北邮概率论与数理统计参数估计的评选标准 (7.3)

合集下载

概率论与数理统计第7章参数估计PPT课件

概率论与数理统计第7章参数估计PPT课件
5
a1(1, ,k )=v1
1 f1(v1, ,vk )
假定方程组a2(1, ,k ) v2 ,则可求出2 f2(v1, ,vk )
ak (1, ,k ) vk
k fk (v1, ,vk )
则x1 xn为X的样本值时,可用样本值的j阶原点矩Aj估计vj,其中
Aj
1 n
n i1
xij ( j
L(x1, ,xn;ˆ)maxL(x1, ,xn;),则称ˆ(x1, ,xn)为
的一种参数估计方法 .
它首先是由德国数学家
高斯在1821年提出的 ,然而, 这个方法常归功于英国统
Gauss
计学家费歇(Fisher) . 费歇在1922年重新发现了
这一方法,并首先研究了这
种方法的一些性质 .
Fisher
10
极大似然估计是在已知总体分布形式的情形下的 点估计。
极大似然估计的基本思路:根据样本的具体情况
注:估计量为样本的函数,样本不同,估计量不 同。
常用估计量构造法:矩估计法、极大似然估计法。
4
7.1.1 矩估计法
矩估计法是通过参数与总体矩的关系,解出参数, 并用样本矩替代总体矩而得到的参数估计方法。 (由大数定理可知样本矩依概率收敛于总体矩, 且许多分布所含参数都是矩的函数)
下面我们考虑总体为连续型随机变量的情况:
n
它是的函数,记为L(x1, , xn; ) f (xi , ), i 1
并称其为似然函数,记为L( )。
注:似然函数的概念并不仅限于连续随机变量 ,
对于离散型随机变量,用 P {Xx}p(x,)
替代f ( x, )
即可。
14
设总体X的分布形式已知,且只含一个未知参数,

7.3估计量的评选标准

7.3估计量的评选标准

第12页
例7 设总体期望为 E( X )= , 方差 D( X )= 2
( X 1 , X 2 ,, X n )
(1)设常数 为总体X 的一个样本。
1 ci i 1,2, , n. n
n
c
i 1
n
i
1.
证明
(2) 证明
ˆ1 ci X i 是 的无偏估计量
i 1
由前面例子 可知,
x0 X 与 n min{X 1 , X 2 , , X n }都
0 为常数
是 的无偏估计量,问哪个估计量更有效? 2 解 D(X ) , D(n min{ X 1 , X 2 ,, X n }) 2 n
所以, X 比
n min{X1, X 2 ,, X n } 更有效。
k
特别地, 样本均值 X 是总体期望 E( X ) 的无偏估计量
1 n 2 样本二阶原点矩 A2 X i 是总体二阶 n i 1 2 原点矩 2 E ( X ) 的无偏估计量。
例2 设总体 X 的期望 E( X )与方差 D( X )存在,
第4页
n i 1n 1 2 2 S ( X X ) (2) 是 D( X ) 的无偏估计量。 i n 1 i 1 n 1 n 1 证 (X i X )2 X i2 X 2 n i 1 n i 1
第23页
n 1 1 n 2 2 2 又 B2 ( X i X ) ( X i 2 X i X X ) n i 1 n i 1
1 n 2 X i X 2 A2 X 2 , n i 1
( A2是样本二阶原点矩 )
由大数定律知,
1 n 2 A2 X i 依概率收敛于E ( X 2 ), n i 1 1 n X X i 依概率收敛于E ( X ), n i 1

北邮概率论与数理统计区间估计(7.4)

北邮概率论与数理统计区间估计(7.4)

§7.4 区间估计参数的区间估计与参数的点估计一样,是参数估计的重要方法。

参数的点估计给出了一个具体值,但这个具体值不会是参数的精确值,而是一个近似值。

尽管近似的精度可以用均方误差给出评估,但我们还是无法知道估计值与真值相差多少。

区间估计在一定程度上解决了这个问题。

区间估计就是通过两个统计量及覆盖概率给出参数的另一种形式的估计。

当有样本值后,可以把未知参数估计在一定的范围内,并且可以给出这种估计的可信程度。

在某些具体问题中区间估计可能比点估计更具实用价值,并且区间估计还是度量点估计精度的最直观的方法。

因此区间估计是一种应用非常广泛的估计形式。

7.4.1 区间估计的概念设θ是未知参数,n x x x ,...,,21是样本,所谓区间估计就是要找两个统计量),...,,(ˆˆ21n L L x x x θ=θ和),...,,(ˆˆ21n U U x x x θ=θ,使得),...,,(ˆ21n L x x x θ),...,,(ˆ21n U x x x θ<,并构造一个随机区间)ˆ,ˆ(U L θθ,在有了样本值后把θ估计在区间)ˆ,ˆ(U L θθ内。

由于样本的随机性,随机区间)ˆ,ˆ(U L θθ覆盖θ有一定的概率,自然要求随机区间)ˆ,ˆ(U L θθ覆盖θ的概率)ˆˆ(UL P θθθ<<尽可能大,但这必然导致区间长度增大,而过长的区间又会导致给出的区间估计无意义。

为解决此矛盾,Neyman 建议采取一种折中方案:在使得覆盖θ的概率达到一定要求的前提下,寻找“精确度”尽量高的区间估计. 因此我们把)ˆ,ˆ(U L θθ覆盖θ的的概率事先指定,这就引入置信区间的概念。

定义 设θ是总体的一个参数,假设有两个统计量),...,,(ˆˆ21n L L x x x θ=θ和),...,,(ˆˆ21n U U x x x θ=θ,若对任意Θ∈θ,有 )ˆˆ(UL P θθθ<<α-≥1 则称随机区间),ˆ(U L θθ为θ的置信水平为α-1的置信区间,UL θθ,ˆ分别称为θ的置信水平为α-1的(双侧)置信下限和置信上限。

7.3 估计量的评选标准

7.3 估计量的评选标准
第三节
估计量的评选标准
一、问题的提出 二、无偏性 三、有效性 四、相合性参数, 对于同一个参数 用不同的估计方法求出的 估计量可能不相同. 估计量可能不相同 问题 (1)对于同一个参数究竟采用哪一个估计量好? (1)对于同一个参数究竟采用哪一个估计量好? 对于同一个参数究竟采用哪一个估计量好 (2)评价估计量的标准是什么? (2)评价估计量的标准是什么? 评价估计量的标准是什么 本节介绍几个常用标准. 本节介绍几个常用标准.
ˆ θ 是 θ 的无偏估计量 .
无偏估计的实际意义: 无系统误差. 无偏估计的实际意义: 无系统误差.
例1 设总体 X 的 k 阶矩 µ k = E ( X k ) ( k ≥ 1)存在 ,
试证明不论 的一个样本, 又设 X 1 , X 2 ,L, X n 是 X 的一个样本,
1 n k 总体服从什么分布 , k 阶样本矩 Ak = ∑ X i 是 n i =1
才能显示出优越性, 这在实际中往往难以做到, 才能显示出优越性, 这在实际中往往难以做到, 因此, 因此, 在工程中往往使用无偏性和有效性这 两个标准. 两个标准.
k 阶总体矩 µ k 的无偏估计 .
证 因为 X 1 , X 2 ,L, X n 与 X 同分布, 同分布, 故有 即
E ( X ik ) = E ( X k ) = µ k ,
i = 1,2,L, n.
1 n k E ( Ak ) = ∑ E ( X i ) = µ k . n i =1
故 k 阶样本矩 Ak 是 k 阶总体矩 µ k 的无偏估计 .
都是 θ 的无偏估计量 ,
ˆ ˆ ˆ ˆ 若有 D(θ1 ) ≤ D(θ 2 ) , 则称 θ1 较 θ 2 有效 .
四、相合性

概率论与数理统计--- 估计量的评选标准

概率论与数理统计--- 估计量的评选标准


15
例3 设总体 X 的均值和方差均存在 ,nX1, „, Xn 是总体 X 的样本, C1 , C2 ,„ ,Cn 为不全相同且满足 C i 1 的任一组常数,
证明: (1) 样本的线性函数 Ci X i 是总体均值 的无偏估计量 ; i 1 n n 1 X 较 C X 有效. (2) 总体均值的无偏估计量 X n i i i i 1 i 1 n n n 证(1) E ( C i X i ) C i EX i C i
24
譬如,在估计湖中鱼数的问题中, 若我们根据一个 实际样本得到鱼数 N 的极大似然估计为 1000 条.
但实际上, N 的真值可能大于 1000 条, 也可能小于1000条. 若我们能给出一个区间, 在此区间内我们合 理地相信 N 的真值位于其中, 这样对鱼数的估计就有 把握多了.
也就是说, 我们希望确定一个尽可能小的区间, 使我们能以 • 比较高的可靠程度相信它包含真参数值.
i 1 j 1
n
m
解:(1) E(T)=an+bm =(na+mb) 当na+mb=1时, E(T)=
此时,T是的无偏估计
(2) D(T)=a2n+b24m
1 na 2 na 4m( ) m 2 4(1 na ) 2 na m 8n(1 na ) dD 0 0 2na 令 m da 4 (4n+m)a=4 a 4n m D(a)>0 此时D(T)最小,即T最有效 4 1 a , b 4n m 4n m
定义:设ˆ (X1,X2,…,Xn)为的估计量,若E(ˆ) 存在,且有 ˆ E ( ) , 则称ˆ 为的无偏估计量

概率论与数理统计 7.3 区间估计

概率论与数理统计 7.3 区间估计

不依赖于未知参数 ;
(3) 对给定的置信水平 1 , 确定 = 1 ,
5
一般是选取满足
2 (4) 由不等式 1 < g < 2 解出 的置信区间
( 1 , 2 ) .
P{ g 1 } = P{ g 2 } =
中, 分别独立抽取一些样品, 测得蓄电池的电
容量为 甲: 144, 141, 138, 142, 141, 143, 138, 137; 乙: 142, 143, 139, 140, 138, 141, 140, 138, 140, 136 设两个工厂生产的蓄电池电容量分别服从正态 分布 N( μ1 ,σ12), N( μ2 ,σ22) . 求 σ12/σ22 的 95% 的置信区间
[2.18, 9.52]
18
二 、两个正态总体 N( μ1 ,σ12), N( μ2 ,σ22) 的情况 (一) 两个总体均值差 μ1 μ2 的置信区间: 1、两个总体的方差 σ12 , σ22已知:
由于 X
12 N 1 , , Y n1
2 2 N 2 , , n2
引言
前面我们介绍了点估计的概念。点估计只是给出 了未知参数值的近似值。人们常常不满足于得到近 似值,还需要知道估计的误差是多少?即参数的一个 估计范围,还希望知道该范围覆盖参数真值的可信
程度。这种范围的估计称为区间估计。
1
7. 3 区间估计
定义7.6:
设 是总体的一个参数, ( X 1 , X 2 , , X n )是
由于
故有
2 S12 S2

2 1
2 2
F ( n1 1 , n2 1) ,
2 2 S S 1 2 P F ( n1 1 , n2 1) < 2 < F ( n1 1 , n2 1) 2 1 1 2 2 2

概率论与数理统计 7.2(参数的区间估计)

概率论与数理统计 7.2(参数的区间估计)

常将该对称区间写成较短的形式: X z 2 n
7.2.2 正态总体均值的区间估计 当然,(7.7)式中的不等式不是唯一的,取两个对称 的分位点 –z/2 和 z/2 是为了使两点之间的长度最小, 从而保证了所得置信区间的精度最大. 2. 2未知时, 的置信区间
1. 已知时,2的置信区间
由于X~N(,2),所以 取枢轴量
n 2
Xi 2 ~ ( n), i 1
n
2
n X 1 2 2 i 2 X i i 1 i 1
由于 2概率密度不是对称的,对给定的置信水平1 – ,不容易找到最短的置信区间,习惯上仍取对称形
2未知时,不能再用
区间的枢轴量,因为其中含有另一个未知参数2. 考虑到S2是2的无偏估计,可以用S2代替2, 由定理6.3知 X ~ t ( n 1),
S/ n
X Z 作为求 的置信 / n
所以,可以选用 T
X 作为枢轴量. S/ n
7.2.2 正态总体均值的区间估计
第三节 区间估计
前面,我们讨论了参数点估计. 它 是用样本算得的一个值去估计未知参数. 但是,点估计值仅仅是未知参数的一个 近似值。 点估计缺点
它没有反映出这个近似值的误差范围, 还有可信度. 区间估计正好弥补了点估计的这个缺陷 .
7.2.1 区间估计的一般步骤
定义7.5 设X1,X2,…,Xn为总体X的一个样 本,θ为总体X的未知参数,对给定的(0,1),如 果有两个统计量 ˆ1 ˆ1 ( X1 , X 2 ,, X n )和
本相互独立,其样本均值分别记为 X 和 Y ,其样本方 差分别记为S12和S22. 我们来研究参数1 – 2的区间估计. 1. 12和22已知时,1–2的置信区间 由定理6.4知

概率论与数理统计 7.2 估计量的评选标准

概率论与数理统计 7.2 估计量的评选标准
若 1 比 2有效, 即指在样本容量 n 相同的条件下,
1 的观察值比 2 的更密集在真值 的附近,
也就是 1 比 2 更理想 .
兰州交通大学博文学院 10
例2:设总体 X 的方差存在且大于零, E(X)=μ , 设 (X1 , X2) 是X的一个样本, 则
1 = X 和 2 = X1 均为 的无偏估计量,
总体 X 的均值为 μ , 方差为 σ 2 , 证明:
(1) 样本平均数 X 是 的无偏估计量 ;
(2) 样本方差 S 2是 2的无偏估计量 ,
2 样本方差 Sn 不是 2 的无偏估计量.
解 (1) 由于 E ( X i ) = E ( X ) = , ( i = 1, 2,
, n)


nபைடு நூலகம்
4 2
D(
i 1
n
( X i 0 )2
2
2 4 ) 2 2n n n
兰州交通大学博文学院 17
4
三、相合性: 1、定义7.5:
设 n = n ( X1 , X 2 ,
, X n ) 是 的一个估计量,
若对任何一个 ε > 0 , 有
lim P { n > } = 0 ,
所以 S 2 是 2 的无偏估计量.
n 1 2 由于 E( Sn ) = E ( ( X i X )2 ) n i =1
n1 2 = E S n
n1 = E( S 2 ) n n1 2 = n
2 所以 Sn 不是 2 的无偏估计量. 可是
兰州交通大学博文学院 8
2 n 1 2 2 2 = + ( + ) n n 1 i =1 n

概率论与数理统计第七章 参数估计

概率论与数理统计第七章 参数估计

第七章 参数估计参数估计是数理统计研究的主要问题之一. 假设总体X ~N (μ,σ2),μ,σ2是未知参数,X 1,X 2,…,X n 是来自X 的样本,样本值是x 1,x 2,…,x n ,我们要由样本值来确定μ和σ2的估计值,这就是参数估计问题,参数估计分为点估计(Point estimation )和区间估计(Interval estimation).第一节 点估计所谓点估计是指把总体的未知参数估计为某个确定的值或在某个确定的点上,故点估计又称为定值估计.定义7.1 设总体X 的分布函数为F (x ,θ),θ是未知参数,X 1,X 2,…,X n 是X 的一样本,样本值为x 1,x 2,…,x n ,构造一个统计量(X 1,X 2,…,X n ),用它的观察值 (x 1,x 2,…,x n )作为θ的估计值,这种问题称为点估计问题.习惯上称随机变量(X 1,X 2,…,X n )为θ的估计量,称(x 1,x 2,…,x n )为的估计值.构造估计量(X 1,X 2,…,X n )的方法很多,下面仅介绍矩法和极大似然估计法. 1.矩法矩法(Moment method of estimation )是一种古老的估计方法.它是由英国统计学家皮尔逊(K .Pearson )于1894年首创的.它虽然古老,但目前仍常用.矩法估计的一般原则是:用样本矩作为总体矩的估计,若不够良好,再作适当调整. 矩法的一般作法:设总体X ~F (X ;θ1,θ2,…,θl )其中θ1,θ2,…,θl 均未知. (1) 如果总体X 的k 阶矩μk =E (X k ) (1≤k ≤l)均存在,则μk =μk (θ1,θ2,…,θl ),(1≤k ≤l ).(2) 令⎪⎪⎩⎪⎪⎨⎧.),,,(,),,,(,),,,(2122121211l l l l l A A A θθθμθθθμθθθμ其中A k (1≤k ≤l )为样本k 阶矩.求出方程组的解,ˆ,,ˆ,ˆ21l θθθ 我们称),,,(ˆˆ21n k k X X X θθ=为参数θk (1≤k ≤l )的矩估计量, ),,,(ˆˆ21nk k x x x θθ=为参数θk 的矩估计值. 例7.1 设总体X 的密度函数为:f (x )=⎩⎨⎧-><<+.,0),1(,10,)1(其他αααx x其中α未知,样本为(X 1,X 2,…,X n ),求参数α的矩法估计.解 A 1=X .由μ1=A 1及μ1=E (X )=21)1()(1++=+=⎰⎰+∞∞-ααααx x x x x xf d d , 有21++=ααX ,得121ˆ--=X Xα.例7.2 设X ~N (μ,σ2),μ,σ2未知,试用矩法对μ,σ2进行估计. 解⎪⎪⎩⎪⎪⎨⎧======∑∑==.1)(,1)(12222111ni i ni i X n A X E X n A X E μμ 又 E (X )=μ, E (X 2)=D (X )+(EX )2=σ2+μ2,那么 .1ˆˆ,ˆ2222S nn A X -=-==μσμ. 例7.3 在某班期末数学考试成绩中随机抽取9人的成绩.结果如下:试求该班数学成绩的平均分数、标准差的矩估计值.解 设X 为该班数学成绩,μ=E (X ),σ2=D (X ))558994(919191+++==∑= i i x x =75;2/19122)(819898⎥⎦⎤⎢⎣⎡-⋅=∑=i i x x s =12.14.⎪⎪⎩⎪⎪⎨⎧======∑∑==.91)(,91)(9122229111i i i i X A X E X A X E μμ 由于E (X 2)=D (X )+(EX )2=σ2+μ2,那么,2222228ˆˆˆ,().9X A A x S μσμ==-=-= 所以,该班数学成绩的平均分数的矩估计值x =μˆ=75分,标准差的矩估计值298ˆs =σ=12.14. 作矩法估计时无需知道总体的概率分布,只要知道总体矩即可.但矩法估计量有时不惟一,如总体X 服从参数为λ的泊松分布时,X 和B 2都是参数λ的矩法估计.2.极(最)大似然估计法极大似然估计法(Maximum likelihood estimation)只能在已知总体分布的前提下进行,为了对它的思想有所了解,我们先看一个例子.例7.4 假定一个盒子里装有许多大小相同的黑球和白球,并且假定它们的数目之比为3∶1,但不知是白球多还是黑球多,现在有放回地从盒中抽了3个球,试根据所抽3个球中黑球的数目确定是白球多还是黑球多.解 设所抽3个球中黑球数为X ,摸到黑球的概率为p ,则X 服从二项分布P {X =k }=k 3C p k(1-p )3-k , k =0,1,2,3.问题是p =1/4还是p =3/4?现根据样本中黑球数,对未知参数p 进行估计.抽样后,共有4种可能结果,其概率如表7-1所示.假如某次抽样中,只出现一个黑球,即X =1,p =1/4时,P {X =1}=27/64;p =3/4时,P {X =1}=9/64,这时我们就会选择p =1/4,即黑球数比白球数为1∶3.因为在一次试验中,事件“1个黑球”发生了.我们认为它应有较大的概率27/64(27/64>9/64),而27/64对应着参数p =1/4,同样可以考虑X =0,2,3的情形,最后可得p =⎪⎩⎪⎨⎧==.3,2,43,1,0,41时当时当x x(1) 似然函数在极大似然估计法中,最关键的问题是如何求得似然函数(定义下文给出),有了似然函数,问题就简单了,下面分两种情形来介绍似然函数. (a ) 离散型总体设总体X 为离散型,P {X =x }=p (x ,θ),其中θ为待估计的未知参数,假定x 1,x 2,…,x n 为样本X 1,X 2,…,X n 的一组观测值.P {X 1=x 1,X 2=x 2,…,X n =x n }=P {X 1=x 1}P {X 2=x 2}…P {X n =x n }=p (x 1,θ)p (x 2,θ)…p (x n ,θ)=∏=ni ix p 1),(θ.将∏=ni ix p 1),(θ看作是参数θ的函数,记为L (θ),即 L (θ)=∏=ni ix p 1),(θ. (7.1)(b ) 连续型总体设总体X 为连续型,已知其分布密度函数为f (x ,θ),θ为待估计的未知参数,则样本(X 1,X 2,…,X n )的联合密度为:f (x 1,θ)f (x 2,θ)…f (x n ,θ)=∏=ni ix f 1),(θ.将它也看作是关于参数θ的函数,记为L (θ),即L (θ)=∏=ni ix f 1),(θ. (7.2)由此可见:不管是离散型总体,还是连续型总体,只要知道它的概率分布或密度函数,我们总可以得到一个关于参数θ的函数L (θ),称L (θ)为似然函数.(2) 极大似然估计极大似然估计法的主要思想是:如果随机抽样得到的样本观测值为x 1,x 2,…,x n ,则我们应当这样来选取未知参数θ的值,使得出现该样本值的可能性最大,即使得似然函数L (θ)取最大值,从而求参数θ的极大似然估计的问题,就转化为求似然函数L (θ)的极值点的问题,一般来说,这个问题可以通过求解下面的方程来解决0)(=θθd d L . (7.3)然而,L (θ)是n 个函数的连乘积,求导数比较复杂,由于ln L (θ)是L (θ)的单调增函数,所以L (θ)与ln L (θ)在θ的同一点处取得极大值.于是求解(7.3)可转化为求解0)(=θθd dln L .(7.4)称ln L (θ)为对数似然函数,方程(7.4)为对数似然方程,求解此方程就可得到参数θ的估计值.如果总体X 的分布中含有k 个未知参数:θ1,θ2,…,θk ,则极大似然估计法也适用.此时,所得的似然函数是关于θ1,θ2,…,θk 的多元函数L (θ1,θ2,…,θk ),解下列方程组,就可得到θ1,θ2,…,θk 的估计值,⎪⎪⎪⎩⎪⎪⎪⎨⎧=∂∂=∂∂=∂∂.0),,,(ln ,0),,,(ln ,0),,,(ln 21221121k k k k L L L θθθθθθθθθθθθ(7.5) 例7.5 在泊松总体中抽取样本,其样本值为:x 1,x 2,…,x n ,试对泊松分布的未知参数λ作极大似然估计.解 因泊松总体是离散型的,其概率分布为:P {X =x }=λλ-e !x x,故似然函数为:L (λ)=∏∏==∑--⋅⋅==ni ni i x nixx x ni ii11!1!1λλλλee. ln L (λ)=11ln ln (!)nniii i n x x λλ==-+-∑∏,∑=+-=ni i x n 11)ln(λλλd d . 令λλd d ln =0,得: ∑=+-ni i x n 11λ=0.所以x x n ni i L ==∑=11ˆλ,λ的极大似然估计量为X L=λˆ(为了和λ的矩法估计区别起见,我们将λ的极大似然估计记为Lλˆ). 例7.6 设一批产品含有次品,今从中随机抽出100件,发现其中有8件次品,试求次品率θ的极大似然估计值.解 用极大似然法时必须明确总体的分布,现在题目没有说明这一点,故应先来确定总体的分布.设 X i =,100,,2,1,0,1 =⎩⎨⎧i ,i ,i 次取正品第次取次品第则X i 服从两点分布:12100p (x i ,θ)=P {X i =x i }=θ xi (1-θ)1-xi ,x i =0,1,故似然函数为:L (θ)=∑-∑=-==-=-∏1001100110010011)1()1(i ii i iix x i x x θθθθ由题知:∑=1001i ix =8,所以 L (θ)=θ8(1-θ)92. 两边取对数得:ln L (θ)=8ln θ+92ln (1-θ).对数似然方程为:θθθθ--=1928)(ln d d L =0.解之得θ=8/100=0.08.所以Lθˆ=0.08. 例7.7 设x 1,x 2,…,x n 为来自正态总体N (μ,σ2)的观测值,试求总体未知参数μ,σ2的极大似然估计.解 因正态总体为连续型,其密度函数为f (x )=222)(21σμσ--x e π,所以似然函数为:L (μ,σ2)=⎭⎬⎫⎩⎨⎧--⎪⎭⎫ ⎝⎛=⎭⎬⎫⎩⎨⎧--∑∏==n i i nni i x x 122122)(21exp 212)(exp 21μσσσμσππ ln L (μ,σ2)=∑=----n i i x n n 1222)(21ln 22ln 2μσσπ. 故似然方程组为:⎪⎪⎩⎪⎪⎨⎧=-+-=∂∂=-=∂∂∑∑==.0)(212),(ln ,0)(1),(ln 124222122ni i ni i x n L x L μσσσσμμσμσμ 解以上方程组得:⎪⎪⎩⎪⎪⎨⎧=-=-===∑∑∑===.ˆ)(1)(1,12121221B x x n x n x x n ni i n i i ni i μσμ 所以 ⎩⎨⎧==.ˆ,ˆ22B X L σμ例7.8 设总体X 服从[0,θ]上的均匀分布,X 1,X 2,…,X n 是来自X 的样本,求θ的矩法估计和极大似然估计.解 因为E (X )=θ/2,令X =E (X ),得.2ˆX =矩θ 又 f (x )=⎪⎩⎪⎨⎧≤≤.,0,0,1其他θθx所以L (θ)=n θ1,0≤x i ≤θ. 要L (θ)最大,θ必须尽可能小,又θ≥x i ,i =1,2,…,n ,所以{}ini L X ≤≤=1max ˆθ.第二节 估计量的评价标准设总体X 服从[0,θ]上的均匀分布,由上节例7可知ˆ2X θ=矩,{}1ˆmax L ii nX θ≤≤ 都是θ的估计,这两个估计哪一个好?下面我们首先讨论衡量估计量好坏的标准问题.1.无偏性定义7.2 若估计量(X 1,X 2,…,X n )的数学期望等于未知参数θ,即:ˆ()E θθ=, (7.6) 则称ˆθ为θ的无偏估计量(Non -deviation estimator ).估计量ˆθ的值不一定就是θ的真值,因为它是一个随机变量,若ˆθ是θ的无偏估计,则尽管ˆθ的值随样本值的不同而变化,但平均来说它会等于θ的真值.例7.9 设X 1,X 2,…,X n 为总体X 的一个样本,E (X )=μ,则样本平均数11nii X X n ==∑是μ的无偏估计量.证 因为E (X )=μ,所以E (X i )=μ,i =1,2,…,n ,于是1111()()n ni i i i E X E X E X n n ==⎛⎫== ⎪⎝⎭∑∑=μ.所以X 是μ的无偏估计量.例7.10 设有总体X ,E (X )=μ,D (X )=σ2,(X 1,X 2,…,X n )为从该总体中抽得的一个样本,样本方差S 2及二阶样本中心矩B 2=11()ni i X X n =-∑是否为总体方差σ2的无偏估计?解 因为E (S 2)=σ2,所以S 2是σ2的一个无偏估计,这也是我们称S 2为样本方差的理由.由于B 2=21n S n -, 那么 E (B 2)=2211()n n E S n nσ--=, 所以B 2不是σ2的一个无偏估计.还需指出:一般说来无偏估计量的函数并不是未知参数相应函数的无偏估计量.例如,当X ~N (μ,σ2)时,X 是μ的无偏估计量,但2X 不是μ2的无偏估计量,事实上:22222()()().E X D X E X nσμμ⎡⎤=+=+≠⎣⎦2.有效性对于未知参数θ,如果有两个无偏估计量1ˆθ与2ˆθ,即E (1ˆθ)=E (2ˆθ)=θ,那么在1ˆθ,2ˆθ中谁更好呢?此时我们自然希望对θ的平均偏差E (ˆθ-θ)2越小越好,即一个好的估计量应该有尽可能小的方差,这就是有效性.定义7.3 设1ˆθ和2ˆθ都是未知参数θ的无偏估计,若对任意的参数θ,有 D (1ˆθ)≤D (2ˆθ), (7.7)则称1ˆθ比2ˆθ有效. 如果1ˆθ比2ˆθ有效,则虽然1ˆθ还不是θ的真值,但1ˆθ在θ附近取值的密集程度较2ˆθ高,即用1ˆθ估计θ精度要高些. 例如,对正态总体N (μ,σ2),11ni i X X n ==∑,X i 和X 都是E (X )=μ的无偏估计量,但D (X )=2nσ≤D (X i )=σ2,故X 较个别观测值X i 有效.实际当中也是如此,比如要估计某个班学生的平均成绩,可用两种方法进行估计,一种是在该班任意抽一个同学,就以该同学的成绩作为全班的平均成绩;另一种方法是在该班抽取n 位同学,以这n 个同学的平均成绩作为全班的平均成绩,显然第二种方法比第一种方法好.3.一致性无偏性、有效性都是在样本容量n 一定的条件下进行讨论的,然而(X 1,X 2,…,X n )不仅与样本值有关,而且与样本容量n 有关,不妨记为n ,很自然,我们希望n 越大时,n 对θ的估计应该越精确.定义7.4 如果n 依概率收敛于θ,即∀ε>0,有{}ˆlim 1,nn P θθε→∞-<=,(7.8) 则称ˆnθ是θ的一致估计量(Uniform estimator ). 由辛钦大数定律可以证明:样本平均数X 是总体均值μ的一致估计量,样本的方差S 2及二阶样本中心矩B 2都是总体方差σ2的一致估计量.第三节 区间估计1.区间估计的概念上节我们介绍了参数的点估计,假设总体X ~N (μ,σ2),对于样本(X 1,X 2,…,X n ),ˆX μ=是参数μ的矩法估计和极大似然估计,并且满足无偏性和一致性.但实际上X =μ的可能性有多大呢?由于X 是一连续型随机变量,P {X =μ}=0,即ˆμ=μ的可能性为0,为此,我们希望给出μ的一个大致范围,使得μ有较高的概率在这个范围内,这就是区间估计问题.定义7.5 设1ˆθ(X 1,X 2,…,X n )及2ˆθ (X 1,X 2,…,X n )是两个统计量,如果对于给定的概率1-α(0<α<1),有:P {1ˆθ<θ<2ˆθ}=1-α, (7.9) 则称随机区间(1ˆθ,2ˆθ)为参数θ的置信区间(Confidence interval ),1ˆθ称为置信下限,2ˆθ称为置信上限,1-α叫置信概率或置信度(Confidence level).定义中的随机区间(1ˆθ,2ˆθ)的大小依赖于随机抽取的样本观测值,它可能包含θ,也可能不包含θ,(7.9)式的意义是指(1ˆθ,2ˆθ)以1-α的概率包含θ.例如,若取α=0.05,那么置信概率为1-α=0.95,这时,置信区间(1ˆθ,2ˆθ)的意义是指:在100次重复抽样中所得到的100个置信区间中,大约有95个区间包含参数真值θ,有5个区间不包含真值θ,亦即随机区间(1ˆθ,2ˆθ)包含参数θ真值的频率近似为0.95. 例7.11 设X ~N (μ,σ2),μ未知,σ2已知,样本X 1,X 2,…,X n 来自总体X ,求μ的置信区间,置信概率为1-α.解 因为X 1,X 2,…,X n 为来自X 的样本,而X ~N (μ,σ2),所以uX ~N (0,1),对于给定的α,查附录中表2可得上分位点2z α,使得2P z α⎫<⎬⎭=1-α,即22P X z X z ααμ⎧-<<+⎨⎩=1-α. 所以μ的置信概率为1-α的置信区间为X z X z αα⎛-+ ⎝. (7.10) 由(7.10)式可知置信区间的长度为22z α,若n 越大,置信区间就越短;若置信概率1-α越大,α就越小,2z α就越大,从而置信区间就越长.2.正态总体参数的区间估计由于在大多数情况下,我们所遇到的总体是服从正态分布的(有的是近似正态分布),故我们现在来重点讨论正态总体参数的区间估计问题.在下面的讨论中,总假定X ~N (μ,σ2),X 1,X 2,…,X n 为其样本. (1) 对μ的估计 分两种情况进行讨论. (a ) σ2已知此时就是例7.11的情形,结论是:μ的置信区间为22X z X z αα⎛-+ ⎝, 置信概率为1-α.(b ) σ2未知当σ2未知时,不能使用(7.10)式作为置信区间,因为(7.10)式中区间的端点与σ有关,考虑到S 2=211()1n ii X X n =--∑是σ2X σ换成S 得 TX ~t (n -1).对于给定的α,查附录中t 分布表4可得上分位点t σ/2(n -1),使得2(1)P t n α⎫<-⎬⎭=1-α,即22(1)(1)P X t n X t n ααμ⎧⎫-<<-⎨⎬⎩⎭=1-α.所以μ的置信概率为1-α的置信区间为22(1),(1)X t n X t n αα⎛⎫-- ⎪⎝⎭. (7.11)=,S 0,所以μ的置信区间也可写成22(1),(1)X t n X t n αα⎛⎫-+- ⎪⎝⎭.(7.12) 例7.12 某车间生产滚珠,已知其直径X ~N (μ,σ2),现从某一天生产的产品中随机地抽出6个,测得直径如下(单位:毫米)14.6 15.1 14.9 14.8 15.2 15.1试求滚珠直径X 的均值μ的置信概率为95%的置信区间.解 111(14.615.114.914.815.215.1)6n i i x x n ===+++++∑=14.95,s 0, t α/2(n -1)=t 0.025(5)=2.571,所以2(t n α-=2.571=0.24, 置信区间为(14.95-0.24,14.95+0.24),即(14.71,15.19),置信概率为95%.σ2的置信区间我们只考虑μ未知的情形.此时由于S 2=211()1n i i X X n =--∑是σ2的无偏估计,我们考虑22(1)n S σ-,由于222(1)~(1)n S n χσ--,所以,对于给定的α,2122222(1)(1)(1)n S P n n ααχχσ-⎧⎫--<<-⎨⎬⎩⎭=1-α. 即222221(1)(1)(1)(1)n S n S P n n αασχχ-⎧⎫--⎪⎪<<⎨⎬--⎪⎪⎩⎭=1-α.所以σ2的置信区间为2222221(1)(1),(1)(1)n S n S n n ααχχ-⎛⎫-- ⎪ ⎪--⎝⎭(7.13) 或222200221,(1)(1)nS nS n n ααχχ-⎛⎫ ⎪ ⎪--⎝⎭, 其中S 02=211()ni i X X n =-∑. 例7.13 某种钢丝的折断力服从正态分布,今从一批钢丝中任取10根,试验其折断力,得数据如下:572 570 578 568 596 576 584 572 580 566试求方差的置信概率为0.9的置信区间.解 因为111(572570566)10n i i x x n ===+++∑=576.2,s 02=2211n i i x x n =-∑=71.56, α=0.10,n -1=9,查附表得:2220.05(1)(9)n αχχ-==16.919,220.951(1)(9)n αχχ--==3.325,22021071.56(1)16.919ns n αχ⨯=-=42.30,220211071.56(1) 3.325ns n αχ-⨯=-=215.22.所以,σ2的置信概率为0.9的置信区间为(42.30,215.22).以上仅介绍了正态总体的均值和方差两个参数的区间估计方法.在有些问题中并不知道总体X 服从什么分布,要对E (X )=μ作区间估计,在这种情况下只要X 的方差σ2已知,并且样本容量n 很大,X 准正态分布N (0,1),因而μ的置信概率为1-α的近似置信区间为X z X z αα⎛-+ ⎝.小 结参数估计问题分为点估计和区间估计.设θ是总体X 的待估计参数.用统计量ˆθ=ˆθ(X 1,X 2,…,X n )来估计θ称ˆθ是θ的估计量,点估计只给出未知参数θ的单一估计.本章介绍了两种点估计的方法:矩估计法和极大似然估计法.矩法的做法:设总体X ~F (X ;θ1,θ2,…,θl )其中θk (1≤k ≤l )为未知参数. (1) 求总体X 的k (1≤k ≤l )阶矩E (x k ); (2) 求方程组112112(,,,)(),(,,,)().l l l l l E X A E X A μθθθμθθθ==⎧⎪⎨⎪==⎩的一组解1ˆθ,2ˆθ,…, ˆl θ,那么ˆk θ=ˆk θ (X 1,X 2,…,X n )(1≤k ≤l)为k 的矩估计量. ˆkθ(x 1,x 2,…,x n )为θk 的矩估计值. 极大似然估计法的思想是若已观察到样本值为(x 1,x 2,…,x n ),而取到这一样本值的概率为P =P (θ1,θ2,…,θl ),我们就取θk (1≤k ≤l )的估计值使概率P 达到最大,其一般做法如下: (1) 写出似然函数L =L (θ1,θ2,…,θl ) 当总体X 是离散型随机变量时,L =121(;,,,)nil i P x θθθ=∏,当总体X 是连续型随机变量时L =121(;,,,)nil i f x θθθ=∏,(2) 对L 取对数ln L =121ln (;,,,)nil i f x θθθ=∑,(3) 求出方程组ln kLθ∂∂=0, k =1,2,…,l . 的一组解ˆk θ=ˆk θ (x 1,…,x n ) (1≤k ≤l )即k 为未知参数θ的极大似然估计值,ˆkθ=(X 1,X 2,…,X n )为θk 的极大似然估计量.在统计问题中往往先使用极大似然估计法,在此法使用不方便时,再用矩估计法进行未知参数的点估计.对于一个未知参数可以提出不同的估计量,那么就需要给出评定估计量好坏的标准.本章介绍了三个标准:无偏性、有效性、一致性.重点是无偏性.点估计不能反映估计的精度,我们就引人区间估计.设θ是总体X 的未知参数,1ˆθ,2ˆθ均是样本X 1,X 2,…,X n 的统计量,若对给定值α(0<α<1)满足P (1ˆθ<θ<2ˆθ)=1-α,称1-α为置信度或置信概率,(1ˆθ,2ˆθ)为θ的置信度为1-α的置信区间.参数的区间估计中一个典型、重要的问题是正态总体X (X ~N (μ,σ2))中μ或σ2的区间估计,其置信区间如表7-3所示.表7-3 正态总体的均值、方差的置信度为(1-α)的置信区间区间估计给出了估计的精度与可靠度(1-α),其精度与可靠度是相互制约的即精度越高(置信区间长度越小),可靠度越低;反之亦然.在实际中,应先固定可靠度,再估计精度. 重要术语及主题矩估计量 极大似然估计量估计量的评选标准:无偏性、有效性、一致性, 参数θ的置信度为(1-α)的置信区间, 单个正态总体均值、方差的置信区间.习 题 七1.设总体X 服从二项分布b (n ,p ),n 已知,X 1,X 2,…,X n 为来自X 的样本,求参数p 的矩法估计.2.设总体X 的密度函数f (x ,θ)=22(),0,0,.x x θθθ⎧-<<⎪⎨⎪⎩其他X 1,X 2,…,X n 为其样本,试求参数θ的矩法估计.3.设总体X 的密度函数为f (x ,θ),X 1,X 2,…,X n 为其样本,求θ的极大似然估计.(1) f (x ,θ)=,0,0,0.e x x x θθ-⎧≥⎨<⎩(2) f (x ,θ)=1,01,0,.x x θθ-⎧<<⎨⎩其他5.随机变量X 服从[0,θ]上的均匀分布,今得X 的样本观测值:0.9,0.8,0.2,0.8,0.4,0.4,0.7,0.6,求θ的矩法估计和极大似然估计,它们是否为θ的无偏估计.6.设X 1,X 2,…,X n 是取自总体X 的样本,E (X )=μ,D (X )=σ2,2ˆσ=k 1211()n i ii XX -+=-∑,问k 为何值时2ˆσ为σ2的无偏估计. 7.设X 1,X 2是从正态总体N (μ,σ2)中抽取的样本112212312211311ˆˆˆ;;;334422X X X X X X μμμ=+=+=+ 试证123ˆˆˆ,,μμμ都是μ的无偏估计量,并求出每一估计量的方差. 8.某车间生产的螺钉,其直径X ~N (μ,σ2),由过去的经验知道σ2=0.06,今随机抽取6枚,测得其长度(单位mm )如下:14.7 15.0 14.8 14.9 15.1 15.2 试求μ的置信概率为0.95的置信区间.9.总体X ~N (μ,σ2),σ2已知,问需抽取容量n 多大的样本,才能使μ的置信概率为1-α,且置信区间的长度不大于L ? 10.设某种砖头的抗压强度X ~N (μ,σ2),今随机抽取20块砖头,测得数据如下(kg ·cm -2):64 69 49 92 55 97 41 84 88 99 84 66 100 98 72 74 87 84 48 81 (1) 求μ的置信概率为0.95的置信区间. (2) 求σ2的置信概率为0.95的置信区间. 11.设总体X ~f (x )=(1),01;10,.x x θθθ⎧+<<>-⎨⎩其中其他 X 1,X 2,…,X n 是X 的一个样本,求θ的矩估计量及极大似然估计量. (1997年研考)12.设总体X ~f (x )= 36(),0;0,.xx x θθθ⎧-<<⎪⎨⎪⎩其他X 1,X 2,…,X n 为总体X 的一个样本(1) 求θ的矩估计量;(2) 求ˆ()D θ. (1999研考) 13.设某种电子元件的使用寿命X 的概率密度函数为f (x ,θ)= 2()2,0;0,.e x x x θθ--⎧>⎨≤⎩其中θ(θ>0)为未知参数,又设x 1,x 2,…,x n 是总体X 的一组样本观察值,求θ的极大似然估计值. (2000研考)估计值和极大似然估计值. (2002研考)15.设总体X 的分布函数为F (x ,β)=1,,0,.x xx ββααα⎧->⎪⎨⎪<⎩其中未知参数β>1,α>0,设X 1,X 2,…,X n 为来自总体X 的样本(1) 当α=1时,求β的矩估计量;(2) 当α=1时,求β的极大似然估计量;(3) 当β=2时,求α的极大似然估计量. (2004研考) 16.从正态总体X ~N (3.4,62)中抽取容量为n 的样本,如果其样本均值位于区间(1.4,5.4)内的概率不小于0.95,问n 至少应取多大?2/2()d zt z t ϕ-=⎰(1998研考)17. 设总体X 的概率密度为f (x ,θ)=,01,1,12,0,.x x θθ<<⎧⎪-≤<⎨⎪⎩其他 其中θ是未知参数(0<θ<1),X 1,X 2,…,X n 为来自总体X 的简单随机样本,记N 的样本值x 1,x 2,…,x n 中小于1的个数.求: (1) θ的矩估计;(2) θ的最大似然估计. (2006研考)。

参数估计的评价标准

参数估计的评价标准

参数估计的评价标准
参数估计的评价标准主要包括以下几个方面:
1. 无偏性:参数估计应无偏,即估计量的均值应等于真实参数值。

2. 有效性:参数估计应尽可能准确,即估计量的方差应尽可能小。

3. 稳健性:参数估计应具有稳健性,即不应过于依赖于特定的样本或模型假设。

4. 透明性:参数估计应易于解释和理解,以满足决策者的需要。

5. 可操作性:参数估计应具有可操作性,即能够在实际应用中实施和执行。

这些标准为评估参数估计的质量提供了全面的框架,可以根据具体情况选择适当的标准进行评估。

概率论与数理统计24 7.2 估计量的评选标准

概率论与数理统计24 7.2 估计量的评选标准

σ
于是有
P{|
( X ) n
σ σ
|> uα / 2 } = α |< uα / 2 } = 1α
即P{|
( X ) n
即P{uα / 2 <
( X ) n
uα / 2σ uα / 2σ } = 1 α < X < 即P{ n n uα / 2σ uα / 2σ } = 1 α << X+ 即P{X n n
X1 + X2 +L+ Xi 1 D( Xi ) = D( ) = 2 D( X1 + X2 +L+ Xi ) i i 1 σ2 = 2 [D( X1 ) + D( X2 ) +L+ D( Xi )] = i i i越大, D( Xi ) 越小,因此在无偏估计量 Xi 越大, 越小,
中,
Xn = X
二 均值 的置信区间 设总体 X ~ N(,σ 2 ) ,样本为 X1 , X2 ,L, Xn 1 σ 2已知时,求 的置信区间 已知时, 2
X ~ N(,σ ) X ~ N(,
2
σ
n
)
( X ) n
σ ( X ) n |> λ} = α λ = uα / 2 P{| σ σ σ } = 1 α P{X uα / 2 < < X + uα / 2
x = 425.9, s = 1.675
2
1α = 0.95,α = 0.05, tα (n 1) = t0.05(4) = 2.776 1.675 s x tα (n 1) = 425.9 2.776× = 424.29 5 n s 1.675 x + tα (n 1) = 425.9 + 2.776× = 427.51 5 n

7.3+估计量的评选标准

7.3+估计量的评选标准
一是:估计值在真值附近波动,平均值最好就是真值 二是:在满足第一条的情况下,方差最小
无偏性
估计量是随机变量, 对于不同的样本值会得到不同的
估计值 . 我们希望估计值在未知参数真值附近摆动,
而它的期望值等于未知参数的真值. 这就导致无偏性
这个标准 .
.

真值
k 1
k 1
k 1
n
wk EX k 1
n
EX wk EX k 1
2.
ˆ1 S 2

1 n1
n
(Xk
k 1

X )2
为σ 2 的无偏估计量
n
n
证明: 2.
( X k X )2
X
2 k

nX
2
k 1
k 1
E(S 2)

E[ 1 n 1
若对任意的ε >0,有
lim
n
P{ˆn

}1
则称 ˆ 为θ 的相合估计量.
一致性估计量仅在样本容量
n 足够大时,才显示其优越性.
例题
设X1, X2
X
n1为X
~N
(
1
,
2 1
)的一个样本
Y1 ,Y2
Yn
2为X
~N
(

2
,
2 2
)的一个样本,相互独立
S12 , S22分别是他们的样本方差,证明对于任意常数
n 1
n
3。ˆ2

D2

1 n
n
(Xk
k 1
X )2 不是σ 2
的无偏估计量

概率论与数理统计:7-3估计量的评选标准

概率论与数理统计:7-3估计量的评选标准
由于方差是随机变量取值与其数学期望的 偏离程度, 所以无偏估计以方差小者为好. 设ˆ1 ˆ1( X1 , X 2 ,, X n )与ˆ2 ˆ2 ( X1 , X 2 ,, X n ) 都是 的无偏估计量, 若对于任意 ,有
D(ˆ1 ) D(ˆ2 ), 且至少对于某一个 上式中的 不等号成立,则称ˆ1较 ˆ2有效.
第三节 估计量的评选标准
一、问题的提出 二、无偏性 三、有效性 四、相合性
一、问题的提出
从前一节可以看到, 对于同一个参数, 用不 同的估计方法求出的估计量可能不相同, 如课本 上本章的例2和例6. 而且, 很明显, 原则上任何统 计量都可以作为未知参数的估计量.
问题: 对于同一个参数究竟采用哪一个估计量好?
故有
E
(
X
k i
)
E(X
k
)
k
,
i 1,2,,n.

E( Ak
)
1 n
n i 1
E
(
X
k i
)
k .

k
阶样本矩
Ak

k
阶总体矩
的无偏估计
k
.
特别地:
不论总体 X 服从什么分布, 只要它的数学期 望存在, X 总是总体 X 的数学期望 1 E( X ) 的 无偏估计量. S 2是 2的无偏估计,故通常取S 2作 2 Nhomakorabea估计量.
例2 设总体 X 服从参数为的指数分布, 概率密

f ( x;)
1
e
x
,
0,
x 0, 其中参数 0, 又设 其它
X1, X2,, Xn 是来自总体X 的样本,试证 X 和
nZ n[min(X1, X2 ,, Xn )] 都是的无偏估计.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§7.3 估计量的评选标准由点估计提法可以看出,估计的概念相当广泛,并且用不同的估计方法往往会得出不同的估计.如果不对估计的好坏加以明确,估计是没有意义的.评价估计量的优劣并不简单,这首先需要明确衡量优良性的标准.这些标准不是唯一的,也不是绝对的.从不同角度出发可以提出不同的标准.下面我们讨论评价估计优劣的一些常用的标准. (一)均方误差同一参数的估计有多种,那么什么样的估计算是好的甚至是最好的?这就涉及优良性标准.从直观上看,估计量与被估计量越接近越好.当我们用)(ˆX θ估计θ时,评价该估计好坏的一个自然的度量是|)(ˆ|θθ-X ,但由于θ是未知的,样本又具有随机性,因而这种自然度量在实际中是不可行的,为了消除随机性的影响,可以考虑对它求平均|)(ˆ|θθ-X E ,出于数学处理上的方便,最常用的标准是由下式给出的均方误差.2))(ˆ()ˆ(θθθθ-=X E MSE 例7.3.1设n X X ,,1 为来自正态总体),(2σμN 的简单随机样本, (1) 若μ已知,考虑2σ的两个估计量:∑=---=n i i X n 1221)(11ˆμσ,∑=-=n i i X n 1220)(1ˆμσ, 求这两个估计量的均方误差,并比较它们的大小; (2)若μ未知,考虑2σ的两个估计量:∑=---=n i i X X n 1221)(11ˆσ,∑=-=n i i X X n 1220)(1ˆσ, 求这两个估计量的均方误差, 并比较它们的大小.解:(1)先求20ˆσ的均方误差,由于220)ˆ(σσ=E ,所以])([1)ˆ()ˆ(1222022∑=-==n i i X D n D M S E μσσσ, 又∑=-ni iX122)(1μσ~)(2n χ,故n XD ni i2])(1[122=-∑=μσ,即得4122])([σμn X D ni i =-∑=,从而知nMSE 4202)ˆ(2σσσ=,或])([1)ˆ()ˆ(1222022∑=-==ni i X D n D MSE μσσσ n X D nni i 41222)(1σμ=-=∑=, (这里用到了:若X ~),(2σμN ,则⎩⎨⎧-=-为奇数,为偶数,k k k X E k k0,!)!1()(σμ从而422)(σμ=-X D )再求21ˆ-σ的均方误差,}])({)1(1)ˆ(212222212∑=-+---=ni i n X E n MSE σσμσσ 424122)1(12}])([{)1(1σσμ-+=+--=∑=n n X D n ni i , 易见对任意的02>σ,总有>-)ˆ(212σσMSE )ˆ(202σσMSE , 思考题:考虑∑=-+=n i i kX k n 122)(1ˆμσ(k 为整数),计算)ˆ(22k MSE σσ并找出k 为何值时均方误差最小.(2)先求21ˆ-σ的均方误差,由于221)ˆ(σσ=-E ,所以 ])([)1(1)ˆ()ˆ(12221212∑=----==ni i X X D n D MSE σσσ又∑=-ni i X X122)(1σ~)1(2-n χ,故)1(2])(1[122-=-∑=n X XD ni iσ, 即得412)1(2])([σ-=-∑=n X X D ni i ,从而知12)ˆ(4212-=-n MSE σσσ,再求20ˆσ的均方误差,}])1()({1)ˆ(21222222∑=----=ni i n X X E n MSE σσσσ 42412212}])([{1σσn n X X D n ni i -=+-=∑=, 易见对任意的02>σ,总有>-)ˆ(212σσMSE )ˆ(202σσMSE . 思考题:考虑∑=-+=n i i kX X k n 122)(1ˆσ(k 为整数),计算)ˆ(22k MSE σσ并找出k 为何值时均方误差最小.(二) 无偏性均方误差可分解成两部分:2))(ˆ()ˆ(θθθθ-=X E MSE 2ˆˆ]-)(E [)(r Va θθθ+= 若偏差0ˆ==θθθ-)(E )b(,那么均方误差就等于方差.这样的估计量叫做无偏估计量.因此有如下义.定义 设θ为待估参数,参数空间为Θ,),,,(ˆˆ21nX X X θθ=为θ的估计量,若对于任意Θ∈θ,总有θθθ=)ˆ(E , 则称),,,(ˆˆ21n X X X θθ=为θ的无偏估计量,或者说),,,(ˆˆ21n X X X θθ=作为θ的估计量具有无偏性.又若0=∞→)b(lim n θ,称θˆ是θ的渐近无偏估计.例7.3.2 设总体X 的均值为μ,方差为2σ,n X X ,,1 是来自该总体的简单随机样本.则(i )样本均值X 为总体均值μ的无偏估计; (ii )样本均值2S 为总体均值2σ的无偏估计;思考题:样本标准差S 是否是总体标准差σ的无偏估计?如果不是,在正态模型下如何修改使之为无偏估计.例7.3.3 设n X X ,,1 是来自总体),(2σμN 的简单随机样本,求解下面问题(1)2σ的两个常用估计量∑=-=n i i nX X n S 122)(1,∑=--=n i i X X n S 122)(11中哪个是无偏估计?(2) 若22bS X a T +=为2μ的无偏估计,确定b a ,. 解:(1)略(2) 2222222)()1()()()(σμσσμna b a b n a S bE X aE T E ++=++=+=, 由无偏性定义知 对2,σμ∀,有 222)(μσμ=++na b a 从而得nb a 1,1-==。

对估计而言,无偏性的要求是否一定要遵守以及无偏性的实际价值如何,这还必须结合具体问题的实际情况去考察.无偏性体现了一种频率思想,只有在大量重复使用时,无偏性才会体现其价值.例如,要估计某批产品的合格品率θ,从中抽取n 件产品进行检验,其中合格品件数为X ,那么n X /是θ的无偏估计.然而对一次具体的观察值x 而言,n x /与θ丝毫不差几乎是不可能的,但凭此具体的观察值x ,其接近程度无法知晓,此时无偏性显得没有多大意义.如果问题改为某一工厂每天都对其生产的产品进行抽检,若假定生产过程是稳定的,那估计的无偏性要求便是合理的,比如每天都用n X /估计θ,对一天而言,该估计可能偏大也可能偏小,但在一段较长时期内,把各天的估计再进行平均,那么正负偏差就会在很大程度上得以抵消,其平均会在θ周围作微小波动.总之我们不要把无偏性要求看得过重,无偏性是大量重复使用同一估计量时应尽量满足的要求,但根据现有数据进行一次性估计时不必要求什么无偏性. (三) 有效性对于不同的无偏估计量的均方误差的比较,就是比较其方差.因此有如下定义.定义 设)X ,,X n 1 (θθˆˆ=和)X ,,X n 1 (θθ~~=为θ的两个无偏估计,若对于任意Θ∈θ,总有)(Var )(Var θθ~ˆ≤.且至少有一个Θ∈θ,使得)(Va r )(Va r θθ~ˆ<,我们称θˆ比θ~更有效.例7.3.4 设总体X 的均值为μ,方差为2σ,n X X ,,1 是来自该总体的简单随机样本.则对于任意满足11=∑=ni i a 的一组实数n a ,,a ,a 21,∑=ni i i X a 1都是总体均值μ的无偏估计,且此类无偏估计中, 样本均值X 的方差最小.例7.3.5 设n X X ,,1 来自该均匀总体),0(θU 的样本,(1)证明:X 2ˆ=θ,)(1~n X nn +=θ均为θ的无偏估计; (2)比较以上两个估计量的有效性. (四) 相合性估计量是与相本容量有关的,假设用统计量),,(ˆˆ1nn X X θθ=估计θ,其接近程度(当然这里首先要明确接近程度的衡量标准,比如均方误差)一般来说与n 与θ都有关系.对某个固定的n ,接近程度只与θ有关且不可能对所有的Θ∈θ都任意小,但当∞→n 时,通常可以做到这一点.为此就需要考察当∞→n 时统计量的性质,在统计学中把这方面的性质叫做大样本性质.下面介绍的相合性就是大样本性质.定义 设),,(ˆˆ1nn X X θθ=是θ的估计,如果当∞→n 时,有 θθPn →ˆ,则称nθˆ为θ的相合估计. 相合性讨论涉及概率论中极限定理的内容,这部分的知识我们学得不多,这里就不详细讨论了,只给出几个结论:1. ),,(ˆˆ1n n X X θθ=是θ的估计,其均方误差为2)ˆ()ˆ(θθθθ-=nn E MSE ,若当∞→n 时,Θ∈∀→θθθ,0)ˆ(MSE ,则),,(ˆˆ1nn X X θθ=是θ的相合估计.2.设总体X 的k 阶矩k k X E μ=)(存在,n X X ,,1 是来自该总体的简单随机样本,则样本的k 阶矩∑=n i ki X n 11是总体的k 阶矩k μ的相合估计.3.若nθˆ是为θ的相合估计,)(g θ是连续函数,则)(g n θˆ是)(g θ的相合估计.例 设总体X ~),1(θB ,n X X ,,1 是来自该总体的样本,那么XX-1是θθθ-=1)(g 的相合估计.。

相关文档
最新文档