 振荡器 (3)2.2 三点式振荡器 (3)2.3 电感三点式(哈特莱)振荡器 (4)2.4 振荡器工作原理 (5)3 电路设计 (6)3.1 设计概述 (6)3.2 电感振荡部分 (7)3.3 输出缓冲级部分 (8)3.4 整体电路 (9)4 仿真结果 (10)5 结果分析 (13)心得体会 (14)参考文献 (15)振荡器(英文:oscillator)是用来产生重复电子讯号(通常是正弦波或方波)的电子元件。
其构成的电路叫振荡电路,能将直流信号转换为具有一定频率的交流电信号输出。
振荡器的种类很多,按振荡激励方式可分为自激振荡器、他激振荡器;按电路结构可分为阻容振荡器、电感电容振荡器、晶体振荡器、音叉振荡器等;按输出波形可分为正弦波、方波、锯齿波等振荡器。
广泛用于电子工业、医疗、科学研究等方面。
三点式振荡器是指LC回路的三个端点与晶体管的三个电极分别连接而组成的一种振荡器。
三点式振荡器电路用电容耦合或自耦变压器耦合代替互感耦合, 可以克服互感耦合振荡器振荡频率低的缺点, 是一种广泛应用的振荡电路, 其工作频率可达到几百兆赫。
本文将围绕高频电感三点式正弦波振荡器进行具有具体功能的振荡器的理论分析与设计。
关键词:高频电感三点式正弦波振荡器缓冲级1 设计目的及任务要求1.1 设计目的培养较为扎实的电子电路的理论知识及较强的实践能力;加深对电路器件的选型及电路形式的选择的了解;提高高频电子电路的基本设计能力及基本调试能力;强化使用实验仪器进行电路的调试检测能力。
1.2 任务要求1、采用晶体三极管或集成电路、场效应管构成高频电感三点式正弦波振荡器;2、额定电源电压5.0V ,电流1~3mA;输出频率8 MHz (频率具较大的变化范围);3、通过跳线可构成发射极接地、基极接地及集电极接地振荡器;4、有缓冲级,在100欧姆负载下,振荡器输出电压≥ 1 V (D-P);1.3 软件简介本次设计将主要使用Multisim10软件进行仿真。
lc调频振荡器课程设计
lc调频振荡器课程设计一、教学目标本节课的教学目标是让学生了解和掌握LC调频振荡器的基本原理、结构和应用,具备分析和设计LC调频振荡器的能力。
具体目标如下:1.知识目标:(1)了解LC振荡器的原理和特点;(2)掌握LC调频振荡器的设计方法和步骤;(3)熟悉LC调频振荡器在通信系统中的应用。
2.技能目标:(1)能够运用LC调频振荡器的基本原理分析和解决实际问题;(2)能够独立设计并制作LC调频振荡器实验电路;(3)具备调试和优化LC调频振荡器的能力。
3.情感态度价值观目标:(1)培养学生对电子技术的兴趣和好奇心;(2)培养学生团队合作精神和动手实践能力;(3)培养学生关注现代通信技术的发展和应用。
二、教学内容根据教学目标,本节课的教学内容主要包括以下几个部分:1.LC调频振荡器的基本原理;2.LC调频振荡器的结构和工作原理;3.LC调频振荡器的设计方法和步骤;4.LC调频振荡器在通信系统中的应用;5.实验操作:LC调频振荡器的制作和调试。
三、教学方法为了实现教学目标,本节课采用以下教学方法:1.讲授法:讲解LC调频振荡器的基本原理、结构和应用;2.案例分析法:分析实际案例,让学生更好地理解LC调频振荡器的原理和应用;3.实验法:引导学生动手制作和调试LC调频振荡器,提高学生的实践能力;4.讨论法:分组讨论,培养学生的团队合作精神和解决问题的能力。
四、教学资源为了支持教学内容和教学方法的实施,本节课准备以下教学资源:1.教材:《电子技术基础》;2.参考书:《现代通信原理》;3.多媒体资料:LC调频振荡器的原理动画、实验操作视频;4.实验设备:LC调频振荡器实验套件、测试仪器。
通过以上教学资源,为学生提供丰富的学习体验,提高学生的学习效果。
五、教学评估本节课的教学评估将采用多元化的评价方式,以全面、客观、公正地评价学生的学习成果。
评估内容包括:1.平时表现:通过观察学生在课堂上的参与程度、提问回答、小组讨论等表现,评价学生的学习态度和积极性。
高频实验2LC三点式正弦波振荡器
实验二LC三点式正弦波振荡器一、实验目的1、掌握三点式正弦波振荡器电路的基本原理,起振条件,振荡电路设计及电路参数计算。
2、通过实验掌握晶体管静态工作点、反馈系数大小、负载变化对起振和振荡幅度的影响。
3、研究外界条件(温度、电源电压、负载变化)对振荡器频率稳定度的影响。
二、实验内容1、熟悉振荡器模块各元件及其作用。
2、进行LC振荡器波段工作研究。
3、研究LC振荡器中静态工作点、反馈系数以及负载对振荡器的影响。
4、测试LC振荡器的频率稳定度。
三、实验仪器1、模块1 1块2、双踪示波器1台3、万用表1块四、基本原理图2-1 正弦波振荡器将插孔B 接B2, C 接2 ,由晶体管构成电容反馈三点式振荡器的改进型振荡器——西勒振荡器,调节可变电容C1可用来改变振荡频率。
)1(211020C C L f +=π振荡器的频率约为 MHz (计算振荡频率可调范围) 振荡电路反馈系数F=2013C C 振荡器输出通过耦合电容(0.01uF )加到由Q 2组成的射极跟随器的输入端,因0.01uF 容量很小,再加上射随器的输入阻抗很高,可以减小负载对振荡器的影响。
射随器输出信号Q 1调谐放大,再经变压器耦合从V 0输出。
五、实验步骤1、 根据图2-1在实验板上找到振荡器各零件的位置并熟悉各元件的作用。
2、 研究振荡器静态工作点对振荡幅度的影响。
1) 将插孔B 接B2, C 接2 ,构成LC 振荡器。
2) 改变上偏置电位器W 1,记下Q1发射极电流I eo (=KV e 1)(将万用表红表笔接C ,黑表笔接地测量V E )填入表2-1中,并用示波测量对应点TP1的振荡幅度V P-P (峰—峰值)填于表中,记下停振时的静态工作点电流值I Q 。
表2-1Ieo Vp-p I CQ分析输出振荡电压和振荡管静态工作点的关系,分析思路:静态电流I CQ 会影响晶体管跨导gm ,而放大倍数和gm 是有关系的。
在饱和状态下(I CQ 过大),管子电压增益A V 会下降,一般取I CQ =(1~5mA )为宜。
(完整)高频课程设计LC振荡器西勒
高频电子线路课程设计报告设计题目:LC 正弦波振荡器的设计专业班级电信 11-3学号学生姓名杨春卫指导教师王立国教师评分2014 年 1 月 10 日目录一、任与要求⋯⋯⋯⋯⋯ .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 1二、方案⋯⋯⋯⋯⋯ .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 1感反式三端振器⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ ...⋯⋯⋯⋯⋯ 1 容反式三端振器⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯...⋯⋯⋯⋯ 2克拉波路振器⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯...⋯⋯⋯ 3西勒路振器⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯...⋯4三、内容⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯..53.1 LC 振器的基本工作原理⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯..⋯..5西勒路原理及剖析⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ ...⋯.⋯⋯⋯ ..⋯ .6振原理⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7静工作点的置⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7 西勒振器原理⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ .⋯⋯⋯⋯ .⋯⋯ .8仿真果与剖析⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.⋯⋯⋯⋯ .8 件介⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8行仿真⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯9仿真果剖析⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯11四、⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.⋯⋯⋯ 11五、主要参照文件⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.13一、设计任务与要求在本课程设计中,为了熟习《高频电子线路》课程,着眼于LC 正弦波振荡器的剖析和研究。
经过对电感反应式三端振荡器(哈特莱振荡器)、电容反应式三端振荡器(考毕兹振荡器)以及改良型电容反应式振荡器(克拉波电路和西勒电路)的剖析、对照和议论,以达到课程设计的目的和要求。
在课程设计中,为了学习 Multisim软件的使用,以及锻炼电子仿真的能力,我采纳的仿真软件是版本,该软件供给了功能强盛的电子仿真设计界面和方便的电路图和文件管理功能。
高频课程设计LC振荡器西勒
高频电子线路课程设计报告设计题目:LC正弦波振荡器的设计2014年 1月 10日目录一、设计任务与要求 (1)二、设计方案 (1)电感反馈式三端振荡器 (1)电容反馈式三端振荡器 (2)2.3克拉波电路振荡器 (3)西勒电路振荡器 (4)三、设计内容 (5)LC振荡器的基本工作原理................................................ . (5)西勒电路原理图及分析 (6)3.2.1振荡原理 (7)3.2.2静态工作点的设置 (7)西勒振荡器原理图 (8)仿真结果与分析 (8)3.4.1软件简介 (8)3.4.2进行仿真 (9)3.4.3仿真结果分析 (11)四、总结 (11)五、主要参考文献 (13)一、设计任务与要求在本课程设计中,为了熟悉《高频电子线路》课程,着眼于LC正弦波振荡器的分析和研究。
通过对电感反馈式三端振荡器(哈特莱振荡器)、电容反馈式三端振荡器(考毕兹振荡器)以及改进型电容反馈式振荡器(克拉波电路和西勒电路)的分析、对比和讨论,以达到课程设计的目的和要求。
在课程设计中,为了学习Multisim软件的使用,以及锻炼电子仿真的能力,我选用的仿真软件是版本,该软件提供了功能强大的电子仿真设计界面和方便的电路图和文件管理功能。
本课程设计中要求设计的正弦波振荡器能够输出稳定正弦波信号,输出频率可调范围为10~20MHz。
本设计中所涉及的仿真电路是比较简单的。
但通过仿真得到的结论在实际的类似电路中有很普遍的意义。
二、设计方案通过对高频电子线路相关知识的学习,我们知道LC正弦波振荡器主要有电感反馈式三端振荡器、电容反馈式三端振荡器以及改进型电容反馈式振荡器(克拉波电路和西勒电路)等。
其中互感反馈易于起振,但稳定性差,适用于低频,而电容反馈三点式振荡器稳定性好,输出波形理想,振荡频率可以做得较高。
由所学知识可知,西勒电路具有该电路频率稳定性非常高,振幅稳定,频率调节方便,适合做波段振荡器等优点。
课程设计lc正弦波振荡器设计
高频电子线路课程设计LC正弦波振荡器设计学号:姓名:专业班级:指导老师:年月日摘要信息传输是人类社会生活的重要内容、从古代的烽火到近代的旗语,都是信息传输对入类生活的重要性是不言而喻的。
最基本的信息传输手段当然是语言与文字。
语言与文字的产生和发展,对入类社会的发展起了很大的作用。
没有语言.人类就无法进行思维。
文字不但能够传输信息,而且能够储存信息。
随着人类社会生产力的发展,迫切地要求在远距离迅速而准确地传送信息。
人类认识发展信息的历程。
一.我国古代利用烽火传送边疆警报,这可以说是温古老的光通信。
以后又出了“旗语”,就是用编码的方法来传妨信息。
此外,诸如信鸽、释站快马接力等,也都是人们曾采用过的传输信息的方法。
二.1837年莫尔斯发明了电报,创造了莫尔斯电码,开创了通信的新纪元。
1876年贝尔发明了电话,能够直接将语言信号变为电能沿导线传送。
电报、电话的发明,为迅速准确地传递信息提供了新手段,是通信技术的重大突破。
1864年,英国物理学家麦克斯韦发表了“电磁场的动力理论”这一著名论文,得出电磁场方程,从而理论上证明了电磁波的存在为后来无线电发明和发展奠定了坚实的基础。
1887年赫兹证明了电磁波的客观存在。
1895年马可尼首次在几百米的距离用电磁波进行通信通信获得成功,1901年又完成了横渡大西洋通信,从此无线电通信进入实用阶段。
三.20世纪60年代开始出现将“管”“路”结合起来的集成电路几十年来已取得巨大成就中,大规模集成电路乃至超大规模集成电路不断涌现。
四.近几年来,无线电发展的最明显的趋势就是3G手机。
所谓3G手机通俗地说就是指第三代手机,3G手机已经成了集语音通信和多媒体通信相结合,并且包括图像、音乐、网页浏览、电话会议以及其它一些信息服务等增值服务的新一代移动通信系统。
从发明无线电开始,传输信息就是无线电技术的首要任务。
直到今天,虽然无线电电子学技术领域在迅速扩大.但信息的传输与处理仍然是它的主要内容。
太原理工大学高频实验二 LC正弦波振荡器
本科高频电子线路实验报告课程名称:高频电子线路实验名称:正弦波振荡器实验实验地点:北区学院楼四楼实验室实验二 正弦波振荡器一、实验目的1、掌握晶体管工作状态,反馈大小,负载变化对振荡幅度与波形的影响。
2、掌握改进型电容三点式正弦波振荡器的工作原理及振荡性能的测量方法。
3、研究外界条件变化对振荡频率稳定度的影响。
4、比较LC 振荡器和晶体振荡器频率稳定度,加深对晶体振荡器频率稳定度高的理解。
二、实验原理与线路正弦波振荡器是指振荡波形接近理想正弦波的振荡器,这是应用非常广泛的一类电路,产生正弦信号的振荡电路形式很多,但归纳起来,不外是RC 、LC 和晶体振荡器三种形式。
在本实验中,我们研究的主要是LC 三点式振荡器振荡器。
LC 三点式振荡器的基本电路如图所示:根据相位平衡条件,图中构成振荡电路的三个电抗中间,X 1、X 2必须为同性质的电抗,X3必须为异性质的电抗,且它们之间应满足下列关系式:()213X X X +-= (2-1) 这就是LC 三点式振荡器相位平衡条件的判断准则。
若X 1和X 2均为容抗,X 3为感抗,则为电容三点式振荡电路;若X 1和X 2均为感抗,X 3为容抗,则为电感三点式振荡器。
1、电容三点式振荡器共基电容三点式振荡器的基本电路如图2-2所示。
图中C3为耦合电容。
由图可见:与发射极连接的两个电抗元件为同性质的容抗元件C1和C2;与基极连接的为两个异性质的电抗元件C2和L ,根据前面所述的判别准则,该电路满足相位条件。
若要它产生正弦波,还须满足振幅,起振条件,即:10>⋅F A (2-2)式中A O 为电路刚起振时,振荡管工作状态为小信号时的电压增益;F 是反馈系数,只要求出A O 和F 值,便可知道电路有关参数与它的关系。
为此,我们画出图2-2的简化,y 参数等效电路如图2-3所示,其中设y rb ≈0 y ob ≈0,图中G O 为振荡回路的损耗电导,G L 为负载电导。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高频电子线路课程设计报告设计题目:LC正弦波振荡器专业班级学号学生姓名指导教师教师评分目录一、设计任务与要求 (1)二、总体方案 (1)三、设计内容 (4)3.1 LC振荡电路工作原理 (4)3.1.1构成振荡器的条件 (4)3.1.2 由正反馈的观点来决定振荡的条件 (4)3.1.3 振荡器平衡和稳定条件 (5)3.1.4 LC三端式振荡器相位平衡条件的判断准 (6)3.1.5 西勒电路工作原理 (7)3.2仿真结果与分析 (7)3.2.1各种条件下仿真波形图 (7)3.2.2 参数计算 (10)四、电路制作和调试 (11)4.1 元器件清单及参数 (11)五、总结 (12)六、主要参考文 (13)LC 正弦波振荡器的设计一、 设计任务与要求:通过LC 正弦波振荡器的设计进一步巩固高频电子线路的相关知识,并在设计制作的过程中运用并熟悉multisim10电子仿真软件,在实践的过程中培养我们发现问题,并利用所学知识或利用一切可以利用的资源解决问题的能力,掌握振荡器的工作原理知识,设计一个LC 正弦波振荡器,要求该电路输出稳定的正弦波信号,输出频率可调范围为10M~~20MHZ 。
二、 总体设计方案:LC 振荡电路采用三端式振荡,其中包括电感反馈式哈特莱振荡器、电容反馈式克拉泼振荡器、改进型电容反馈式西勒振荡器。
方案一:电感反馈式三端振荡器——哈特莱振荡器哈特莱振荡器其振荡频率为f=LC21,式中L=1L +2L +2M 。
优点:由于L 1与L 2之间有互感存在,所以比较容易起振。
其次是改变回路电容来调整频率时,基本上不影响电路的反馈系数,比较方便。
主要缺点:与电容反馈振荡电路相比,其振荡波形不够好。
这是因为反馈支路为感性支路,对高次谐波成高阻抗,故对于LC 回路中高次谐波反馈较强,波V CC(a ) 原理电路(b ) 交流等效电路形失真较大。
其次是当工作频率较高时,由于L 1和L 2上的分布电容和晶体管的极间电容均并联于L 1与L 2两端,这样反馈系数F 随频率变化而改变。
工作频率越高,分布参数的影响越严重,甚至可能使F 减小到满足不了起振条件。
方案二:电容反馈式三端振荡器考毕兹振荡器其中:反馈系数F 的表达式211C C C F +≈不考虑各极间电容的影响,这时谐振回路的总电容量CΣ为C1、C2的串联,即CC C C ≈+=∑21111振荡频率的近似为LC C C C LCf ⎪⎪⎭⎫ ⎝⎛+=≈212102121ππ优点:输出波形好,这是因为集电极和基极电流可通过对谐波为低阻抗的电容支路回到发射极,所以高次谐波的反馈减弱,输出的谐波分量减小,波形更加接近于正弦波。
其次,该电路中的不稳定电容都是与该电路并联的,因此适当加L(a )原理电路(b )交流等效电路大回路电容量,就可以减弱不稳定因素对振荡频率的影响,从而提高了频率稳定度缺点:调节C 1、C 2改变频率时,反馈系数也改变。
由于极间电容对反馈振荡器的回路电抗均有影响,所以对振荡器频率也会有影响。
克拉泼振荡器图(a) 为克拉泼振荡器原理电路,(b)为其交流等效电路。
它的特点是在前述的电容三点式振荡谐振回路电感支路中增加了一个电容C3,其取值比较小,要求C3<< C1,C3<< C2。
其中:CΣ为C1、C2 和C3的串联43211111C C C C C ≈++=∑振荡频率为402121LC LC f ππ≈≈∑使式成立的条件是C1和C2都要选得比较大,优点:C1和C2都要选得比较大,则C 1、C 2对振荡频率的影响显著减小,那么与C1、C2并接的晶体管极间电容的影响也就很小了,提高了振荡频率的稳定度。
缺点:在振荡范围较宽时,输出幅度不均匀,且频率升高后不易起振,其主要(a ) 原理电路 (b ) 交流等效电33用于固定频率或波段范围较窄的场合。
方案三:电容反馈式三端振荡器——西勒振荡器图是另一种改进型的电容三点式振荡器,称为西勒振荡器。
它可以认为是克拉泼电路的改进电路。
其主要特点就是在回路电感L 两端并联了一个可变电容C4,而C3为固定值的电容器,且满足C1、C2远大于C3,C1、C2远大于C4。
回路的总等效电容为4332141111C C C C C C C +≈+++=∑振荡频率()4302121C C L LC f +≈≈∑ππ优点:这种振荡器较易起振,振荡频率也较为稳定,波形失真较小,当参数设置得当时,其频率覆盖系数较大。
基于以上分析,我们决定选用方案三。
三 、设计内容3.1 LC振荡器的基本工作原理3.1.1 构成一个振荡器必须具备下列三个条件:1.任何一个振荡回路,包含两个或两个以上储能元件。
在这两个储能元件中,当一个释放能量时,另一个就接收能量。
接收和释放能量可以往西勒振荡器L(a ) 原理电路(b ) 交流等效电路4返进行,其频率决定于元件的数值。
2.电路中必须要有一个能量来源,可以补充由振荡回路电阻所产生的损耗。
在电容三点式振荡器中,这些能量来源就是直流电源。
3.必须要有一个控制设备,可以使电源在对应时刻补充电路的能量损失,以维持等幅振荡。
这是由有源器件(电子管,晶体管或集成管)和正反馈电路完成的。
3.1.2由正反馈的观点来决定振荡的条件利用正反馈方法来获得等幅的正弦振荡, 这就是反馈振荡器的基本原理。
反馈振荡器是由主网络和反馈网络组成的一个闭合环路。
其主网络一般由放大器和选频网络组成, 反馈网络一般由无源器件组成。
当振荡器接通电源后,即开始有瞬变电流产生。
这瞬变电流所包含的频带极宽,但由于谐振回路的选择性,它只选出了本身谐振频率的信号。
由于正反馈作用,谐振信号越来越强,但它不可能无限制的增长,而是达到一定的数值后,便自动稳定下来,即形成稳定的振荡。
振荡器的平衡条件当反馈信号等于放大器的输入信号时,振荡电路的输出电压不再发生变化,电路达到平衡状态。
振荡的平衡条件包括振幅平衡条件和相位平衡条件初始信号中,满足相位平衡条件的某一频率ω0的信号应该被保留,成为等幅振荡输出信号。
然而,一般初始信号很微弱,很容易被干扰信号淹没,不能形成一定幅度的输出信号。
因此,起振阶段要求 起振条件π2)()(0f 0a n =+ωϕωϕ3.1.3 振荡器平衡状态和稳定条件上面所讨论的振荡平衡条件只能说明振荡可能在在某一状态平衡,但不能说明振荡的平衡状态是否稳定。
已建立的振荡能否维持,还必须看平衡状态是否稳定振荡器稳定平衡的概念:——振荡器的稳定平衡是指在外因作用下,振荡器在平衡点附近可重新建立新的平衡状态,一旦外因消失,它即能自动恢复到原来的平衡状态。
稳定条件:振幅稳定、相位稳定ofi o U U F U U A &&&&&&==,i o f U A F U F U &&&&&==1)](exp[||=+=fa i F A F A ϕϕ&&&&1||=FA &&πϕϕ2n =+f a 1)()(00>⋅ωωF A要保证外界因素变化时振幅相对稳定,就是要:当振幅变化时,AF 的大小朝反方向变化振幅平衡的稳定条件相位平衡的稳定条件3.1.4 LC 三端式振荡器相位平衡条件的判断准则:omQom om<∂∂=V V V A 振幅稳定条件0)(Z FZ Y <∂∂≅∂++∂ωϕωϕϕϕ 相位平衡条件在三点式电路中, LC回路中与发射极相连接的两个电抗元件必须为同性质, 另外一个电抗元件必须为异性质。
这就是三点式电路组成的相位判据, 或称为三点式电路的组成法则。
3.1.5 西勒电路工作原理VTL R eC bR b1R c V CCLC 3C 1C 2C beC ceVTC 4 (a ) 原理电路(b ) 交流等效电路C 4C 3C 1 C 2R b2接通电源后,电路中就产生了噪声,噪声中包含了丰富的频率分量。
输入端的各噪声分量经过晶体管放大后,到达输出负载回路。
由于LC振荡回路的Q值很高,带宽很窄,因而只有振荡频率与LC回路固有频率相同或接近的噪声分量,才能在回路两端产生较大的正弦波电压V0,,其余的噪声分量都被滤除。
V0通过反馈网络将其中一部分输出反馈到晶体管基极回路,这就是其实的激励信号V i。
尽管这个起始信号比较微弱,但是由于不端对它放大——选频——反馈——再放大,循环往复,一个与LC回路固有频率相同的自激振荡信号,便由小到大产生。
又由于晶体管的非线性,随着振荡幅度的增大,放大器会由最初的甲类工作状态转向甲乙类甚至乙类、丙类工作状态,放大电路的增益逐渐下降,最终达到稳定振荡。
3.2电路仿真3.2.1各种条件下仿真波形图西勒振荡器仿真原理图静态工作点适当时静态工作点过高时静态工作点过低时3.2.2 参数计算对于一般小功率自动稳幅LC振荡器,静态工作点要远离饱和区,靠近截止区,以得到较大的输出阻抗。
一般根据具体电路和电源电压大小集电极电流一般取1~4mA,在实际偏置参数选定时,在可能条件下发射极偏置电阻尽可能取大一好。
此处特取I CQ≈2mA,U CEQ≈6V故R c+R e=(V cc-U CEQ)/I CQ=(12-6)/2=3KΩ取R e=1KΩ,R c=2KΩ参数选择主要是根据满足振荡频率,满足起振条件并有足够的振荡幅度和规定的频率稳定性等因素加以考虑。
若以频稳性角度出发回路电容应取大一些,有利于减少并联在回路上的管子极间电容等变化的影响。
但C不能过大,C过大,L会变小,Q值会变低,振荡幅度也会变小。
为了解决频稳和振幅的矛盾,通常用部分接入。
前已讨论反馈系数F=C1/C2不能过大或过小,适宜1/8~1/2.由于因U EQ≈2×1=2V 所以U BQ≈2.7V所以R b1/(R b2+R b1)≈2.7,有R b2≈0.3R b1若R b2=R 2取5KΩ,R b1则取15KΩ, 有先令L=1uH ,又有()4302121C C L LC f +≈≈∑ππ且f 的取值范围为10M ——20MHZ ,计算得(C 3+C 4)min =63.4PF, (C 3+C 4)max =254PF,取C 3=50PF ,则C 4min =13.4PF,C 4max =204PF,则取C 4=240PF 的可变电容。
因要满足C 1,C 2>>C 3,C 4 ;C 1/C 2=1/8~1/2 取C 1=200PF,C 2=510PFC b 的确定:C b 提供交流等效通路,即C b 交流等效分析短路,故C b 取0.01μF。
四、电路制作与调试4.1 元器件清单及参数仪表:频率计、示波器、探针五、总结本次设计要求是设计一个LC正弦波振荡器,根据现在所掌握的相关知识,有两大类可以选择:一是采用电感反馈式三端振荡器(哈特莱振荡器);二是采用电容反馈三段式振荡器(考毕兹振荡器)。