二次函数最值问题(含答案)
(825)二次函数 最值问题解答题专项练习60题(有答案)32页 ok
二次函数最值专项练习60题1.画出抛物线y=4(x﹣3)2+2的大致图象,写出它的最值和增减性.2.如图,二次函数y=ax2+bx+c的图象经过A(﹣1,0)、B(2,3)两点,求出此二次函数的解析式;并通过配方法求出此抛物线的对称轴和二次函数的最大值.3.已知二次函数y=x2﹣x﹣2及实数a>﹣2,求(1)函数在一2<x≤a的最小值;(2)函数在a≤x≤a+2的最小值.4.已知函数y=x2+2ax+a2﹣1在0≤x≤3范围内有最大值24最小值3,求实数a的值.5.我们知道任何实数的平方一定是一个非负数,即:(a+b)2≥0,且﹣(a+b)2≤0.据此,我们可以得到下面的推理:∵x2+2x+3=(x2+2x+1)+2=(x+1)2+2,而(x+1)2≥0∴(x+1)2+2≥2,故x2+2x+3的最小值是2.试根据以上方法判断代数式3y2﹣6y+11是否存在最大值或最小值?若有,请求出它的最大值或最小值.6.如图所示,已知平行四边形ABCD的周长为8cm,∠B=30°,若边长AB=x(cm).(1)写出▱ABCD的面积y(cm2)与x的函数关系式,并求自变量x的取值范围.(2)当x取什么值时,y的值最大?并求最大值.7.求函数y=2x2﹣ax+1当0≤x≤1时的最小值.8.已知m,n是关于x的方程x2﹣2ax+a+6=0的两实根,求y=(m﹣1)2+(n﹣1)2的最小值.9.当﹣1≤x≤2时,求函数y=f(x)=2x2﹣4ax+a2+2a+2的最小值,并求最小值为﹣1时,a的所有可能的值.10.已知二次函数y=x2﹣6x+m的最小值为1,求m的值.11.已知函数是关于x的二次函数.(1)求m的值;(2)当m取什么值时,此函数图象的顶点为最低点?(3)当m取什么值时,此函数图象的顶点为最高点?12.两个数的和为6,这两个数的积最大可以达到多少?利用图象描述乘积与因数之间的关系.13.将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长各做一个正方形.这两个正方形面积之和有最值吗?如有,求出最值;如没有请说明理由.14.关于自变量x的二次函数y=x2﹣4ax+5a2﹣3a的最小值为m,且a满足不等式0≤a2﹣4a﹣2≤10,则m的最大值是多少?15.求函数的最小值.16.当﹣1≤x≤1时,函数y=﹣x2﹣ax+b+1(a>0)的最小值是﹣4,最大值是0,求a、b的值.17.已知a2+b2=1,,求a+b+ab的取值范围.18.如图,在矩形ABCD中,B(16,12),E、F分别是OC、BC上的动点,EC+CF=8.当F运动到什么位置时,△AEF的面积最小,最小为多少?19.如图;AC,BD是四边形ABCD的对角线,AC⊥BD于点O;(1)求证:S四边形ABCD=AC•BD;(2)若AC+BD=10,当AC,BD的长是多少时,四边形ABCD的面积最大?20.先画出函数图象,然后结合图象回答下列问题:(1)函数y=3x2的最小值是多少?(2)函数y=﹣3x2的最大值是多少?(3)怎样判断函数y=ax2有最大值或最小值?与同伴交流.21.将长为156cm的铁线剪成两段,每段都围成一个边长为整数(cm)的正方形,求这两个正方形面积和的最小值.22.已知函数y=(a+2)x2﹣2(a2﹣1)x+1,其中自变量x为正整数,a也是正整数,求x何值时,函数值最小.23.设实数a,b满足:3a2﹣10ab+8b2+5a﹣10b=0,求u=9a2+72b+2的最小值.24.若函数y=4x2﹣4ax+a2+1(0≤x≤2)的最小值为3,求a的值.25.说明:不论x取何值,代数式x2﹣5x+7的值总大于0.并尝试求出当x取何值时,代数式x2﹣5x+7的值最小?最小值是多少?26.求经过点A(0,2)、B(2,0)、C(﹣1,2)的抛物线的解析式,并求出其最大或最小值.27.如图,在△ABC中,∠A=90°,∠C=30°,AB=1,两个动点P,Q同时从A点出发,点P沿AC运动,点Q沿AB,BC运动,两点同时到达点C.(1)点Q的速度是点P速度的多少倍?(2)设AP=x,△APQ的面积是y,求y关于x的函数关系式,并写出x的取值范围,(3)求出y的最大值.28.已知二次函数y=x2与一次函数y=2x+1相交于A、B两点,点C是线段AB上一动点,点D是抛物线上一动点,且CD平行于y轴,求在移动过程中CD的最大值.29.代数式x2﹣3x﹣1有最大值或最小值吗?若有,请求出:当x取何值时,最大(小)值是多少?30.已知二次函数y=2x2﹣4ax+a2+2a+2(1)通过配方,求当x取何值时,y有最大或最小值,最大或最小值是多少?(2)当﹣1≤x≤2时,函数有最小值2.求a所有可能取的值.31.设函数y=|x2﹣x|+|x+1|,求﹣2≤x≤2时,y的最大值和最小值.32.求函数y=(k﹣1)x2﹣2(k﹣1)x﹣k的最值,其中k为常数且k≠1.33.已知函数y=﹣9x2﹣6ax+2a﹣a2,当时,y的最大值为﹣3,求a.34.求函数y=x2+5x+8的最小值.35.已知二次函数y=(3﹣k)x2+2,求:(1)当k为何值时,函数有最大值?最大值是多少?(2)当k为何值时,函数有最小值?最小值是多少?36.求关于x的二次函数y=x2﹣2tx+1在﹣1≤x≤1上的最大值(t为常数).37.已知二次函数y=﹣9x2﹣6ax﹣a2+2a有最大值﹣3,求实数a的值.38.(1)求函数y=|x2﹣4|﹣3x在区间﹣2≤x≤5中的最大值和最小值.(2)已知:|y|≤1,且2x+y=1,求2x2+16x+3y2的最小值.39.已知y=x2﹣2ax﹣3,﹣2≤x≤2.(1)求y的最小值;(2)求y的最大值.40.当|x+1|≤6时,求函数y=x|x|﹣2x+1的最大值?41.用长14m的篱笆围成如图所示的鸡舍,门MN宽2m,怎样设计才能使鸡舍的面积最大?42.如图所示,在直角梯形ABCD中,AB=2,P是边AB的中点,∠PDC=90°,问梯形ABCD面积的最小值是多少?43.有两条抛物线y=x2﹣3x,y=﹣x2+9,通过点P(t,0)且平行于y轴的直线,分别交这两条抛物线于点A和B,当t在0到3的范围内变化时,求线段AB的最大值.44.如图,半径为1的半圆内接等腰梯形,其下底是半圆的直径,试求:(1)它的周长y与腰长x之间的函数关系式,并求出自变量x的取值范围.(2)当腰长为何值时,周长有最大值?这个最大值为多少?45.已知点P,Q,R分别在△ABC的边AB,BC,CA上,且BP=PQ=QR=RC=1,求△ABC的面积的最大值.46.已知:0≤x≤1,函数的最小值为m,试求m的最大值.47.阅读下面的材料:小明在学习中遇到这样一个问题:若1≤x≤m,求二次函数y=x2﹣6x+7的最大值.他画图研究后发现,x=1和x=5时的函数值相等,于是他认为需要对m进行分类讨论.他的解答过程如下:∵二次函数y=x2﹣6x+7的对称轴为直线x=3,∴由对称性可知,x=1和x=5时的函数值相等.∴若1≤m<5,则x=1时,y的最大值为2;若m≥5,则x=m时,y的最大值为m2﹣6m+7.请你参考小明的思路,解答下列问题:(1)当﹣2≤x≤4时,二次函数y=2x2+4x+1的最大值为_________;(2)若p≤x≤2,求二次函数y=2x2+4x+1的最大值;(3)若t≤x≤t+2时,二次函数y=2x2+4x+1的最大值为31,则t的值为_________.48.如图,在矩形ABCD中,AB=6cm,BC=12cm,点P从点A出发,沿AB边向点B以1cm/s的速度移动,同时点Q从点B出发沿BC边向点C以2cm/s的速度移动,如果P,Q两点同时出发,分别到达B,C两点后就停止移动.(1)设运动开始后第t秒钟后,五边形APQCD的面积为Scm2,写出S与t的函数关系式,并指出自变量t的取值范围.(2)t为何值时,S最小?最小值是多少?49.已知二次函数y=x2与一次函数y=2x+1相交于A、B两点,点C是线段AB上一动点,点D是抛物线上一动点,且CD平行于y轴,求在移动过程中CD的最大值.50.如图,在△ABC中,∠A=90°,∠C=30°,AB=1,两个动点P,Q同时从A点出发,点P沿AC运动,点Q沿AB,BC运动,两点同时到达点C.(1)点Q的速度是点P速度的多少倍?(2)设AP=x,△APQ的面积是y,求y关于x的函数关系式,并写出x的取值范围,(3)求出y的最大值.51.一块三角形废料如图所示,∠A=30°,∠C=90°,BC=6.用这块废料剪出一个平行四边形AGEF,其中,点G,E,F分别在AB,BC,AC上.设CE=x(1)求x=2时,平行四边形AGEF的面积.(2)当x为何值时,平行四边形AGEF的面积最大?最大面积是多少?52.如图,在Rt△ABC中,∠ACB=90°,AB=10,BC=8,点D在BC上运动(不运动至B,C),DE∥AC,交AB 于E,设BD=x,△ADE的面积为y.(1)求y与x的函数关系式及自变量x的取值范围;(2)x为何值时,△ADE的面积最大?最大面积是多少?53.如图,将两张长为8,宽为2的矩形纸条交叉放置.(1)求证:重叠部分的图形是菱形;(2)求重叠部分图形的周长的最大值和最小值.(要求画图﹑推理﹑计算)54.如图,设点P是边长为a的正三角形ABC的边BC上一点,过点P作PQ⊥AB,垂足为Q,延长QP交AC的延长线于点R.当点P在何处时,△BPQ与△CPR的面积之和取最大(小)值?并求出最大(小)值.55.(2012•杭州)当k分别取﹣1,1,2时,函数y=(k﹣1)x2﹣4x+5﹣k都有最大值吗?请写出你的判断,并说明理由;若有,请求出最大值.56.(2003•黄石)二次函数y=x2+bx+c的图象与x轴交于A、B两点,与y轴交于C(0,3),若△ABC的面积为9,求此二次函数的最小值.57.(2013•南岗区一模)如图,在Rt△AOB中,∠AOB=90°,且AO=8,BO=6,P是线段AB上一个动点,PE⊥A0于E,PF⊥B0于F.设PE=x,矩形PFOE的面积为S(1)求出S与x的函数关系式;(2)当x为何值时,矩形PFOE的面积S最大?最大面积是多少?58.(2013•资阳)在关于x,y的二元一次方程组中.(1)若a=3.求方程组的解;(2)若S=a(3x+y),当a为何值时,S有最值.59.(2010•漳州)如图,在△ABC中,∠C=90°,AC=4cm,BC=5cm,点D在BC上,且CD=3cm.动点P、Q分别从A、C两点同时出发,其中点P以1cm/s的速度沿AC向终点C移动;点Q以cm/s的速度沿CB向终点B移动.过P作PE∥CB交AD于点E,设动点的运动时间为x秒.(1)用含x的代数式表示EP;(2)当Q在线段CD上运动几秒时,四边形PEDQ是平行四边形;(3)当Q在线段BD(不包括点B、点D)上运动时,求四边形EPDQ面积的最大值.60.(2010•长春)如图,梯形ABCD中,AB∥DC,∠ABC=90°,∠A=45°.AB=30,BC=x,其中15<x <30.作DE⊥AB于点E,将△ADE沿直线DE折叠,点A落在F处,DF交BC于点G.(1)用含有x的代数式表示BF的长.(2)设四边形DEBG的面积为S,求S与x的函数关系式.(3)当x为何值时,S有最大值,并求出这个最大值.二次函数最值解答题60题参考答案:1.解:因为顶点坐标为(3,2),对称轴为x=3,与y轴交点为(0,38),因为△=144﹣4×2×19=144﹣152=﹣8<0,所以与x轴无交点.作图得:最值2.增减性:当x≥3时,y随x的增大而增大;当x≤3时,y随x的增大而减小2.解:由函数图象可得二次函数图象过点C(0,3),将A,B,两点代入函数解析式得解得:a=﹣1,b=2,c=3,可得二次函数解析式为:y=﹣x2+2x+3;配方得:y=﹣(x﹣1)2+4,∴对称轴x=1,最大值为43.解:二次函数y=x2﹣x﹣2=﹣的图象如图:顶点坐标为(,),(1)当﹣2<a<时,函数为减函数,最小值为当x=a时,y=a2﹣a﹣2.当a≥时,y min=﹣,(2)当a>﹣2,且a+2<,即:﹣2<a<﹣时,函数为减函数,最小值为:y x=a+2=(a+2)2﹣(a+2)﹣2,当a<≤a+2,即﹣≤a<时,函数的最小值为y=﹣4.解:配方y=(x+a)2﹣1,函数的对称轴为直线x=﹣a,顶点坐标为(﹣a,﹣1).①当0≤﹣a≤3即﹣3≤a≤0时,函数最小值为﹣1,不合题意;②当﹣a<0即a>0时,∵当x=3时,y有最大值;当x=0时,y有最小值,∴,解得a=2;③当﹣a>3即a<﹣3时,∵当x=3时,y有最小值;当x=0时,y有最大值,∴,解得a=﹣5.∴实数a的值为2或﹣55.解:原式=3(y﹣1)2+8,∵(y﹣1)2≥0,∴3(y﹣1)2+8≥8,∴有最小值,最小值为86.解:(1)过A作AE⊥BC于E,如图,∵∠B=30°,AB=x,∴AE=x,又∵平行四边形ABCD的周长为8cm,∴BC=4﹣x,∴y=AE•BC=x(4﹣x)=﹣x2+2x(0<x<4);(2)y=﹣x2+2x=﹣(x﹣2)2+2,∵a=﹣,∴当x=2时,y有最大值,其最大值为27.解:对称轴x=﹣=﹣=,①≤0,即a≤0时,0≤x≤1范围内,y随x的增大而增大,当x=0时,y最小,最小值y=2×02﹣a×0+1=1,②0<<1,即0<a<4时,当x=时有最小值,最小值y=2×()2﹣a×+1=1﹣,③≥1,即a≥4时,0≤x≤1范围内,y随x的增大而减小,当x=1时,y最小,最小值y=2×12﹣a×1+1=3﹣a,综上所述,a≤0时,最小值为1,0<a<4时,最小值为1﹣,a≥4时,最小值为3﹣a8.解:依题意△=4a2﹣4(a+6)≥0,即a2﹣a﹣6≥0,∴a≤﹣2或a≥3,(3分)由m+n=2a,mn=a+6,y=m2+n2﹣2(m+n)+2=(m+n)2﹣2mn﹣2(m+n)+2=4a2﹣6a﹣10,=4(a﹣)2﹣,∴a=3时,y的最小值为8.(12分)故y的最小值为89.解:对称轴x=﹣=﹣=a,①a≤﹣1时,﹣1≤x≤2范围内,y随x的增大而增大,当x=﹣1时,y最小,最小值y=2×(﹣1)2﹣4a×(﹣1)+a2+2a+2=a2+6a+4,②﹣1<a<2时,当x=a时,有最小值,最小值y=2×a2﹣4a×a+a2+2a+2=﹣a2+2a+2,③a≥2时,﹣1≤x≤2范围内,y随x的增大而减小,当x=2时,y最小,最小值y=2×22﹣4a×2+a2+2a+2=a2﹣6a+10,综上所述,a≤﹣1时,最小值为a2+6a+4,﹣1<a<2时,最小值为﹣a2+2a+2,a≥2时,最小值为a2﹣6a+10;∵最小值为﹣1,∴a2+6a+4=﹣1,整理得a2+6a+5=0,解得a1=﹣1,a2=﹣5,﹣a2+2a+2=﹣1,整理得,a2﹣2a﹣3=0,解得a3=﹣1,a4=3(舍去),a2﹣6a+10=﹣1,整理得,a2﹣6a+11=0,△=(﹣6)2﹣4×1×11=﹣8<0,方程无解,综上所述,a的所有可能值为﹣1、﹣510.解:根据抛物线顶点坐标公式得:=1,解得:m=1011.解:(1)根据二次函数的定义可知:m2+2m﹣6=2,m+2≠0,解得:m=2或﹣4.(2)当m=2时,抛物线的开口向上,有最小值,此函数图象的顶点为最低点;(3)当m=﹣4时,抛物线的开口向下,有最大值,此函数图象的顶点为最高点12.解:设两数为x、y,两数的积为s,根据题意列方程组得,,整理得,s=x(6﹣x)=﹣x2+6x,配方得,s=﹣(x﹣3)2+9,可见,s的最大值为9.如图:由于函数为抛物线,其与x轴的交点坐标为:(0,0),(6,0),顶点为(3,9),对称轴为直线x=3,画出函数图象13.解:设一段铁丝的长度为x,另一段为(20﹣x),则S=x2+(20﹣x)(20﹣x)=(x﹣10)2+12.5,∴由函数当x=10cm时,S最小,为12.5cm214.解:由0≤a2﹣4a﹣2≤0,解得:﹣2≤a≤2﹣或2+≤a≤6.由y=x2﹣4ax+5a2﹣3a可得y=(x﹣2a)2+a2﹣3a,则最小值m=a2﹣3a=(a﹣)2﹣,它的图象的对称轴为a=.在上述a的取值范围内的a值中6与的距离最大.∴a=6时,原函数的最小值m有最大值m=62﹣3×6=1815.解:根据x2﹣x﹣6≥0且x2﹣x﹣6≠6时,函数才有意义,解得:x≤﹣2且x≠﹣3或x≥3且x≠4,此时函数y=x2﹣4x﹣9,图象如图:在x≤﹣2且x≠﹣3或x≥3且x≠4的范围内可知,当x=3时,这个函数的最小值为﹣1216.解:由题意:对称轴为x=﹣.其次这是一个定区间(﹣1≤x≤1)动对称轴(x=﹣)的函数,所以需要对对称轴所在位置进行分类讨论.第一种情况:0<﹣≤1,不可能.因对称轴在区间内故函数最大值在x=﹣时取到,因对称轴在区间左半段故函数最小值在x=1时取到.联立x=﹣时y=﹣4与x=﹣1时y=0两个方程解得a=2±2,均不符合条件,故舍去.第二种情况,﹣<﹣1,即对称轴在区间外,此时a>2,在区间内函数单调递减,故x=﹣1时y=0,x=1时y=﹣4,解得a=2,b=﹣2,满足a>0的条件.解得:a=2,b=﹣217.解:∵a2+b2=(a+b)2﹣2ab,a2+b2=1,∴ab=,设a+b=t,则﹣≤t≤,∴y=a+b+ab=+a+b=(t2﹣1)+t=t2+t﹣=(t+1)2﹣1,∴t=﹣1时,y有最小值为﹣1,t=时,y有最大值,此时y=(+1)2﹣1=,∴﹣1≤y≤,即a+b+ab的取值范围为﹣1≤a+b+ab≤18.解:在矩形ABCD中,B(16,12),EC+CF=8;则AB=OC=16,BC=OA=12;设CF=x,则EC=8﹣x;S△AEF=S□ABCO﹣S△AOE﹣S△ABF﹣S△ECF=OA×OC﹣×OE×OA﹣×AB×BF﹣×CE×CF=12×16﹣×[16﹣(8﹣x)]×12﹣×16×(12﹣x)﹣×x×(8﹣x)=x2﹣2x+48=(x﹣2)2+46;因此,当x=2时,S△AEF取得最小值46.故当F运动到CF为2时,△AEF的面积最小,最小为4619.(1)证明:∵AC⊥BD,∴S四边形ABCD=S△ABC+S△ACD,=AC•OB+AC•OD,=AC(OB+OD)=AC•BD;(2)解:设AC=x,∵AC+BD=10,∴BD=10﹣x,∴四边形ABCD的面积=x(10﹣x)=﹣(x2﹣10x)=﹣(x﹣5)2+,∵﹣<0,∴当x=5时,四边形ABCD的面积有最大值,此时AC=5,BD=520.解:(1)根据图象得:它的最小值是0;(2)根据图象得:它的最大值是0;(3)当a>0时,y=ax2有最小值,当a<0时,y=ax2有最大值21.解:设其中一段铁丝的长度为xcm,另一段为(156﹣x)cm,则两个正方形面积和S=x2+(156﹣x)2=(x﹣78)2+761,∴由函数当x=78cm时,S最小,为761cm2.答:这两个正方形面积之和的最小值是761cm222.解:∵y=(a+2)x2﹣2(a2﹣1)x+1,∴y=(a+2)+1﹣,其对称轴为,因为a为正整数,故因,,因此,函数的最小值只能在x取a﹣2,a﹣1,时达到,(1)当a﹣1=时,a=1,此时,x=0使函数取得最小值,由于x是正整数,故应舍去;(2)a﹣2<<a﹣1时,即a>1时,由于x是正整数,而为小数,故x=不能达到最小值,当x=a﹣2时,y1=(a+2)(a﹣2)2﹣2(a2﹣1)(a﹣2)+1,当x=a﹣1时,y2=(a+2)(a﹣1)2﹣2(a2﹣1)(a﹣1)+1,又y1﹣y2=4﹣a,①当4﹣a>0时,即1<a<4且a为整数时,x取a﹣1,使y2为最小值;②当4﹣a=0时,即a=4时,有y1=y2,此时x取2或3;③当4﹣a<0时,即a>4且为整数时,x取a﹣2,使y1为最小值;综上,(其中a为整数)23.解:由3a2﹣10ab+8b2+5a﹣10b=0可得(a﹣2b)(3a﹣4b+5)=0,(6分)所以a﹣2b=0,或3a﹣4b+5=0.(8分)①当a﹣2b=0,即a=2b时,u=9a2+72b+2=36b2+72b+2=36(b+1)2﹣34,于是b=﹣1时,u的最小值为﹣34,此时a=﹣2,b=﹣1.(13分)②当3a﹣4b+5=0时,u=9a2+72b+2=16b2+32b+27=16(b+1)2+11,于是b=﹣1时,u的最小值为11,此时a=﹣3,b=﹣1.(18分)综上可知,u的最小值为﹣3424.解:∵y=4x2﹣4ax+a2+1(0≤x≤2),∴y=4+1,(1)当0≤≤2,即0≤a≤4时,最小值为1,不符合题意,舍去;(2)当<0即a<0时,令f(0)=3得:a2+1=3,解得:a=±,故a=﹣;(3)当>2即a>4时,令f(2)=3,即a2﹣8a+14=0,解得;a=4±,故a=4+;综上有;a=﹣或4+25.解:原式=(x)2+.∵(x)2≥0.∴原式>0恒成立;当x=时,原式有最小值为26.解:由题意设二次函数解析式为:y=ax2+bx+c,把A(0,2)、B(2,0)、C(﹣1,2)分别代入二次函数解析式,得:解得所以函数解析式为:y=﹣x2﹣x+2,配方得:y=﹣(x﹣)2+,所以二次函数有最大值且最大值为:27.解:(1)∵在△ABC中,∠A=90°,∠C=30°,AB=1,∴BC=2,AC=,而两个动点P,Q同时从A点出发,点P沿AC运动,点Q沿AB,BC运动,两点同时到达点C ∴Q的速度是P的速度的(2+1)÷=倍;(2)∵设AP=x,△APQ的面积是y,①当Q在AB上,即时,,②当Q在BC上,即时,,即:;(3)对于()当时,对于(≤x≤)当时,,∵,∴当时,.28.解:设C(m,2m+1),D(m,m2),则CD=2m+1﹣m2=﹣m2+2m+1=﹣(m﹣1)2+2,当m=1时,CD有最大值229.解:原式=(x﹣)2﹣,∴当x=时,原式有最小值为﹣30.解:(1)y=2x2﹣4ax+a2+2a+2,y=2(x﹣a)2﹣a2+2a+2,当x=a时,y有最小值为3﹣(a﹣1)2;(2)当﹣1≤x≤2时,3﹣(a﹣1)2=2,解得a=0或a=2,当x<﹣1时,则当x=﹣1时y=2,解得,当x>2时,则当x=2时y=2,解得a=4,所以:a=0或a=2或或a=431.解:(1)当1≤x≤2时,y=x2﹣x+x+1=x2+1,当x=1时取最小值为2,x=2时取最大值为5;(2)当﹣2≤x≤﹣1时,y=x2﹣2x﹣1=(x﹣1)2﹣2,当x=﹣1时,y取得最小值为2,当x=﹣2时,y取得最大值为7;(3)当﹣1≤x≤0时,y=x2﹣x+x+1=x2+1,当x=﹣1时,y取最大值为2,当x=0时,y取最小值为1;(4)当0≤x≤1时,y=x﹣x2+x+1=﹣(x﹣1)2+2,当x=1时y取最大值为2,当x=0时y取最小值为1;综上所述:y的最大值为7,最小值为132.解:∵y=(k﹣1)x2﹣2(k﹣1)x﹣k,=(k﹣1)(x﹣1)2﹣2k+1,∴当k>1时,函数有最小值为﹣2k+1,当k<1时,函数有最大值为﹣2k+133.解:(1)若,即﹣1≤a≤1,抛物线开口向下,当时,y最大值=2a,∵二次函数最大值﹣3,即与﹣1≤a≤1矛盾,舍去.(2)若当时,y随x增大而减小,当时,y最大值=﹣a2+4a﹣1,由又a>1,∴(3)若当时,y随x增大而增大,当时,y最大值=﹣a2﹣1,由又a<﹣1,∴综上所述,或34.最小值===.35.解:(1)3﹣k<0,即k>3时,函数有最大值2;(2)3﹣k>0,即k<3时,函数有最大小236.解:二次函数的对称轴为直线x=﹣=t,①﹣1≤t≤1时,x=t时,函数有最大值y=t2﹣2t•t+1=﹣t2+1,②t<﹣1时,x=1时,函数有最大值y=12﹣2t•1+1=﹣2t+2,③t>1时,x=﹣1时,函数有最大值y=(﹣1)2﹣2t•(﹣1)+1=2t+237.解:(1)若,即﹣1≤a≤1,抛物线开口向下,当时,y最大值=2a,∵二次函数最大值﹣3,即与﹣1≤a≤1矛盾,舍去.(2)若当时,y随x增大而减小,当时,y最大值=﹣a2+4a﹣1,由又a>1,∴(3)若当时,y随x增大而增大,当时,y最大值=﹣a2﹣1,由又a<﹣1,∴综上所述,或38.解:(1)若x2﹣4≥0,即|x|≥2,则y=x2﹣3x﹣4∴,若x2﹣4≤0,即|x|≤2,则y=﹣x2﹣3x+4∴,∴(2≤x≤5),当x=5时,y最大值=6;当x=2时,y最小值=﹣6,对(﹣2≤x≤2),当时,;x=2时,y最小值=﹣6,综上所述,x=2时,y最小值=﹣6;当时,;(2)由2x+y=1得,y=1﹣2x,由|y|≤1得﹣1≤x≤1故0≤x≤1,∴z为开口向上,对称轴为的抛物线,虽然有最小值,但不在0≤x≤1的范围内,因此不是所求的最值.又x=0时,z=3;x=1时,z=21.∴所求的最小值为339.解:对称轴为直线x=﹣=a,①a<﹣2时,x=﹣2时,y有最小值,最小值=(﹣2)2﹣2a×(﹣2)﹣3=4+4a﹣3=4a+1,x=2时,y有最大值,最大值=22﹣2a×2﹣3=4﹣4a﹣3=﹣4a+1;②﹣2≤a≤0时,x=a时y有最小值,最小值=a2﹣2a•a﹣3=﹣a2﹣3,x=2时,y有最大值,最大值=22﹣2a×2﹣3=4﹣4a﹣3=﹣4a+1;③0<a≤2时,x=a时y有最小值,最小值=a2﹣2a•a﹣3=﹣a2﹣3,x=﹣2时,y有最大值,最大值=(﹣2)2﹣2a×(﹣2)﹣3=4+4a﹣3=4a+1;④a>2时,x=2时,y有最小值,最小值=22﹣2a×2﹣3=4﹣4a﹣3=﹣4a+1,x=﹣2时,y有最大值,最大值=(﹣2)2﹣2a×(﹣2)﹣3=4+4a﹣3=4a+140.解:∵|x+1|≤6,解得:﹣7≤x≤5,∴当﹣7≤x<0时,y=﹣x2﹣2x+1=﹣(x+1)2+2,当x=﹣1时,取得最大值为2;当0≤x≤5时,y=x2﹣2x+1=(x﹣1)2,故当x=5时,y取得最大值为16.综合上述,原函数式最大值为1641.解:设鸡舍的长为x,则宽为(14﹣2x+2)=8﹣x,所以,鸡舍的面积=x(8﹣x)=﹣x2+8x=﹣(x﹣4)2+16,所以,当x=4,即长与宽都是4时,鸡舍的面积最大,最大值是16m2.答:鸡舍的长与宽都是4m时,鸡舍的面积最大42.解:设梯形上底为x,下底为y,∵AB=2,P是边AB的中点,∠PDC=90°,∴1+y2﹣(1+x2)=4+(y﹣x)2,解得:y=+x,梯形ABCD面积=×(x+y)×2=x+y=x+x+=2x+≥4=4,当x=时,即x=1,y=3时,梯形ABCD面积取得最小值为443.解:将直线x=t,代入y=x2﹣3x,y=﹣x2+9中,得A和B的纵坐标分别为t2﹣3t,﹣t2+9,∴AB=,∴当时,线段AB取得最大值44.解:(1)作OE⊥AD,DF⊥AO,垂足分别为E、F,由垂径定理可知AE=AD=x,易证Rt△ADF∽Rt△AOE,∴=,即=,解得AF=x2,∴CD=AB﹣2AF=2﹣x2,∴y=2x+2+2﹣x2=﹣x2+2x+4,∵OA=1,AF=x2,∴x2<1∴0<x<;(2)∵y=﹣x2+2x+4=﹣(x﹣1)2+5,∴x=1时,周长最大为545.解:由正弦定理得:BQ=2cosB,CQ=2cosC,由上可推出BC=2(cosB+cosC),AB=BC,AC=BC,∴S△ABC=×AB×AC×sinA,∵三边固定,当面积最大时,sinA=1,∠A=90°,又∠APR=∠ARP=∠QPR=∠QRP所以△APR相似于△QPR因为PR边公用,所以AP=AR=QP=QR=1AB=AC=2,∴S△ABC=×AB×AC×sinA=246.解:函数,∴y=+﹣,(1)当0≤≤1时,m=﹣,(2)当<0时,m=,(3)当>1时,m=1﹣a+,综上知:a=1时,m有最大值0.2547.解:(1)∵抛物线的对称轴为直线x=﹣1,∴当﹣2≤x≤4时,二次函数y=2x2+4x+1的最大值为:2×42+4×4+1=49;(2)∵二次函数y=2x2+4x+1的对称轴为直线x=﹣1,∴由对称性可知,当x=﹣4和x=2时函数值相等,∴若p≤﹣4,则当x=p时,y的最大值为2p2+4p+1,若﹣4<p≤2,则当x=2时,y的最大值为17;(3)t<﹣2时,最大值为:2t2+4t+1=31,整理得,t2+2t﹣15=0,解得t1=3(舍去),t2=﹣5,t≥﹣2时,最大值为:2(t+2)2+4(t+2)+1=31,整理得,(t+2)2+2(t+2)﹣15=0,解得t1=1,t2=﹣7(舍去),所以,t的值为1或﹣548.解:(1)第t秒钟时,AP=tcm,故PB=(6﹣t)cm,BQ=2tcm,故S△PBQ=•(6﹣t)•2t=﹣t2+6t∵S矩形ABCD=6×12=72.∴S=72﹣S△PBQ=t2﹣6t+72(0<t<6);(2)∵S=t2﹣6t+72=(t﹣3)2+63,∴当t=3秒时,S有最小值63cm249.解:设C(m,2m+1),D(m,m2),则CD=2m+1﹣m2=﹣m2+2m+1=﹣(m﹣1)2+2,当m=1时,CD有最大值250.解:(1)∵在△ABC中,∠A=90°,∠C=30°,AB=1,∴BC=2,AC=,而两个动点P,Q同时从A点出发,点P沿AC运动,点Q沿AB,BC运动,两点同时到达点C ∴Q的速度是P的速度的(2+1)÷=倍;(2)∵设AP=x,△APQ的面积是y,①当Q在AB上,即时,,②当Q在BC上,即时,,即:;(3)对于()当时,对于(≤x≤)当时,,∵,∴当时,51.解:设平行四边形AGEF的面积是S.∵四边形AGEF是平行四边形,∴EF∥AG;∵∠A=30°,∠C=90°,CE=x,BC=6,∴∠A=∠CFE=30°,∴CF=x,AC=6,∴AF=6﹣x;∴S=AF•CE=(6﹣x)x=﹣x2+6x,即S=﹣x2+6x;(1)当x=2时,S=﹣4+12=8,即S=8.答:平行四边形AGEF的面积为(平方单位)…4分(2)由S=﹣x2+6x,得,∴,∴当x=3时,平行四边形AGEF的面积最大,最大面积是(平方单位)…9分52.解:(1)在Rt△ABC中,AC==6,∴tanB=.∵DE∥AC,∴∠BDE=∠BCA=90°.∴DE=BD•tanB=x,CD=BC﹣BD=8﹣x.设△ADE中DE边上的高为h,∵DE∥AC,∴h=CD.∴y=DE•CD=•(8﹣x),即y=+3x.自变量x的取值范围是0<x<8;(2)x==4时,y最大==6.即当x=4时,△ADE的面积最大为653.(1)证明:过点A作AE⊥BC于E,AF⊥CD于F,∵两条纸条宽度相同(对边平行),∴AB∥CD,AD∥BC,AE=AF,∴四边形ABCD是平行四边形,∵S▱ABCD=BC•AE=CD•AF,又∵AE=AF,∴BC=CD,∴四边形ABCD是菱形;(2)解:当两张纸条如图所示放置时,菱形周长最大,设这时菱形的边长为xcm,由勾股定理:x2=(8﹣x)2+22,得:4x=17,即菱形的最大周长为17cm.当两张纸条如图所示放置时,即是正方形时取得最小值为:2×4=8.54.解:在Rt△BPQ中,设PB=x,由∠B=60°,得:BQ=,PQ=,从而有PC=CR=a﹣x,∴△BPQ与△CPR的面积之和为:S=x2+(a﹣x)2=(x﹣a)2+a2,∵0≤x≤a,∴当x=0时,S取最大值a2,当x=a时,S取最小值a255.解:k可取值﹣1,1,2(1)当k=1时,函数为y=﹣4x+4,是一次函数(直线),无最值;(2)当k=2时,函数为y=x2﹣4x+3,为二次函数.此函数开口向上,只有最小值而无最大值;(3)当k=﹣1时,函数为y=﹣2x2﹣4x+6,为二次函数.此函数开口向下,有最大值.因为y=﹣2x2﹣4x+6=﹣2(x+1)2+8,则当x=﹣1时,函数有最大值为856.解:设A(m,0),B(n,0),则m,n是方程x2+bx+c=0的两个根,∵y=x2+bx+c过点C(0,3),∴c=3,又∵S△ABC=|AB|•|OC|=|AB|•3=9,∴|AB|=6,∴|m﹣n|=6,即(m+n)2﹣4mn=36,而,∴b2﹣12=36,b=±4,∴y=x2±4x+3=(x±2)2﹣9,∴所求的最小值为﹣957.解:(1)在矩形PFOE中,OF=PE=x,∵AO=8,BO=6,∴tanB==,即=,解得PF=(6﹣x),∴矩形PFOE的面积为S=PE•PF=x•(6﹣x)=﹣x2+8x,即S=﹣x2+8x;(2)∵S=﹣x2+8x=﹣(x2﹣6x+9)+12=﹣(x﹣3)2+12,∴当x=3时,矩形PFOE的面积S最大,最大面积是1258.解:(1)当a=3时,方程组为,②×2得,4x﹣2y=2③,①+③得,5x=5,解得x=1,把x=1代入①得,1+2y=3,解得y=1,所以,方程组的解是;(2)方程组的两个方程相加得,3x+y=a+1,所以,S=a(3x+y)=a(a+1)=(a+)2﹣,所以,当a=﹣时,S有最小值﹣59.解:(1)∵PE∥CB,∴∠AEP=∠ADC,又∵∠EAP=∠DAC,∴△AEP∽△ADC,(2分)∴=,∴=,(3分)∴.(4分)(2)由四边形PEDQ1是平行四边形,可得EP=DQ1.(5分)即x=3﹣x,所以x=1.5.(6分)∵0<x<2.4(7分)∴当Q在线段CD上运动1.5秒时,四边形PEDQ是平行四边形.(8分)(3)S四边形EPDQ2=(x+x﹣3)•(4﹣x)(9分)=﹣x2+x﹣6=﹣(x﹣)2+,(10分)又∵2.4<x<4,(12分)∴当x=时,S取得最大值,最大值为60.解 :(1)由题意,得EF=AE=DE=BC=x ,AB=30, ∴BF=2x-30.(2)∵∠F=∠A=45°,∠CBF=∠ABC=90°, ∴∠BGF=∠F=45°.∴BG=BF=2x-30,∴S=S DEF △−S GBF △=21DE ²−21BF ² =21 x ²−21(2x −30)² =−23 x ²+60x −450. (3)S=−23 x ²+60x −450=−23 (x −20)²+150. ∵a =−23 <0,15<20<30, ∴当x=20时,S 有最大值,最大值为150。
二次函数的最值问题(中考题)(含答案)
典型中考题(有关二次函数的最值)屠园实验 周前猛一、选择题1. 已知二次函数y=a (x-1)2+b 有最小值 –1,则a 与b 之间的大小关( )A. a<bB.a=b C a>b D 不能确定答案:C2.当-2≤x≤l 时,二次函数 y=-(x-m )2+m 2+1有最大值4,则实数m 的值为( )A 、-74 B 、 C 、 2或 D 2或或- 74答案:C∵当-2≤x≤l 时,二次函数 y=-(x-m )2+m 2+1有最大值4, ∴二次函数在-2≤x≤l 上可能的取值是x=-2或x=1或x=m.当x=-2时,由 y=-(x-m )2+m 2+1解得m= - 74 ,2765y x 416⎛⎫=-++ ⎪⎝⎭此时,它在-2≤x≤l 的最大值是6516,与题意不符. 当x=1时,由y=-(x-m )2+m 2+1解得m=2,此时y=-(x-2)2+5,它在-2≤x≤l 的最大值是4,与题意相符.当x= m 时,由 4=-(x-m )2+m 2+1解得m=当m=它在-2≤x≤l 的最大值是4,与题意相符;当,2≤x≤l 在x=1处取得,最大值小于4,与题意不符.综上所述,实数m 的值为2或. 故选C .3. 已知0≤x≤12,那么函数y=-2x 2+8x-6的最大值是( ) A -10.5 B.2 C . -2.5 D. -6答案:C解:∵y=-2x2+8x-6=-2(x-2)2+2.∴该抛物线的对称轴是x=2,且在x<2上y随x的增大而增大.又∵0≤x≤12,∴当x=12时,y取最大值,y最大=-2(12-2)2+2=-2.5.故选:C.4、已知关于x的函数.下列结论:①存在函数,其图像经过(1,0)点;②函数图像与坐标轴总有三个不同的交点;③当时,不是y随x的增大而增大就是y随x的增大而减小;④若函数有最大值,则最大值必为正数,若函数有最小值,则最小值必为负数。
真确的个数是()A,1个B、2个 C 3个D、4个答案:B分析:①将(1,0)点代入函数,解出k的值即可作出判断;②首先考虑,函数为一次函数的情况,从而可判断为假;③根据二次函数的增减性,即可作出判断;④当k=0时,函数为一次函数,无最大之和最小值,当k≠0时,函数为抛物线,求出顶点的纵坐标表达式,即可作出判断.解:①真,将(1,0)代入可得:2k-(4k+1)-k+1=0,解得:k=0.运用方程思想;②假,反例:k=0时,只有两个交点.运用举反例的方法;③假,如k=1,b5-=2a4,当x>1时,先减后增;运用举反例的方法;④真,当k=0时,函数无最大、最小值;k≠0时,y最=224ac-b24k+1=-4a8k,∴当k>0时,有最小值,最小值为负;当k<0时,有最大值,最大值为正.运用分类讨论思想.二、填空题:1、如图,已知;边长为4的正方形截去一角成为五边形ABCDE,其中AF=2,BF=l,在AB 上的一点P,使矩形PNDM有最大面积,则矩形PNDM的面积最大值是答案:122、已知直角三角形两直角边的和等于8,两直角边各为时,这个直角三角形的面积最大,最大面积是答案:4、4,8解:设直角三角形得一直角边为x,则,另一边长为8-x;设其面积为S.∴S= x·(8-x)(0<x<8). 配方得S=- (x2-8x)=- (x-4)2+8∴当x=4时,S最大=8.及两直角边长都为4时,此直角三角形的面积最大,最大面积为8.-≤≤的最大值与最小值分别是3、函数y=2(0x4)答案:2,0最小值为0,当4x-x2最大,即x=2最大为4,所以,当x=0时,y最大值为2,当x=2时,y取最小值为04、已知二次函数y=x2+2x+a (0≤x≤1)的最大值是3,那么a的值为答案:0解:二次函数y=x 2+2x+a 对称轴为x=-1,当0≤x ≤1时y 随x 的增大而增大,当x=1时最大值为3,代入y=x 2+2x+a 得a=0.5、如图,在△ABC 中,BC=5,AC=12,AB=13,在边AB 、AC 上分别取点D 、E ,使线段DE 将△ABC 分成面积相等的两部分,则这样线段的最小长度 .三、解答题:1某产品第一季度每件成本为50元,第二、第三季度每件产品平均降低成本的百分率为x⑴ 请用含x 的代数式表示第二季度每件产品的成本;⑵ 如果第三季度该产品每件成本比第一季度少9.5元,试求x 的值⑶ 该产品第二季度每件的销售价为60元,第三季度每件的销售价比第二季度有所下降,若下降的百分率与第二、第三季度每件产品平均降低成本的百分率相同,且第三季度每件产品的销售价不低于48元,设第三季度每件产品获得的利润为y 元,试求y 与x 的函数关系式,并利用函数图象与性质求y 的最大值(注:利润=销售价-成本)解:(1)()x -150 ⑵()5.9501502-=-x 解得1.0=x (3)(),48160≥-x 解得2.0≤x 而0 x ,∴2.00≤x而()()2150160x x y ---==1040502++-x x=()184.0502+--x ∵当4.0≤x 时,利用二次函数的增减性,y 随x 的增大而增大,而2.00≤x , ∴当2.0=x 时,y 最大值=18(元)说明:当自变量取值范围为体体实数时,二次函数在抛物线顶点取得最值,而当自变量取值范围为某一区间时,二次函数的最值应注意下列两种情形:若抛物线顶点在该区间内,顶点的纵坐标就是函数的最值。
二次函数与最值问题(含答案)
二次函数与最值问题1.如图,二次函数y=-x2+2(m-2)x+3的图象与x、y轴交于A、B、C三点,其中A(3,0),抛物线的顶点为D.(Ⅰ)求m的值及顶点D的坐标;(Ⅱ)当a≤x≤b时,函数y的最小值为74,最大值为4,求a,b应满足的条件;(Ⅲ)在y轴右侧的抛物线上是否存在点P,使得△PDC是等腰三角形?如果存在,求出符合条件的点P的坐标;如果不存在,请说明理由.解:(Ⅰ)把A(3,0)代入y=-x2+2(m-2)x+3,得-9+6(m-2)+3=0,解得m=3,则二次函数为y=-x2+2x+3,∵y=-x2+2x+3=-(x-1)2+4,∴顶点D的坐标为(1,4);(Ⅱ)把y=74代入y=-x2+2x+3中,得74=-x2+2x+3,解得x1=-12,x2=25,又∵函数y的最大值为4,顶点D的坐标为(1,4),结合图象知-12≤a≤1.当a=-12时,1≤b≤25,当-12<a≤1时,b=25;(Ⅲ)存在点P,使得△PDC是等腰三角形,当x=0时,y=3,∴点C坐标为(0,3).当△PDC是等腰三角形时,分三种情况:①如解图①,当DC=DP时,由抛物线的对称性知:点P与点C关于抛物线的对称轴x=1对称,∴点P坐标为(2,3);②如解图②,当PC=PD时,则线段CD的垂直平分线l与抛物线的交点即为所求的点P, 过点D作x轴的平行线交y轴于点H,过点P作PM⊥y轴于点M,PN⊥DH的延长线于点N,∵HD=HC=1,PC=PD,∴HP是线段CD的垂直平分线.∵HD=HC,HP⊥CD,∴HP平分∠MHN,∵PM⊥y轴于点M,PN⊥HD的延长线于点N, ∴PM=PN.设P(m,-m2+2m+3),则m=4-(-m2+2m+3),解得m=253±,∴点P的坐标为(253-,255+)(解图中未标记此点)或(253+,255-);③如解图③,当CD=CP时,点P在y轴左侧,不符合题意.综上所述,所求点P的坐标为(2,3)或(253-,255+)或(253+,255-).图①图②图③第1题解图2.已知抛物线y=ax2+bx+c(a<0)过(m,b),(m+1,a)两点,(Ⅰ)若m=1,c=1,求抛物线的解析式;(Ⅱ)若b≥a,求m的取值范围;(Ⅲ)当b≥a,m<0时,二次函数y=ax2+bx+c有最大值-2,求a的最大值. 解:(Ⅰ)∵m=1,c=1,∴抛物线的解析式为y=ax2+bx+1(a<0)过(1,b),(2,a)两点,∴1421a b ba b a++=⎧⎨++=⎩,解得11ab=-⎧⎨=⎩,∴抛物线的解析式为y=-x2+x+1;(Ⅱ)依题意得22(1)(1)am bm c ba mb mc a⎧++=⎪⎨++++=⎪⎩①②,由②-①得b=-am, ∵b≥a,∴-am≥a,∵a<0,∴m≥-1;(Ⅲ) 由(Ⅱ)得b=-am,代入①得am2-am2+c=b,∴c=b=-am,∵b≥a,m<0,∴-1≤m<0,∵二次函数y=ax2+bx+c有最大值-2,∴244ac ba-=-2,∴8a=m2+4m,∴8a= (m+2)2-4,∵-1≤m<0,∴-3≤(m+2)2-4<0,∴a≤-8 3 ,∴a的最大值为-8 3 .3.平面直角坐标系xOy中,抛物线y=mx2-2m2x+2交y轴于A点,交直线x=4于B点. (Ⅰ)求抛物线的对称轴(用含m的代数式表示);(Ⅱ)若AB∥x轴,求抛物线的解析式;(Ⅲ)若抛物线在A,B之间的部分任取一点P(x p,y p),一定满足y p≤2,求m的取值范围.∴抛物线的对称轴为直线x=m;(Ⅱ)当x=0时,y=mx2-2m2x+2=2,∴点A(0,2).∵AB∥x轴,且点B在直线x=4上,∴点B(4,2),抛物线的对称轴为直线x=2,∴m=2,∴抛物线的解析式为y=2x2-8x+2;(Ⅲ)当m>0时,如解图①,∵A(0,2),∴要使0≤x p≤4时,始终满足y p≤2,只需使抛物线y=mx2-2m2x+2的对称轴与直线x=2重合或在直线x=2的右侧.∴m≥2;当m<0时,如解图②,m<0时,y p≤2恒成立.综上所述,m的取值范围为m<0或m≥2.第3题解图4.已知抛物线y=ax2+bx+c的顶点为(2,5),且与y轴交于点C(0,1). (Ⅰ)求抛物线的表达式;(Ⅱ)若-1≤x≤3,试求y的取值范围;(Ⅲ)若M(n2-4n+6,y1)和N(-n2+n+74,y2)是抛物线上的不重合的两点,试判断y1与y2的大小,并说明理由.解:(Ⅰ)∵抛物线y=ax2+bx+c的顶点为(2,5),∴设抛物线的表达式为:y=a(x-2)2+5,把(0,1)代入得:a(0-2)2+5=1,a=-1,∴抛物线的表达式为:y=-(x-2)2+5=-x2+4x+1;(Ⅱ)∵抛物线的顶点为(2,5),a=-1,对称轴为直线x=2,且-1≤x≤3,∴当x=-1时,y有最小值,最小值为y=-(-1-2)2+5=-4,当x=2时,y有最大值,最大值为y=5,∴y的取值范围是-4≤y≤5;(Ⅲ)∵n2-4n+6=(n-2)2+2≥2,-n2+n+74=-(n-12)2+2≤2,∴点M在抛物线对称轴右侧,点N在抛物线对称轴左侧,∵N(-n2+n+74,y2),∴点N关于对称轴对称的点坐标为(n2-n+94,y2),∵在抛物线对称轴右侧,y随x的增大而减小,∴①当n2-4n+6>n2-n+94时,即n<45时,y1<y2;②当n2-4n+6=n2-n+94时,即n=45时,y1=y2;③当n2-4n+6<n2-n+94时,即n>45时,y1>y2.和(m-b, m2-mb+n),其中a,b,c,m,n为实数,且a,m不为0.(Ⅰ)求c的值;(Ⅱ)求证:抛物线y=ax2+bx+c与x轴有两个交点;(Ⅲ)当-1≤x≤1时,设抛物线y=ax2+bx+c上与x轴距离最大的点为P(x0,y0),求这时|y0|的最小值.把点(m-b,m2-mb+n)代入抛物线,得:a(m-b)2+b(m-b)+c=m2-mb+n∴a(m-b)2+b(m-b)=m2-mb,am2-2abm+ab2+bm-b2-m2+mb=0,(a-1)m2-(a-1)•2bm+(a-1)b2=0,(a-1)(m2-2bm+b2)=0,(a-1)(m-b)2=0,若∴a=1,∴抛物线y=ax2+bx+c与x轴有两个交点;x轴距离最大的点的纵坐标为h,在x轴下方与x轴距离最大的点是(-1,y0),∴|H|>|h|,当b=0时等号成立,在x轴上方与x轴距离最大的点是(-1,y0),在x 轴下方与x 轴距离最大的点是(1,y 0),∴|H |>|h |,6.在平面直角坐标系中,直线l :y =x +3与x 轴交于点A ,抛物线C:y =x 2+mx +n 的图象经过点A .(Ⅰ)当m =4时,求n 的值;(Ⅱ)设m =-2,当-3≤x ≤0时,求二次函数y =x 2+mx +n 的最小值;(Ⅲ)当-3≤x ≤0时,若二次函数y =x 2+mx +n 时的最小值为-4,求m 、n 的值. 解:(Ⅰ)当y =x +3=0时,x =-3,∴点A 的坐标为(-3,0).∵二次函数y =x 2+mx +n 的图象经过点A ,∴0=9-3m +n,即n =3m -9,∴当m =4时,n =3m -9=3;当m =-2时,对称轴为x =1,n =3m -9=-15,∴当-3≤x ≤0时,y 随x 的增大而减小,∴当x =0时,二次函数y =x 2+mx +n 取得最小值,最小值为-15.在-3≤x ≤0范围内,y 随x 的增大而增大,当x =-3时,y 取得最小值0,不符合题意;∵二次函数最小值为-4,解得:2 3m n -⎧⎨⎩==或1021m n ⎧⎨⎩==(舍去),∴m =2,n =-3;∴4930n m n --+⎧⎪⎨⎪⎩==,综上所述:m =2,n =-3.7.在平面直角坐标系中,抛物线y =x 2-2x +c (c 为常数)的对称轴为x =1.(Ⅰ)当c =-3时,点(x 1,y 1)在抛物线y=x 2-2x +c 上,求y 1的最小值;∴B (2m ,0),∵二次函数y =x 2-2x +c 的对称轴为x =1,∵点A 在抛物线y =x 2-2x +c 上, ②当点A 在原点的左侧,点B 在原点的右侧时,如解图②,设A (-n ,0),∵OA =12OB ,且点A 、B 在原点的两侧, ∴B (2n ,0),由抛物线的对称性得n +1=2n -1,解得n =2,∴A (-2,0),∵点A 在抛物线y =x 2-2x +c 上,∴0=4+4+c ,解得c =-8,此时抛物线的解析式为y =x 2-2x -8,综上,抛物线的解析式为y =x 2-2x +89或y =x 2-2x -8; (Ⅲ)∵抛物线y =x 2-2x +c 与x 轴有公共点,∴对于方程x 2-2x +c =0,判别式b 2-4ac =4-4c ≥0,∴c ≤1.当x =-1时,y =3+c ;当x =0时,y =c ,∵抛物线的对称轴为x =1,且当-1<x <0时,抛物线与x 轴有且只有一个公共点, ∴3+c >0且c <0,解得-3<c <0,综上,当-1<x <0时,抛物线与x 轴有且只有一个公共点时,c 的取值范围为-3<c <0.第7题解图8.已知抛物线 y =(m -1)x 2+(m -2)x -1与x 轴交于A 、B 两点.(Ⅰ)求m 的取值范围;(Ⅱ)若m <0,且点A 在点B 的左侧,OA :OB =3:1,试确定抛物线的解析式;(Ⅲ)设(Ⅱ)中抛物线与y 轴的交点为C ,过点C 作直线l ∥x 轴,将抛物线在y 轴右侧的部分沿直线l 翻折,抛物线的其余部分保持不变,得到一个新图象.当直线y =-x +b 与新图象只有一个公共点P (x 0,y 0)且 y 0≥-5时,求b 的取值范围.解:(Ⅰ)∵抛物线y =(m -1)x 2+(m -2)x -1与x 轴交于A 、B 两点,∴()210241)0(m m m -≠-+⎩-⎧⎨>①②, 由①得m ≠1,由②得m ≠0,∴m 的取值范围是m ≠0且m ≠1;(Ⅱ)∵点A 、B 是抛物线y =(m -1)x 2+(m -2)x -1与x 轴的交点,∴令y =0,即 (m -1)x 2+(m -2)x -1=0.∴新图象经过点D (-2,-5).当直线y =-x +b 经过D 点时,可得b =-7. 当直线y =-x +b 经过C 点时,可得b =-1. 当直线y =-x +b (b >−1)与函数y =-3x 2−4x −1的图象仅有一个公共点P (x 0,y 0)时,得-x 0+b =-3x 02−4x 0−1.整理得 3x 02+3x 0+b +1=0.第8题解图9.如图,已知c <0,抛物线y =x 2+bx +c 与x 轴交于A (x 1,0),B (x 2,0)两点(x 2>x 1),与y 轴交于点C .(Ⅰ)若x 2=1,BC =5,求函数y =x 2+bx +c 的最小值; (Ⅱ)过点A 作AP ⊥BC ,垂足为P (点P 在线段BC 上),AP 交y 轴于点M .若OA OM=2,求抛物线y =x 2+bx +c 顶点的纵坐标随横坐标变化的函数解析式,并直接写出自变量的取值范围.第9题图解:(Ⅰ)∵x 2=1,∴OB =1,∵BC =5,∴OC =22BC OB =2,∴C (0,-2),把B (1,0),C (0,-2)代入y =x 2+bx +c ,得:0=1+b -2,解得:b =1,∴抛物线的解析式为:y =x 2+x -2.转化为y =(x +12)2-94; ∴函数y =x 2+bx +c 的最小值为-94; (Ⅱ)∵∠OAM +∠OBC =90°,∠OCB +∠OBC =90°,∴∠OAM =∠OCB ,又∵∠AOM =∠BOC =90°,∴△AOM∽△COB,BC上的x最小取值,使P、C、M重合,满足点P在线段根据根与系数的关系,对于x2+bx+c=0,-1,由c=2b-4,解得c=。
二次函数中的最值问题【八大题型】(举一反三)(浙教版)(解析版)
二次函数中的最值问题【浙教版】【题型1 已知二次函数的对称轴及自变量取值范围求最值】 (1)【题型2 已知含参二次函数的对称轴及最值求参】 (3)【题型3 已知二次函数解析式及最值求自变量取值范围】 (5)x=-【例1】二次函数y=x2﹣2x+m.当﹣3≤x≤3时,则y的最大值为15+m(用含m的式子表示).【分析】根据题目中的函数解析式,可以得到该函数的对称轴,然后根据二次函数的性质,即可得到当﹣3≤x≤3时,y的最大值.【解答】解:∵二次函数y=x2﹣2x+m=(x﹣1)2﹣1+m,∴该函数的对称轴是直线x=1,该函数图象开口向上,当x=1时,有最小值,∴当﹣3≤x≤3时,y取得最大值时对应的x的值是﹣3,∵当x=﹣3时,y=(﹣3﹣1)2﹣1+m=15+m,∴当﹣3≤x≤3时,y的最大值为15+m,故答案为:15+m.【变式1-1】当x≥2时,二次函数y=x2﹣2x﹣3有()A.最大值﹣3B.最小值﹣3C.最大值﹣4D.最小值﹣4【分析】用配方法配方成顶点式,可求得对称轴,然后根据二次函数的性质即可求得.【解答】解:∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线开口向上,对称轴为直线x=1,∴当x>1时,y随x的增大而增大,∴当x≥2时,函数有最小值y=22﹣2×2﹣3=﹣3,故选:B.【变式1-2】已知二次函数y=x2,当﹣1≤x≤2时,求函数y的最小值和最大值.小王的解答过程如下:解:当x=﹣1时,y=1;当x=2时,y=4;所以函数y的最小值为1,最大值为4.小王的解答过程正确吗?如果不正确,写出正确的解答过程.【分析】根据二次函数的性质和小王的做法,可以判断小王的做法是否正确,然后根据二次函数的性质即可解答本题.【解答】解:小王的做法是错误的,正确的做法如下:∵二次函数y=x2,∴该函数图象开口向上,该函数的对称轴是y轴,∵﹣1≤x≤2,∴当x=0时取得最小值,最小值是0,当x=2时取得最大值,此时y=4,由上可得,当﹣1≤x≤1时,函数y的最小值是0,最大值是4.【变式1-3】已知二次函数y=x2+bx﹣c的图象经过点(3,0),且对称轴为直线x=1.(1)求b+c的值.(2)当﹣4≤x≤3时,求y的最大值.(3)平移抛物线y=x2+bx﹣c,使其顶点始终在二次函数y=2x2﹣x﹣1上,求平移后所得抛物线与y轴交点纵坐标的最小值.=1,求出b的值,再将点(3,0)代入y=x²+bx﹣c,即可【分析】(1)由对称轴−b2求解析式;(2)由题意可得抛物线的对称轴为直线x =1,结合函数图像可知当x =﹣4时,y 有最大值21;(3)设顶点坐标为(h ,2h 2﹣h ﹣1),可求平移后的解析式为y =(x ﹣h )2+2h 2﹣h ﹣1,设平移后所得抛物线与y 轴交点的纵坐标为w ,则w =3h 2﹣h ﹣1=3(h −16)2−1312,即可求解.【解答】解:(1)∵二次函数y =x ²+bx ﹣c 的对称轴为直线x =1, ∴−b2=1, ∴b =﹣2,∵二次函数y =x ²+bx ﹣c 的图象经过点(3,0), ∴9﹣6﹣c =0, ∴c =3, ∴b +c =1;(2)由(1)可得y =x ²﹣2x ﹣3=(x ﹣1)2﹣4, ∴抛物线的对称轴为直线x =1, ∵﹣4≤x ≤3,∴当x =﹣4时,y 有最大值21;(3)平移抛物线y =x 2﹣2x ﹣3,其顶点始终在二次函数y =2x 2﹣x ﹣1上,∴.设顶点坐标为(h ,2h 2﹣h ﹣1),故平移后的解析式为y =(x ﹣h )2+2h 2﹣h ﹣1, ∴y =x 2﹣2hx +h 2+2h 2﹣h ﹣1=x 2﹣2hx +3h 2﹣h ﹣1, 设平移后所得抛物线与y 轴交点的纵坐标为w , 则w =3h 2﹣h ﹣1=3(h −16)2−1312,∴当h =16时,平移后所得抛物线与y 轴交点纵坐标的最小值为−1312.【题型2 已知含参二次函数的对称轴及最值求参】【例2】已知二次函数y =mx 2﹣4mx (m 为不等于0的常数),当﹣2≤x ≤3时,函数y 的最小值为﹣2,则m 的值为( ) A .±16B .−16或12C .−16或23D .16或2【分析】由二次函数y =mx 2﹣4mx 可得对称轴为x =2,分为m >0和m <0两种情况,当m >0时,二次函数开口向上,当﹣2≤x ≤3时,函数在x =2取得最小值﹣2,将x =2,y =﹣2代入y =mx 2﹣4mx 中,解得m =12,当m <0时,二次函数开口向下,当﹣2≤x ≤3时,函数在x =﹣2取得最小值﹣2,将x =﹣2,y =﹣2代入y =mx 2﹣4mx 中,解得m =−16,即可求解.【解答】解:∵二次函数为y =mx 2﹣4mx ,∴对称轴为x =−b 2a=4m 2m=2,①当m >0时, ∵二次函数开口向上,∴当﹣2≤x ≤3时,函数在x =2取得最小值﹣2, 将x =2,y =﹣2代入y =mx 2﹣4mx 中, 解得:m =12, ②当m <0时, ∵二次函数开口向下,∴当﹣2≤x ≤3时,函数在x =﹣2取得最小值﹣2, 将x =﹣2,y =﹣2代入y =mx 2﹣4mx 中, 解得:m =−16, 综上,m 的值为12或−16, 故选:B .【变式2-1】已知关于x 的二次函数y =x 2+2x +2a +3,当0≤x ≤1时,y 的最大值为10,则a 的值为 2 .【分析】根据抛物线的关系式可知,抛物线的开口方向向上,对称轴为直线x =﹣1,所以可得0≤x ≤1在对称轴的右侧,然后进行计算即可解答. 【解答】解:∵y =x 2+2x +2a +3 =x 2+2x +1+2a +2 =(x +1)2+2a +2,∴抛物线的对称轴为:直线x =﹣1, ∵a =1>0,∴抛物线的开口方向向上,∴当x >﹣1时,y 随x 的增大而增大, ∵当0≤x ≤1时,y 的最大值为10, ∴当x =1时,y =10,把x =1时,y =10代入y =x 2+2x +2a +3中可得: 1+2+2a +3=10, ∴a =2, 故答案为:2.【变式2-2】已知二次函数y =ax 2﹣2ax +c ,当﹣1≤x ≤2时,y 有最小值7,最大值11,则a +c 的值为( ) A .3B .9C .293D .253【分析】先求得抛物线的对称轴,根据二次函数图象上点的坐标特征,当﹣1≤x≤2时,函数的最值为y=﹣a+c和y=3a+c,即可得出﹣a+c+(3a+c)=7+11,即2a+2c=18,从而求得a+c=9.【解答】解:∵二次函数y=ax2﹣2ax+c,∴该二次函数的图象的对称轴为直线x=−−2a2a=1,∵当x=1时,y=a﹣2a+c=﹣a+c;当x=﹣1时,y=a+2a+c=3a+c;∴当﹣1≤x≤2时,函数的最值为y=﹣a+c和y=3a+c,∵当﹣1≤x≤2时,y有最小值7,最大值11,∴﹣a+c+(3a+c)=7+11,即2a+2c=18,∴a+c=9,故选:B.【变式2-3】已知二次函数y=x2+bx+c,当x>0时,函数的最小值为﹣3,当x≤0时,函数的最小值为﹣2,则b的值为()A.6B.2C.﹣2D.﹣3【分析】根据二次函数y=x2+bx+c,当x>0时,函数的最小值为﹣2,可知该函数的对称轴在y轴右侧,4×1×c−b 24×1=−3,−b2>0,再根据当x≤0时,函数的最小值为﹣2,即可得到c的值,然后将c的值代入入4×1×c−b 24×1=−3,即可得到b的值.【解答】解:∵二次函数y=x2+bx+c,当x>0时,函数的最小值为﹣3,∴该函数的对称轴在y轴右侧,4×1×c−b 24×1=−3,−b2>0,∴b<0,∵当x≤0时,函数的最小值为﹣2,∴当x=0时,y=c=﹣2,将c=﹣2代入4×1×c−b 24×1=−3,可得b1=2(舍去),b2=﹣2,故选:C.【题型3 已知二次函数解析式及最值求自变量取值范围】【例3】当0≤x≤m时,函数y=﹣x2+4x﹣3的最小值为﹣3,最大值为1,则m的取值范围是()A.0≤m≤2B.0≤m<4C.2≤m≤4D.m≥2【分析】根据题意和二次函数的性质,可以得到m的取值范围,本题得以解决.【解答】解:∵y=﹣x2+4x﹣3=﹣(x﹣2)2+1,∴该函数的对称轴是直线x=2,当x=2时,该函数取得最大值1,该函数图象开口向下,∵当0≤x≤m时,此函数的最小值为﹣3,最大值为1,当x=0时,y=﹣3,∴2≤m≤4,【变式3-1】已知二次函数y =﹣x 2﹣4x +5,当m ≤x ≤m +3时,求y 的最小值(用含m 的代数式表示).【分析】分四种情况讨论:①当m +3≤﹣2时,即m ≤﹣5,y 的最小值为﹣m 2﹣4m +5;②当m +32<−2<m +3时,即﹣4<m <﹣3,y 的最小值为﹣m 2﹣4m +5;③当m <﹣2≤m +32时,即﹣3≤m <﹣2,y 的最小值为﹣m 2﹣8m ﹣7;④当m ≥﹣2时,y 的最小值为﹣m 2﹣8m ﹣7,【解答】解:y =﹣x 2﹣4x +5=﹣(x +2)2+9, ∴对称轴为直线x =﹣2,当m ≥﹣2时,则当x =m +3时,y 有最小值为﹣(m +3)2﹣4(m +3)+5=﹣m 2﹣10m ﹣16,当m <﹣2<m +3时,即﹣5<m <﹣2,当对称轴位于范围内时,谁离对称轴远,谁就小, 若m +3+2≥﹣2﹣m ,即−72≤m <﹣2时,当x =m +3时,y 有最小值为﹣(m +3)2﹣4(m +3)+5=﹣m 2﹣10m ﹣16, 当m +3+2<﹣2﹣m ,即﹣5<m <−72时,当x =m 时,y 有最小值为﹣m 2﹣4m +5, 当m +3+2≤﹣2时,即m ≤﹣5, y 的最小值为﹣m 2﹣4m +5;综上所述:m ≥−72时y 的最小值为﹣m 2﹣10m ﹣16;当m <−72时,y 的最小值为﹣m 2﹣4m +5.【变式3-2】(2022•庐阳区一模)设抛物线y =ax 2+bx ﹣3a ,其中a 、b 为实数,a <0,且经过(3,0).(1)求抛物线的顶点坐标(用含a 的代数式表示);(2)若a =﹣2,当t ﹣2≤x ≤t 时,函数的最大值是6,求t 的值;(3)点A 坐标为(0,4),将点A 向右平移3个单位长度,得到点B .若抛物线与线段AB 有两个公共点,求a 的取值范围.【分析】(1)把已知点坐标代入抛物线的解析式,求得a 、b 的数量关系,把抛物线解析式中的b 换成a 的代数式,再将抛物线的解析式化成顶点式,便可求得顶点坐标; (2)分x =t 和x =t ﹣2在对称轴右侧、左侧或两侧三种情况,讨论求解即可; (3)抛物线经过(﹣1,0)和(3,0),与线段AB 有两个公共点时,结合图象即可判断出a 的取值范围.【解答】解:(1)把(3,0)代入y =ax 2+bx ﹣3a 得,9a +3b ﹣3a =0,∴抛物线的解析式为y =ax 2﹣2ax ﹣3a =a (x ﹣1)2﹣4a , ∴抛物线的顶点坐标为(1,﹣4a ); (2)∵a =﹣2,∴抛物线的解析式为y =﹣2(x ﹣1)2+8, ∴对称轴为直线:x =1,∴当x >1时,y 随x 的增大而减小,当x <1时,y 随x 的增大而增大, ∵当t ﹣2≤x ≤t 时,函数的最大值是6,∴①当x =t 和x =t ﹣2在对称轴右侧时,有{−2(t −2−1)2+8=6t −2>1,解得t =4,②当x =t 和x =t ﹣2在对称轴左侧时,有{−2(t −1)2+8=6t <1,解得t =0,③当x =t 和x =t ﹣2在对称轴左侧或两侧时,函数的最大值为8,不可能为6,此时无解, 综上,t 的值为0或4;(3))∵点A 坐标为(0,4),将点A 向右平移3个单位长度,得到点B , ∴B (3,4),∵y =ax 2﹣2ax ﹣3a =a (x ﹣3)(x +1), ∴抛物线经过点(3,0)和(﹣1,0), 若此二次函数的图象与线段AB 有两个交点,则如图所示,抛物线的图象只能位于图中两个虚线的位置之间, 当抛物线经过点A 时,为一种临界情况, 将A (0,4)代入,4=0﹣0﹣3a ,解得a =−43, 当抛物线的顶点在线段AB 上时,为一种临界情况,此时顶点的纵坐标为4,∴﹣4a =4,解得a =﹣1,∴−43≤a <﹣1.【变式3-3】已知抛物线y =﹣x 2+bx +c 与x 轴的一个交点为(﹣1,0),且经过点(2,c ). (1)求抛物线与x 轴的另一个交点坐标.(2)当t ≤x ≤2﹣t 时,函数的最大值为M ,最小值为N ,若M ﹣N =3,求t 的值. 【分析】(1)由抛物线经过(2,c )和(0,c ),可得到抛物线的对称轴为直线x =1,即可根据点(﹣1,0),确定抛物线与x 轴的另一个交点坐标为(3,0);(2)根据t ≤2﹣t ,确定t ≤1,2﹣t ≥1,求出当=1时取得最大值4,解得N =1,令y =1求出值.【解答】解:(1)∵抛物线经过(2,c )和(0,c ), ∴抛物线的对称轴为直线x =1, ∴(﹣1,0)的对称点为(3,0).即抛物线与x 轴的另一个交点坐标为(3.0);(2)∵与x 轴的一个交点为(﹣1,0),对称轴为直线x =1, ∴{0=−1−b +c −b 2×(−1)=1,解得:{b =2c =3,∴y =﹣x 2+2x +3. ∵t ≤x ≤2﹣t , ∴t ≤1,2﹣t ≥1.∴当t ≤x ≤2﹣t 时,当x =1时取得最大值4,即M =4,当x =t 或x =2﹣t 时取得最小值N ,∵M ﹣N =3,∴N =1.令y =l 得,1=﹣t 2+2t +3,解得t 1=√3+1(舍),t 2=−√3+1,∴t =−√3+1. 令y =l 得,1=﹣(2﹣t )2+2(2﹣t )+3,解得t 1=√3+1(舍),t 2=−√3+1. ∴t =−√3+1.综上:t =−√3+1.。
二次函数求最值的六种考法(含答案)
二次函数与最值的六种考法-重难点题型【题型1 二次函数中的定轴定区间求最值】【例1】(2021春•瓯海区月考)已知二次函数y=﹣x2+2x+4,关于该函数在﹣2≤x≤2的取值范围内,下列说法正确的是()A.有最大值4,有最小值0B.有最大值0,有最小值﹣4C.有最大值4,有最小值﹣4D.有最大值5,有最小值﹣4【解题思路】根据题目中的函数解析式和二次函数的性质,可以得到该函数的对称轴和开口方向,然后根据﹣2≤x≤2,即可得到相应的最大值和最小值,从而可以解答本题.【解答过程】解:∵二次函数y=﹣x2+2x+4=﹣(x﹣1)2+5,∴该函数的对称轴是直线x=1,函数图象开口向下,∴当﹣2≤x≤2时,x=1时取得最大值5,当x=﹣2时,取得最小值﹣4,故选:D.【变式1-1】(2020秋•龙沙区期中)当﹣1≤x≤3时,二次函数y=x2﹣3x+m最大值为5,则m=.【解题思路】根据题目中的函数解析式和二次函数的性质,可以求得m的值,本题得以解决.【解答过程】解:∵二次函数y=x2﹣3x+m=(x−32)2+m−94,∴该函数开口向上,对称轴为x=3 2,∵当﹣1≤x≤3时,二次函数y=x2﹣3x+m最大值为5,∴当x=﹣1时,该函数取得最大值,此时5=1+3+m,解得m=1,故答案为:1.【变式1-2】(2021•哈尔滨模拟)已知二次函数y=x2﹣4x+3,当自变量满足﹣1≤x≤3时,y的最大值为a,最小值为b,则a﹣b的值为.【解题思路】根据题目中的函数解析式和二次函数的性质,可以得到自变量满足﹣1≤x≤3时,x=﹣1时取得最大值,x=2时取得最小值,然后即可得到a、b的值,从而可以求得a﹣b的值,本题得以解决.【解答过程】解:∵二次函数y=x2﹣4x+3=(x﹣2)2﹣1,∴该函数图象开口向上,对称轴为直线x=2,∵当自变量满足﹣1≤x≤3时,y的最大值为a,最小值为b,∴当x=﹣1时,取得最大值,当x=2时,函数取得最小值,∴a=1+4+3=8,b=﹣1,∴a﹣b=8﹣(﹣1)=8+1=9,故答案为:9.【变式1-3】(2020秋•番禺区校级期中)若函数y=x2﹣6x+5,当2≤x≤6时的最大值是M,最小值是m,则M﹣m=.【解题思路】根据题意画出函数图象,即可由此找到m 和M 的值,从而求出M ﹣m 的值. 【解答过程】解:原式可化为y =(x ﹣3)2﹣4, 可知函数顶点坐标为(3,﹣4), 当y =0时,x 2﹣6x +5=0, 即(x ﹣1)(x ﹣5)=0, 解得x 1=1,x 2=5. 如图:m =﹣4,当x =6时,y =36﹣36+5=5,即M =5. 则M ﹣m =5﹣(﹣4)=9.故答案为9.【题型2 二次函数中的动轴定区间求最值】【例2】(2021•雁塔区校级模拟)已知二次函数y =mx 2+2mx +1(m ≠0)在﹣2≤x ≤2时有最小值﹣2,则m =( ) A .3B .﹣3或38C .3或−38D .﹣3或−38【解题思路】先求出对称轴为x =﹣1,分m >0,m <0两种情况讨论解答即可求得m 的值. 【解答过程】解:∵二次函数y =mx 2+2mx +1=m (x +1)2﹣m +1, ∴对称轴为直线x =﹣1, ①m >0,抛物线开口向上,x =﹣1时,有最小值y =﹣m +1=﹣2, 解得:m =3;②m <0,抛物线开口向下,∵对称轴为直线x =﹣1,在﹣2≤x ≤2时有最小值﹣2, ∴x =2时,有最小值y =4m +4m +1=﹣2,解得:m =−38; 故选:C .【变式2-1】(2021•瓯海区模拟)已知二次函数y =ax 2﹣4ax ﹣1,当x ≤1时,y 随x 的增大而增大,且﹣1≤x ≤6时,y 的最小值为﹣4,则a 的值为( ) A .1B .34C .−35D .−14【解题思路】根据二次函数y =ax 2﹣4ax ﹣1,可以得到该函数的对称轴,再根据当x ≤1时,y 随x 的增大而增大,可以得到a 的正负情况,然后根据﹣1≤x ≤6时,y 的最小值为﹣4,即可得到a 的值. 【解答过程】解:∵二次函数y =ax 2﹣4ax ﹣1=a (x ﹣2)2﹣4a ﹣1, ∴该函数的对称轴是直线x =2, 又∵当x ≤1时,y 随x 的增大而增大, ∴a <0,∵当﹣1≤x ≤6时,y 的最小值为﹣4, ∴x =6时,y =a ×62﹣4a ×6﹣1=﹣4, 解得a =−14, 故选:D .【变式2-2】(2021•章丘区模拟)已知二次函数y =2ax 2+4ax +6a 2+3(其中x 是自变量),当x ≥2时,y 随x 的增大而减小,且﹣2≤x ≤1时,y 的最小值为15,则a 的值为( ) A .1或﹣2B .−√2或√2C .﹣2D .1【解题思路】先求出二次函数的对称轴,再根据二次函数的增减性得出抛物线开口向下a <0,然后由﹣2≤x ≤1时,y 的最小值为15,可得x =1时,y =15,即可求出a . 【解答过程】解:∵二次函数y =2ax 2+4ax +6a 2+3(其中x 是自变量), ∴对称轴是直线x =−4a2×2a=−1, ∵当x ≥2时,y 随x 的增大而减小, ∴a <0,∵﹣2≤x ≤1时,y 的最小值为15, ∴x =1时,y =2a +4a +6a 2+3=15, ∴6a 2+6a ﹣12=0, ∴a 2+a ﹣2=0,∴a =1(不合题意舍去)或a =﹣2. 故选:C .【变式2-3】(2021•滨江区三模)已知二次函数y =12(m ﹣1)x 2+(n ﹣6)x +1(m ≥0,n ≥0),当1≤x ≤2时,y 随x 的增大而减小,则mn 的最大值为( ) A .4B .6C .8D .494【解题思路】由二次函数解析式求出对称轴直线方程,分类讨论抛物线开口向下及开口向上的m ,n 的取值范围,将mn 转化为含一个未知数的整式求最值.【解答过程】解:抛物线y =12(m ﹣1)x 2+(n ﹣6)x +1的对称轴为直线x =6−nm−1, ①当m >1时,抛物线开口向上, ∵1≤x ≤2时,y 随x 的增大而减小, ∴6−n m−1≥2,即2m +n ≤8.解得n ≤8﹣2m , ∴mn ≤m (8﹣2m ),m (8﹣2m )=﹣2(m ﹣2)2+8, ∴mn ≤8.②当0≤m <1时,抛物线开口向下, ∵1≤x ≤2时,y 随x 的增大而减小, ∴6−n m−1≤1,即m +n ≤7,解得m ≤7﹣n , ∴mn ≤n (7﹣n ),n (7﹣n )=﹣(n −72)2+494, ∴mn ≤494, ∵0≤m <1, ∴此情况不存在.综上所述,mn 最大值为8. 故选:C .【题型3 二次函数中的定轴动区间求最值】【例3】(2020秋•马鞍山期末)当a﹣1≤x≤a时,函数y=x2﹣2x+1的最小值为1,则a的值为.【解题思路】利用二次函数图象上点的坐标特征找出当y=1时x的值,结合当a﹣1≤x≤a时函数有最小值1,即可得出关于a的一元一次方程,解之即可得出结论.【解答过程】解:当y=1时,有x2﹣2x+1=1,解得:x1=0,x2=2.∵当a﹣1≤x≤a时,函数有最小值1,∴a﹣1=2或a=0,∴a=3或a=0,故答案为:0或3.【变式3-1】(2021•济南模拟)函数y=﹣x2+4x﹣3,当﹣1≤x≤m时,此函数的最小值为﹣8,最大值为1,则m的取值范围是()A.0≤m<2B.0≤m≤5C.m>5D.2≤m≤5【解题思路】根据题目中的函数解析式和二次函数的性质,可以求得m的取值范围.【解答过程】解:∵y=﹣x2+4x﹣3=﹣(x﹣2)2+1,∴该函数图象开口向下,对称轴是直线x=2,顶点坐标为(2,1),∴x=﹣1和x=5对应的函数值相等,∵当﹣1≤x≤m时,此函数的最小值为﹣8,最大值为1,当x=﹣1时,y=﹣8,∴2≤m≤5,故选:D.【变式3-2】(2021•宁波模拟)若二次函数y=ax2﹣x+2的图象经过点(2,﹣1),当t≤x≤2时,y有最大值3,最小值﹣1,则t的取值范围应是()A.﹣6≤t≤2B.t≤﹣2C.﹣6≤t≤﹣2D.﹣2≤t≤2【解题思路】根据二次函数y=ax2﹣x+2的图象经过点(2,﹣1),可以求得a的值,然后即可得到该函数的解析式,再根据二次函数的性质和当t≤x≤2时,y有最大值3,最小值﹣1,即可得到t的取值范围.【解答过程】解:∵二次函数y=ax2﹣x+2的图象经过点(2,﹣1),∴﹣1=a×22﹣2+2,解得a=−1 4,∴y=−14x2﹣x+2=−14(x+2)2+3,∴该函数的图象开口向下,对称轴是直线x=﹣2,当x=﹣2时,该函数取得最大值3,∵当t≤x≤2时,y有最大值3,最小值﹣1,当x=2时,y=﹣1,∴﹣6≤t≤﹣2,故选:C.【变式3-3】(2021•莱芜区二模)已知二次函数y=(x+1)2﹣4,当a≤x≤b且ab<0时,y的最小值为2a,最大值为2b,则a+b的值为()A.2√3B.−72C.√3−2D.0【解题思路】根据a的取值范围分﹣1≤a<0,﹣b﹣2≤a<﹣1,a<﹣b﹣2三种情况讨论,求出满足题目条件的情况即可.【解答过程】解:∵a≤x≤b且ab<0,∴a,b异号,∴a<0,b>0,由二次函数的对称性,b关于对称轴的对称点为﹣b﹣2,若﹣1≤a<0,则(a+1)2﹣4=2a,解得a=−√3(舍),若﹣b﹣2≤a<﹣1,则﹣4=2a,a=﹣2,且(b+1)2﹣3=2b,解得b=√3,∴a+b=√3−2,若a<﹣b﹣2,则2a=﹣4,a=﹣2,2b=(a+1)2﹣4=﹣3,∴b=−32(舍),故选:C.【题型4 二次函数中求线段最值】【例4】(2020春•海淀区校级期末)如图,抛物线y=x2+5x+4与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,连接AC,点P在线段AC上,过点P作x轴的垂线交抛物线于点Q,则线段PQ长的最大值为.【解题思路】先解方程x2+5x+4=0得A(﹣4,0),再确定C(0,4),则可利用待定系数法求出直线AC的解析式为y=x+4,设P(t,t+4)(﹣4≤t≤0),Q(t,t2+5t+4),所以PQ=t+4﹣(t2+5t+4),然后利用二次函数的性质解决问题.【解答过程】解:当y=0时,x2+5x+4=0,解得x1=﹣4,x2=﹣1,则A(﹣4,0),B(﹣1,0),当x=0时,y=x2+5x+4=4,则C(0,4),设直线AC的解析式为y=kx+b,把A(﹣4,0),C(0,4)代入得{−4k+b=0b=4,解得{k=1b=4,∴直线AC的解析式为y=x+4,设P(t,t+4)(﹣4≤t≤0),则Q(t,t2+5t+4),∴PQ=t+4﹣(t2+5t+4)=﹣t2﹣4t=﹣(t+2)2+4,∴当t=﹣2时,PQ有最大值,最大值为4.故答案为4.【变式4-1】(2020秋•镇平县期末)如图,直线y=−34x+3与x轴交于点C,与y轴交于点B,抛物线y=−38x 2+34x +3经过B ,C 两点,点E 是直线BC 上方抛物线上的一动点,过点E 作y 轴的平行线交直线BC 于点M ,则EM 的最大值为 .【解题思路】设出E 的坐标,表示出M 坐标,进而表示出EM ,化成顶点式即可求得EM 的最大值. 【解答过程】解:∵点E 是直线BC 上方抛物线上的一动点,∴点E 的坐标是(m ,−38m 2+34m +3),点M 的坐标是(m ,−34m +3),∴EM =−38m 2+34m +3﹣(−34m +3)=−38m 2+32m =−38(m 2﹣4m )=−38(m ﹣2)2+32, ∴当m =2时,EM 有最大值为32,故答案为32.【变式4-2】(2021•埇桥区模拟)对称轴为直线x =﹣1的抛物线y =x 2+bx +c ,与x 轴相交于A ,B 两点,其中点A 的坐标为(﹣3,0). (1)求点B 的坐标.(2)点C 是抛物线与y 轴的交点,点Q 是线段AC 上的动点,作QD ⊥x 轴交抛物线于点D ,求线段QD 长度的最大值.【解题思路】(1)利用二次函数对称性即可得出B 点坐标;(2)首先利用待定系数法求二次函数解析式,进而求出直线AC 的解析式,再利用QD =﹣x ﹣3﹣(x 2+2x ﹣3)进而求出最值.【解答过程】解:(1)∵点A (﹣3,0)与点B 关于直线x =﹣1对称, ∴点B 的坐标为(1,0). (2)∵a =1,∴y =x 2+bx +c .∵抛物线过点(﹣3,0),且对称轴为直线x =﹣1, ∴{9−3b +c =0−b2=−1∴解得:{b =2c =−3,∴y =x 2+2x ﹣3,且点C 的坐标为(0,﹣3). 设直线AC 的解析式为y =mx +n , 则{−3m +n =0n =−3, 解得:{m =−1n =−3,∴y =﹣x ﹣3如图,设点Q 的坐标为(x .y ),﹣3≤x ≤0.则有QD =﹣x ﹣3﹣(x 2+2x ﹣3)=﹣x 2﹣3x =﹣(x +32)2+94∵﹣3≤−32≤0,∴当x =−32时,QD 有最大值94.∴线段QD 长度的最大值为94.【变式4-3】(2020秋•滨海新区期末)如图,在平面直角坐标系中,已知抛物线y =ax 2+bx +52与x 轴交于A(5,0),B(﹣1,0)两点,与y轴交于点C.(Ⅰ)求抛物线的解析式;(Ⅱ)若点M是抛物线的顶点,连接AM,CM,求△ACM的面积;(Ⅲ)若点P是抛物线上的一动点,过点P作PE垂直y轴于点E,交直线AC于点D,过点D作x轴的垂线,垂足为点F,连接EF,当线段EF的长度最短时,求出点P的坐标.【解题思路】(Ⅰ)用待定系数法即可求解;(Ⅱ)△AMC的面积=S△MHC+S△MHA=12×MH×OA,即可求解;(Ⅲ)点D在直线AC上,设点D(m,−12m+52),由题意得,四边形OEDF为矩形,故EF=OD,即当线段EF的长度最短时,只需要OD最短即可,进而求解.【解答过程】解:(Ⅰ)令x=0,则y=52,即C(0,52)设抛物线的表达式为y=a(x﹣x1)(x﹣x2)=a(x﹣5)(x+1),将点C的坐标代入上式得:52=a(0﹣5)(0+1),解得a=−1 2,故抛物线的表达式为y=−12(x﹣5)(x+1)=−12x2+2x+52;(Ⅱ)由抛物线的表达式得顶点M(2,92),过点M作MH∥y轴交AC于点H,设直线AC 的表达式为y =kx +t ,则{t =520=5k +t, 解得{k =−12t =52, 故直线AC 的表达式为y =−12x +52,当x =2时,y =32,则MH =92−32=3,则△AMC 的面积=S △MHC +S △MHA =12×MH ×OA =12×3×5=152; (Ⅲ)点D 在直线AC 上,设点D (m ,−12m +52),由题意得,四边形OEDF 为矩形,故EF =OD ,即当线段EF 的长度最短时,只需要OD 最短即可,则EF 2=OD 2=m 2+(−12m +52)2=54m 2−52m +254,∵54>0,故EF 2存在最小值(即EF 最小),此时m =1, 故点D (1,2),∵点P 、D 的纵坐标相同,故2=−12x 2+2x +52,解得x =2±√5,故点P 的坐标为(2+√5,2)或(2−√5,2).【题型5 二次函数中求线段和最值】【例5】(2020秋•安居区期末)如图,在抛物线y =﹣x 2上有A ,B 两点,其横坐标分别为1,2,在y 轴上有一动点C ,当BC +AC 最小时,则点C 的坐标是( )A .(0,0)B .(0,﹣1)C .(0,2)D .(0,﹣2)【解题思路】利用二次函数图象上点的坐标特征可求出点A ,B 的坐标,作点B 关于y 轴的对称点B ′,连接AB ′交y 轴于点C ,此时BC +AC 最小,由点B 的坐标可得出点B ′的坐标,由点A ,B ′的坐标,利用待定系数法可求出直线AB ′的解析式,再利用一次函数图象上点的坐标特征,即可求出点C 的坐标.【解答过程】解:当x =1时,y =﹣12=﹣1,∴点A 的坐标为(1,﹣1);当x =2时,y =﹣22=﹣4,∴点B 的坐标为(2,﹣4).作点B 关于y 轴的对称点B ′,连接AB ′交y 轴于点C ,此时BC +AC 最小,如图所示.∵点B 的坐标为(2,﹣4),∴点B ′的坐标为(﹣2,﹣4).设直线AB ′的解析式为y =kx +b (k ≠0),将A (1,﹣1),B (﹣2,﹣4)代入y =kx +b 得:{k +b =−1−2k +b =−4, 解得:{k =1b =−2, ∴直线AB ′的解析式为y =x ﹣2.当x =0时,y =0﹣2=﹣2,∴点C 的坐标为(0,﹣2),∴当BC +AC 最小时,点C 的坐标是(0,﹣2).故选:D .【变式5-1】(2021•铁岭模拟)如图,已知抛物线y =﹣x 2+px +q 的对称轴为x =﹣3,过其顶点M 的一条直线y =kx +b 与该抛物线的另一个交点为N (﹣1,1).要在坐标轴上找一点P ,使得△PMN 的周长最小,则点P 的坐标为( )A .(0,2)B .(43,0)C .(0,2)或(43,0)D .以上都不正确【解题思路】首先,求得抛物线的解析式,根据抛物线解析式求得M 的坐标;欲使△PMN 的周长最小,MN 的长度一定,所以只需(PM +PN )取最小值即可.然后,过点M 作关于y 轴对称的点M ′,连接M ′N ,M ′N 与y 轴的交点即为所求的点P (如图1);过点M 作关于x 轴对称的点M ′,连接M ′N ,则只需M ′N 与x 轴的交点即为所求的点P (如图2).【解答过程】解:如图,∵抛物线y =﹣x 2+px +q 的对称轴为x =﹣3,点N (﹣1,1)是抛物线上的一点, ∴{−p −2=−31=−1−p +q, 解得{p =−6q =−4. ∴该抛物线的解析式为y =﹣x 2﹣6x ﹣4=﹣(x +3)2+5,∴M (﹣3,5).∵△PMN 的周长=MN +PM +PN ,且MN 是定值,所以只需(PM +PN )最小.如图1,过点M 作关于y 轴对称的点M ′,连接M ′N ,M ′N 与y 轴的交点即为所求的点P .则M ′(3,5).设直线M ′N 的解析式为:y =ax +t (a ≠0),则{5=3a +t 1=−a +t, 解得{a =1t =2, 故该直线的解析式为y =x +2.当x =0时,y =2,即P (0,2).同理,如图2,过点M 作关于x 轴对称的点M ′,连接M ′N ,则只需M ′N 与x 轴的交点即为所求的点P (−43,0).如果点P 在y 轴上,则三角形PMN 的周长=4√2+MN ;如果点P 在x 轴上,则三角形PMN 的周长=2√10+MN ;所以点P 在(0,2)时,三角形PMN 的周长最小.综上所述,符合条件的点P 的坐标是(0,2).故选:A .【变式5-2】(2021•包头)已知抛物线y =x 2﹣2x ﹣3与x 轴交于A ,B 两点(点A 在点B 的左侧)与y 轴交于点C ,点D (4,y )在抛物线上,E 是该抛物线对称轴上一动点,当BE +DE 的值最小时,△ACE 的面积为 .【解题思路】解方程x 2﹣2x ﹣3=0得A (﹣1,0),B (3,0),则抛物线的对称轴为直线x =1,再确定C (0,﹣3),D (4,5),连接AD 交直线x =1于E ,交y 轴于F 点,如图,利用两点之间线段最短可判断此时BE +DE 的值最小,接着利用待定系数法求出直线AD 的解析式为y =x +1,则F (0,1),然后根据三角形面积公式计算.【解答过程】解:当y =0时,x 2﹣2x ﹣3=0,解得x 1=﹣1,x 2=3,则A (﹣1,0),B (3,0), 抛物线的对称轴为直线x =1,当x =0时,y =x 2﹣2x ﹣3=﹣3,则C (0,﹣3),当x =4时,y =x 2﹣2x ﹣3=5,则D (4,5),连接AD 交直线x =1于E ,交y 轴于F 点,如图,∵BE +DE =EA +DE =AD ,∴此时BE +DE 的值最小,设直线AD 的解析式为y =kx +b ,把A (﹣1,0),D (4,5)代入得{−k +b =04k +b =5,解得{k =1b =1, ∴直线AD 的解析式为y =x +1,当x =1时,y =x +1=2,则E (1,2),当x =0时,y =x +1=1,则F (0,1),∴S △ACE =S △ACF +S △ECF =12×4×1+12×4×1=4. 故答案为4.【变式5-3】(2021•涪城区模拟)如图,抛物线y =53x 2−203x +5与x 轴分别交于A 、B 两点(点A 在点B 的左侧),与y 轴交于C ,在其对称轴上有一动点M ,连接MA 、MC 、AC ,则当△MAC 的周长最小时,点M 的坐标是 .【解题思路】点A 关于函数对称轴的对称点为点B ,连接CB 交函数对称轴于点M ,则点M 为所求点,即可求解.【解答过程】解:点A 关于函数对称轴的对称点为点B ,连接CB 交函数对称轴于点M ,则点M 为所求点,理由:连接AC ,由点的对称性知,MA =MB ,△MAC 的周长=AC +MA +MC =AC +MB +MC =CA +BC 为最小,令y =53x 2−203x +5=0,解得x =1或3,令x =0,则y =5,故点A 、B 、C 的坐标分别为(1,0)、(3,0)、(0,5),则函数的对称轴为x =12(1+3)=2,设直线BC 的表达式为y =kx +b ,则{0=3k +b b =5,解得{k =−53b =5, 故直线BC 的表达式为y =−53x +5,当x =2时,y =−53x +5=53,故点M 的坐标为(2,53). 【题型6 二次函数中求面积最值】【例6】(2020秋•盐城期末)如图,抛物线y =x 2+bx +c 与x 轴交于A (﹣1,0),B (3,0)两点,过点A 的直线l 交抛物线于点C (2,m ),点P 是线段AC 上一个动点,过点P 做x 轴的垂线交抛物线于点E .(1)求抛物线的解析式;(2)当P 在何处时,△ACE 面积最大.【解题思路】(1)利用交点式写出抛物线解析式;(2)先利用二次函数解析式确定C (2,﹣3),再利用待定系数法求出直线AC 的解析式为y =﹣x ﹣1,设E (t ,t 2﹣2t ﹣3)(﹣1≤t ≤2),则P (t ,﹣t ﹣1),利用三角形面积公式得到△ACE 的面积=12×(2+1)×PE =32(﹣t 2+t +2),然后根据二次函数的性质解决问题.【解答过程】解:(1)抛物线解析式为y =(x +1)(x ﹣3),即y =x 2﹣2x ﹣3;(2)把C (2,m )代入y =x 2﹣2x ﹣3得m =4﹣4﹣3=﹣3,则C (2,﹣3),设直线AC 的解析式为y =mx +n ,把A (﹣1,0),C (2,﹣3)代入得{−m +n =02m +n =−3,解得{m =−1n =−1, ∴直线AC 的解析式为y =﹣x ﹣1;设E (t ,t 2﹣2t ﹣3)(﹣1≤t ≤2),则P (t ,﹣t ﹣1),∴PE =﹣t ﹣1﹣(t 2﹣2t ﹣3)=﹣t 2+t +2,∴△ACE 的面积=12×(2+1)×PE=32(﹣t 2+t +2)=−32(t −12)2+278,当t =12时,△ACE 的面积有最大值,最大值为278,此时P 点坐标为(12,−32). 【变式6-1】(2021春•金塔县月考)如图,已知抛物线经过A (4,0),B (1,0),C (0,﹣2)三点.(1)求该抛物线的解析式;(2)在直线AC 上方的该抛物线上是否存在一点D ,使得△DCA 的面积最大,若存在,求出点D 的坐标及△DCA 面积的最大值;若不存在,请说明理由.【解题思路】(1)根据题意设出抛物线的交点式,用待定系数法求解即可;(2)根据题意作出相关辅助线,用待定系数法求得直线AC解析式为y=12x﹣2,因为点D在抛物线上,所以可设其坐标为(x,−12x2+52x﹣2),点E在直线AC上则设点E坐标为(x,12x﹣2),由图形可知S△DCA=S△DCE+S△DAE,将相关坐标及线段的长度代入求解,再根据二次函数的性质即可得出△DCA面积的最大值.【解答过程】(1)设该抛物线解析式为y=a(x﹣4)(x﹣1),将点C(0,﹣2)坐标代入解析式得:﹣2=a(0﹣4)(0﹣1),解得a=−1 2,∴y=−12(x﹣4)(x﹣1)=−12x2+52x﹣2,故该抛物线的解析式为:y=−12x2+52x﹣2,(2)如图,设存在点D在抛物线上,连接AD、CD,过点D作DE⊥x轴且与直线AC交于点E,设直线AC表达式为:y=kx+b(k≠0),将A(4,0),C(0,﹣2)代入其表达式得:{0=4k+b−2=b,解得{k=12b=−2,∴直线AC:y=12x﹣2,设点D坐标为(x,−12x2+52x﹣2),则点E坐标为(x,12x﹣2),S△DCA=S△DCE+S△DAE=12×DE×x E+12×DE×(x A﹣x E)=12×DE×x A=12×DE×4=2DE,∵DE=(−12x2+52x﹣2)﹣(12x﹣2)=−12x2+2x,∴S△DCA=2DE=2×(−12x2+2x)=﹣x2+4x=﹣(x﹣2)2+4,∴当x=2时,y=−12x2+52x﹣2═﹣2+5﹣2=1,即点D坐标为(2,1),此时△DCA的面积最大,最大值为4.【变式6-2】(2021春•无为市月考)如图,直线y=﹣x+n与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c经过点A,B.(1)求抛物线的解析式.(2)若P为直线AB上方的抛物线上一点,且点P的横坐标为m,求四边形BCAP的面积S关于点P横坐标m的函数解析式,并求S的最大值.【解题思路】(1)将点A坐标代入直线解析式可求n的值,可求点B坐标,利用待定系数法可求解;(2)过点P做PE⊥x轴于点E,与直线AB交于点D,求得C的坐标和D的坐标,然后根据S=S△ABC+S △ABP得到S关于m的函数解析式,根据二次函数的性质即可求得结论.【解答过程】解:(1)∵直线y=﹣x+n与x轴交于点A(3,0),∴0=﹣3+n,∴n=3,∴直线解析式为:y=﹣x+3,当x=0时,y=3,∴点B (0,3),∵抛物线y =﹣x 2+bx +c 经过点A ,B ,∴{c =3−9+3b +c =0, ∴{b =2c =3, ∴抛物线的解析式为:y =﹣x 2+2x +3;(2)如图,过点P 做PE ⊥x 轴于点E ,与直线AB 交于点D ,∵点P 的横坐标为m ,∴点P 的坐标为(m ,﹣m 2+2m +3),∵点D 在直线AB 上,∴点D 的坐标为(m ,﹣m +3),∴PD =﹣m 2+2m +3﹣(﹣m +3)=﹣m 2+3m ,在y =﹣x 2+2x +3中.令y =0.则﹣x 2+2x +3=0,解得x 1=﹣1,x 2=3,∴点C 的坐标为(﹣1,0),∴S =S △ABC +S △ABP =12×4×3+12(﹣m 2+3m )×3=−32(m −32)2+758, ∴当m =32时,S 最大,最大值为758.【变式6-3】(2021春•无棣县月考)如图,在平面直角坐标系中,二次函数y =x 2+bx +c 的图象与x 轴交于A 、B 两点,B 点的坐标为(3,0),与y 轴交于点C (0,﹣3),点P 是直线BC 下方抛物线上的一个动点.(1)求二次函数解析式;(2)连接PO ,PC ,并将△POC 沿y 轴对折,得到四边形POP 'C .是否存在点P ,使四边形POP 'C 为菱形?若存在,求出此时点P 的坐标;若不存在,请说明理由;(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积.【解题思路】(1)先根据点C坐标求出c=﹣3,再将点B坐标代入二次函数解析式中求出b,即可得出结论;(2)连接PP'交y轴于E,根据菱形的性质判断出点E是OC的中点,进而求出点P的纵坐标,最后代入二次函数解析式中求解,即可得出结论;(3)设出点P的坐标,进而利用梯形的面积+三角形的面积得出S四边形ABPC=−32(m−12)2+398,即可得出结论.【解答过程】解:(1)∵二次函数y=x2+bx+c与y轴的交点C(0,﹣3),∴c=﹣3,∴二次函数的解析式为y=x2+bx﹣3,∵点B(3,0)在二次函数图象上,∴9+3b﹣3=0,∴b=﹣2,∴二次函数的解析式为y=x2﹣2x﹣3;(2)存在,理由:如图1,连接PP'交y轴于E,∵四边形POP'C为菱形,∴PP'⊥OC,OE=CE=12OC,∵点C(0,﹣3),∴OC=3,∴OE=3 2,∴E (0,−32),∴点P 的纵坐标为−32,由(1)知,二次函数的解析式为y =x 2﹣2x ﹣3, ∴x 2﹣2x ﹣3=−32,∴x =2−√102或x =2+√102,∵点P 在直线BC 下方的抛物线上,∴0<x <3,∴点P (2+√102,−32);(3)如图2,过点P 作PF ⊥x 轴于F ,则PF ∥OC , 由(1)知,二次函数的解析式为y =x 2﹣2x ﹣3, 令y =0,则x 2﹣2x ﹣3=0,∴x =﹣1或x =3,∴A (﹣1,0),∴设P (m ,m 2﹣2m ﹣3)(0<m <3),∴F (m ,0),∴S 四边形ABPC =S △AOC +S 梯形OCPF +S △PFB =12OA •OC +12(OC +PF )•OF +12PF •BF =12×1×3+12(3﹣m 2+2m +3)•m +12(﹣m 2+2m +3)•(3﹣m ) =−32(m −32)2+758,∴当m =32时,四边形ABPC 的面积最大,最大值为758,此时,P (32,−154),即点P 运动到点(32,−154)时,四边形ABPC 的面积最大,其最大值为758.。
二次函数的最值精选题道参考答案
二次函数的最值精选题参考答案与试题解析一.选择题(共14小题)1.【分析】根据对称轴的位置,分三种情况讨论求解即可.【解答】解:二次函数的对称轴为直线x=m,①m<﹣2时,x=﹣2时二次函数有最大值,此时﹣(﹣2﹣m)2+m2+1=4,解得m=﹣,与m<﹣2矛盾,故m值不存在;②当﹣2≤m≤1时,x=m时,二次函数有最大值,此时,m2+1=4,解得m=﹣,m=(舍去);③当m>1时,x=1时二次函数有最大值,此时,﹣(1﹣m)2+m2+1=4,解得m=2,综上所述,m的值为2或﹣.故选:C.【点评】本题考查了二次函数的最值问题,难点在于分情况讨论.2.【分析】首先求得抛物线的对称轴,抛物线开口向上,在顶点处取得最小值,在距对称轴最远处取得最大值.【解答】解:抛物线的对称轴是直线x=1,则当x=1时,y=1﹣2﹣3=﹣4,是最小值;当x=3时,y=9﹣6﹣3=0是最大值.故选:A.【点评】本题考查了二次函数的图象和性质,正确理解取得最大值和最小值的条件是关键.3.【分析】min{a,b}的含义就是取二者中的较小值,画出函数图象草图,利用函数图象的性质可得结论.【解答】解:在同一坐标系xOy中,画出二次函数y=﹣x2+1与正比例函数y=﹣x的图象,如图所示.设它们交于点A、B.令﹣x2+1=﹣x,即x2﹣x﹣1=0,解得:x=或,∴A(,),B(,).观察图象可知:①当x≤时,min{﹣x2+1,﹣x}=﹣x2+1,函数值随x的增大而增大,其最大值为;②当<x<时,min{﹣x2+1,﹣x}=﹣x,函数值随x的增大而减小,其最大值为小于;③当x≥时,min{﹣x2+1,﹣x}=﹣x2+1,函数值随x的增大而减小,最大值为.综上所述,min{﹣x2+1,﹣x}的最大值是.故选:A.【点评】本题考查了二次函数与正比例函数的图象与性质,充分理解定义min{a,b}和掌握函数的性质是解题的关键.4.【分析】先求出二次函数的对称轴为直线x=﹣1,然后根据二次函数开口向上确定其增减性,并结合图象解答即可.【解答】解:∵二次函数y=(x+1)2﹣4,对称轴是:x=﹣1∵a=1>0,∴x>﹣1时,y随x的增大而增大,x<﹣1时,y随x的增大而减小,由图象可知:在﹣2≤x≤2内,x=2时,y有最大值,y=(2+1)2﹣4=5,x=﹣1时y有最小值,是﹣4,故选:B.【点评】本题考查了二次函数的最值问题,二次函数的增减性,结合图象可得函数的最值是解题的关键.5.【分析】根据已知条件得到CP=6﹣t,得到PQ===,于是得到结论.【解答】解:∵AP=CQ=t,∴CP=6﹣t,∴PQ===,∵0≤t≤2,∴当t=2时,PQ的值最小,∴线段PQ的最小值是2,故选:C.【点评】本题考查了二次函数的最值,勾股定理,正确的理解题意是解题的关键.6.【分析】先求出二次函数的对称轴,再求得函数在顶点处的函数值,根据已知条件最小值是﹣,得出m≤﹣;再求得当x=1时的函数值,发现该值等于已知条件中的最大值,根据二次函数的对称性可得m的下限.【解答】解:解法一:∵函数y=x2+x﹣1的对称轴为直线x=﹣,∴当x=﹣时,y有最小值,此时y=﹣﹣1=﹣,∵函数y=x2+x﹣1在m≤x≤1上的最小值是﹣,∴m≤﹣;∵当x=1时,y=1+1﹣1=1,对称轴为直线x=﹣,∴当x=﹣﹣[1﹣(﹣)]=﹣2时,y=1,∵函数y=x2+x﹣1在m≤x≤1上的最大值是1,且m≤﹣;∴﹣2≤m≤﹣.解法二:画出函数图象,如图所示:y=x2+x﹣1=(x+)2﹣,∴当x=1时,y=1;当x=﹣,y=﹣,当x=﹣2,y=1,∵函数y=x2+x﹣1在m≤x≤1上的最大值是1,最小值是﹣,∴﹣2≤m≤﹣.故选:C.【点评】本题考查了二次函数在给定范围内的最值问题,熟练掌握二次函数的性质是解题的关键.7.【分析】用a表示出b、c并求出a的取值范围,再代入S整理成关于a的函数形式,然后根据二次函数的增减性求出m、n的值,再相减即可得解.【解答】解:∵a+b=2,c﹣3a=4,∴b=2﹣a,c=3a+4,∵b,c都是非负数,∴,解不等式①得,a≤2,解不等式②得,a≥﹣,∴﹣≤a≤2,又∵a是非负数,∴0≤a≤2,S=a2+b+c=a2+(2﹣a)+3a+4,=a2+2a+6,∴对称轴为直线a=﹣=﹣1,∴a=0时,最小值n=6,a=2时,最大值m=22+2×2+6=14,∴m﹣n=14﹣6=8.故选:B.【点评】本题考查了二次函数的最值问题,用a表示出b、c并求出a的取值范围是解题的关键,难点在于整理出s关于a的函数关系式.8.【分析】抛物线y=(x+1)2﹣2开口向上,有最小值,顶点坐标为(﹣1,﹣2),顶点的纵坐标﹣2即为函数的最小值.【解答】解:根据二次函数的性质,当x=﹣1时,二次函数y=(x﹣1)2﹣2的最小值是﹣2.故选:D.【点评】本题考查对二次函数最值.求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.9.【分析】把二次函数解析式整理成顶点式形式,然后根据二次函数最值问题解答即可.【解答】解:y=x2+2x﹣5=(x+1)2﹣6,∵a=1>0,∴当x=﹣1时,二次函数由最小值﹣6.故选:D.【点评】本题考查了二次函数的最值问题,整理成顶点式形式求解更简便.10.【分析】利用配方法将原函数关系式化为顶点式,即可求出二次函数的最小值.【解答】解:y=2x2﹣4x﹣6=2(x﹣1)2﹣8,因为图象开口向上,故二次函数的最小值为﹣8.故选:A.【点评】本题考查了二次函数的最值,将原式化为顶点式是解题的关键.11.【分析】根据题意判定抛物线开口向上,对称轴在0和1之间,然后根据点到对称轴的距离的大小即可判断.【解答】解:∵二次函数图象经过P1(﹣3,y1),P2(﹣1,y2),P3(1,y3),P4(3,y4)四点,且y3<y2<y4,∴抛物线开口向上,对称轴在0和1之间,∴P1(﹣3,y1)离对称轴的距离最大,P3(1,y3)离对称轴距离最小,∴y3最小,y1最大,故选:A.【点评】本题考查了二次函数图象上点的坐标特征,二次函数的性质,判定对称轴的位置是解题的关键.12.【分析】根据二次函数的性质求解.【解答】解:∵y=(x﹣1)2+2,∴当x=1时,函数有最小值2.故选:D.【点评】本题考查了二次函数的最值:当a>0时,抛物线在对称轴左侧,y随x的增大而减少;在对称轴右侧,y随x的增大而增大,因为图象有最低点,所以函数有最小值,当x=﹣,函数最小值y=;当a<0时,抛物线在对称轴左侧,y随x的增大而增大;在对称轴右侧,y随x的增大而减少,因为图象有最高点,所以函数有最大值,当x=﹣,函数最大值y=.13.【分析】根据二次函数的图象,可知函数y的最大值和最小值.【解答】解:观察图象可得,在0≤x≤4时,图象有最高点和最低点,∴函数有最大值2和最小值﹣2.5,故选:A.【点评】本题考查二次函数的最值,解题的关键是灵活运用所学知识解决问题,学会利用图象解决最值问题.14.【分析】把(﹣1,﹣3)代入y=x2+mx+n确定m,n之间的数量关系,代入mn+1讨论.【解答】解:把(﹣1,﹣3)代入y=x2+mx+n得﹣3=1﹣m+n∴n=m﹣4∴mn+1=m(m﹣4)+1=m2﹣4m+1=(m﹣2)2﹣3所以mn+1有最小值﹣3,故选:A.【点评】本题考查二次函数图象上点的特征.根据二次函数性质确定m,n的数量关系是解答关键.二.填空题(共18小题)15.【分析】由a+b2=2得出b2=2﹣a,代入a2+5b2得出a2+5b2=a2+5(2﹣a)=a2﹣5a+10,再利用配方法化成a2+5b2=(a﹣)2+,即可求出其最小值.【解答】解:∵a+b2=2,∴b2=2﹣a,a≤2,∴a2+5b2=a2+5(2﹣a)=a2﹣5a+10=(a﹣)2+,当a=2时,a2+5b2可取得最小值为4.故答案为:4.【点评】本题考查了二次函数的最值,根据题意得出a2+5b2=(a﹣)2+是关键.16.【分析】设矩形的宽为x,则长为(20﹣x),S=x(20﹣x)=﹣x2+20x=﹣(x﹣10)2+100,当x=10时,S最大值为100.【解答】解:设矩形的宽为x,则长为(20﹣x),S=x(20﹣x)=﹣x2+20x=﹣(x﹣10)2+100,当x=10时,S最大值为100.故答案为100.【点评】本题考查了函数的最值,熟练运用配方法是解题的关键.17.【分析】根据题目中的函数解析式和二次函数的性质,可以求得a的取值范围,本题得以解决.【解答】解:∵函数y=﹣x2+2x+1=﹣(x﹣1)2+2,当﹣1≤x≤a时,函数的最大值是2,∴当x=1时,函数取得最大值,此时y=2,∴a≥1,故答案为:a≥1.【点评】本题考查二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.18.【分析】分类讨论抛物线对称轴的位置确定出m的范围即可.【解答】解:由二次函数y=x2﹣2mx(m为常数),得到对称轴为直线x=m,抛物线开口向上,当m≥2时,由题意得:当x=2时,y最小值为﹣2,代入得:4﹣4m=﹣2,即m=1.5<2,不合题意,舍去;当﹣1≤m≤2时,由题意得:当x=m时,y最小值为﹣2,代入得:﹣m2=﹣2,即m=或m=﹣(舍去);当m<﹣1时,由题意得:当x=﹣1时,y最小值为﹣2,代入得:1+2m=﹣2,即m=﹣1.5,综上,m的值是﹣1.5或,故答案为:﹣1.5或.【点评】此题考查了二次函数的最值,利用了分类讨论的思想,熟练掌握二次函数性质是解本题的关键.19.【分析】化成顶点式,根据二次函数的性质即可求得.【解答】解:y=x2﹣16x﹣8=(x﹣8)2﹣72,由于函数开口向上,因此函数有最小值,且最小值为﹣72,故答案为:﹣72.【点评】本题考查了二次函数的最值、顶点式的运用及顶点坐标的求法.20.【分析】根据二次函数的增减性利用对称轴列出不等式求解即可.【解答】解:∵0≤x≤4时,y仅在x=4时取得最大值,∴﹣<,解得a<5.故答案为:a<5.【点评】本题考查了二次函数的最值问题,熟练掌握二次函数的增减性和对称轴公式是解题的关键.21.【分析】利用二次函数图象上点的坐标特征找出当y=1时x的值,结合当a≤x≤a+1时函数有最小值1,即可得出关于a的一元一次方程,解之即可得出结论.【解答】解:当y=1时,有x2﹣2x+1=1,解得:x1=0,x2=2.∵当a≤x≤a+1时,函数有最小值1,∴a=2或a+1=0,∴a=2或a=﹣1,故答案是:2或﹣1.【点评】本题考查了二次函数图象上点的坐标特征以及二次函数的最值,利用二次函数图象上点的坐标特征找出当y=1时x的值是解题的关键.22.【分析】根据二次函数的性质,可以得到在2≤x≤5范围内,该函数的最小值.【解答】解:∵二次函数y=x2﹣2x+1=(x﹣1)2,∴当x>1时,y随x的增大而增大,∴在2≤x≤5范围内,当x=2时,y取得最小值,此时y=(2﹣1)2=1,故答案为:1.【点评】本题考查二次函数的最值、二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.23.【分析】由当x=﹣1时y取得最大值知﹣=﹣1且m<0,解关于m的方程可得答案.【解答】解:根据题意知,﹣=﹣1,且m<0,整理该方程可得m2﹣2m﹣3=0,解得:m=﹣1或m=3(舍),故答案为:﹣1.【点评】本题主要考查二次函数的最值,解题的关键是根据二次函数的性质得出关于m 的方程.【点评】本题考查了二次函数的最值:对于二次函数y=a(x﹣k)2+h,当a>0时,x=k时,y有最小值h,当a<0时,x=k时,y有最大值h.24.【分析】根据抛物线解析式得到顶点坐标(﹣3,5);然后由抛物线的增减性进行解答.【解答】解:∵y=﹣(x+3)2+5,∴该抛物线的开口方向向下,且顶点坐标是(﹣3,5).∴当x<﹣3时,y随x的增大而增大,∴当x=a时,二次函数y=﹣(x+3)2+5恰好有最大值3,把y=3代入函数解析式得到3=﹣(x+3)2+5,解得x1=﹣5,x2=﹣1.∴a=﹣5.故答案是:﹣5.【点评】本题考查了二次函数的最值.求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.25.【分析】根据三角形的面积公式,△ABE底边BE上的高AO不变,BE越小,则面积越小,可以判断当AD与⊙C相切时,BE的值最小,根据勾股定理求出AD的值,然后根据相似三角形对应边成比例列式求出OE的长度,代入三角形的面积公式进行计算即可求解.【解答】解:如图所示,当AD与⊙C相切时,线段BE最短,此时△ABE面积的最小,∵A(2,0),C(﹣1,0),⊙C半径为1,∴AO=2,AC=2+1=3,CD=1,在Rt△ACD中,AD===2,∵CD⊥AD,∴∠D=90°,∴∠D=∠AOE,在△AOE与△ADC中,,∴△AOE∽△ADC,∴=,即=,解得EO=,∵点B(0,2),∴OB=2,∴BE=OB﹣OE=2﹣,∴△ABE面积的最小值=×BE×AO=(2﹣)×2=2﹣.故答案为:2﹣.【点评】本题考查了坐标与图形的性质,勾股定理,相似三角形的判定与性质,根据相似三角形对应边成比例列式求出OE的长度是解题的关键.26.【分析】根据题意:二次函数y=ax2+4x+a﹣1的最小值是2,则判断二次函数的系数大于0,再根据公式y最小值=2列出关于a的一元二次方程,解得a的值即可.【解答】解:∵二次函数y=ax2+4x+a﹣1有最小值2,∴a>0,y最小值===2,整理,得a2﹣3a﹣4=0,解得a=﹣1或4,∵a>0,∴a=4.故答案为4.【点评】本题主要考查二次函数的最值的知识点,求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法,常用的是后两种方法,当二次项系数a的绝对值是较小的整数时,用配方法较好.37.【分析】根据题意求出当菱形EGFH的面积最大时所满足的条件,然后根据条件求出GH长度,即可求出面积.【解答】解:根据题意可得,由勾股定理可得EF=;∵四边形EGFH为菱形,根据菱形面积公式,S EGFH=,∴若要菱形EGFH的面积最大,只需GH值最大,∴根据题意可得G,H在图象上的位置为:过点E作EM⊥BC,垂足为M;过点G作GN⊥CD,垂足为N;又∵EF⊥GH,∴∠MEF=∠NGH,又∵∠EMF=∠GNH,EM=GN,∴△EMF≌△GNH(AAS),∴GH=EF=2,∴=34.【点评】本题考查了求最大面积时所满足的条件以及菱形的面积公式,根据临界值即可求出答案,属于中档题.28.【分析】根据二次函数的性质解答即可.【解答】解:二次函数y=(x﹣4)2﹣5的最小值是﹣5.故答案为:﹣5.【点评】本题考查的是二次函数的最值的确定,掌握二次函数的性质是解题的关键.29.【分析】将二次函数配方,即可直接求出二次函数的最小值.【解答】解:∵y=x2﹣2x﹣4=x2﹣2x+1﹣5=(x﹣1)2﹣5,∴可得二次函数的最小值为﹣5.故答案是:﹣5.【点评】本题考查了二次函数的最值问题,用配方法是解此类问题的最简洁的方法.三.解答题(共8小题)30.【分析】(1)根据max{a,b}表示a、b两数中较大者,即可求出结论;(2)根据max{3x+1,﹣x+1}=﹣x+1,即可得出关于x的一元一次不等式,解之即可得出结论;(3)联立两函数解析式成方程组,解之即可求出交点坐标,画出直线y=﹣x+2的图象,观察图形,即可得出max{﹣x+2,x2﹣2x﹣4}的最小值.【解答】解:(1)max{5,2}=5,max{0,3}=3.故答案为:5;3.(2)∵max{3x+1,﹣x+1}=﹣x+1,∴3x+1≤﹣x+1,解得:x≤0.(3)联立两函数解析式成方程组,,解得:,,∴交点坐标为(﹣2,4)和(3,﹣1).画出直线y=﹣x+2,如图所示,观察函数图象可知:当x=3时,max{﹣x+2,x2﹣2x﹣4}取最小值﹣1.【点评】本题考查了二次函数的最值、一次函数的图象、一次函数的性质以及二次函数的图象,解题的关键是:(1)读懂题意,弄清max的意思;(2)根据max{3x+1,﹣x+1}=﹣x+1,找出关于x的一元一次不等式;(3)联立两函数解析式成方程组,通过解方程组求出交点坐标.31.【分析】(1)①根据二次项系数为0,一次项系数不为0,常数项为任意实数解答即可;②根据k>0,k<0时x、y的对应关系确定直线经过的点的坐标,求出解析式;③根据一次函数的性质即增减性解答即可;(2)把m=﹣1,n=2代入关系式,得到二次函数解析式,确定对称轴,顶点坐标,分情况讨论求出k的值.【解答】解:(1)①m=﹣2,k≠0,n为任意实数;②当k>0时,y随x的增大而增大,直线经过(﹣2,0)(1,3),函数关系式为:y=x+2当k<0时,y随x的增大而减小,直线经过(﹣2,3)(1,0),函数关系式为:y=﹣x+1③当k>0时,x=﹣2,y有最小值为﹣2k+nx=3时,y有最大值为3k+n当k<0时,x=﹣2,y有最大值为﹣2k+nx=3时,y有最小值为3k+n(2)若m=﹣1,n=2时,二次函数为y=x2+kx+2对称轴为x=﹣,当﹣≤﹣2,即k≥4时,把x=﹣2,y=﹣4代入关系式得:k=5当﹣2<﹣<2,即﹣4<k<4时,把x=﹣,y=﹣4代入关系式得:k=±2(不合题意)当﹣≥2,即k≤﹣4时,把x=2,y=﹣4代入关系式得:k=﹣5.所以实数k的值为±5.【点评】本题考查了一次函数的概念、一次函数的性质、一次函数最值的应用以及二次函数的性质,综合性较强,需要学生灵活运用性质,把握一次函数的增减性和二次函数的增减性,解答题目.32.【分析】(1)先求出抛物线的对称轴为直线x=﹣1,然后确定当x=4时取得最大值,代入函数解析式进行计算即可得解;(2)先求出抛物线的对称轴为直线x=﹣1,再根据对称性可得x=﹣4和x=2时函数值相等,然后分p≤﹣4,﹣4<p≤2讨论求解;(3)根据(2)的思路分t<﹣2,t≥﹣2时两种情况讨论求解.【解答】解:(1)∵抛物线的对称轴为直线x=﹣1,∴当﹣2≤x≤4时,二次函数y=2x2+4x+1的最大值为:2×42+4×4+1=49;(2)∵二次函数y=2x2+4x+1的对称轴为直线x=﹣1,∴由对称性可知,当x=﹣4和x=2时函数值相等,∴若p≤﹣4,则当x=p时,y的最大值为2p2+4p+1,若﹣4<p≤2,则当x=2时,y的最大值为17;(3)t<﹣2时,最大值为:2t2+4t+1=31,整理得,t2+2t﹣15=0,解得t1=3(舍去),t2=﹣5,t≥﹣2时,最大值为:2(t+2)2+4(t+2)+1=31,整理得,(t+2)2+2(t+2)﹣15=0,解得t1=1,t2=﹣7(舍去),所以,t的值为1或﹣5.【点评】本题考查了二次函数的最值问题,主要利用了二次函数的对称性,确定出抛物线的对称轴解析式是确定p和t的取值范围的关键,难点在于读懂题目信息.33.【分析】(1)根据表中的数据得出对称轴是直线x=2,根据对称点的特点得出即可;(2)根据表得出图象有最小值,根据顶点坐标得出即可;(3)根据二次函数的性质得出即可.【解答】解:(1)∵根据表可知:对称轴是直线x=2,∴点(0,5)和(4,n)关于直线x=2对称,∴n=5,故答案为:5;(2)根据表可知:顶点坐标为(2,1),即当x=2时,y有最小值,最小值是1;(3)∵函数的图象开口向上,顶点坐标为(2,1),对称轴是直线x=2,∴当m>2时,点A(m1,y1),B(m+1,y2)都在对称轴的右侧,y随x的增大而增大,∵m<m+1,∴y1<y2.【点评】本题考查了二次函数的图象和性质,能根据表中的熟记得出正确信息是解此题的关键.34.【分析】(1)过A作AE⊥BC于E,根据含30度的直角三角形三边的关系得到AE=x,利用平行四边的周长可表示出BC=4﹣x,则0<x<4;然后根据平行四边形的面积公式即可得到y(cm2)与x的函数关系式;(2)把(1)中的关系式配成顶点式得到y=﹣(x﹣2)2+2,然后根据二次函数的最值问题即可得到x取什么值时,y的值最大,并得到最大值.【解答】解:(1)过A作AE⊥BC于E,如图,∵∠B=30°,AB=x,∴AE=x,又∵平行四边形ABCD的周长为8cm,∴BC=4﹣x,∴y=AE•BC=x(4﹣x)=﹣x2+2x(0<x<4);(2)y=﹣x2+2x=﹣(x﹣2)2+2,∵a=﹣,∴当x=2时,y有最大值,其最大值为2.【点评】本题考查了二次函数的最值问题:先把二次函数配成顶点式:y=a(x﹣h)2+k,当a<0时,x=h,y有最大值k;当a>0,x=h,y有最小值k.也考查了平行四边形的性质以及含30度的直角三角形三边的关系.35.【分析】(1)把抛物线的解析式化成顶点式即可;(2)把点B坐标代入抛物线的解析式,求出抛物线的解析式,结合图形,再求当0<m<3时,n的取值范围;(3)分别讨论m和b的大小关系,根据n≤2,求出b的取值范围.【解答】解:(1)∵y=x2﹣2bx+b2﹣2=(x﹣b)2﹣2,∴顶点坐标为(b,﹣2);(2)把(0,2)代入y=x2﹣2bx+b2﹣2(b>0),得b=2,或b=﹣2(舍去),∴b=2,∴解析式为:y=x2﹣4x+2,对称轴为x=2;顶点坐标为(2,﹣2),结合函数图象可得,在顶点处n取得最小值﹣2;当x=0时,y=2,∴当0<m<3时,﹣2≤n<2.(3)如图,①若3≤m≤5≤b时,y max=(3﹣b)2﹣2≤2,∴1≤b≤5,矛盾,不成立;②若3≤b≤5时,则当x=3时,y=(3﹣b)2﹣2≤2,得1≤b≤5,且当x=5时,y=(5﹣b)2﹣2≤2,得3≤b≤7,∴3≤b≤5;③当b≤3≤m≤5时,y max=(5﹣b)2﹣2≤2,得3≤b≤7,矛盾;综上,b的取值范围为3≤b≤5.【点评】本题主要考查二次函数的取值范围问题,涉及待定系数法求解析式,数形结合思想等,利用数形结合思想结合图象求取值范围是常见方法.36.【分析】物线的顶点式解析式y=a(x﹣h)2+k,代入顶点坐标另一点求出a的值即可.【解答】解:∵抛物线l1的最高点为P(3,4),∴设抛物线的解析式为y=a(x﹣3)2+4,把点(0,1)代入得,1=a(0﹣3)2+4,解得,a=﹣,∴抛物线的解析式为y=﹣(x﹣3)2+4.【点评】此题考查待定系数法求函数解析式,根据题目中的已知条件,灵活选用二次函数解析式的形式解决问题.37.【分析】直接利用对角线互相垂直的四边形面积求法得出S=AC•BD,再利用配方法求出二次函数最值.【解答】解:设AC=x,四边形ABCD面积为S,则BD=12﹣x,则:S=AC•BD=x(12﹣x)=﹣(x﹣6)2+18,当x=6时,S最大=18;所以AC=BD=6时,四边形ABCD的面积最大.【点评】此题主要考查了二次函数最值以及四边形面积求法,正确掌握对角线互相垂直的四边形面积求法是解题关键.。
二次函数的最值问题(含答案)
---二次函数的最值问题一、内容概述对二次函数2(0)y ax bx c a =++≠,若自变量为任意实数,则取最值情况为:(1)当0,2b a x a >=-时,244ac b y a -=最小值(2)当0,2b a x a <=-时,244ac b y a-=最大值若自变量x 的取值范围为()x αβαβ≤≤≠,则取最值分0a >和0a <两种情况,由α、β与2b a-的大小关系确定。
1.对于0a >:(1)当2baαβ<≤-,因为对称轴左侧y 随x 的增大而减小,所以y 的最大值为()y α,最小值为()y β。
这里()y α、()y β分别是y 在x α=与x β=时的函数值。
(2)当2baαβ-≤≤,因为对称轴右侧y 随x 的增大而增大,所以y 的最大值为()y β,最小值为()y α。
(3)当2b a αβ≤-≤,y 的最大值为()y α、 ()y β中较大者,y 的最小值为()2b y a-. 2.对于0a <(1)当2baαβ<≤-,y 的最大值为()y β,最小值为()y α。
(2)当2baαβ-≤≤,y 的最大值为()y α,最小值为()y β。
(3)当2b a αβ≤-≤,y 的最小值为()y α、 ()y β中较大者,y 的最大值为()2b y a-. 综上所述,求函数的最大、最小值,需比较三个函数值:()y α、()y β、()2b y a- 二、例题解析例1 已知12,x x 是方程22(2)(35)0x k x k k --+++=的两个实数根,求2212x x +的最大值和最小值。
解:由于题给出的二次方程有实根,所以0∆≥,解得443k -≤≤- ∴y =2212x x +=21212()2x x x x +-=2106k k ---∵函数y 在443k -≤≤-随着k 的增大而减小 ∴当4k =-时,8y =最大值;当43k =-时,509y =最小值例2 (1)求函数243y x x =--在区间25x -≤≤中的最大值和最小值。
二次函数的最值问题举例附练习测试参考答案
二次函数的最值问题举例附练习测试参考答案 The pony was revised in January 2021二次函数的最值问题举例(附练习、答案) 二次函数2 (0)y ax bx c a =++≠是初中函数的主要内容,也是高中学习的重要基础.在初中阶段大家已经知道:二次函数在自变量x 取任意实数时的最值情况(当0a >时,函数在2b x a=-处取得最小值244ac b a -,无最大值;当0a <时,函数在2b x a=-处取得最大值244ac b a -,无最小值. 本节我们将在这个基础上继续学习当自变量x 在某个范围内取值时,函数的最值问题.同时还将学习二次函数的最值问题在实际生活中的简单应用.【例1】当22x -≤≤时,求函数223y x x =--的最大值和最小值.分析:作出函数在所给范围的及其对称轴的草图,观察图象的最高点和最低点,由此得到函数的最大值、最小值及函数取到最值时相应自变量x 的值.解:作出函数的图象.当1x =时,min 4y =-,当2x =-时,max 5y =. 12x ≤≤时,求函数21y x x =--+的最大值和最小值.【例2】当解:作出函数的图象.当1x =时,min 1y =-,当2x =时,max 5y =-.由上述两例可以看到,二次函数在自变量x 的给定范围内,对应的图象是抛物线上的一段.那么最高点的纵坐标即为函数的最大值,最低点的纵坐标即为函数的最小值.根据二次函数对称轴的位置,函数在所给自变量x 的范围的图象形状各异.下面给出一些常见情况:【例3】当0x ≥时,求函数(2)y x x =--的取值范围. 解:作出函数2(2)2y x x x x =--=-在0x ≥内的图象.可以看出:当1x =时,min 1y =-,无最大值.所以,当0x ≥时,函数的取值范围是1y ≥-.【例4】当1t x t ≤≤+时,求函数21522y x x =--的最小值(其中t 为常数). 分析:由于x 所给的范围随着t 的变化而变化,所以需要比较对称轴与其范围的相对位置.解:函数21522y x x =--的对称轴为1x =.画出其草图. (1)当对称轴在所给范围左侧.即1t >时: 当x t =时,2min 1522y t t =--; (2)当对称轴在所给范围之间.即1101t t t ≤≤+⇒≤≤时:当1x =时,2min 1511322y =⨯--=-; (3)当对称轴在所给范围右侧.即110t t +<⇒<时:当1x t =+时,22min 151(1)(1)3222y t t t =+-+-=-.综上所述:2213,023,0115,122t t y t t t t ⎧-<⎪⎪=-≤≤⎨⎪⎪-->⎩在实际生活中,我们也会遇到一些与二次函数有关的问题:【例5】某商场以每件30元的价格购进一种商品,试销中发现这种商品每天的销售量m (件)与每件的销售价x (元)满足一次函数1623,3054m x x =-≤≤.(1)写出商场卖这种商品每天的销售利润y 与每件销售价x 之间的函数关系式;(2)若商场要想每天获得最大销售利润,每件商品的售价定为多少最合适最大销售利润为多少解:(1)由已知得每件商品的销售利润为(30)x -元,那么m 件的销售利润为(30)y m x =-,又1623m x =-.(2)由(1)知对称轴为42x =,位于x 的范围内,另抛物线开口向下∴当42x =时,2max 342252424860432y =-⨯+⨯-=∴当每件商品的售价定为42元时每天有最大销售利润,最大销售利润为432元.A 组1.抛物线2(4)23y x m x m =--+-,当m =_____时,图象的顶点在y 轴上;当m =_____时,图象的顶点在x 轴上;当m =_____时,图象过原点.2.用一长度为l 米的铁丝围成一个长方形或正方形,则其所围成的最大面积为________.3.求下列二次函数的最值:(1)2245y x x =-+; (2)(1)(2)y x x =-+.4.求二次函数2235y x x =-+在22x -≤≤上的最大值和最小值,并求对应的x 的值.5.对于函数2243y x x =+-,当0x ≤时,求y 的取值范围.6.求函数3y =-7.已知关于x 的函数22(21)1y x t x t =+++-,当t 取何值时,y 的最小值为0?B 组1.已知关于x 的函数222y x ax =++在55x -≤≤上.(1)当1a =-时,求函数的最大值和最小值;(2)当a 为实数时,求函数的最大值. 2.函数223y x x =++在0m x ≤≤上的最大值为3,最小值为2,求m 的取值范围.3.设0a >,当11x -≤≤时,函数21y x ax b =--++的最小值是4-,最大值是0,求,a b的值.4.已知函数221y x ax=++在12x-≤≤上的最大值为4,求a的值.5.求关于x的二次函数221y x tx=-+在11x-≤≤上的最大值(t为常数).第五讲二次函数的最值问题答案A组1.414或2,3 22.22 16lm3.(1)有最小值3,无最大值;(2)有最大值94,无最小值.4.当34x=时,min318y=;当2x=-时,max19y=.5.5y≥-6.当56x=时,min3y=-23x=或1时,max3y=.7.当54t=-时,miny=.B组1.(1)当1x=时,min 1y=;当5x=-时,max 37y=.(2)当0a≥时,max 2710y a=+;当0a<时,max 2710y a=-.2.21m-≤≤-.3.2,2a b==-.4.14a=-或1a=-.5.当0t≤时,max 22y t=-,此时1x=;当0t>时,max 22y t=+,此时1x=-.。
(完整版)二次函数(应用题求最值)(含答案)
二次函数应用题1、某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x 元,商场每天销售这种冰箱的利润是y 元,请写出y 与x 之间的函数表达式;(不要求写自变量的取值范围)(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?2.如图,在平面直角坐标系中,顶点为(,)的抛物线交轴于点,交轴于,41-y A x B 两点(点在点的左侧). 已知点坐标为(,).C B C A 03(1)求此抛物线的解析式;(2)过点作线段的垂线交抛物线于点,如果以点为圆心的圆与直线B AB DC 相切,请判断抛物线的对称轴与⊙有怎样的位置关系,并给出证明;BD l C (3)已知点是抛物线上的一个动点,且位于,两点之间,问:当点运动到P A C P 什么位置时,的面积最大?并求出此时点的坐标和的最大面积.PAC ∆P PAC ∆3、张大爷要围成一个矩形花圃.花圃的一边利用足够长的墙x(第13题)另三边用总长为32米的篱笆恰好围成.围成的花圃是如图所示的矩形ABCD .设AB 边的长为x 米.矩形ABCD 的面积为S 平方米.(1)求S 与x 之间的函数关系式(不要求写出自变量x 的取值范围). (2)当x 为何值时,S 有最大值?并求出最大值.(参考公式:二次函数2y ax bx c =++(0a ≠),当2bx a=-时,244ac b y a-=最大(小)值)4、某电视机生产厂家去年销往农村的某品牌电视机每台的售价y (元)与月份x 之间满足函数关系,去年的月销售量p (万台)与月份x 之间成一次函数关系,其502600y x =-+中两个月的销售情况如下表:月份1月5月销售量 3.9万台 4.3万台(1)求该品牌电视机在去年哪个月销往农村的销售金额最大?最大是多少?(2)由于受国际金融危机的影响,今年1、2月份该品牌电视机销往农村的售价都比去年12月份下降了,且每月的销售量都比去年12月份下降了1.5m%.国家实施“家电下%m 乡”政策,即对农村家庭购买新的家电产品,国家按该产品售价的13%给予财政补贴.受此政策的影响,今年3至5月份,该厂家销往农村的这种电视机在保持今年2月份的售价不变的情况下,平均每月的销售量比今年2月份增加了1.5万台.若今年3至5月份国家对这种电视机的销售共给予了财政补贴936万元,求的值(保留一位小数).m )5.831 5.9166.083 6.1645、某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量(件)与销售单价(元)符合一次函数y x ,且时,;时,.y kx b =+65x =55y =75x =45y =(1)求一次函数的表达式;y kx b =+(2)若该商场获得利润为元,试写出利润与销售单价之间的关系式;销售单价定W W x 为多少元时,商场可获得最大利润,最大利润是多少元?(3)若该商场获得利润不低于500元,试确定销售单价的范围.x 6、某商场在销售旺季临近时 ,某品牌的童装销售价格呈上升趋势,假如这种童装开始时的售价为每件20元,并且每周(7天)涨价2元,从第6周开始,保持每件30元的稳定价格销售,直到11周结束,该童装不再销售。
初中数学二次函数最值练习题(附答案)
初中数学二次函数最值练习题一、单选题1.二次函数245y x x -=+的最小值是( ) A.1-B.1C.3D.52.在平面直角坐标系中,对于二次函数2(2)1y x =-+,下列说法中错误的是( ) A.y 的最小值为1B.图象顶点坐标为(2,1),对称轴为直线2x =C.当2x <时,y 的值随x 值的增大而增大,当2x ≥时,y 的值随x 值的增大而减小D.它的图象可以由2y x =的图象向右平移2个单位长度,再向上平移1个单位长度得到3.将进货单价为70元的某种商品按零售价100元一个售出时,每天能卖出20个,若这种商品的零售价每降价1元,其日销量就增加1个,为了获取每日最大利润,则应降价( ) A.5元 B. 10元 C. 15元 D.20元4.当1a x a ≤≤+时,函数221y x x =-+的最小值为1,则a 的值为( ) A.-1 B.2 C.0或2 D.-1或2 5.当21x -≤≤时,二次函数22()1y x m m =--++有最大值4,则实数m 的值为( )A.74-或74- 6.已知二次函数2()1y x h =-+(h 为常数),在自变量x 的值满足13x 的情况下,与其对应的函数值y 的最小值为5,则h 的值为( )A.1或-5B.-1或5C.1或-3D.1或37.某二次函数,当自变量x 满足04x 时,对应的函数值y 满足02y ,则这个函数不可能是( ) A.21(2)2y x =- B.242y x x =-+ C.21(2)22y x =--+ D.2114y x x =-++ 8.在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28 m 长的篱笆围成一个矩形花园ABCD (篱笆只围,AB BC 两边),设m AB x =.若在点P 处有一棵树与墙,CD AD的距离分别是15 m 和6 m,要将这棵树围在花园内(含边界,不考虑树的粗细),则花园面积S 的最大值为( )A.2193mB.2194mC.2195mD.2196m9.已知二次函数22233y ax ax a =+++(其中x 是自变量),当2x ≥时,y 随x 的增大而增大,且21x -≤≤时,y 的最大值为9,则a 的值为( )A.1或-2B. D.110.已知二次函数2()y x h =--(h 为常数),当自变量x 的值满足25x ≤≤时,与其对应的函数值y 的最大值为1-,则h 的值为( ) A.3或6 B.1或6C.1或3D.4或6二、解答题11.2a b+≤(0,0)a b >>,当且仅当a b =时,等号成立,其中我们把2a b+叫作正数a b 、,a b 的几何平均数,其意义是两个正数的算术平均数不小于其几何平均数。
二次函数最值问题(含标准答案)
二次函数最值问题(含答案)————————————————————————————————作者:————————————————————————————————日期:二次函数最值问题一.选择题(共8小题)1.如果多项式P=a2+4a+2014,则P的最小值是()A.2010 B.2011 C.2012 D.20132.已知二次函数y=x2﹣6x+m的最小值是﹣3,那么m的值等于()A.10 B.4 C.5 D.63.若二次函数y=ax2+bx+c的图象开口向下、顶点坐标为(2,﹣3),则此函数有()A.最小值2 B.最小值﹣3 C.最大值2 D.最大值﹣34.设x≥0,y≥0,2x+y=6,则u=4x2+3xy+y2﹣6x﹣3y的最大值是()A.B.18 C.20 D.不存在5.二次函数的图象如图所示,当﹣1≤x≤0时,该函数的最大值是()A.3.125 B.4 C.2 D.06.已知二次函数y=(x﹣h)2+1(h为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最小值为5,则h的值为()A.1或﹣5 B.﹣1或5 C.1或﹣3 D.1或37.二次函数y=﹣(x﹣1)2+5,当m≤x≤n且mn<0时,y的最小值为2m,最大值为2n,则m+n的值为()A.B.2 C.D.8.如图,抛物线经过A(1,0),B(4,0),C(0,﹣4)三点,点D是直线BC 上方的抛物线上的一个动点,连结DC,DB,则△BCD的面积的最大值是()A.7 B.7.5 C.8 D.9二.填空题(共2小题)9.已知二次函数y=2(x+1)2+1,﹣2≤x≤1,则函数y的最小值是,最大值是.10.如图,在直角坐标系中,点A(0,a2﹣a)和点B(0,﹣3a﹣5)在y轴上,=6.当线段OM最长时,点M的坐标为.点M在x轴负半轴上,S△ABM三.解答题(共3小题)11.在平面直角坐标系中,O为原点,直线l:x=1,点A(2,0),点E,点F,点M都在直线l上,且点E和点F关于点M对称,直线EA与直线OF交于点P.(Ⅰ)若点M的坐标为(1,﹣1),①当点F的坐标为(1,1)时,如图,求点P的坐标;②当点F为直线l上的动点时,记点P(x,y),求y关于x的函数解析式.(Ⅱ)若点M(1,m),点F(1,t),其中t≠0,过点P作PQ⊥l于点Q,当OQ=PQ时,试用含t的式子表示m.12.已知关于x的函数y=kx2+(2k﹣1)x﹣2(k为常数).(1)试说明:不论k取什么值,此函数图象一定经过(﹣2,0);(2)在x>0时,若要使y随x的增大而减小,求k的取值范围;(3)试问该函数是否存在最小值﹣3?若存在,请求出此时k的值;若不存在,请说明理由.13.函数y=(m+2)是关于x的二次函数,求:(1)满足条件的m值;(2)m为何值时,抛物线有最低点?求出这个最低点.这时,当x为何值时,y 随x的增大而增大?(3)m为何值时,函数有最大值?最大值是多少?这时,当x为何值时,y随x 的增大而减小.二次函数最值问题(含答案)一.选择题(共8小题)1.A;2.D;3.D;4.B;5.C;6.B;7.D;8.C;9.1;9;10.(﹣3,0);三.解答题(共3小题)11.【解答】解:(Ⅰ)①∵点O(0,0),F(1,1),∴直线OF的解析式为y=x.设直线EA的解析式为:y=kx+b(k≠0)、∵点E和点F关于点M(1,﹣1)对称,∴E(1,﹣3).又∵A(2,0),点E在直线EA上,∴,解得,∴直线EA的解析式为:y=3x﹣6.∵点P是直线OF与直线EA的交点,则,解得,∴点P的坐标是(3,3).②由已知可设点F的坐标是(1,t).∴直线OF的解析式为y=tx.设直线EA的解析式为y=cx+d(c、d是常数,且c≠0).由点E和点F关于点M(1,﹣1)对称,得点E(1,﹣2﹣t).又点A、E在直线EA上,∴,解得,∴直线EA的解析式为:y=(2+t)x﹣2(2+t).∵点P为直线OF与直线EA的交点,∴tx=(2+t)x﹣2(2+t),即t=x﹣2.则有y=tx=(x﹣2)x=x2﹣2x;(Ⅱ)由(Ⅰ)可得,直线OF的解析式为y=tx.直线EA的解析式为y=(t﹣2m)x﹣2(t﹣2m).∵点P为直线OF与直线EA的交点,∴tx=(t﹣2m)x﹣2(t﹣2m),化简,得x=2﹣.有y=tx=2t﹣.∴点P的坐标为(2﹣,2t﹣).∵PQ⊥l于点Q,得点Q(1,2t﹣),∴OQ2=1+t2(2﹣)2,PQ2=(1﹣)2,∵OQ=PQ,∴1+t2(2﹣)2=(1﹣)2,化简,得t(t﹣2m)(t2﹣2mt﹣1)=0.又∵t≠0,∴t﹣2m=0或t2﹣2mt﹣1=0,解得m=或m=.则m=或m=即为所求.12.解:(1)将x=﹣2代入,得y=k(﹣2)2+(2k﹣1)•(﹣2)﹣2=0,故不论k取何值,此函数图象一定经过点(﹣2,0).(2)①若k=0,此函数为一次函数y=﹣x﹣2,当x>0时,y随x的增大而减小,∴k=0符合题意.②若k≠0,此函数为二次函数,而图象一定经过(﹣2,0)、(0,﹣2)∴要使当x>0时,y随x的增大而减小,开口向下,须满足k<0即可.综上,k的取值范围是k≤0.(3)若k=0,此函数为一次函数y=﹣x﹣2,∵x的取值为全体实数,∴y无最小值,若k≠0,此函数为二次函数,若存在最小值为﹣3,则=﹣3,且k>0,解得:k=符合题意,∴当k=时,函数存在最小值﹣3.13.解:(1)根据题意得m+2≠0且m2+m﹣4=2,解得m1=2,m2=﹣3,所以满足条件的m值为2或﹣3;(2)当m+2>0时,抛物线有最低点,所以m=2,抛物线解析式为y=4x2,所以抛物线的最低点为(0,0),当x≥0时,y随x的增大而增大;(3)当m=﹣3时,抛物线开口向下,函数有最大值;抛物线解析式为y=﹣x2,所以二次函数的最大值是0,这时,当x≥0时,y随x的增大而减小.。
二次函数与最值问题练习题(含答案)
二次函数与最值 题集一、实际问题中的最值(1)(2)1.如图,某中学准备围建一个矩形苗圃,其中一边靠墙,另外三边用长为米的篱笆围成,若墙长为米,设这个苗圃垂直于墙的一边长为米.苗圃园若苗圃园的面积为平方米,求的值.若平行于墙的一边长不小于米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值,如果没有,请说明理由.【答案】(1)(2).有,当时,取得最大值,最大值为.当时,取得最小值,最小值为.【解析】(1)(2)由题意,得:平行于墙的一边长为,根据题意,得:,解得:或,∵,∴.∴.∵矩形的面积,且,即,∴当时,取得最大值,最大值为.当时,取得最小值,最小值为.【标注】【知识点】二次函数的几何问题2.(1)(2)某校在基地参加社会实践活动中,基地计划新建一个矩形的生物园地,一边靠旧墙(墙的最大可用长度为米),另外三边用总长米的不锈钢栅栏围成,与墙平行的一边留一个宽为米的出入口.如图所示,设米.若这个生物园地的面积为平方米,求出与之间的函数关系式,并写出自变量的取值范围.当为多少米时,这个生物园地的面积最大,并求出这个最大面积.【答案】(1)(2).为米时面积最大,最大为平方米.【解析】(1)(2)由题意可知∴∴.当时有最大值平方米.故当为米时,生物园地面积最大,最大面积为平方米.【标注】【知识点】二次函数的几何问题3.某农场拟建两间矩形种牛饲养室,饲养室的一面靠现有墙(墙长),中间用一道墙隔开(如图),已知计划中的建筑材料可建围墙的总长为,设两饲养室合计长,总占地面积为.(1)(2)求关于的函数表达式和自变量的取值范围. 若要使两间饲养室占地总面积达到,则各道墙的长度为多少?占地总面积有可能达到吗?【答案】(1)(2)总占地面积为,.占地总面积达到时,道墙长分别为米、米或米、米;占地面积不可能达到平方米.【解析】(1)(2)∵围墙的总长为米,间饲养室合计长米,∴饲养室的宽米,∴总占地面积为,.当两间饲养室占地总面积达到平方米时,则,解得:或.答:各道墙长分别为米、米或米、米.当占地面积达到平方米时,则,方程的,所以此方程无解,所以占地面积不可能达到平方米.【标注】【知识点】根据条件列二次函数关系式(1)(2)4.某果园有颗橙子树,平均每颗树结个橙子,现准备多种一些橙子树以提高果园产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结个橙子,假设果园多种了棵橙子树.直接写出平均每棵树结的橙子个数(个)与之间的关系.果园多种多少棵橙子树时,可使橙子的总产量最大?最大为多少个?【答案】(1)(2)().果园多种棵橙子树时,可使橙子的总产量最大,最大为个.【解析】(1)(2)平均每棵树结的橙子个数(个)与之间的关系为:().设果园多种棵橙子树时,可使橙子的总产量为,则,则果园多种棵橙子树时,可使橙子的总产量最大,最大为个.【标注】【知识点】二次函数的利润问题(1)(2)(3)5.已知某商品每件的成本为元,第天的售价和销量分别为元/件和件,设第天该商品的销售利润为元,请根据所给图象解决下列问题:求出与的函数关系式.问销售该商品第几天时,当天销售利润最大?最大利润是多少.该商品在销售过程中,共有多少天当天的销售利润不低于元.【答案】(1)(2)(3)当时,,当时,.该商品第天时,当天销售利润最大,最大利润是元.共天每天销售利润不低于元.【解析】(1)当时,设与的函数关系式为,∵当时,,当,,∴,解得:∴,∴当时,;当时,.(2)(3),∴当时取得最大值元;∵;∴当时,随的增大而减小,当时,,综上所述,该商品第天时,当天销售利润最大,最大利润是元.当时,,解得,因此利润不低于元的天数是,共天;当时,,解得,因此利润不低于元的天数是,共天,所以该商品在销售过程中,共天每天销售利润不低于元.【标注】【知识点】函数图象与实际问题最大(1)(2)(3)6.某商场将进价为元的冰箱以元售出,平均每天能售出台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低元,平均每天就能多售出台.假设每台冰箱降价元,商场每天销售这种冰箱的利润是元,请写出与之间的函数表达式.(不要求写自变量的取值范围)商场要想在这种冰箱销售中每天盈利元,同时又要使百姓得到实惠,每台冰箱应降价多少元?每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?【答案】(1)(2)(3).每台冰箱应降价元.每台冰箱的售价降价元时,商场的利润最大,最大利润是元.【解析】(1)(2)根据题意,得,即.由题意,得.整理,得.解这个方程,得,.(3)要使百姓得到实惠,取.所以,每台冰箱应降价元.对于,当时,.所以,每台冰箱的售价降价元时,商场的利润最大,最大利润是元.【标注】【知识点】二次函数的利润问题最大值(1)(2)7.在新型城镇化型过程中,为推进节能减排,发展低碳经济,我市某公司以万元购得某项节能产品的生产技术后,再投入万元购买生产设备,进行该产品的生产加工.已知生产这种产品的成本价为每件元.经过市场调研发现,该产品的销售单价定在元到元之间较为合理,并且该产品的年销售量(万件)与销售单价(元)之间的函数关系式为:(年获利年销售收入生产成本投资成本)当销售单价定为元时,该产品的年销售量为多少万件?求该公司第一年的年获利(万元)与销售单价(元)之间的函数关系式,并说明投资的第一年,该公司是盈利还是亏损?若盈利,最大利润是多少?若亏损,最小亏损是多少?【答案】(1)(2)投资第一年,公司亏损,最少亏损万【解析】(1)(2)把代入,得(万件)当销售单价定为元时,该产品的年销售量为万件.①当时,故当时,最大为,即公司最少亏万.②当时,故当时,最大为,即公司最少亏万.综上,投资第一年,公司亏损,最少亏损万.【标注】【知识点】二次函数的利润问题二、几何问题中的最值(1)(2)1.已知,如图,抛物线与轴交于点,与轴交于,两点,点在点左侧.点的坐标为,.xyOxyO备用图求抛物线的解析式;若点是线段下方抛物线上的动点,求四边形面积的最大值.【答案】(1)(2)..【解析】(1)(2)∵∴∵∴∵过、∴解这个方程组,得∴抛物线的解析式为:.过点作轴分别交线段和轴于点、yOx在中,令得方程解这个方程,得,∴设直线的解析式为∴解这个方程组,得∴的解析式为:∵==设,当时,有最大值.此时四边形面积有最大值.【标注】【知识点】二次函数与面积四边形(1)(2)2.如图,二次函数的图象与轴交于点,,与轴交于点.xyO求二次函数表达式.若点是第一象限内的抛物线上的一个动点,且点的横坐标为,用含有的代数式表示的面积,并求出当为何值时,的面积最大,最大面积是多少?【答案】(1)(2).当时,的面积最大,最大面积是.【解析】(1)∵二次函数的图象与轴交于点,,∴二次函数的解析式为.(2)如图,连接,易得的解析式为.设点的坐标为,则点的坐标为,∴,,,当时,的面积最大,最大面积是.yO【标注】【知识点】二次函数与面积(1)(2)3.如图,已知经过原点的抛物线与轴的另一交点为,现将它向右平移()个单位,所得抛物线与轴交于、两点,与原抛物线交于点.求点的坐标,并判断存在时它的形状(不要求说理).在轴上是否存在两条相等的线段?若存在,请一一找出,并写出它们的长度(可用含的式子表示);若不存在,请说明理由.(3)设的面积为,求关于的关系式.【答案】(1)(2)(3)点的坐标为,是等腰三角形.存在,,..【解析】(1)(2)(3)令,得,.∴点的坐标为.是等腰三角形.存在.,.如图,当时,作轴于,设,∵,,∴.∴.∴.把代入,得.∵,∴.如图,当时,作轴于,设∵,,∴.∴.∴.把代入,得.∵,∴.综上可得:.【标注】【知识点】二次函数与面积(1)(2)4.已知抛物线与轴交于,两点,交轴于点,已知抛物线的对称轴为,点,点,为抛物线的顶点.求抛物线的解析式.在轴下方且在抛物线上有一动点,求四边形的面积最大值.【答案】(1)(2).【解析】(1)由、关于对称轴对称,对称轴为,点,得.将、、点的坐标代入函数解析式,得,解得.(2)故抛物线的解析式为.如图,过作轴于点,交于点.设,点坐标为,.,当时,.【标注】【知识点】二次函数与面积四边形最大(1)(2)(3)5.如图,二次函数(为非负整数)与轴交于、两点,与轴交于点.求抛物线的解析式.在直线上找一点,使的周长最小,并求出点的坐标.点在抛物线上,且在第二象限内,设点的横坐标为,问为何值时,四边形的面积最大?并求出这个最大面积.【答案】(1)(2)(3)时,四边形的面积最大,这个最大面积是.【解析】(1)(2)(3)由题意得,,解得:,∵是非负整数,∴或,当时,二次函数的解析式为,当时,二次函数的解析式为,∵图象与轴交于点和点,点、分别在原点的左、右两边,∴当时,二次函数的解析式为不符合题意,∴二次函数的解析式为.如图,作点关于的对称点连接交对称轴于点,.由得点坐标为.当时,.解得,,∴,.设的解析式为,图象过点,,得,解得,∴的解析式为,当时,,点坐标为 时,的周长最小.如图,设点坐标为(),作轴于点,由图可知:四边形梯形.因此时,四边形的面积最大,这个最大面积是.【标注】【知识点】二次函数与面积(1)(2)6.如图,已知抛物线经过,两点.x24y–22O 求该抛物线的解析式.在直线上方的该抛物线上是否存在一点,使得的面积最大?若存在,求出点的坐标及面积的最大值;若不存在,请说明理由.【答案】(1)(2).存在,,面积的最大值为.【解析】(1)(2)把,代入抛物线的解析式得:,解得:,则抛物线解析式为.存在,理由如下:设的横坐标为,则点的纵坐标为,过作轴的平行线交于,连接,,如图所示,x24y–22O 由题意可求得直线的解析式为,∴点的坐标为,∴,∴的面积,当时,,∴此时,面积的最大值为.【标注】【知识点】二次函数与面积最大(1)(2)(3)7.已知二次函数的图象和轴交于点、,与轴交于点,直线上方的抛物线上一动点,抛物线的顶点是点.图求直线的解析式.求面积的最大值及点的坐标.当的面积最大时,在直线上有一动点,使得的周长最小,求周长最小时点的坐标.图【答案】(1)(2)(3).,..【解析】(1)(2)(3)过抛物线上动点作轴的垂线,垂足是,线段交线段于,设,,,∵,∴当时,,此时.关于直线的对称点连接,∵,,∴,∴联立,解得,最大∴.【标注】【知识点】二次函数与动点问题(1)(2)(3)8.如图,抛物线与轴的两个交点分别为、,与轴交于点,顶点为,为线段的中点,的垂直平分线与轴、轴分别交于、.xyO 求抛物线的函数表达式,并写出顶点的坐标.在直线上是否存在一点,使周长最小,若存在,请求出最小周长和点的坐标;若不存在,请说明理由.若点在轴上方的抛物线上运动,当运动到什么位置时,面积最大?并求出最大面积.【答案】(1)(2)(3)抛物线的解析式为,顶点的坐标为.存在;的周长最小值为,.时,的面积最大,最大面积为.【解析】(1)(2)由题意,得,解得,,所以抛物线的解析式为,顶点的坐标为.设抛物线的对称轴与轴交于点,(3)∵垂直平分,∴关于直线的对称点为,连结交于于一点,xyO∴这一点为所求点,使最小,即最小为.而,∴的周长最小值为.设直线的解析式为,则,解得,,所以直线的解析式为.由于,,,得,所以,,.同理可求得直线的解析式为,联立直线与的方程,解得使的周长最小的点.设,.过作轴的垂线交于,xyO则,所以,即当时,的面积最大,最大面积为,此时.【标注】【知识点】二次函数的几何问题(1)(2)(3)9.如图,已知抛物线与一直线相交于、两点,与轴相交于点,其顶点为.求抛物线及直线的函数关系式.若是抛物线上位于直线上方的一个动点,求的面积的最大值及此时点的坐标.在对称轴上是否存在一点,使的周长最小.若存在,请求出点的坐标和周长的最小值;若不存在,请说明理由.备用图【答案】(1)(2);.;.(3)在对称轴上存在一点,使的周长最小,周长的最小值为.【解析】(1)(2)(3)将,代入,得:,解得:,∴抛物线的函数关系式为;设直线的函数关系式为,将,代入,得:,解得,∴直线的函数关系式为.过点作轴交轴于点,交直线于点,过点作轴交轴于点,如图所示.图设点的坐标为,则点的坐标为,点的坐标为,∴,,,∵点的坐标为,∴点的坐标为,∴,∴,∵,∴当时,的面积取最大值,最大值为,此时点的坐标为.当时,,∴点的坐标为,∵,∴抛物线的对称轴为直线,∵点的坐标为,∴点,关于抛物线的对称轴对称,令直线与抛物线的对称轴的交点为点,如图所示.图∵点,关于抛物线的对称轴对称,∴,∴,∴此时周长取最小值,当时,,∴此时点的坐标为,∵点的坐标为,点的坐标为,点的坐标为,∴,,∴,∴在对称轴上存在一点,使的周长最小,周长的最小值为.10.如图,已知抛物线经过、两点,与轴交于点.(1)(2)(3)求抛物线的解析式.点是对称轴上的一个动点,当的周长最小时,直接写出点的坐标和周长最小值.点为抛物线上一点,若,求出此时点的坐标.【答案】(1)(2)(3).点为,周长的最小值为.点的坐标为或或.【解析】(1)(2)(3)根据题意,将、代入抛物线,可得:,解得:,所以,抛物线为:.点为,周长的最小值为.∵抛物线为:,∴抛物线的对称轴为直线,点、关于直线对称,当的周长最小时,则需要最小,根据利用轴对称且最小值的方法,可知点是与对称轴的交点,令,则,所以,点坐标为,设为直线,把,代入直线解析式,可得:,解得:,所以,直线为,将代入,可得:,∴点为,此时,,,∴周长的最小值为:.∵,,∴,∵,,∴点的纵坐标为或,令,解得:,,∴点的坐标为:或,令,解得:,∴点的坐标为:.综上所述:点的坐标为:或或.【标注】【知识点】二次函数与轴对称问题。
中考数学《二次函数的最值》专项练习题(附答案)
中考数学《二次函数的最值》专项练习题(附答案)一、单选题1.如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论①abc>0;②b−a>c;③4a+2b+c>0;④3a>−c;⑤a+b>m(am+b)(m≠1的实数).其中正确结论的有()A.①②③B.②③⑤C.②③④D.③④⑤2.如图,抛物线y=ax2+bx+c(a≠0)的对称轴是x=−2,并与x轴交于A,B两点,若OA=5OB,则下列结论中:①abc>0;②(a+c)2−b2=0;③9a+4c<0;④若m为任意实数,则am2+bm+2b≥4a,正确的个数是()A.1B.2C.3D.43.已知二次函数y=−x2+2x+c,当−1≤x≤2时,函数的最大值与最小值的差为()A.1B.2C.3D.44.关于二次函数y=x2−4x−4的说法,正确的是()A.最大值为−4B.最小值为−4C.最大值为−8D.最小值为−85.在平面直角坐标系中,点P的坐标(0,2),点Q的坐标为(t−1,−34t−94)(t为实数),当PQ长取得最小值时,t的值为()A.−75B.−125C.3D.46.已知二次函数y=x2+2x+m2+2m﹣1(m为常数),当自变量x的值满足1≤x≤3时,与其对应的函数值y的最小值为5,则m的值为()A.1或﹣5B.﹣1或5C.1或﹣3D.1或37.已知二次函数y=2(x−1)2−3,则下列说法正确的是()A.y有最小值0,有最大值-3B.y有最小值-3,无最大值C.y有最小值-1,有最大值-3D.y有最小值-3,有最大值08.当a﹣1≤x≤a时,函数y=x2﹣2x+1的最小值为1,则a的值为()A.1B.2C.1或2D.0或39.二次函数y=ax2+bx+c(a≠0)的y与x的部分对应值如下表:下列结论错误的是()x-5-4-202y60-6-46B.若点(-8,y1),点(8,y2)在二次函数图象上,则y1<y2C.当x=-2时,函数值最小,最小值为-6D.方程ax2+bx+c=-5有两个不相等的实数根.10.抛物线y=2x2,y=﹣2x2,y=x2共有的性质是()A.开口向下B.对称轴是y轴C.都有最低点D.y的值随x的增大而减小11.已知二次函数y=−x2+mx+m(m为常数),当−2≤x≤4时,y的最大值是15,则m 的值是()A.-10和6B.-19和315C.6和315D.-19和612.小明在研究某二次函数y=ax2+bx+c时列表如下:x…-2-1023…y=ax2+bx+c…116336…A.有最大值11,有最小值3B.有最大值11,有最小值2C.有最大值6,有最小值3D.有最大值6,有最小值2二、填空题13.如图,在边长为6cm的正方形ABCD中,点E、F、G、H分别从点A、B、C、D同时出发,均以1cm/s的速度向点B、C、D、A匀速运动,当点E到达点B时,四个点同时停止运动,在运动过程中,当运动时间为s时,四边形EFGH的面积最小,其最小值是cm2.14.若把函数y=x的图象用E(x,x)记,函数y=2x+1的图象用E(x,2x+1)记,……则E(x,x2−2x+3)图象上的最低点是.15.抛物线y=2x2﹣bx+3的对称轴是直线x=1,则该函数的最小值是16.当2≤x≤5时,二次函数y=﹣(x﹣1)2+2的最大值为.17.二次函数y=x2+4x+5(﹣3≤x≤0)的最小值是.18.当x=0时,函数y=2x2+bx+c有最小值1,则b-c=.三、综合题19.抛物线y=−x2+bx+c过点(0,-5)和(2,1).(1)求b,c的值;(2)当x为何值时,y有最大值?20.如图,在平面直角坐标系中,抛物线y=ax2+bx−2交x轴于A,B两点,交y轴于点C,且OA= 2OC=8OB,点P是第三象限内抛物线上的一动点.(1)求此抛物线的表达式;(2)连接AC,求△PAC面积的最大值及此时点P的坐标.21.在平面直角坐标系中,一次函数y=x+3的图象与x轴交于点A,二次函数y=x2+mx+n的图象经过点A.(1)当m=4时,求n的值;(2)设m=﹣2,当﹣3≤x≤0时,求二次函数y=x2+mx+n的最小值;(3)当﹣3≤x≤0时,若二次函数﹣3≤x≤0时的最小值为﹣4,求m、n的值.22.重庆市的重大惠民工程﹣﹣公租房建设已陆续竣工,计划10年内解决低收入人群的住房问题,前6年,每年竣工投入使用的公租房面积y(单位:百万平方米),与时间x的关系是y= 16x+5,(x单位:年,1≤x≤6且x为整数);后4年,每年竣工投入使用的公租房面积y(单位:百万平方米),与时间x的关系是y=- 18x+194(x单位:年,7≤x≤10且x为整数).假设每年的公租房全部出租完.另外,随着物价上涨等因素的影响,每年的租金也随之上调,预计,第x年投入使用的公租房的租金z(单位:元/m2)与时间x(单位:年,1≤x≤10且x为整数)满足一次函数关系如下表:z(元/m2)5052545658…x(年)12345…(2)求政府在第几年投入的公租房收取的租金最多,最多为多少百万元;(3)若第6年竣工投入使用的公租房可解决20万人的住房问题,政府计划在第10年投入的公租房总面积不变的情况下,要让人均住房面积比第6年人均住房面积提高a%,这样可解决住房的人数将比第6年减少1.35a%,求a的值.(参考数据:√315≈17.7,√319≈17.8,√321≈17.9)23.将一条长为56cm的铁丝剪成两段并把每一段铁丝做成一个正方形.(1)要使这两个正方形的面积之和等于100cm2,该怎么剪?(2)设这两个正方形的面积之和为Scm2,当两段铁丝长度分别为何值时,S有最小值?24.一商店销售某种商品,平均每天可售出20件,每件盈利50元,为了扩大销售、增加利润,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)当每件商品降价多少元时,该商店每天销售利润为1600元?(2)当每件商品降价多少元时,该商店每天销售利润最大?最大为多少元?参考答案1.【答案】B2.【答案】C3.【答案】D4.【答案】D5.【答案】A6.【答案】C7.【答案】B8.【答案】D9.【答案】C10.【答案】B11.【答案】D12.【答案】B13.【答案】3;1814.【答案】(1,2)15.【答案】116.【答案】117.【答案】118.【答案】-119.【答案】(1)解:∵抛物线y=−x2+bx+c过点(0,-5)和(2,1)∴{c=−5−4+2b+c=1解得{b=5c=−5∴b, c的值分别为5, -5.(2)解:a= -1 ,b=5∴当x= −b2a=52时y有最大值.20.【答案】(1)解:在抛物线y=ax2+bx−2中令x=0,则y=−2∴点C的坐标为(0,−2)∴OC=2∵OA=2OC=8OB∴OA=4,OB=1 2∴点A 为(−4,0),点B 为(12,0)则把点A 、B 代入解析式,得{16a −4b −2=014a +12b −2=0解得:{a =1b =72∴y =x 2+72x −2;(2)解:设直线AC 的解析式为y =mx +n ,则 把点A 、C 代入,得{−4m +n =0n =−2解得:{m =−12n =−2∴直线AC 的解析式为y =−12x −2;过点P 作PD∥y 轴,交AC 于点D ,如图:设点P 为(x ,x 2+72x −2),则点D 为(x ,−12x −2)∴PD =−12x −2−(x 2+72x −2)=−x 2−4x∵OA=4∴S ΔAPC =12PD •OA =12×(−x 2−4x)×4=−2x 2−8x ∴S ΔAPC =−2(x +2)2+8∴当x =−2时,S ΔAPC 取最大值8;∴x 2+72x −2=(−2)2+72×(−2)−2=−5∴点P 的坐标为(−2,−5). ∵点P 在第三象限的抛物线上 ∴点P 的坐标为(−2,−5)满足条件.21.【答案】(1)解:当y=x+3=0时,x=﹣3∴点A 的坐标为(﹣3,0).∵二次函数y=x 2+mx+n 的图象经过点A ∴0=9﹣3m+n ,即n=3m ﹣9 ∴当m=4时,n=3m ﹣9=3(2)解:抛物线的对称轴为直线x=﹣ m 2当m=﹣2时,对称轴为x=1,n=3m ﹣9=﹣15 ∴当﹣3≤x≤0时,y 随x 的增大而减小∴当x=0时,二次函数y=x 2+mx+n 的最小值为﹣15(3)解:①当对称轴﹣ m2 ≤﹣3,即m≥6时,如图1所示.在﹣3≤x≤0中,y=x 2+mx+n 的最小值为0 ∴此情况不合题意;②当﹣3<﹣ m2 <0,即0<m <6时,如图2有 {4n−m 24n=−49−3m +n =0解得: {m =2n =−3 或 {m =10n =21(舍去)∴m=2、n=﹣3;③当﹣ m2 ≥0,即m≤0时,如图3有 {n =−49−3m +n =0解得: {m =53n =−4(舍去). 综上所述:m=2,n=﹣3.22.【答案】(1)解:由题意,z 与x 成一次函数关系,设z=kx+b (k≠0).把(1,50).(2,52)代入得 {k +b =502k +b =52⇒{k =2b =48∴z=2x+48.(2)解:当1≤x≤6时,设收取的租金为W1百万元,则W1=(- 16x+5)•(2x+48)=- 13x2+2x+240,∵对称轴x=- b2a≠=3,而1≤x≤6,∴当x=3时,W1最大=243(百万元).当7≤x≤10时,设收取的租金为W2百万元,则W2=(- 18x+ 194)·(2x+48)=- 14x2+ 72x+228.∵对称轴x=- b2a=7,而7≤x≤10,∴当x=7时,W2最大= 9614(百万元).∵243> 961 4∴第3年收取的租金最多,最多为243百万元.(3)解:当x=6时,y=- 16×6+5=4百万平方米=400万平方米;当x=10时y=- 18×10+ 194=3.5百万平方米=350万平方.∵第6年可解决20万人住房问题∴人均住房为400÷20=20平方米.由题意20×(1-1.35a%)×20×(1+a%)=350.设a%=m,化简为54m2+14m-5=0Δ=142-4×54×(-5)=1276∴m= −14±√12762×54=−7±√31954∵√319≈17.8,∴m1=0.2,m2=- 62135(不符题意,舍去).∴a%=0.2,∴a=20.答:a的值为20.23.【答案】(1)解:设其中一个正方形的边长为xcm,则另一个正方形的边长为(14﹣x)cm 依题意列方程得x2+(14﹣x)2=100整理得:x2﹣14x+48=0(x﹣6)(x﹣8)=0解方程得x1=6,x2=86×4=24(cm),56﹣24=32(cm);因此这段铁丝剪成两段后的长度分别是24cm、32cm。
数学二次函数最值练习题(带答案)
1.抛物线 ,当 = _____时,图象的顶点在 轴上;当 = _____时,图象的顶点在 轴上;当 = _____时,图象过原点.
2.用一长度为 米的铁丝围成一个长方形或正方形,则其所围成的最大面积为________.
3.求下列二次函数的最值:
(1) ;(2) .
4.求二次函数 在 上的最大值和最小值,并求对应的 的值.
5.对于函数 ,当 时,求 的取值范围.
6.求函数 的最大值和最小值.
7.已知关于 的函数 ,当 取何值时, 的最小值为0?
二次函数最值问题答案
1.4 14或2,
2.
3.(1)有最小值3,无最大值;(2)有最大值 ,无最小值.
4.当 时, ;当 时, .
Hale Waihona Puke 5.6.当 时, ;当 或1时, .
7.当 时, .
2023学年数学(人教版)中考复习重难点突破——二次函数的最值【附解析】
2023学年数学中考复习重难点突破——二次函数的最值一、单选题1.当二次函数y=x 2+4x+9取最小值时,的值为( )A .-2B .1C .2D .9 2.对于二次函数y =2(x+1)(x ﹣3),下列说法正确的是( )A .图象过点(0,﹣3)B .图象与x 轴的交点为(1,0),(﹣3,0)C .此函数有最小值为﹣6D .当x <1时,y 随x 的增大而减小3.二次函数y=ax 2+bx+a (a≠0)的最大值是零,则代数式|a|+ 2244a b a - 化简结果为( ) A .a B .1 C .﹣a D .0 4.已知a≥2,m 2﹣2am+2=0,n 2﹣2an+2=0,则(m ﹣1)2+(n ﹣1)2的最小值是( ) A .6 B .3 C .﹣3 D .05.二次函数 23324y x ⎛⎫=-+ ⎪⎝⎭ 的图象 ()13x ≤≤ 如图所示,则该函数在所给自变量的取值范围内,函数值y 的取值范围是( )A .1y ≥B .13y ≤≤C .334y ≤≤ D .03y ≤≤6.如图,在△ABC 中,∠B=90°,tan ∠C= 34 ,AB=6cm .动点P 从点A 开始沿边AB 向点B 以1cm/s 的速度移动,动点Q 从点B 开始沿边BC 向点C 以2cm/s 的速度移动.若P ,Q 两点分别从A ,B 两点同时出发,在运动过程中,△PBQ 的最大面积是( )A.18cm2B.12cm2C.9cm2D.3cm2 7.若二次函数y=|a|x2+bx+c的图象经过A(m,n)、B(0,y1)、C(3-m,n)、D( 2, y2)、E(2,y3),则y1、y2、y3的大小关系是().A.y1< y2< y3B.y1 < y3< y2C.y3< y2< y1D.y2< y3< y18.二次函数y=ax2+bx+c (a、b、c为常数且a≠0)中的x与y的部分对应值如下表,x…-3-2-1012345…y…1250-3-4-30512…①二次函数y=ax2+bx+c 有最小值,最小值为-3;②抛物线与y轴交点为(0,-3);③二次函数y=ax2+bx+c 的图像对称轴是x=1;④本题条件下,一元二次方程ax2+bx+c的解是x1=-1,x2=3.其中正确结论的个数是()A.4B.3C.2D.19.如图,在矩形ABCD中,AB=8,AD=6,点M为对角线AC上的一个动点(不与端点A,C重合),过点M作ME⊥AD,MF⊥DC,垂足分别为E,F,则四边形EMFD 面积的最大值为()A.6B.12C.18D.2410.已知函数y=22(0)(0)x x xx x x⎧-⎨--<⎩,当a≤x≤b时,﹣14≤y≤14,则b﹣a的最大值为()A.1B2+1C.2212D.22二、填空题11.已知二次函数y=x 2﹣4x+m 的最小值是﹣2,那么m 的值是 . 12.二次函数y=x 2﹣2x ﹣5的最小值是 .13.如图,在边长为6cm 的正方形ABCD 中,点E 、F 、G 、H 分别从点A 、B 、C 、D 同时出发,均以1cm/s 的速度向点B 、C 、D 、A 匀速运动,当点E 到达点B 时,四个点同时停止运动,在运动过程中,当运动时间为 s 时,四边形EFGH 的面积最小,其最小值是 cm 2.14.飞机着陆后滑行的距离S (单位:m )与滑行的时间t (单位:s )的函数关系式是S=80t ﹣2t 2,飞机着陆后滑行的最远距离是 m .15.已知二次函数 2y ax bx c =++ (a≠0)的图象如图所示,有下列5个结论: ①abc >0;②b <a+c ;③4a+2b+c >0;④2c <3b ;⑤a+b >m(am+b),(m≠l 的实数).其中正确的结论有 (只填序号).三、解答题16.把函数y=3x 2+6x+10转化成y=a (x-h )2+k 的形式,然后指出它的图象开口方向,对称轴,顶点坐标和最值.17.如图,矩形ABCD 的两边长AB =18 cm ,AD =4 cm ,点P 、Q 分别从A 、B 同时出发,P 在边AB 上沿AB 方向以每秒2 cm 的速度匀速运动,Q 在边BC 上沿BC 方向以每秒1 cm 的速度匀速运动.设运动时间为x 秒,△PBQ 的面积为y(cm 2).(1)求y 关于x 的函数关系式,并写出x 的取值范围;(2)求△PBQ的面积的最大值.18.函数学习中,自变量取值范围及相应的函数值范围问题是大家关注的重点之一,请解决下面的问题.(1)分别求出当2≤x≤4时,三个函数:y=2x+1,y= 2x,y=2(x-1)2+1的最大值和最小值.(2)对于二次函数y=2(x-m)2+m-2,当2≤x≤4时有最小值为1,求m的值.19.由于雾霾天气趋于严重,我市某电器商城根据民众健康需求,代理销售某种家用空气净化器,其进价是200元/台.经过市场销售后发现:在一个月内,当售价是400元/台时,可售出200台,且售价每降低10元,就可多售出50台.若供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售任务.(1)完成下列表格,并直接写出月销售量y(台)与售价x(元/台)之间的函数关系式及售价x的取值范围;售价(元/台)月销售量(台)400200▲ 250x▲w (元)最大?最大利润是多少?20.如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm.动点M,N从点C同时出发,均以每秒1cm的速度分别沿CA、CB向终点A,B移动,同时动点P从点B出发,以每秒2cm的速度沿BA向终点A移动,连接PM,PN,设移动时间为t(单位:秒,0<t<2.5).(1)当t为何值时,以A,P,M为顶点的三角形与△ABC相似?(2)是否存在某一时刻t,使四边形APNC的面积S有最小值?若存在,求S的最小值;若不存在,请说明理由.21.如图,直线y=kx+b(k、b为常数)分别与x轴、y轴交于点A(﹣4,0)、B(0,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数最值问题
一.选择题(共8小题)
1.如果多项式P=a2+4a+2014,则P的最小值是()
A.2010 B.2011 C.2012 D.2013
2.已知二次函数y=x2﹣6x+m的最小值是﹣3,那么m的值等于()A.10 B.4 C.5 D.6
3.若二次函数y=ax2+bx+c的图象开口向下、顶点坐标为(2,﹣3),则此函数有()
A.最小值2 B.最小值﹣3 C.最大值2 D.最大值﹣3
4.设x≥0,y≥0,2x+y=6,则u=4x2+3xy+y2﹣6x﹣3y的最大值是()A.B.18 C.20 D.不存在
5.二次函数的图象如图所示,当﹣1≤x≤0时,该函数的最大值是()
A.3.125 B.4 C.2 D.0
6.已知二次函数y=(x﹣h)2+1(h为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最小值为5,则h的值为()
A.1或﹣5 B.﹣1或5 C.1或﹣3 D.1或3
7.二次函数y=﹣(x﹣1)2+5,当m≤x≤n且mn<0时,y的最小值为2m,最大值为2n,则m+n的值为()
A.B.2 C.D.
8.如图,抛物线经过A(1,0),B(4,0),C(0,﹣4)三点,点D是直线BC 上方的抛物线上的一个动点,连结DC,DB,则△BCD的面积的最大值是()
A.7 B.7.5 C.8 D.9
二.填空题(共2小题)
9.已知二次函数y=2(x+1)2+1,﹣2≤x≤1,则函数y的最小值是,最大值是.
10.如图,在直角坐标系中,点A(0,a2﹣a)和点B(0,﹣3a﹣5)在y轴上,
=6.当线段OM最长时,点M的坐标为.
点M在x轴负半轴上,S
△ABM
三.解答题(共3小题)
11.在平面直角坐标系中,O为原点,直线l:x=1,点A(2,0),点E,点F,点M都在直线l上,且点E和点F关于点M对称,直线EA与直线OF交于点P.(Ⅰ)若点M的坐标为(1,﹣1),
①当点F的坐标为(1,1)时,如图,求点P的坐标;
②当点F为直线l上的动点时,记点P(x,y),求y关于x的函数解析式.(Ⅱ)若点M(1,m),点F(1,t),其中t≠0,过点P作PQ⊥l于点Q,当OQ=PQ时,试用含t的式子表示m.
12.已知关于x的函数y=kx2+(2k﹣1)x﹣2(k为常数).
(1)试说明:不论k取什么值,此函数图象一定经过(﹣2,0);
(2)在x>0时,若要使y随x的增大而减小,求k的取值范围;
(3)试问该函数是否存在最小值﹣3?若存在,请求出此时k的值;若不存在,请说明理由.
13.函数y=(m+2)是关于x的二次函数,求:
(1)满足条件的m值;
(2)m为何值时,抛物线有最低点?求出这个最低点.这时,当x为何值时,y 随x的增大而增大?
(3)m为何值时,函数有最大值?最大值是多少?这时,当x为何值时,y随x 的增大而减小.
二次函数最值问题(含答案)
一.选择题(共8小题)
1.A;2.D;3.D;4.B;5.C;6.B;7.D;8.C;9.1;9;10.(﹣3,0);三.解答题(共3小题)
11.【解答】解:(Ⅰ)①∵点O(0,0),F(1,1),
∴直线OF的解析式为y=x.设直线EA的解析式为:y=kx+b(k≠0)、
∵点E和点F关于点M(1,﹣1)对称,∴E(1,﹣3).
又∵A(2,0),点E在直线EA上,
∴,解得,∴直线EA的解析式为:y=3x﹣6.
∵点P是直线OF与直线EA的交点,则,解得,
∴点P的坐标是(3,3).
②由已知可设点F的坐标是(1,t).∴直线OF的解析式为y=tx.
设直线EA的解析式为y=cx+d(c、d是常数,且c≠0).
由点E和点F关于点M(1,﹣1)对称,得点E(1,﹣2﹣t).
又点A、E在直线EA上,
∴,解得,
∴直线EA的解析式为:y=(2+t)x﹣2(2+t).
∵点P为直线OF与直线EA的交点,
∴tx=(2+t)x﹣2(2+t),即t=x﹣2.则有y=tx=(x﹣2)x=x2﹣2x;
(Ⅱ)由(Ⅰ)可得,直线OF的解析式为y=tx.
直线EA的解析式为y=(t﹣2m)x﹣2(t﹣2m).
∵点P为直线OF与直线EA的交点,∴tx=(t﹣2m)x﹣2(t﹣2m),
化简,得x=2﹣.有y=tx=2t﹣.∴点P的坐标为(2﹣,2t﹣).∵PQ⊥l于点Q,得点Q(1,2t﹣),∴OQ2=1+t2(2﹣)2,PQ2=(1﹣)2,∵OQ=PQ,∴1+t2(2﹣)2=(1﹣)2,
化简,得t(t﹣2m)(t2﹣2mt﹣1)=0.又∵t≠0,
∴t﹣2m=0或t2﹣2mt﹣1=0,解得m=或m=.
则m=或m=即为所求.
12.解:(1)将x=﹣2代入,得y=k(﹣2)2+(2k﹣1)•(﹣2)﹣2=0,
故不论k取何值,此函数图象一定经过点(﹣2,0).
(2)①若k=0,此函数为一次函数y=﹣x﹣2,当x>0时,y随x的增大而减小,∴k=0符合题意.
②若k≠0,此函数为二次函数,而图象一定经过(﹣2,0)、(0,﹣2)
∴要使当x>0时,y随x的增大而减小,开口向下,须满足k<0即可.
综上,k的取值范围是k≤0.
(3)若k=0,此函数为一次函数y=﹣x﹣2,
∵x的取值为全体实数,∴y无最小值,
若k≠0,此函数为二次函数,若存在最小值为﹣3,
则=﹣3,且k>0,
解得:k=符合题意,∴当k=时,函数存在最小值﹣3.13.解:(1)根据题意得m+2≠0且m2+m﹣4=2,
解得m1=2,m2=﹣3,
所以满足条件的m值为2或﹣3;
(2)当m+2>0时,抛物线有最低点,所以m=2,抛物线解析式为y=4x2,
所以抛物线的最低点为(0,0),当x≥0时,y随x的增大而增大;
(3)当m=﹣3时,抛物线开口向下,函数有最大值;抛物线解析式为y=﹣x2,所以二次函数的最大值是0,这时,当x≥0时,y随x的增大而减小.。