半导体物理学(第7版)第三章习题和答案
半导体物理学 刘恩科 第七版 完整课后题答案
半导体物理学刘恩科第七版完整课后题答案 Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#第一章习题1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k)分别为:E c =0220122021202236)(,)(3m k h m k h k E m k k h m k h V -=-+ (1)禁带宽度;(2) 导带底电子有效质量; (3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化 解:(1)2. 晶格常数为的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。
解:根据:tkh qE f ∆∆== 得qE k t -∆=∆补充题1分别计算Si (100),(110),(111)面每平方厘米内的原子个数,即原子面密度(提示:先画出各晶面内原子的位置和分布图) Si 在(100),(110)和(111)面上的原子分布如图1所示: (a )(100)晶面 (b )(110)晶面(c )(111)晶面补充题2一维晶体的电子能带可写为)2cos 81cos 87()22ka ka ma k E +-= (,式中a 为 晶格常数,试求(1)布里渊区边界; (2)能带宽度;(3)电子在波矢k 状态时的速度;(4)能带底部电子的有效质量*n m ;(5)能带顶部空穴的有效质量*p m解:(1)由0)(=dk k dE 得 an k π=(n=0,1,2…) 进一步分析an k π)12(+= ,E (k )有极大值,ank π2=时,E (k )有极小值所以布里渊区边界为an k π)12(+=(2)能带宽度为222)()ma k E k E MIN MAX =-( (3)电子在波矢k 状态的速度)2sin 41(sin 1ka ka ma dk dE v -==(4)电子的有效质量能带底部 an k π2=所以m m n2*= (5)能带顶部 an k π)12(+=, 且**n p m m -=,所以能带顶部空穴的有效质量32*mm p =半导体物理第2章习题1. 实际半导体与理想半导体间的主要区别是什么答:(1)理想半导体:假设晶格原子严格按周期性排列并静止在格点位置上,实际半导体中原子不是静止的,而是在其平衡位置附近振动。
半导体物理学第七版完整答案修订版
半导体物理学第七版完整答案修订版IBMT standardization office【IBMT5AB-IBMT08-IBMT2C-ZZT18】第一章习题1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k)分别为:E C (K )=0220122021202236)(,)(3m k h m k h k E m k k h m k h V -=-+ (1)禁带宽度;(2)导带底电子有效质量;(3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化解:(1)2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。
解:根据:tkhqE f ∆∆== 得qE k t -∆=∆补充题1分别计算Si (100),(110),(111)面每平方厘米内的原子个数,即原子面密度(提示:先画出各晶面内原子的位置和分布图)Si 在(100),(110)和(111)面上的原子分布如图1所示:(a )(100)晶面 (b )(110)晶面(c )(111)晶面补充题2一维晶体的电子能带可写为)2cos 81cos 87()22ka ka ma k E +-=(, 式中a 为 晶格常数,试求(1)布里渊区边界;(2)能带宽度;(3)电子在波矢k 状态时的速度;(4)能带底部电子的有效质量*n m ;(5)能带顶部空穴的有效质量*p m解:(1)由0)(=dk k dE 得 an k π= (n=0,?1,?2…)进一步分析an k π)12(+= ,E (k )有极大值,ank π2=时,E (k )有极小值所以布里渊区边界为an k π)12(+=(2)能带宽度为222)()mak E k E MINMAX =-( (3)电子在波矢k 状态的速度)2sin 41(sin 1ka ka ma dk dE v -==(4)电子的有效质量能带底部 an k π2=所以m m n2*= (5)能带顶部 an k π)12(+=, 且**n p m m -=,所以能带顶部空穴的有效质量32*mm p =半导体物理第2章习题1. 实际半导体与理想半导体间的主要区别是什么答:(1)理想半导体:假设晶格原子严格按周期性排列并静止在格点位置上,实际半导体中原子不是静止的,而是在其平衡位置附近振动。
半导体物理学(第七版)完整答案
半导体物理学(第七版)完整答案第一章习题1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k)分别为:E C (K )=0220122021202236)(,)(3m k h m k h k E m k k h m k h V -=-+ 0m 。
试求:为电子惯性质量,nm a ak 314.0,1==π(1)禁带宽度;(2)导带底电子有效质量; (3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化 解:(1)eVm k E k E E E k m dk E d k m kdk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43(0,060064338232430)(2320212102220202020222101202==-==<-===-==>=+===-+ 因此:取极大值处,所以又因为得价带:取极小值处,所以:在又因为:得:由导带:043222*83)2(1m dk E d mk k C nC===sN k k k p k p m dk E d mk k k k V nV/1095.7043)()()4(6)3(25104300222*11-===⨯=-=-=∆=-== 所以:准动量的定义:2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。
解:根据:tkhqE f ∆∆== 得qE k t -∆=∆sat sat 137192821911027.810106.1)0(1027.810106.1)0(----⨯=⨯⨯--=∆⨯=⨯⨯--=∆ππ补充题1分别计算Si (100),(110),(111)面每平方厘米内的原子个数,即原子面密度(提示:先画出各晶面内原子的位置和分布图)Si 在(100),(110)和(111)面上的原子分布如图1所示:(a )(100)晶面 (b )(110)晶面(c )(111)晶面补充题2一维晶体的电子能带可写为)2cos 81cos 87()22ka ka ma k E +-=(, 式中a 为 晶格常数,试求(1)布里渊区边界; (2)能带宽度;(3)电子在波矢k 状态时的速度;(4)能带底部电子的有效质量*n m ;(5)能带顶部空穴的有效质量*p m解:(1)由0)(=dk k dE 得 an k π=(n=0,±1,±2…)进一步分析an k π)12(+= ,E (k )有极大值, 222)ma k E MAX=(ank π2=时,E (k )有极小值 所以布里渊区边界为a n k π)12(+= (2)能带宽度为222)()ma k E k E MINMAX=-((3)电子在波矢k 状态的速度)2sin 41(sin 1ka ka ma dk dE v -==(4)电子的有效质量)2cos 21(cos 222*ka ka mdkEd m n-==能带底部 an k π2= 所以mm n2*=(5)能带顶部 a n k π)12(+=,且**np m m-=,所以能带顶部空穴的有效质量32*m mp=半导体物理第2章习题1. 实际半导体与理想半导体间的主要区别是什么?答:(1)理想半导体:假设晶格原子严格按周期性排列并静止在格点位置上,实际半导体中原子不是静止的,而是在其平衡位置附近振动。
半导体物理学(刘恩科第七版)课后习题答案
1.设晶格常数为 a 的一维晶格,导带极小值附近能量 Ec(k)和价带极大值附近 能量 EV(k)分别为: h 2 k 2 h 2 ( k k1 ) 2 h 2 k 21 3h 2 k 2 Ec= , EV (k ) 3m0 m0 6m0 m0 m0 为电子惯性质量,k1
1
在E ~ E dE空间的状态数等于k空间所包含的 状态数。 即d z g (k ' ) Vk ' g (k ' ) 4k ' dk 2( m m m ) 1 3 2 1 dz ' t t l ( E Ec ) 2 V g (E) 4 2 dE h 对于si导带底在100个方向,有六个对称的旋转椭球, 锗在( 111)方向有四个,
解: (1)由
dE (k ) n 0 得 k dk a
(n=0,1,2…) 进一步分析 k ( 2n 1)
a
,E(k)有极大值,
E(k ) MAX k 2n
2 2 ma 2
a
时,E(k)有极小值
所以布里渊区边界为 k ( 2n 1)
a
2 2 ma 2
7. 锑化铟的禁带宽度 Eg=0.18eV,相对介电常数r=17,电子的有效质量
m* n =0.015m0, m0 为电子的惯性质量,求①施主杂质的电离能,②施主的弱束
缚电子基态轨道半径。
解:根据类氢原子模型:
* 4 * mn q mn E0 13.6 E D 0.0015 2 7.1 10 4 eV 2 2 2 m0 r 2(4 0 r ) 17
(2)能带宽度为 E(k ) MAX E ( k ) MIN (3)电子在波矢 k 状态的速度 v (4)电子的有效质量
半导体物理学(刘恩科)第七版课后答案
2 2 ma 2
1 dE 1 (sin ka sin 2ka) dk ma 4
2 m 2 1 d E (cos ka cos 2ka) 2 dk 2
能带底部 k
2n a
所以 mn 2m
*
(5)能带顶部 k 且 m p mn ,
* *
(2n 1) , a
多余的电子束缚在正电中心, 但这种束缚很弱,很小的能量就可使电子摆脱束缚, 成为在晶格中导电的自由电子,而 As 原子形成一个不能移动的正电中心。这个 过程叫做施主杂质的电离过程。 能够施放电子而在导带中产生电子并形成正电中 心,称为施主杂质或 N 型杂质,掺有施主杂质的半导体叫 N 型半导体。 3. 以 Ga 掺入 Ge 中为例,说明什么是受主杂质、受主杂质电离过程和 p 型半导 体。 Ga 有 3 个价电子,它与周围的四个 Ge 原子形成共价键,还缺少一个电子,于是 在 Ge 晶体的共价键中产生了一个空穴, 而 Ga 原子接受一个电子后所在处形成一 个负离子中心,所以,一个 Ga 原子取代一个 Ge 原子,其效果是形成一个负电中 心和一个空穴,空穴束缚在 Ga 原子附近,但这种束缚很弱,很小的能量就可使 空穴摆脱束缚,成为在晶格中自由运动的导电空穴,而 Ga 原子形成一个不能移 动的负电中心。 这个过程叫做受主杂质的电离过程,能够接受电子而在价带中产 生空穴,并形成负电中心的杂质,称为受主杂质,掺有受主型杂质的半导体叫 P 型半导体。 4. 以 Si 在 GaAs 中的行为为例, 说明 IV 族杂质在 III-V 族化合物中可能出现的 双性行为。 Si 取代 GaAs 中的 Ga 原子则起施主作用; Si 取代 GaAs 中的 As 原子则起受 主作用。导带中电子浓度随硅杂质浓度的增加而增加,当硅杂质浓度增加到 一定程度时趋于饱和。硅先取代 Ga 原子起施主作用,随着硅浓度的增加,硅 取代 As 原子起受主作用。 5. 举例说明杂质补偿作用。 当半导体中同时存在施主和受主杂质时, 若(1) ND>>NA 因为受主能级低于施主能级,所以施主杂质的电子首先跃迁到 NA 个受主能级 上,还有 ND-NA 个电子在施主能级上,杂质全部电离时,跃迁到导带中的导电 电子的浓度为 n= ND-NA。即则有效受主浓度为 NAeff≈ ND-NA (2)NA>>ND 施主能级上的全部电子跃迁到受主能级上, 受主能级上还有 NA-ND 个空穴, 它们可接受价带上的 NA-ND 个电子,在价带中形成的空穴浓度 p= NA-ND. 即有效
半导体物理学(刘恩科)第七版-完整课后题答案
第一章习题1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k)分别为:E c =0220122021202236)(,)(3m k h m k h k E m k k h m k h V -=-+ 0m 。
试求:为电子惯性质量,nm a ak 314.0,1==π(1)禁带宽度;(2) 导带底电子有效质量; (3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化 解:(1)eV m k E k E E E k m dk E d k m kdk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43(0,060064338232430)(2320212102220202020222101202==-==<-===-==>=+===-+ 因此:取极大值处,所以又因为得价带:取极小值处,所以:在又因为:得:由导带:043222*83)2(1m dk E d mk k C nC===sN k k k p k p m dk E d mk k k k V nV/1095.7043)()()4(6)3(25104300222*11-===⨯=-=-=∆=-== 所以:准动量的定义:2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。
解:根据:t k hqE f ∆∆== 得qEk t -∆=∆ sat sat 137192821911027.810106.1)0(1027.810106.1)0(----⨯=⨯⨯--=∆⨯=⨯⨯--=∆ππ补充题1分别计算Si (100),(110),(111)面每平方厘米内的原子个数,即原子面密度(提示:先画出各晶面内原子的位置和分布图)Si 在(100),(110)和(111)面上的原子分布如图1所示:(a )(100)晶面 (b )(110)晶面(c )(111)晶面补充题2一维晶体的电子能带可写为)2cos 81cos 87()22ka ka ma k E +-= (, 式中a 为 晶格常数,试求(1)布里渊区边界; (2)能带宽度;(3)电子在波矢k 状态时的速度;(4)能带底部电子的有效质量*n m ;(5)能带顶部空穴的有效质量*p m解:(1)由0)(=dk k dE 得 an k π= (n=0,±1,±2…) 进一步分析an k π)12(+= ,E (k )有极大值,214221422142822/1083.7342232212414111/1059.92422124142110/1078.6)1043.5(224141100cm atom a a a cm atom a a a cm atom a a ⨯==⨯+⨯+⨯⨯==⨯⨯+⨯+⨯=⨯==⨯+-):():():(222)mak E MAX =( ank π2=时,E (k )有极小值所以布里渊区边界为an k π)12(+=(2)能带宽度为222)()ma k E k E MIN MAX =-( (3)电子在波矢k 状态的速度)2sin 41(sin 1ka ka ma dk dE v -== (4)电子的有效质量)2cos 21(cos 222*ka ka mdkEd m n-== 能带底部 an k π2=所以m m n 2*= (5)能带顶部 an k π)12(+=, 且**n p m m -=,所以能带顶部空穴的有效质量32*mm p =半导体物理第2章习题1. 实际半导体与理想半导体间的主要区别是什么?答:(1)理想半导体:假设晶格原子严格按周期性排列并静止在格点位置上,实际半导体中原子不是静止的,而是在其平衡位置附近振动。
半导体物理学(刘恩科)第七版-完整课后题答案
第一章习题1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k)分别为:E c =0220122021202236)(,)(3m k h m k h k E m k k h m k h V -=-+ 0m 。
试求:为电子惯性质量,nm a ak 314.0,1==π(1)禁带宽度;(2) 导带底电子有效质量; (3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化 解:(1)eV m k E k E E E k m dk E d k m kdk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43(0,060064338232430)(2320212102220202020222101202==-==<-===-==>=+===-+ 因此:取极大值处,所以又因为得价带:取极小值处,所以:在又因为:得:由导带:043222*83)2(1m dk E d mk k C nC===sN k k k p k p m dk E d mk k k k V nV/1095.7043)()()4(6)3(25104300222*11-===⨯=-=-=∆=-== 所以:准动量的定义:2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。
解:根据:t k hqE f ∆∆== 得qEk t -∆=∆ sat sat 137192821911027.810106.1)0(1027.810106.1)0(----⨯=⨯⨯--=∆⨯=⨯⨯--=∆ππ补充题1分别计算Si (100),(110),(111)面每平方厘米内的原子个数,即原子面密度(提示:先画出各晶面内原子的位置和分布图)Si 在(100),(110)和(111)面上的原子分布如图1所示:(a )(100)晶面 (b )(110)晶面(c )(111)晶面补充题2一维晶体的电子能带可写为)2cos 81cos 87()22ka ka ma k E +-= (, 式中a 为 晶格常数,试求(1)布里渊区边界; (2)能带宽度;(3)电子在波矢k 状态时的速度;(4)能带底部电子的有效质量*n m ;(5)能带顶部空穴的有效质量*p m解:(1)由0)(=dk k dE 得 an k π= (n=0,±1,±2…) 进一步分析an k π)12(+= ,E (k )有极大值,214221422142822/1083.7342232212414111/1059.92422124142110/1078.6)1043.5(224141100cm atom a a a cm atom a a a cm atom a a ⨯==⨯+⨯+⨯⨯==⨯⨯+⨯+⨯=⨯==⨯+-):():():(222)mak E MAX =( ank π2=时,E (k )有极小值所以布里渊区边界为an k π)12(+=(2)能带宽度为222)()ma k E k E MIN MAX =-( (3)电子在波矢k 状态的速度)2sin 41(sin 1ka ka ma dk dE v -== (4)电子的有效质量)2cos 21(cos 222*ka ka mdkEd m n-== 能带底部 an k π2=所以m m n 2*= (5)能带顶部 an k π)12(+=, 且**n p m m -=,所以能带顶部空穴的有效质量32*mm p =半导体物理第2章习题1. 实际半导体与理想半导体间的主要区别是什么?答:(1)理想半导体:假设晶格原子严格按周期性排列并静止在格点位置上,实际半导体中原子不是静止的,而是在其平衡位置附近振动。
半导体物理学(刘恩科)第七版-完整课后题答案
第一章习题1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k)分别为:E c =0220122021202236)(,)(3m k h m k h k E m k k h m k h V -=-+ 0m 。
试求:为电子惯性质量,nm a ak 314.0,1==π(1)禁带宽度;(2) 导带底电子有效质量; (3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化 解:(1)eV m k E k E E E k m dk E d k m kdk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43(0,060064338232430)(2320212102220202020222101202==-==<-===-==>=+===-+ 因此:取极大值处,所以又因为得价带:取极小值处,所以:在又因为:得:由导带:043222*83)2(1m dk E d mk k C nC===sN k k k p k p m dk E d mk k k k V nV/1095.7043)()()4(6)3(25104300222*11-===⨯=-=-=∆=-== 所以:准动量的定义:2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。
解:根据:t k hqE f ∆∆== 得qEk t -∆=∆ sat sat 137192821911027.810106.1)0(1027.810106.1)0(----⨯=⨯⨯--=∆⨯=⨯⨯--=∆ππ补充题1分别计算Si (100),(110),(111)面每平方厘米内的原子个数,即原子面密度(提示:先画出各晶面内原子的位置和分布图)Si 在(100),(110)和(111)面上的原子分布如图1所示:(a )(100)晶面 (b )(110)晶面(c )(111)晶面补充题2一维晶体的电子能带可写为)2cos 81cos 87()22ka ka ma k E +-= (, 式中a 为 晶格常数,试求(1)布里渊区边界; (2)能带宽度;(3)电子在波矢k 状态时的速度;(4)能带底部电子的有效质量*n m ;(5)能带顶部空穴的有效质量*p m解:(1)由0)(=dk k dE 得 an k π= (n=0,±1,±2…) 进一步分析an k π)12(+= ,E (k )有极大值,214221422142822/1083.7342232212414111/1059.92422124142110/1078.6)1043.5(224141100cm atom a a a cm atom a a a cm atom a a ⨯==⨯+⨯+⨯⨯==⨯⨯+⨯+⨯=⨯==⨯+-):():():(222)mak E MAX =( ank π2=时,E (k )有极小值所以布里渊区边界为an k π)12(+=(2)能带宽度为222)()ma k E k E MIN MAX =-( (3)电子在波矢k 状态的速度)2sin 41(sin 1ka ka ma dk dE v -== (4)电子的有效质量)2cos 21(cos 222*ka ka mdkEd m n-== 能带底部 an k π2=所以m m n 2*= (5)能带顶部 an k π)12(+=, 且**n p m m -=,所以能带顶部空穴的有效质量32*mm p =半导体物理第2章习题1. 实际半导体与理想半导体间的主要区别是什么?答:(1)理想半导体:假设晶格原子严格按周期性排列并静止在格点位置上,实际半导体中原子不是静止的,而是在其平衡位置附近振动。
半导体物理学(刘恩科)第七版完整课后题答案讲课稿
3. 以 Ga掺入 Ge中为例,说明什么是受主杂质、受主杂质电离过程和 p 型半导
体。
Ga有 3 个价电子,它与周围的四个 Ge原子形成共价键,还缺少一个电子,于是
在 Ge晶体的共价键中产生了一个空穴, 而 Ga原子接受一个电子后所在处形成一
个负离子中心, 所以, 一个 Ga原子取代一个 Ge原子, 其效果是形成一个负电中
载流子有效质量 m* n m *p。计算 77K时的 NC 和 NV。 已知 300K时,Eg=0.67eV。77k
时 Eg=0.76eV。求这两个温度时锗的本征载流子浓度。② 77K 时,锗的电子浓度 为 1017cm-3 ,假定受主浓度为零,而 Ec-ED=0.01eV,求锗中施主浓度 ED为多少?
E(C k) EC
h2
k
2 x
k
2 y
(
k
2 z
)
状态数。
令 kx'
2 mt
ml
(
ma
1
)2
kx
,k
' y
(
ma
)
1 2
ky
,k
' z
(
ma
)
1 2
k
即d
z
z
g(k ' ) ? Vk'
g(k ' ) ? 4 k ' 2dk
3
1
2
mt 则: Ec (k ' ) Ec
mt
ml
h2
(
k
'2 x
k '2 y
价带:
dEV
6 2k
dk
m0
又因为
d 2 EV dk 2
半导体物理学(第7版)第三章习题和答案
第三章习题和答案1. 计算能量在E=E c 到 之间单位体积中的量子态数。
2*n 2C L 2m 100E E π+=解:2. 试证明实际硅、锗中导带底附近状态密度公式为式(3-6)。
322233*28100E 21233*22100E 0021233*231000L 8100)(3222)(22)(1Z VZZ )(Z )(22)(2322C22CL E m h E E E m V dE E E m V dE E g Vd dEE g d E E m V E g cn c C nlm h E C nlm E C nn c n c πππππ=+-=-====-=*++⎰⎰**)()(单位体积内的量子态数)()(21)(,)"(2)()(,)(,)()(2~.2'213''''''2'21'21'21'2222222C a a lt tz y x ac c zla z y t ay x t a xz t y x C C e E E m hk V m mm m k g k k k k k m h E k E k m m k k m m k k m m k mlk m k k h E k E K IC E G si -=⎪⎪⎭⎫ ⎝⎛+∙=+++====+++=*****系中的态密度在等能面仍为球形等能面系中在则:令)(关系为)(半导体的、证明:[]3123221232'2123231'2'''')()2(4)()(111100)()(24)(4)()(~ltn c nc l t t z m m sm VE E hm E sg E g si V E E h m m m dE dz E g dkk k g Vk k g d k dE E E =-==∴-⎥⎥⎦⎤⎢⎢⎣⎡+∙∙==∴∙=∇∙=+**πππ)方向有四个,锗在(旋转椭球,个方向,有六个对称的导带底在对于即状态数。
半导体物理第三章习题参考答案
NA
解得:
p
NA 2
1
1
4ni2
N
2 A
1
2
1 叶良修,半导体物理学(第二版),上册,129 页。
(1) T 300K 时,硼原子全部电离,此时本征载流子浓度 ni 1.51010cm-3 有:
NA ,
p
NA
1014 cm-3 , n
ni2 p
2.3106 cm-3 ;
(2) T 400K 时,此时本征载流子浓度23 ni 1.31014 cm-3 NA ,本征激发已不 能忽略,有:
答:当T 300K 时,有:
3
3
NC
2
2 mnkT h2
2
2.509 1019
mn m0
2
cm-3
3
3
NV
2
2
mp h2
kT
2
2.509
1019
mp m0
2
cm-3
ni
NC NV
1
2
exp
Eg 2kT
代入数据得到:
Si GaAs
NC cm-3 2.7581019 4.351017
由波尔兹曼分布近似:
n NA ND nD
n
NC
exp
EC EF kT
以及施主能级上的电子的分布规律:
有:
nD
ND
1 gD
exp
EF ED kT
1
1 gD
exp
EF ED kT
n NA n n ND nD
ND NA n
nD
n
ND nD
1
n
1 gD
exp
半导体物理学(第七版)完整答案详解
第一章习题1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k)分别为:E C (K )=0220122021202236)(,)(3m k h m k h k E m k k h m k h V -=-+ 0m 。
试求:为电子惯性质量,nm a ak 314.0,1==π(1)禁带宽度;(2)导带底电子有效质量; (3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化 解:(1)eVm k E k E E E k m dk E d k m kdk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43(0,060064338232430)(2320212102220202020222101202==-==<-===-==>=+===-+ 因此:取极大值处,所以又因为得价带:取极小值处,所以:在又因为:得:由导带:043222*83)2(1m dk E d mk k C nC===sN k k k p k p m dk E d mk k k k V nV/1095.7043)()()4(6)3(25104300222*11-===⨯=-=-=∆=-== 所以:准动量的定义:2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。
解:根据:tkhqE f ∆∆== 得qE k t -∆=∆sat sat 137192821911027.810106.1)0(1027.810106.1)0(----⨯=⨯⨯--=∆⨯=⨯⨯--=∆ππ补充题1分别计算Si (100),(110),(111)面每平方厘米内的原子个数,即原子面密度(提示:先画出各晶面内原子的位置和分布图)Si 在(100),(110)和(111)面上的原子分布如图1所示:(a )(100)晶面 (b )(110)晶面(c )(111)晶面补充题2一维晶体的电子能带可写为)2cos 81cos 87()22ka ka ma k E +-= (, 式中a 为 晶格常数,试求(1)布里渊区边界; (2)能带宽度;(3)电子在波矢k 状态时的速度;(4)能带底部电子的有效质量*n m ;(5)能带顶部空穴的有效质量*p m解:(1)由0)(=dk k dE 得 an k π= (n=0,±1,±2…) 进一步分析an k π)12(+= ,E (k )有极大值,222)mak E MAX=( ank π2=时,E (k )有极小值所以布里渊区边界为an k π)12(+=(2)能带宽度为222)()ma k E k E MIN MAX =-( (3)电子在波矢k 状态的速度)2sin 41(sin 1ka ka ma dk dE v -== (4)电子的有效质量)2cos 21(cos 222*ka ka mdkEd m n-==能带底部 an k π2=所以m m n 2*= (5)能带顶部 an k π)12(+=, 且**n p m m -=,所以能带顶部空穴的有效质量32*mm p =半导体物理第2章习题1. 实际半导体与理想半导体间的主要区别是什么?答:(1)理想半导体:假设晶格原子严格按周期性排列并静止在格点位置上,实际半导体中原子不是静止的,而是在其平衡位置附近振动。
半导体物理学(第7版)第三章习题和答案
第三章习题和答案1. 计算能量在E=E c 到2*n 2C L 2m 100E E π+= 之间单位体积中的量子态数。
解:2. 试证明实际硅、锗中导带底附近状态密度公式为式(3-6)。
322233*28100E 21233*22100E 0021233*231000L 8100)(3222)(22)(1Z VZZ )(Z )(22)(2322C22CL E m h E E E m V dE E E m V dE E g Vd dEE g d E E m V E g cn c C nlm h E C nlm E C nn c n c πππππ=+-=-====-=*++⎰⎰**)()(单位体积内的量子态数)()(21)(,)"(2)()(,)(,)()(2~.2'213''''''2'21'21'21'2222222C a a lt tz y x ac c z la z y t a y x t a xz ty x C C e E E m h k V m m m m k g k k k k k m h E k E k m m k k m m k k m m k ml k m k k h E k E K IC E G si -=⎪⎪⎭⎫ ⎝⎛+•=+++====+++=*****系中的态密度在等能面仍为球形等能面系中在则:令)(关系为)(半导体的、证明:[]3123221232'2123231'2'''')()2(4)()(111100)()(24)(4)()(~ltn c nc l t t z m m sm VE E hm E sg E g si V E E h m m m dE dz E g dkk k g Vk k g d k dE E E =-==∴-⎥⎥⎦⎤⎢⎢⎣⎡+••==∴•=∇•=+**πππ)方向有四个,锗在(旋转椭球,个方向,有六个对称的导带底在对于即状态数。
半导体物理学(刘恩科第七版)习题答案(比较完全)
第一章习题1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k)分别为:E c =0220122021202236)(,)(3m k h m k h k E m k k h m k h V -=-+ 0m 。
试求:为电子惯性质量,nm a ak 314.0,1==π(1)禁带宽度;(2)导带底电子有效质量; (3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化 解:(1)eVm k E k E E E k m dk E d k m kdk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43(0,060064338232430)(2320212102220202020222101202==-==<-===-==>=+===-+ 因此:取极大值处,所以又因为得价带:取极小值处,所以:在又因为:得:由导带:043222*83)2(1m dk E d mk k C nC===sN k k k p k p m dk E d mk k k k V nV/1095.7043)()()4(6)3(25104300222*11-===⨯=-=-=∆=-== 所以:准动量的定义:2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。
解:根据:t k hqE f ∆∆== 得qEkt -∆=∆ sat sat 137192821911027.810106.1)0(1027.810106.1)0(----⨯=⨯⨯--=∆⨯=⨯⨯--=∆ππ补充题1分别计算Si (100),(110),(111)面每平方厘米内的原子个数,即原子面密度(提示:先画出各晶面内原子的位置和分布图)Si 在(100),(110)和(111)面上的原子分布如图1所示:(a )(100)晶面 (b )(110)晶面(c )(111)晶面补充题2一维晶体的电子能带可写为)2cos 81cos 87()22ka ka ma k E +-= (, 式中a 为 晶格常数,试求(1)布里渊区边界; (2)能带宽度;(3)电子在波矢k 状态时的速度;(4)能带底部电子的有效质量*n m ;(5)能带顶部空穴的有效质量*p m解:(1)由0)(=dk k dE 得 an k π= (n=0, 1, 2…) 进一步分析an k π)12(+= ,E (k )有极大值,214221422142822/1083.7342232212414111/1059.92422124142110/1078.6)1043.5(224141100cm atom a a a cm atom a a a cm atom a a ⨯==⨯+⨯+⨯⨯==⨯⨯+⨯+⨯=⨯==⨯+-):():():(222)mak E MAX =( ank π2=时,E (k )有极小值所以布里渊区边界为an k π)12(+=(2)能带宽度为222)()ma k E k E MIN MAX =-( (3)电子在波矢k 状态的速度)2sin 41(sin 1ka ka ma dk dE v -== (4)电子的有效质量)2cos 21(cos 222*ka ka mdkEd m n-== 能带底部 an k π2=所以m m n 2*= (5)能带顶部 an k π)12(+=, 且**n p m m -=,所以能带顶部空穴的有效质量32*mm p =第二章习题1. 实际半导体与理想半导体间的主要区别是什么?答:(1)理想半导体:假设晶格原子严格按周期性排列并静止在格点位置上,实际半导体中原子不是静止的,而是在其平衡位置附近振动。
半导体物理学(刘恩科第七版)习题答案(比较完全)
AHA12GAGGAGAGGAFFFFAFAF第一章习题1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k)分别为:E c =0220122021202236)(,)(3m k h m k h k E m k k h m k h V -=-+ 0m 。
试求:为电子惯性质量,nm a ak 314.0,1==π(1)禁带宽度;(2)导带底电子有效质量; (3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化 解:(1)AHA12GAGGAGAGGAFFFFAFAFeVm k E k E E E k m dk E d k m kdk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43(0,060064338232430)(2320212102220202020222101202==-==<-===-==>=+===-+ 因此:取极大值处,所以又因为得价带:取极小值处,所以:在又因为:得:由导带:AHA12GAGGAGAGGAFFFFAFAF043222*83)2(1m dk E d mk k C nC=== sN k k k p k p m dk E d mk k k k V nV/1095.7043)()()4(6)3(25104300222*11-===⨯=-=-=∆=-== 所以:准动量的定义:2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107V/m的电场时,试分别计算电子自能带底运动到能带顶所需的时间。
解:根据:tk h qE f ∆∆== 得qEkt -∆=∆ sat sat 137192821911027.810106.1)0(1027.810106.1)0(----⨯=⨯⨯--=∆⨯=⨯⨯--=∆ππ补充题1分别计算Si (100),(110),(111)面每平方厘米内的原子个数,即原子面密度(提示:先画出各晶面内原子的位置和分布图)Si在(100),(110)和(111)面上的原子分布如图1所示:AHA12GAGGAGAGGAFFFFAFAFAHA12GAGGAGAGGAFFFFAFAF(a )(100)晶面 (b )(110)晶面(c )(111)晶面补充题2214221422142822/1083.7342232212414111/1059.92422124142110/1078.6)1043.5(224141100cm atom a a a cm atom a a a cmatom a a ⨯==⨯+⨯+⨯⨯==⨯⨯+⨯+⨯=⨯==⨯+-):():():(AHA12GAGGAGAGGAFFFFAFAF一维晶体的电子能带可写为)2cos 81cos 87()22ka ka ma k E +-= (,式中a 为 晶格常数,试求AHA12GAGGAGAGGAFFFFAFAF(1)布里渊区边界; (2)能带宽度;(3)电子在波矢k 状态时的速度; (4)能带底部电子的有效质量*n m ;(5)能带顶部空穴的有效质量*p m 解:(1)由0)(=dkk dE 得 an k π=(n=0,1,2…)进一步分析an k π)12(+= ,E (k )有极大值,222)mak E MAX=( ank π2=时,E (k )有极小值所以布里渊区边界为a n k π)12(+=(2)能带宽度为222)()mak E k E MINMAX =-( (3)电子在波矢k 状态的速度)2sin 41(sin 1ka ka ma dk dE v -==AHA12GAGGAGAGGAFFFFAFAF(4)电子的有效质量)2cos 21(cos 222*ka ka m dkEd m n-==能带底部 an k π2= 所以m m n2*= (5)能带顶部 an k π)12(+=,且**np m m -=, 所以能带顶部空穴的有效质量32*mm p=第二章习题1. 实际半导体与理想半导体间的主要区别是什么?答:(1)理想半导体:假设晶格原子严格按周期性排列并静止在格点位置上,实际半导体中原子不是静止的,而是在其平衡位置附近振动。
半导体物理学 刘恩科 第七版 完整课后题答案
半导体物理学刘恩科第七版完整课后题答案 The document was prepared on January 2, 2021第一章习题1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k)分别为:E c =0220122021202236)(,)(3m k h m k h k E m k k h m k h V -=-+ (1)禁带宽度;(2) 导带底电子有效质量; (3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化 解:(1)2. 晶格常数为的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。
解:根据:tkh qE f ∆∆== 得qE k t -∆=∆补充题1分别计算Si (100),(110),(111)面每平方厘米内的原子个数,即原子面密度(提示:先画出各晶面内原子的位置和分布图) Si 在(100),(110)和(111)面上的原子分布如图1所示: (a )(100)晶面 (b )(110)晶面(c )(111)晶面补充题2一维晶体的电子能带可写为)2cos 81cos 87()22ka ka ma k E +-= (,式中a 为 晶格常数,试求(1)布里渊区边界; (2)能带宽度;(3)电子在波矢k 状态时的速度;(4)能带底部电子的有效质量*n m ;(5)能带顶部空穴的有效质量*p m解:(1)由0)(=dk k dE 得 an k π=(n=0,1,2…) 进一步分析an k π)12(+= ,E (k )有极大值,ank π2=时,E (k )有极小值所以布里渊区边界为an k π)12(+=(2)能带宽度为222)()ma k E k E MIN MAX =-( (3)电子在波矢k 状态的速度)2sin 41(sin 1ka ka ma dk dE v -==(4)电子的有效质量能带底部 an k π2=所以m m n2*= (5)能带顶部 an k π)12(+=, 且**n p m m -=,所以能带顶部空穴的有效质量32*mm p =半导体物理第2章习题1. 实际半导体与理想半导体间的主要区别是什么答:(1)理想半导体:假设晶格原子严格按周期性排列并静止在格点位置上,实际半导体中原子不是静止的,而是在其平衡位置附近振动。
半导体物理学(第7版)第三章知识题和答案解析
第三章习题和答案1. 计算能量在E=E c 到2*n 2C L 2m 100E E π+= 之间单位体积中的量子态数。
解:2. 试证明实际硅、锗中导带底附近状态密度公式为式(3-6)。
322233*28100E 21233*22100E 0021233*231000L 8100)(3222)(22)(1Z VZZ )(Z )(22)(2322C22CL E m h E E E m V dE E E m V dE E g Vd dEE g d E E m V E g cn c C nlm h E C nlm E C nn c n c πππππ=+-=-====-=*++⎰⎰**)()(单位体积内的量子态数)()(21)(,)"(2)()(,)(,)()(2~.2'213''''''2'21'21'21'2222222C a a lt tz y x ac c zla z y t ay x t a x z t y x C C e E E m k V m m m m k g k k k k k m h E k E k m m k k m m k k m m k mlk m k k h E k E K IC E G si -=⎪⎪⎭⎫ ⎝⎛+•=+++====+++=*****系中的态密度在等能面仍为球形等能面系中在则:令)(关系为)(半导体的、证明:[]3123221232'2123231'2'''')()2(4)()(111100)()(24)(4)()(~ltn c nc l t t z m m sm VE E hm E sg E g si V E E h m m m dE dz E g dkk k g Vk k g d k dE E E =-==∴-⎥⎥⎦⎤⎢⎢⎣⎡+••==∴•=∇•=+**πππ)方向有四个,锗在(旋转椭球,个方向,有六个对称的导带底在对于即状态数。
半导体物理学(刘恩科)第七版-完整课后题答案
第一章习题1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k)分别为:E c =0220122021202236)(,)(3m k h m k h k E m k k h m k h V -=-+ 0m 。
试求:为电子惯性质量,nm a ak 314.0,1==π(1)禁带宽度;(2) 导带底电子有效质量; (3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化 解:(1)eV m k E k E E E k m dk E d k m kdk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43(0,060064338232430)(2320212102220202020222101202==-==<-===-==>=+===-+ 因此:取极大值处,所以又因为得价带:取极小值处,所以:在又因为:得:由导带:043222*83)2(1m dk E d mk k C nC===sN k k k p k p m dk E d mk k k k V nV/1095.7043)()()4(6)3(25104300222*11-===⨯=-=-=∆=-== 所以:准动量的定义:2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。
解:根据:t k hqE f ∆∆== 得qEk t -∆=∆ sat sat 137192821911027.810106.1)0(1027.810106.1)0(----⨯=⨯⨯--=∆⨯=⨯⨯--=∆ππ补充题1分别计算Si (100),(110),(111)面每平方厘米内的原子个数,即原子面密度(提示:先画出各晶面内原子的位置和分布图)Si 在(100),(110)和(111)面上的原子分布如图1所示:(a )(100)晶面 (b )(110)晶面(c )(111)晶面补充题2一维晶体的电子能带可写为)2cos 81cos 87()22ka ka ma k E +-= (, 式中a 为 晶格常数,试求(1)布里渊区边界; (2)能带宽度;(3)电子在波矢k 状态时的速度;(4)能带底部电子的有效质量*n m ;(5)能带顶部空穴的有效质量*p m解:(1)由0)(=dk k dE 得 an k π= (n=0,±1,±2…) 进一步分析an k π)12(+= ,E (k )有极大值,214221422142822/1083.7342232212414111/1059.92422124142110/1078.6)1043.5(224141100cm atom a a a cm atom a a a cm atom a a ⨯==⨯+⨯+⨯⨯==⨯⨯+⨯+⨯=⨯==⨯+-):():():(222)mak E MAX =( ank π2=时,E (k )有极小值所以布里渊区边界为an k π)12(+=(2)能带宽度为222)()ma k E k E MIN MAX =-( (3)电子在波矢k 状态的速度)2sin 41(sin 1ka ka ma dk dE v -== (4)电子的有效质量)2cos 21(cos 222*ka ka mdkEd m n-== 能带底部 an k π2=所以m m n 2*= (5)能带顶部 an k π)12(+=, 且**n p m m -=,所以能带顶部空穴的有效质量32*mm p =半导体物理第2章习题1. 实际半导体与理想半导体间的主要区别是什么?答:(1)理想半导体:假设晶格原子严格按周期性排列并静止在格点位置上,实际半导体中原子不是静止的,而是在其平衡位置附近振动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
AHA12GAGGAGAGGAFFFFAFAF第三章习题和答案1. 计算能量在E=E c 到2*n 2C L2m 100E E π+= 之间单位体积中的量子态数。
解:2. 试证明实际硅、锗中导带底附近状态密度公式为式(3-6)。
322233*28100E 21233*22100E 0021233*231000L 8100)(3222)(22)(1Z VZZ )(Z )(22)(2322C22CL E m h E E E m V dE E E m V dE E g Vd dEE g d E E m V E g cn c C nlm h E C nlm E C nn c n c πππππ=+-=-====-=*++⎰⎰**)()(单位体积内的量子态数)()(21)(,)"(2)()(,)(,)()(2~.2'213''''''2'21'21'21'2222222C a a lt tz y x ac c z la z y t a y x t a xz t y x C C e E E m hk V m m m m k g k k k k k m h E k E k m m k k m m k k m m k ml k m k k h E k E K IC E G si -=⎪⎪⎭⎫ ⎝⎛+•=+++====+++=*****系中的态密度在等能面仍为球形等能面系中在则:令)(关系为)(半导体的、证明:[]3123221232'2123231'2'''')()2(4)()(111100)()(24)(4)()(~ltnc nc l t t z m m sm VE E hm E sg E g si V E E h m m m dE dz E g dkk k g Vk k g d k dE E E =-==∴-⎥⎥⎦⎤⎢⎢⎣⎡+••==∴•=∇•=+**πππ)方向有四个,锗在(旋转椭球,个方向,有六个对称的导带底在对于即状态数。
空间所包含的空间的状态数等于在AHA12GAGGAGAGGAFFFFAFAF3. 当E-E F为1.5k0T,4k0T, 10k0T时,分别用费米分布函数和玻耳兹曼分布函数计算电子占据各该能级的概率。
4. 画出-78o C、室温(27o C)、500o C三个温度下的费米分布函数曲线,并进行比较。
AHA12GAGGAGAGGAFFFFAFAFAHA12GAGGAGAGGAFFFFAFAF5. 利用表3-2中的m *n ,m *p 数值,计算硅、锗、砷化镓在室温下的N C , N V 以及本征载流子的浓度。
⎪⎪⎩⎪⎪⎨⎧=========⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧===******-**evE m o m m m A G ev E m o m m m si ev E m o m m m G e N N n h koTm N h koTm N g p n s a g p n g p n e koT E v c i p v nC g428.1;47.;068.0:12.1;59.;08.1:67.0;37.;56.0:)()2(2)2(25000000221232232ππAHA12GAGGAGAGGAFFFFAFAF6. 计算硅在-78 o C ,27 o C ,300 oC 时的本征费米能级,假定它在禁带中间合理吗?所以假设本征费米能级在禁带中间合理,特别是温度不太高的情况下。
7. ①在室温下,锗的有效态密度N c =1.051019cm -3,N V =3.91018cm -3,试求锗的载流子有效质量m *n m *p 。
计算77K 时的N C 和N V 。
已知300K 时,E g =0.67eV 。
77k 时E g =0.76eV 。
求这两个温度时锗的本征载流子浓度。
②77K 时,锗的电子浓度为1017cm -3 ,假定受主浓度为零,而E c -E D =0.01eV ,求锗中施主浓度E D 为多少?[]eV kT eV kT K T eVkT eV kT K T eVm m kT eV kT K T m m kT E E E E m m m m Si Si n pV C i F p n 022.008.159.0ln 43,0497.0573012.008.159.0ln 43,026.03000072.008.159.0ln 43,016.0195ln 43259.0,08.1:3222001100-===-===-===+-====****时,当时,当时,当的本征费米能级,kgm N T k m kg m N T k m Tm k N Tm k N vpc n p v nc 31031202310320223202320106.229.022101.556.022)2(2)2(21.7-*-***⨯==⎥⎦⎤⎢⎣⎡=⨯==⎥⎦⎤⎢⎣⎡===ππππ得)根据(AHA12GAGGAGAGGAFFFFAFAF3173183'3183193'3''/1008.530077109.330077/1037.1300771005.13007730077772cm N N cm N N T T K N K N N N K V V C C C C VC ⨯=⨯⨯=•=⨯=⨯⨯=•=∴=)()()()()()(、时的)(AHA12GAGGAGAGGAFFFFAFAF8. 利用题 7所给的N c 和N V 数值及E g =0.67eV ,求温度为300K 和500K 时,含施主浓度N D =51015cm -3,受主浓度N A =2109cm -3的锗中电子及空穴浓度为多少?9.计算施主杂质浓度分别为1016cm 3,,1018cm -3,1019cm -3的硅在室温下的费米317181717003777276.0211718313300267.0211819221/1017.1)1037.110067.001.021(10)21(2121exp 21/1098.1)1008.51037.1(77/107.1)109.31005.1()()3(00000cm e N n koT E e n N e N eN N n n cm e n K cm en eN N n C o D D N n T k E D T k E E E E D T k E E D D k i k i koTEgv c i C oD F C c D F D ⨯=⨯•+=•∆+=∴+=+=+==⨯=⨯⨯⨯=⨯=⨯⨯⨯==•∆--+----+-⨯-⨯--时,室温:⎪⎩⎪⎨⎧⨯=⨯==⎪⎩⎪⎨⎧⨯=⨯≈=⎥⎦⎤⎢⎣⎡+-+-=⎥⎦⎤⎢⎣⎡+-+-=∴=---→⎩⎨⎧==+--⨯==⨯==--3150315031003150212202122020202000031521''313221/1084.4/1084.9500/108/105300)2(2)2(20)(0/109.6)(500/100.2)(300.8'020cmp cmn K t cmp cm n K T n N N N N p n N N N N n n N N n n n p n N N p n cm eN N n K cm e N N n K i D A D A i A D A D i A D i A D V C i T k E V c i T k g e g 时:时:根据电中性条件:时:时:AHA12GAGGAGAGGAFFFFAFAF能级,并假定杂质是全部电离,再用算出的的费米能 级核对一下,上述假定是否在每一种情况下都成立。
计算时,取施主能级在导带底下的面的0.05eV 。
%902111%102111%10%,9005.0)2(27.0.0108.210ln 026.0;/10087.0108.210ln 026.0;/1021.0108.210ln 026.0;/10,ln/105.1/108.2,300,ln .90019193191918318191631603103190≥-+=≤-+==--=⨯+==-=⨯+==-=⨯+==+=⎪⎩⎪⎨⎧⨯=⨯==+=+Tk E E e N n T k E E e N n eV E E eVE E E cm N eV E E E cm N eV E E E cm N N N T k E E cm n cmN K T N N T k E E E F D DD F D DDD C c c F D c c F D c c F D iDi F iC CD c F F或是否占据施主为施主杂质全部电离标准或时离区的解假设杂质全部由强电AHA12GAGGAGAGGAFFFFAFAF没有全部电离全部电离小于质数的百分比)未电离施主占总电离杂全部电离的上限求出硅中施主在室温下)(不成立不成立成立317181631716317026.005.0'026.0023.019026.0037.018026.016.0026.021.016105.210,10105.210/105.221.0,026.005.02%10()2(2%10%802111:10%302111:10%42.021112111:10cm N cm N cm e N N e N N koT E e N N D e N n N e N n N e e N n N D D C D C D D C D D D D D D D E E D D D C D ⨯〉=⨯=⨯===∆=〉=+===+===+=+==---+-AHA12GAGGAGAGGAFFFFAFAF之上,大部分没有电离在,之下,但没有全电离在成立,全电离全电离,与也可比较)(0D F F D D D F F D D F D D F D F D E E E E cm N E E E E cm N E E cm N T k E E E E 026.0023.0;/1026.0~037.0;/10026.016.021.005.0;/102319318316''〈-=-==-=〉〉=+-=-=〉〉-AHA12GAGGAGAGGAFFFFAFAF10. 以施主杂质电离90%作为强电离的标准,求掺砷的n 型锗在300K 时,以杂质电离为主的饱和区掺杂质的浓度范围。
11. 若锗中施主杂质电离能E D =0.01eV ,施主杂质浓度分别为N D =1014cm -3j 及 1017cm -3。