定积分的概念PPT课件

合集下载

1.5定积分的概念(4课时)ppt课件

1.5定积分的概念(4课时)ppt课件

作业: P45练习:2 .
1.5.3 定积分的概念
问题提出 1.求曲边梯形的面积和求变速直线运
动的路程,都可以通过“四步曲”解决, 这四个步骤是什么?其中哪个步骤是难 点?
分割→近似代替→求和→取极限.
2.求曲边梯形的面积与求变速直线运 动的路程是两类不同的问题,但它们有 共同的解决途径,我们可以此为基点, 构建一个新的数学理论,使得这些问题 归结为某个数学问题来解决,并应用于 更多的研究领域.
x 3)dx
(2x x )dx . 1
0
y sin( .x
)3
0
1
(2x
x 3)dx
0
1
2xdx
0
1x 3dx 1 1 3
0
44
小结作业
1.定积分是一个特定形式和的极限,其 几何意义是曲边梯形的面积,定积分的 值由被积函数,积分上限和下限所确定.
2.在实际问题中,定积分可以表示面积、 体积、路程、功等等,求定积分的值目 前有定义法和几何法两种,有时利用定 积分的性质进行计算,能简化解题过程.
B组:2,3.
i)
,那么
当n→∞时,Sn的极限是否一定存在?
一定存在
思 做考 函数4:f(数x)学在上区,间把[a,nlimb]in上1 b的n定a f积( i )分,叫
记作
b
f (x)dx,即
a b
f (x)dx
a
lim
n
n i1
b
af( n
i)
其中a与b分别叫做积分下限与积分上限,
பைடு நூலகம்
区间[a,b]叫做积分区间,函数f(x)叫
2
(x 1)dx 的值.
1

定积分的概念PPT课件

定积分的概念PPT课件

(3 )
a
f ( x )dx
f ( x )dx
b a
f (x )dx
性质4: 性质5: 性质6:


a
a
b
f ( x )dx 0.
a
dx b a .

b
a
f ( x )dx f ( x )dx .
b
a
思考4:
r 0
2 xdx
2

r
2


1
0
1 x dx ?

i 1
b n
a
f ( i ) ,那么
当n→∞时,Sn的极限是否一定存在?
一定存在
n
思考4:数学上,把
n
lim
i 1
b n
a
f( i)

做函数f(x)在区间[a,b]上的定积分, 记作 即
a
b a
b
f (x )dx ,
n
f (x )dx
n
lim
i 1
b n
a
f( i)
b a
f (x )dx 其中
---积分号 a---积分下限 b---积分上限 区间[a,b] ---积分区间 函数f(x) ---被积函数 x---积分变量 f(x)dx---被积式
v=v(t)
n
s
n
lim
i 1
b n
a
v( i )
O a
i
b t
思考3:一般地,如果函数f(x)在区间[a, b]上连续,用分点 a=x0<x1<x2<„<xi<„<xn=b将区 间[a,b]等分成n个小区间,在每个小区 间[xi-1,xi](i=1,2,„,n)上任取一

定积分的概念和性质ppt课件

定积分的概念和性质ppt课件

小区间长度记为:
ti ti ti 1 (i 1 ,2 ,3 , ,n )
n
(2)近似求和:s v(i )ti. i1
(3)取极限:
n
s
lim
0 i1
v(i
)ti
( 表示所有小区间的长度的最大者)
编辑版pppt
8
二、定积分的定义
定义 设函数f(x)在[a,b]上有界, 在[a,b]中任意插入若干个分点:
四、定积分的几何意义
若f(x)≥0,则
b
a
f (x)dx 的几何意义表示
由曲线y=f(x),直线x=a,x=b与x轴所围成
的曲边梯形的面积。
编辑版pppt
12
一般情形,ab f (x)dx 的几何意义为:它
是介于x轴,曲线y=f(x),直线x=a,x=b 之 间的各部分面积的代数和。
y

a
0 -
+ bx
性质 7(定积分中值如定果理函) f (数 x)在闭区
间[a,b]上连续,[则 a,b]在 上至少存在一点
,使
b af(x )d x f()b ( a )
( a b )
这个公式叫积分中值公 式。
编辑版pppt
22
证由性6, 质有
b
m (ba)af(x)d xM (ba)
即有 m 1
b
f(x)d xM
这些小区间的长度最大者)时,和式 f (i )xi 的
n
i 1
极限就是A,即
Alim
0 i1
f (i)xi
可见,曲边梯形的面积是一和式的极限
y=f(x) y
0 a x0 x1
f(ξi) x 2 ξi x i x 编1 辑版pi ppt

定积分的概念ppt课件

定积分的概念ppt课件

2
2
b a
(b
x)( x
a)dx
1
2
(b a )2 2
(b a)2
8
.
17
例1 利用定义计算定积分 1 x2dx. 0
解 因为y x2在[0,1]上连续,积分存在.
将[0,1]n 等分,分点为 xi
i ,( i n
0,1,2,
,n
)
小区间[ xi1 ,
xi ]的长度xi
1 ,(i n
b
a
f
(u)du
(2)定义中区间的分法和介点i 的取法是任意的.
(3)当函数 f ( x)在区间[a,b]上的定积分存在时,
称 f ( x)在区间[a, b]上可积. 也称定积分为
Riemann 积分.
11
对定积分的补充规定:
(1)当a
b时, b a
f
(
x)dx
0;
(2)当a
b时, b a
f
( x)dx
1
一、问题的提出
实例1 (求曲边梯形的面积)
y
曲边梯形由连续曲线
y f (x)
y f ( x)( f ( x) 0)、
x轴与两条直线x a 、
x b所围成.
A?
oa
bx
2
用矩形面积近似取代曲边梯形面积
y
y
oa
b xo a
bx
(四个小矩形)
(九个小矩形)
显然,小矩形越多,矩形总面积越接近 曲边梯形面积.
0
证明 利用对数的性质得
lim n f 1 f 2 f n n n n n
eln lim n n
f
1 n

《定积分课件》课件

《定积分课件》课件

03 定积分的应用
CHAPTER
面积与体积的计算
总结词
定积分在计算平面图形的面积和三维物体的体积方面具有广 泛应用。
详细描述
利用定积分,可以计算出由曲线围成的平面图形的面积,例 如由y=sinx和y=cosx围成的图形面积。此外,定积分还可以 用于计算三维物体的体积,例如球体、圆柱体和旋转体的体 积。
详细描述
在静水压力问题中,压力分布是深度的函数。通过定积分,我们可以计算任意 深度的压力分布,从而了解水下物体的受力情况。
引力场的强度
总结词
通过定积分计算引力场的强度,理解引 力场的分布规律。
VS
详细描述
在引力场中,场强是位置的函数。通过定 积分,我们可以计算任意位置的场强,从 而了解物体在引力场中的运动规律。
符号表示
02
定积分的符号为∫,读作“拉姆达”。
计算方法
03
定积分的计算方法是通过微积分基本定理,将定积分转化为求
原函数在某点的值。
定积分的几何意义
平面区域面积
定积分可以用来计算平面图形的面积,特别是 当面积元素与坐标轴平行时。
体积
定积分还可以用来计算三维物体的体积,例如 旋转体的体积。
曲线下面积
定积分可以用来计算曲线下在某一区间内的面积。
定积分的计算方法
要点一
总结词
定积分的计算方法包括直接法、换元法和分部积分法等。
要点二
详细描述
定积分的计算可以通过多种方法进行。直接法是根据微积 分基本定理,通过求原函数并计算其差值来得到定积分的 结果。换元法是在积分变量进行换元,使得积分简化。分 部积分法则是通过将两个函数的乘积进行积分,将一个积 分转化为另一个积分,从而简化计算。这些方法在计算定 积分时常常需要结合使用。

定积分概念、性质ppt课件

定积分概念、性质ppt课件

上例曲边图形的面积用定积分表示
S1x2d x lin m (n 1 )2 (n 1 )1
0
n 6 n 3
3
注意:据定义有如下说明:
(1)定积分是特殊和式极限,它是一个定数;
(2)定积分的大小仅与区间[a,b]和被积函数f(x)有关;
(3)规定:
a
f(x)d x0,
b
a
f(x)d x f(x)dx
b f (x)dx
b
g ( x)dx
a
a
推2 论 :b
.
f(x)d
x
b
f( x) dx,(ab)
a
a
因f(x)f(x)f(x)
.
性质6(介值定理):设f(x)在[a,b]上可取得最大值M和最
小值m, 于是, 由性质5有
b
m (ba)af(x)d xM (ba)
几何意义也很明显
性质 7(积分中值若定函理 f(数 x)) 在[a: ,b]上连续,
S曲
lim n
n i 1
S i矩
lim
n
(n
1)( 2n 6n 2
1)
1 0.333 3
.
总结:求曲边梯形面积的步骤 v
引例1——曲边梯形的面积(演示) 引例2——变速直线运动的路程
设物体的运动速度 vvt
分割区间 作和
取近似值 取极限
T1
ti-1 i ti T2 t
(1)细分区间 [ T 1 ,T 2 ] [ T 1 ,t 1 ] U [ t 1 ,t2 ] U L U [ tn 1 ,T 2 ]
曲边梯形的面积,即:
n
S曲
.
lim
n i1

定积分的概念和基本性质教学精品PPT课件

定积分的概念和基本性质教学精品PPT课件

10
曲边梯形面积可取极限:
f (i )
y=f(x)
n
S
= lim 0 i=1
f (i ) xi
O a=x0 x1 x2 ... xi-1i xi ...
x
b xn1 xn=
7
引出定义的实例二:求物体作变ቤተ መጻሕፍቲ ባይዱ直线运动所经过的路程
例2.设物体沿直线作变速运动,速度为 v =v (t), 假定v (t)是 t 的连续
(2) 在第i个小区间[xi1, xi]上任取一点i ,用第i个小矩形的面积近似替代
第i个小曲边梯形的面积:Ai f ( i ) xi (i = 1, 2, , n)
(3) 将全部小矩形面积求和后作为
y
曲边梯形面积 S 的近似值。即有
n
S f(i)xi。
i =1
(4) 记=maxx1, x2, xn,为得到
分割 近似 求和 取极限
把整体的问题分成局部的问题 在局部上“以直代曲”, 求出 局部的近似值; 得到整体的一个近似值;
得到整体量的精确值;
6
一般地,求由连续曲线y=f(x)(f(x)0),直线x=a、x=b及 x轴所围成的曲边梯形的面积的方法是:
(1) 用直线 x = xi (i = 1, 2,..., n 1) 把曲边梯形分割为 n 个小曲边梯形。 每个小曲边梯形的底的宽度记为 xi = xi xi1 (i = 1, 2,..., n)。
取极限
得到整体量的精确值;
9
4.3.1 定积分的定义
定义 4.3.1:

区间任意分成 n 份,分点依次为
在每一个小区间[xi-1 , xi]上任取一点ci, 作乘积
f (ci )xi (xi = xi xi1) (i = 1,2,, n)

定积分的概念市公开课一等奖省赛课获奖PPT课件

定积分的概念市公开课一等奖省赛课获奖PPT课件

第38页
例 2 比较积分值 2 e xdx和 2 xdx 的大小.
0
0
解 令 f ( x) e x x, x [2, 0]
f ( x) 0,
0 (e x x)dx 0, 2
0 e xdx
0
xdx,
2
2
于是
2 e xdx
2
xdx.
0
0
第39页
例 3
估计积分
1 0 3 sin3
n
i 1
i2
1 n3
n(n
1)(2n 6
1)
1 6
1
1 n
2
1 n
,
0 n
1 x2dx 0
n
lim 0 i1
i 2xi
lim 1 1 1 2 1 1 . n 6 n n 3
第31页
二、定积分几何意义
y f ( x) 0,
y f ( x) 0,
oa
bx
oa
bx
第二节 定积分 (Definite Integral)
(一)
第1页
目标与要求
❖了解定积分概念及性质。 ❖了解定积分作为变上限函数及其求导定理。 ❖熟悉牛顿-莱布尼茨((Newton-Leibuniz)公式。 ❖熟练掌握定积分换元积分法,分部积分法。
第2页
一、 定积分概念
实例1 (求曲边梯形面积)

将[0,1]n 等分,分点为 x i
i ,(i n
1,2,, n)
小区间[ xi1 , xi ]的长度xi
1 ,(i n
1,2,, n)
取i xi ,(i 1,2,, n)
n
n
n

定积分的概念及性质PPT

定积分的概念及性质PPT

在每个小区间[ xi1, xi ]
上任取
一点

i
o a x1
b xi1i xi xn1
x
以 [ xi1, xi ]为底,f (i ) 为高的小矩形面积为
Ai f (i )xi
首页
上页
下页
曲边梯形面积的近似值为
n
A f (i )xi
i 1
当分割无限加细,即小区间的最大长度
max{x1, x2 , xn }
点i 怎样的取法,只要当 0时,和S 总趋于
确定的极限I , 我们称这个极限I 为函数 f ( x)
在区间[a, b]上的定积分,记为
积分上限 b a
f ( x)dx
I
lim 0
n i 1
积分和
f (i )xi
积分下限
被 积 函 数


[a,b] 积分区间




达 式

首页
上页
下页
注意:
思路:把整段时间分割成若干小段,每小段上 速度看作不变,求出各小段的路程再相加,便 得到路程的近似值,最后通过对时间的无限细 分过程求得路程的精确值.
首页
上页
下页
(1)分割 T1 t0 t1 t2 tn1 tn T2
ti ti ti1
si v( i )ti
部分路程值
某时刻的速度
i ,(i n
1,2,
,n)
小区间[ xi1 , xi ]的长度xi
1 ,(i n
1,2,
,n)
取i xi ,(i 1,2, , n)
n
n
n
f (i )xi i2xi xi2xi ,

定积分的概念课件

定积分的概念课件

区间可加性
总结词
定积分的区间可加性是指定积分在区间上的 值等于该区间内各小区间的定积分之和。
详细描述
定积分的区间可加性表明,对于任意两个不 相交的区间$[a, b]$和$[c, d]$,有
$int_{a}^{b}f(x)dx+int_{c}^{d}f(x)dx=int_ {a}^{d}f(x)dx$。这意味着可以将一个大区 间分割成若干个小区间,然后求各小区间的 定积分,再将它们相加,得到整个大区间的
体积计算
规则体积
对于规则的立体图形,如长方体、圆柱体、圆锥体等 ,可以直接利用定积分的值来计算其体积。例如,对 于圆柱体,其体积可以通过定积分$int_{a}^{b} 2pi r(h) dr$来计算。
曲顶体积
对于曲顶的立体图形,如球、球缺等,也可以利用定 积分来计算其体积。通过将曲顶立体分割成若干小锥 体,然后求和这些小锥体的体积,最后利用极限思想 得到整个曲顶立体的体积。
定积分的性质
02
线性性质
总结词
定积分的线性性质是指定积分具有与加法和数乘运算类似的性质。
详细描述
定积分的线性性质允许我们将一个被积函数与常数相加或相乘,其结果等于将相应的常数加到或乘到 该函数的定积分上。即,对于两个函数的定积分,有$int (k_1f+k_2g) dx = k_1int f dx + k_2int g dx$,其中$k_1$和$k_2$是常数。
应用
无穷区间上的积分在解决一些实际问题时非常有用,例如 求某些物理量(如质量、面积等)的无穷累加和。
一致收敛性
定义
01
一致收敛性是函数序列的一种收敛性质,它描述了函数序列在
某个区间上的一致收敛性。

《定积分的概念》课件

《定积分的概念》课件

定积分的微元法
微元法原理
微元法是将被积函数分成若干个微小的元素, 每个元素的贡献可以表示为微小面积与微元函 数值的乘积。
微元法应用
微元法可以用于计算定积分的瑕积分、曲线积 分、曲面积分等,是微积分中的常见方法。
定积分的瑕积分
1
定义
瑕积分是所要求解的曲边梯形面积存在间断点、奇点或无穷处时的积分。
2
定积分的数值解法
1
梯形法
将区间分成多个小区间,每个小区间按照梯形形状进行大概估算。可以用于求解较为 简单的问题。 Nhomakorabea2
辛普森法
将区间分成多个小区间,每个小区间按照二次曲线形状进行更加精确的估算,具有高 精度和较高的运算成本。
3
数值微积分
通过使用数值微积分方法,如泰勒展开、拉格朗日、牛顿-科茨等方法,求解定积分的 数值解。
定积分的概念
欢迎来到本课程!本节课将介绍定积分的概念和相关知识点。
什么是定积分
数学定义
定积分是求曲边梯形面积的极限值,也是区间上的面积和,是微积分的重要概念。
直观理解
定积分描述了一个函数在区间上的累积变化,可以用于求面积、体积、平均数等问题。
定积分的意义和应用
意义
定积分是微积分的基础,让我们可以精确求解 函数的变化量。
矢量场定义
路径无关性可以通过矢量场的定义进行证明,该 定义称为黎曼条件。
保守场定义
保守场是指通量积分对于路径没有依赖性,可以 用来描述物理中的力场、磁场等。
定积分的曲面积分
定义
曲面积分是对曲面上的函数进行积分,通常应 用于流量、面积、压力等问题。
算法
可使用高斯公式、斯托克斯公式等方法求解。
定积分的环量积分

高等数学 课件 PPT 第五章 定积分

高等数学 课件 PPT 第五章  定积分
[a,b]上有界并不是可积的充分条件.例如,
在[0,1]上是有界函数,但不可积.因为不论对[0,1]怎样分 割,在任意被分割的小区间[xi-1,xi]上,总能取到ξi为有理数, 这时f(ξi)=1,也总能取到ξi为无理数,这时f(ξi)=0.所以对[0,1] 的任何一种分法,我们总可以得到
一、定积分的概念
思考
一个函数在什么条件下可积?什么条件下不可积?
一、定积分的概念
3. 定积分存在的充分条件
若f(x)在[a,b]上无界,则f(x)在[a,b]上一定是不可积 的.这是因为,若f(x)在[a,b]上无界,那么无论对[a,b] 怎样分割,都至少有一个区间[xi-1,xi],函数f(x)在其上无 界.因此,在[xi-1,xi]上一定可以取一点ξi,使得f(ξi)大于任 意一个正数M,因而也就使得和式 ∑ =1f(ξi)Δxi可以任意的 大.当λ→0时,这个和就不可能趋向于任何极限.由此可知, f(x)在[a,b]上可积的必要条件是f(x)在[a,b]上有界.
一、变速直线运动中位置函数与速度函数之间的联系
为了讨论质点在变速直线运动中位置函数与速度函数间的 联系,有必要沿质点的运动方向建立坐标轴.设时刻t时质点所 在位置st,速度vtvt≥0. 已知质点在时间间隔T1,T2内经过的路程可以用速度函数vt在 T1,T2上的定积分
一、定积分的概念
在区间[a,b]上,f(x)既有正值又有负值时,函数y=f(x) 的图形某些部分在x轴的上方,而其他部分在x轴的下方.如果 规定在x轴的上方的图形的面积为正,在x下方的图形面积为负, 那么∫baf(x) 的几何意义就是介于曲线y=f(x)、x轴及两条直线 x=a,x=b之间的各部分面积的代数和,如图5-2所示.
把区间[a,b]分成个n小区间 [x0,x1],[x1,x2],…,[xn-1,xn],

定积分的概念-PPT精选

定积分的概念-PPT精选
b
s a v(t)dt;
密 度 为 ( x ) 线 状 物 体 的 质 量 为
m b(x)dx. a 前页 后页 返回
关于定积分定义,应注意以下几点:
n
注1 表 达 式 JlT im 0i1f(i)xi 不 仅 与 n和 T有
关 , 还 与 { 1 ,2 , ,n } 有 关 , 因此定积分既不是数 列极限,也不是函数极限.
区 间 [xi1, xi]的长度不趋于 0 . 要 保 证 每 个 区 间 [ x i 1 , x i ] 的 长 度 趋 于 0 , 需 引 入 分 割 T 的 细 度 ( 模 ) :
T m a x x i i 1 ,2 , ,n .
则 当T0时 ,就能保证分割越来越细.
n
当v(t)v0为 匀 速 运 动 时 , s v 0 ( b a ) ; 当质量是
均 匀 分 布 时 , 即 x 为 常 数 时 , m(ba).
这就是说,在“常值”、“均匀”、“不变”的情况下
前页 后页 返回
可以用简单的乘法进行计算. 而现在遇到的问题 是“非常值” 、“不均匀”、“有变化”的情形, 如来何解决这些问题呢? 以下我们以求曲边梯形的面积为例,把这类问题 合理地归为一类特殊的和式的极限. 中心思想: 把曲边梯形看作许许多多小的曲边梯形之和,每 个小曲边梯形面积,可近似地用矩形的面积来替
与S的差距就会越来越小.
i 1
问题是:
(1 )如 何 刻 划 分 割 越 来 越细?
n
(2 )如 何 刻 划 f(i)x i越 来 越 逼 近 于 S ? i 1
下面依次讨论这两个问题.
前页 后页 返回
( 1 ) 对 于 一 般 的 T : a 0 x 0 x 1 x n b , 不 能 用n来表示分割 T 越来越细,因为可能某些
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


将[0,1]n 等分,分点为xi
i ,(i n
1,2,
,n)
小区间[ xi1 , xi ]的长度xi
1 ,(i n
1,2,
,n)
取i xi ,(i 1,2, , n)
n
n
n
f (i )xi i2xi xi2xi ,
i 1
i 1
i 1
n
i 1
i n
பைடு நூலகம்
2
1 n
1 n3
n
i 1
i2
1 n3
xi xi xi1,(i 1,2, ),在各小区间上任取
一点i (i xi ),作乘积 f (i )xi (i 1,2, )
n
并作和S f (i )xi ,
i 1
记 max{ x1 , x2 , , xn },如果不论对[a, b]
怎样的分法, 也不论在小区间[ xi1 , xi ]上
A
lim
0
i 1
f
(i )xi
n
s
lim
0
i 1
v(
i
)ti
(1)分割 (2)近似 (3)求和 (4)取极限
一、定积分的定义
定义 设函数 f ( x)在[a, b]上有界,在[a, b]中任意插入
若干个分点 a x x x x x b
0
1
2
n1
n
把区间[a, b]分成n 个小区间,各小区间的长度依次为
Ai f (i )xi
近似
曲边梯形面积的近似值为
n
A f (i )xi
i 1
求和
当分割无限加细,即小区间的最大长度
max{x1, x2 , xn }
趋近于零 ( 0) 时,
n
曲边梯形面积为
A lim 0 i1
f (i )xi
取极限
实例2 路程问题(Distance Problem)
而与积分变量的字母无关.
b
a
f
( x)dx
b
a
f
(t )dt
b
a
f
(u)du
(2)定义中区间的分法和
i
的取法是任意的
(3)当函数 f ( x)在区间[a,b]上的定积分存在时, 称 f ( x)在区间[a, b]上可积.
曲边梯形由连续曲线 y f ( x)( f ( x) 0)、
x轴与两条直线x a 、x b所围成.
n(n
1)(2n 6
1)
1 6
1
1 n
2
1 n
,
0 n
1 x2dx
0
n
lim 0 i1
i 2xi
lim 1 1 1 2 1 1 . n 6 n n 3
二、定积分的几何意义
y f ( x) 0,
y f ( x) 0,
oa
bx
oa
bx
b
a
f
( x)dx
A
曲边梯形的面积
b
a f ( x)dx A
曲边梯形的面积 的负值
y
a
A2
o
A1
b
A3
x
它是介于x 轴、函数 f ( x) 的图形及两条 直 线 x a, x b 之 间 的 各 部 分 面 积 的 代数 和 . 在 x 轴 上 方 的 面 积 取 正 号 ;在 x 轴 下 方 的 面 积取负号.
b
a f ( x)dx A1 A2 A3
设某质点作直线运动,速度v v(t ) 是时间 间隔[T1 ,T2 ]上t 的一个连续函数,求物体在这
段时间内所经过的路程.
对于匀速运动,我们有公式 路程=速度X时间
解决变速运动的路程的基本思路
把整段时间分割成若干小时间段,每小段上速 度看作不变,求出各小段的路程的近似值,再相加, 便得到路程的近似值,最后通过对时间的无限细分 过程求得路程的精确值.
其 面积A等 于函 数f ( x)在 区间[a, b]上 的定 积 分, 即
b
A a f ( x)dx
设某质点作直线运动,速度 v v(t)是时间间 隔[T1 ,T2 ]上t 的一个连续函数,物体在这段时
间内所经过的路程.
S T2v(t)dt T1
例1 利用定义计算定积分 1 x2dx. 0
定积分的概念
目的与要求
❖理解定积分的概念及性质。 ❖理解定积分作为变上限的的函数及其求导定理。 ❖熟悉牛顿-莱布尼茨((Newton-Leibuniz)公式。 ❖熟练掌握定积分的换元积分法,分部积分法。
一、 定积分的概念
实例1 (求曲边梯形的面积)
曲边梯形由连续曲线 y
y f (x)
y f (x),( f (x) 0)
(1)分割 T1 t0 t1 t2 tn1 tn T2
(2) 近似 ti ti ti1
si v( i )ti
部分路程值
某时刻的速度
n
(3)求和 s v( i )ti
i 1
(4)取极限 max{t1,t2 , ,tn }
路程的精确值
n
s
lim
0
i 1
v(
i
)ti
n
点i 怎样的取法,只要当 0时,和S 总趋于 确定的极限I , 我们称这个极限I 为函数 f ( x)
在区间[a, b]上的定积分,记为
积分上限
积分和
b a
f ( x)dx
I
lim 0
n i 1
f
(i )xi
被 积分下限 积 函 数


[a,b] 积分区间




达 式

注意:
(1) 积分值仅与被积函数及积分区间有关,
个分点,a x0 x1 x2 xn1 xn b,
把区间[a,b] 分成 n y
个小区间[ xi1, xi ], 长度为 xi xi xi1;
分割
在每个小区间[ xi1, xi ]
上任取
一点

i
o a x1
b xi1i xi xn1
x
以 [ xi1, xi ]为底,f (i ) 为高的小矩形面积为
A?
x轴与两条直线x a 、
o
a
bx
x b所围成.
用矩形面积近似取代曲边梯形面积
y
y
oa
b xo a
bx
(四个小矩形)
(九个小矩形)
显然,小矩形越多,矩形总面积越接近 曲边梯形面积.
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系.
播放
曲边梯形如图所示, 在区间[a,b]内插入若干
b
f (x)dx
b
g(x)dx
a
a
a
(可推广到有限个的情形.)
3). 若把[a , b]分为两部分[a , c]和[c , b] , 则
b
c
b
a f (x)dx a f (x)dx c f (x)dx
注 : 若分点c在区间[a,b]之外 , 则f (x)在
三、定积分的性质
对定积分的补充规定:
(1)当a
b时, b a
f
(
x)dx
0;
(2)当a
b时, b a
f
( x)dx
a b
f
( x)dx .
说明 在下面的性质中,假定定积分都存 在,且不考虑积分上下限的大小.
1).
b
kf (x)dx k
b
f (x)dx,
(k为常数)
a
a
2).
b
[ f (x) g(x)]dx
相关文档
最新文档