初中七年级《绝对值》数学教案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中七年级《绝对值》数学教案
初中七年级《绝对值》数学教案
绝对值用是指一个数在数轴上所对应点到原点的距离,用||来表示。|b-a|或|a-b|表示数轴上表示a的点和表示b的点的距离。数字的绝对值可以被认为是与零的距离。下面由为大家整理了关于初中七年级《绝对值》数学教案,供大家参考。
《绝对值》七年级数学教案1
一、教学目标
1、知识与技能(1)、借助数轴,初步理解绝对值的概念,能求一个数的绝对值,会利用绝对值比较两个
负数的大小。(2)、通过应用绝对值解决实际问题,体会绝对值的意义和作用。2、过程与方法目标:(1)、通过运用||来表示一个数的绝对值,培养学生的数感和符号感,达到发展学
生抽象思维的目的(2)、通过探索求一个数绝对值的方法和两个负数比较大小方法的过程,让学生学会通过
观察,发现规律、总结方法,发展学生的实践能力,培养创新意识;(3)、通过对做一做议一议试一试的交流和讨论,培养学生有条理地用语言
表达解决问题的方法;通过用绝对值或数轴对两个负数大小的比较,让学生学会尝试评价两种不同方法之间的差异。
3、情感态度与价值观:
借助数轴解决数学问题,有意识地形成脑中有图,心中有数的数形结合思想。通过做一做议一议试一试问题的思考及回答,培养学生积极参与数学活动,并在数学活动中体验成功,锻炼学生克服困难的
意志,建立自信心,发展学生清晰地阐述自己观点的能力以及培养学生合作探索、合作交流、合作学习的新型学习方式。
二、教学重点和难点
理解绝对值的概念;求一个数的绝对值;比较两个负数的大小。
三、教学过程:
1、教师检查组长学案学习情况,组长检查组员学案学习情况。(约5分钟)2.在组长的组织下进行讨论、交流。(约5分钟)3、小组分任务展示。(约25分钟)4、达标检测。(约5分钟)5、总结(约5分钟)
四、小组对学案进行分任务展示
(一)、温故知新:
前面我们已经学习了数轴和数轴的三要素,请同学们回想一下什么叫数轴?数轴的三要素什么?
(二)小组合作交流,探究新知
1、观察下图,回答问题:(五组完成)
大象距原点多远?两只小狗分别距原点多远?
归纳:在数轴上,一个数所对应的点与原点的距离叫做这个数的。一个数a的绝对值记作:.
4的绝对值记作,它表示在上与的距离,所以|4|=。
2、做一做:
(1)、求下列各数的绝对值:(四组完成)-1.5,0,-7,2(2)、求下列各组数的绝对值:(一组完成)
(1)4,-4;(2)0.8,-0.8;
从上面的结果你发现了什么?
3、议一议:(八组完成)
(1)|+2|=,
1=,|+8.2|=;5(2)|-3|=,|-0.2|=,|-8|=.(3)|0|=;
你能从中发现什么规律?
小结:正数的绝对值是它,负数的绝对值是它的,0的绝对值是。
4、试一试:(二组完成)
若字母a表示一个有理数,你知道a的绝对值等于什么吗?
(通过上题例子,学生归纳总结出一个数的绝对值与这个数的关系。)
5:做一做:(三组完成)
1、(1)在数轴上表示下列各数,并比较它们的大小:
-3,-1
(2)求出(1)中各数的绝对值,并比较它们的大小
(3)你发现了什么?
2、比较下列每组数的大小。
(1)-1和5;(五组完成)(2)?
(3)-8和-3(七组完成)
5和-2.7(六组完成)6五、达标检测:
1:填空:
绝对值是10的数有()
|+15|=()|4|=()
|0|=()|4|=()2:判断(1)、绝对值最小的数是0。()(2)、一个数的绝对值一定是正数。()(3)、一个数的绝对值不可能是负数。()
(4)、互为相反数的两个数,它们的绝对值一定相等。()(5)、一个数的绝对值越大,表示它的点在数轴上离原点越近。()
六、总结:
1绝对值:在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值.
2.绝对值的性质:正数的绝对值是它本身;
负数的绝对值是它的相反数;0的绝对值是0.
因为正数可用a0表示,负数可用a0表示,所以上述三条可表述成:(1)如果a0,那么|a|=a(2)如果a0,那么|a|=-a(3)如果a=0,那么|a|=0
3、会利用绝对值比较两个负数的大小:两个负数比较大小,绝对值大的反而小.
七、布置作业
P50页,知识技能第1,2题
《绝对值》七年级数学教案2
一、学习与导学目标:
知识与技能:会求出一个数的绝对值,能利用数轴及绝对值的知识,比较两个有理数的大小;
过程与方法:经历绝对值概念的形成,初步体会数形结合的思想方法,丰富解决问题的策略;
情感态度:通过创设情境,初步感悟学习绝对值的必要性,促进责任心的形成。
二、学程与导程活动:
A、创设情境(幻灯片或挂图)
1、两辆汽车,其一向东行驶10km,另一向西行驶8km。为了区别,可规定向东行驶为正,则分别记作+10km和-8km。但在计算出租车收费,汽车行驶所耗的汽油,起主要作用的是汽车行驶的路程,而不是行驶的方向。此时,行驶路程则分别记作10km和8km。
再如测量误差问题、排球重量谁更接近标准问题
2、在讨论数轴上的点与原点的距离时,只需要观察它与原点相隔多少个单位长度,与位于原点何方无关。
B、学习概念:
1、我们把在数轴上表示数a的点与原点的距离叫做数a的绝对值(absolutevalue),记作︱a︱(幻灯片)。因此,上述+10,-8的绝对值分别是10,8。
如在数轴上表示数-6的点和表示数6的点与原点的距离都是6,所以,-6和6的绝对值都是6,记作︱-6︱=6,︱6︱=6。(互为相反数的两个数的绝对值相同)
2、尝试回答(1)︱+2︱=,︱1/5︱=,︱+8.2︱=;
(2)︱-3︱=,︱-0.2︱=,︱-8.2︱=;
(3)︱0︱=。(幻灯片)
思考:你能从中发现什么规律?引导学生得出:(幻灯片)
性质:一个正数的绝对值是它本身;
一个负数的绝对值是它的相反数;
零的绝对值是零。
如果用字母a表示有理数,上述性质可表述为:
当a是正数时,︱a︱=a;
当a是负数时,︱a︱=-a;