磁性材料基础知识课件
合集下载
磁性材料ppt_图文
1.组织结构与磁性 能关系
1)性能指标:.矫顽 力Hc,剩磁Br,最大磁能 积(BH)m,居里温度Tc, 剩余磁化强度Mr。
2)硬磁材料的4大特 性:高的矫顽力,高的剩
余磁通密度和高的剩余磁
化强度,高的最大磁能积, 高的稳定性。
硬磁材料
2.硬磁材料及其应用
(1)稀土硬磁材料:这是当前最大磁能积最高的 一大类硬磁材料,为稀土族元素和铁族元素为 主要成分的金属互化物(又称金属间化合物)。 如钕铁硼稀土合金硬磁材料。
磁性橄榄球
司南
永磁材料ቤተ መጻሕፍቲ ባይዱ
二.软磁材料
软磁材料的特点是高的磁导率,低的矫顽力(一 般Hc<100A/m)和低铁芯损耗。
1.组织结构与性能关系
1).通过提高材料的均匀性来降低 矫顽力。
2).通过降低磁各向异性来提高磁 导率,降低铁芯损耗。
软磁材料——铁粉芯
2.软磁材料及其工程应用
软磁材料大概分类为:纯铁和碳钢,镍-铁合金,磁性陶瓷 材料,非晶态合金,纳米晶软磁材料。
3)常用软磁磁芯
磁粉芯是由铁磁性粉粒与绝缘介质混合压制而成的一种软磁 材料。由于铁磁性颗粒很小(高频下使用的为0.5~5 微米),又被 非磁性电绝缘膜物质隔开,因此,一方面可以隔绝涡流,材料适用 于较高频率; 另一方面由于颗粒之间的间隙效应,导致材料具有 低导磁率及恒导磁特性;又由于颗粒尺寸小,基本上不发生集肤现 象,磁导率随频率的变化也就较为稳定。主要用于高频电感。磁粉 芯的磁电性能主要取决于粉粒材料的导磁率、粉粒的大小和形状、 它们的填充系数、绝缘介质的含量、成型压力及热处理工艺等。
总的来说有两大方面的应用:
1.强电流器件的应用,一般在准静态或低频,大电流下使用; 如电磁铁,功率变压器,电机等的铁芯。
磁性材料——研究生课程PPT课件
e:涡流损耗系数;a:磁滞损耗系数;c是不依赖于f的常数,
来自由磁后效或频散引起的损耗。
*总损耗W既决定于材料,也决定于交变磁场的f和Bm, 因此 讨论W指标时,应注明f和Bm。 ①涡流损耗
*涡流是在迅速变化的磁场中的导体内部产生的感生电流,
因其流线呈闭合漩涡状而得名。f越高,涡流越大。
*涡流不能象导线中的电流那样输送出去,仅使磁芯发 热造成能量损耗。 *一个周期内材料的涡流损耗
*Ni:75%~83%范围时,具有最佳的综合磁性能,但这一范围 时BS较低。 *应用:可用作在弱磁场下具有很高的铁芯材料和磁屏蔽材 料;也可用作要求低剩磁和恒磁导率的脉冲变压器材料;还可 用作各种磁致伸缩合金、热磁合金、矩磁合金等。
2.1.4其它软磁合金 ①铁铝合金
*优点:价格低;通过调解铝的含量,可以获得满足不同要求的
单位磁场强度在磁体中感生的磁化强度。 ⑤磁导率:μ=B/H
单位磁场强度在磁体中感生的磁感应强度。
1.2磁性参量
①初始磁导率:
i
1
B lim H H 0
0
②最大磁导率:
max
1
0
(B H
) max
③饱和磁感应强度Bs:其大小取决于材料的成分,它所
对应的物理状态是材料内部的磁化矢量整齐排列。
④剩余磁感应强度Br:是磁滞回线上的特征参数,H回
*电工纯铁存在时效现象
原因:高温时铁固溶体内溶解有较多的碳或氮,产品快速 冷却到室温时,溶解度减小,Fe3C或Fe4N由固溶体中以细
微弥散形式析出,从而HC增加,i降低。
消除方法:保温后,采用缓慢冷却到100-300℃的退火措施, 这样在650-300℃之间Fe3C有足够的时间析出、长大为对磁 性能影响不大的大颗粒夹杂物。
来自由磁后效或频散引起的损耗。
*总损耗W既决定于材料,也决定于交变磁场的f和Bm, 因此 讨论W指标时,应注明f和Bm。 ①涡流损耗
*涡流是在迅速变化的磁场中的导体内部产生的感生电流,
因其流线呈闭合漩涡状而得名。f越高,涡流越大。
*涡流不能象导线中的电流那样输送出去,仅使磁芯发 热造成能量损耗。 *一个周期内材料的涡流损耗
*Ni:75%~83%范围时,具有最佳的综合磁性能,但这一范围 时BS较低。 *应用:可用作在弱磁场下具有很高的铁芯材料和磁屏蔽材 料;也可用作要求低剩磁和恒磁导率的脉冲变压器材料;还可 用作各种磁致伸缩合金、热磁合金、矩磁合金等。
2.1.4其它软磁合金 ①铁铝合金
*优点:价格低;通过调解铝的含量,可以获得满足不同要求的
单位磁场强度在磁体中感生的磁化强度。 ⑤磁导率:μ=B/H
单位磁场强度在磁体中感生的磁感应强度。
1.2磁性参量
①初始磁导率:
i
1
B lim H H 0
0
②最大磁导率:
max
1
0
(B H
) max
③饱和磁感应强度Bs:其大小取决于材料的成分,它所
对应的物理状态是材料内部的磁化矢量整齐排列。
④剩余磁感应强度Br:是磁滞回线上的特征参数,H回
*电工纯铁存在时效现象
原因:高温时铁固溶体内溶解有较多的碳或氮,产品快速 冷却到室温时,溶解度减小,Fe3C或Fe4N由固溶体中以细
微弥散形式析出,从而HC增加,i降低。
消除方法:保温后,采用缓慢冷却到100-300℃的退火措施, 这样在650-300℃之间Fe3C有足够的时间析出、长大为对磁 性能影响不大的大颗粒夹杂物。
材料的磁性PPT课件
微观环形电流,同时也得到了附加的磁矩。
按照楞次定律:该环形电流所产生的磁矩与外磁场方向相
反,由此而产生的物质磁性称作抗磁性。它无例外地存在于
一切物质中,但只有原子核磁矩为零的物质才可能在宏观上
表现出来,并称这种物质为抗磁性物质。在另外一些物质中,
这种磁性往往被更强的其他磁性所掩盖。
如上所述,在外磁场作用下,原子产生与外磁场方向相反
存在反铁磁体转变的顺磁体: 过渡族金属及其合金或它们
的化合物属于这类顺磁体。它们都有一定的转变温度,
称为反铁磁居里点或尼尔点,以TN表示。当温度高于TN
时,它们和正常顺磁体一样服从居里-外斯定律,且△>
0;当温度低于TN时,它们的χ随T下降,当T→OK时,
χ→常数;在TN处χ有一极大值,MnO、MnS、NiCr、
.
17
正常顺磁体: 与温度有极强的依赖关系
TP;顺磁 居里温度
= C/T
(Curie law)
= C/(T-TP) (Curie-Weiss law)
常见的顺磁体有:稀土金属和铁族元素的盐类。
磁化率与温度无关的顺磁体:碱金属Li、Na、K、Rb属于 此类,它们的χ=10-7~10-6,其顺磁性是由价电子产生 的,由量子力学可证明它们的χ与温度无关。
.
27
2.交换作用
交换作用是指处于不同原子的、未被填满壳层上的电子
之间发生的特殊相互作用。在晶体内,参与这种作用的电子
已不再局限于原来的原子,而是“公有化”了,原子间好象
在交换电子,故称为交换作用。由这种交换作用所产生的交 换能A与晶格的原子间距有密切关系(图)。当原子间距离很 大时,A接近于零,随着距离的减小,相互作用增加。当原子 间距a与未被填满的电子壳层的直径D之比大于3时,交换能为 正值,材料呈现铁磁性;当 a/D<3时,交换能为负值,材料呈现反 铁磁性。
磁性材料的认识与应用(PPT)
磁畴结构
磁性材料内部自发形成的、具有一定磁化特性的区域。不同的磁畴具有不同的 磁矩方向和大小,导致宏观上表现出不同的磁性。
磁导率与磁阻
磁导率
描述磁性材料在磁场中磁感应强度与磁场强度的比值,是衡量材料导磁性能的重 要参数。
磁阻
由于磁性材料的磁畴结构、晶格畸变等因素导致的磁感应强度在材料内部传播时 的衰减,表现为磁阻抗。
磁性材料的发展趋势
高性能磁性材料
随着技术的进步,对磁性材料性能的要求越来越高,高性能磁性材料的研究和开发成为 未来的发展趋势。
环保型磁性材料
随着环保意识的提高,环保型磁性材料的研发和应用越来越受到重视,如可回收利用的 磁性材料等。
磁性材料的应用前景
电子行业
磁性材料在电子行业中应用广泛,如电 子元器件、传感器、电机等,随着电子 行业的快速发展,磁性材料的应用前景 十分广阔。
交通工业
磁性材料在交通工业中主要用于轨道交通、汽车制造等领 域,如磁悬浮列车、磁力轴承等。磁性材料具有高磁导率 、高磁感应强度等特点,能够提供稳定的磁场环境,确保 交通工具的安全性和稳定性。
磁性材料在交通工业中还应用于传感器、执行器等新兴领 域,为交通工业的发展提供了新的机遇。
医疗领域
磁性材料在医疗领域中主要用于磁共 振成像、磁疗等新兴领域。磁性材料 能够产生稳定的磁场环境,有助于提 高医疗设备的诊断准确性和治疗效果。
磁性材料的分类
软磁材料
矫顽力低,磁导率高,饱和磁感 应强度大,易于磁化和去磁,适
用于制造变压器、电机等。
硬磁材料
矫顽力高,剩磁和矫顽力均大 ,适用于制造永磁体,如扬声 器、耳机等。
矩磁材料
具有矩形磁滞回线,常用于计 算机存储器等。
磁性材料内部自发形成的、具有一定磁化特性的区域。不同的磁畴具有不同的 磁矩方向和大小,导致宏观上表现出不同的磁性。
磁导率与磁阻
磁导率
描述磁性材料在磁场中磁感应强度与磁场强度的比值,是衡量材料导磁性能的重 要参数。
磁阻
由于磁性材料的磁畴结构、晶格畸变等因素导致的磁感应强度在材料内部传播时 的衰减,表现为磁阻抗。
磁性材料的发展趋势
高性能磁性材料
随着技术的进步,对磁性材料性能的要求越来越高,高性能磁性材料的研究和开发成为 未来的发展趋势。
环保型磁性材料
随着环保意识的提高,环保型磁性材料的研发和应用越来越受到重视,如可回收利用的 磁性材料等。
磁性材料的应用前景
电子行业
磁性材料在电子行业中应用广泛,如电 子元器件、传感器、电机等,随着电子 行业的快速发展,磁性材料的应用前景 十分广阔。
交通工业
磁性材料在交通工业中主要用于轨道交通、汽车制造等领 域,如磁悬浮列车、磁力轴承等。磁性材料具有高磁导率 、高磁感应强度等特点,能够提供稳定的磁场环境,确保 交通工具的安全性和稳定性。
磁性材料在交通工业中还应用于传感器、执行器等新兴领 域,为交通工业的发展提供了新的机遇。
医疗领域
磁性材料在医疗领域中主要用于磁共 振成像、磁疗等新兴领域。磁性材料 能够产生稳定的磁场环境,有助于提 高医疗设备的诊断准确性和治疗效果。
磁性材料的分类
软磁材料
矫顽力低,磁导率高,饱和磁感 应强度大,易于磁化和去磁,适
用于制造变压器、电机等。
硬磁材料
矫顽力高,剩磁和矫顽力均大 ,适用于制造永磁体,如扬声 器、耳机等。
矩磁材料
具有矩形磁滞回线,常用于计 算机存储器等。
《磁性材料》PPT课件
1、古代的信息记录 2、磁记录是信息存储技术的里程碑
整理ppt
13
【思考】 生活中还有哪些东西是
用磁记录的方式存储数据的?
整理ppt
14
最新磁记录技术
• 新技术利用激光改变硬盘磁性 ,速度可提 高100倍。荷兰研究人员说,他们已找到利 用激光提高硬盘100倍速度的方法。实验了 用一束40飞秒(毫微微秒)的单循环偏振 激光脉冲去改变硬盘的磁性。
地球的磁场的强度和
方向随着时间的推移
在不断改变,大约每
过100万年左右,地磁
场的南北极就会完全
颠倒一次。
整理ppt
17
【课外查资料】 地球磁场为什么会改变方向呢?
整理ppt
18
【探索】 失方向?
鸽子为什么迷
整理ppt
19
金,还有一些氧化物,磁化后的磁 性比其他物质强得多,这种物质叫 做铁磁性物质。
整理ppt
4
【思考】 为什么铁磁性物质磁化后
有很强的磁性?
整理ppt
5
4、磁畴:铁磁性物质的本身的 结构就是由很多已经磁化的小区 域组成的,这些磁化的小区域就 叫“磁畴”。
磁畴的大小约10-4~10-7m
整理ppt
6
5、硬磁性材料:有些铁磁性材 料,在外磁场撤去以后,各磁畴 的方向仍能很好地保持一致,物 体具有很强的剩磁。
五、磁性材料
整理ppt
1
一、磁化与退磁
1、磁化:钢铁物体与磁铁接触后 就会显示出磁性。
整理ppt
2
【实验演示】
原来有磁性的物体经过高温后失去磁性。
2、退磁:原来有磁性的物体, 经过高温、剧烈震动或者逐渐减 弱的交变磁场的作用,就会失去 磁性。这种现象叫做退磁。
整理ppt
13
【思考】 生活中还有哪些东西是
用磁记录的方式存储数据的?
整理ppt
14
最新磁记录技术
• 新技术利用激光改变硬盘磁性 ,速度可提 高100倍。荷兰研究人员说,他们已找到利 用激光提高硬盘100倍速度的方法。实验了 用一束40飞秒(毫微微秒)的单循环偏振 激光脉冲去改变硬盘的磁性。
地球的磁场的强度和
方向随着时间的推移
在不断改变,大约每
过100万年左右,地磁
场的南北极就会完全
颠倒一次。
整理ppt
17
【课外查资料】 地球磁场为什么会改变方向呢?
整理ppt
18
【探索】 失方向?
鸽子为什么迷
整理ppt
19
金,还有一些氧化物,磁化后的磁 性比其他物质强得多,这种物质叫 做铁磁性物质。
整理ppt
4
【思考】 为什么铁磁性物质磁化后
有很强的磁性?
整理ppt
5
4、磁畴:铁磁性物质的本身的 结构就是由很多已经磁化的小区 域组成的,这些磁化的小区域就 叫“磁畴”。
磁畴的大小约10-4~10-7m
整理ppt
6
5、硬磁性材料:有些铁磁性材 料,在外磁场撤去以后,各磁畴 的方向仍能很好地保持一致,物 体具有很强的剩磁。
五、磁性材料
整理ppt
1
一、磁化与退磁
1、磁化:钢铁物体与磁铁接触后 就会显示出磁性。
整理ppt
2
【实验演示】
原来有磁性的物体经过高温后失去磁性。
2、退磁:原来有磁性的物体, 经过高温、剧烈震动或者逐渐减 弱的交变磁场的作用,就会失去 磁性。这种现象叫做退磁。
磁性材料的基础知识讲座剖析课件
磁导率和磁阻的变化规律
随着温度和磁场强度的变化,材料的磁导率和磁阻也会产生变化, 呈现出一定的非线性特征。
磁化强度与磁感应强度
01
02
03
磁化强度
指材料内部磁矩的矢量和 ,衡量材料被磁化的程度 。
磁感应强度
指磁场中某点磁场的强弱 和方向,与磁化强度密切 相关。
两者关系
在磁性材料中,磁感应强 度和磁化强度之间存在一 定的关系,可以通过物理 公式进行描述。
化学气相沉积法制备的磁性材料具有高纯度、高密度、高性能等特点,广泛应用于 磁记录、传感器等领域。
化学气相沉积法的优点是可控制膜层的成分和厚度,且工艺温度低、可制备形状复 杂的制品。缺点是设备成本高、工艺时间长,且需要严格控制反应条件。
溅射法
溅射法是一种制备磁性材料的方法,通 过将靶材置于真空室内,利用高能粒子 轰击靶材表面,使靶材原子或分子溅射 出来并沉积在基材上形成薄膜。
元素掺杂
通过在磁性材料中掺入其他元素,以改变其磁学性质。例如,通过掺入稀土元 素,可以提高磁性材料的磁能积和剩磁。
热处理与磁场处理
热处理
通过控制加热和冷却过程,改变磁性材料的晶体结构和相变 ,从而优化其磁学性能。例如,通过控制热处理条件,可以 提高磁性材料的矫顽力和稳定性。
磁场处理
在磁场中处理磁性材料,可以改变其内部的磁畴结构和磁矩 方向,从而优化其磁学性能。例如,通过磁场处理,可以减 小磁性材料的磁损耗和提高磁导率。
磁性材料的基础知识讲座剖析课件
目录
• 磁性材料概述 • 磁性材料的物理性质 • 磁性材料的制备工艺 • 磁性材料的性能优化 • 磁性材料的发展趋势与挑战
01
磁性材料概述
定义与特性
1 2
随着温度和磁场强度的变化,材料的磁导率和磁阻也会产生变化, 呈现出一定的非线性特征。
磁化强度与磁感应强度
01
02
03
磁化强度
指材料内部磁矩的矢量和 ,衡量材料被磁化的程度 。
磁感应强度
指磁场中某点磁场的强弱 和方向,与磁化强度密切 相关。
两者关系
在磁性材料中,磁感应强 度和磁化强度之间存在一 定的关系,可以通过物理 公式进行描述。
化学气相沉积法制备的磁性材料具有高纯度、高密度、高性能等特点,广泛应用于 磁记录、传感器等领域。
化学气相沉积法的优点是可控制膜层的成分和厚度,且工艺温度低、可制备形状复 杂的制品。缺点是设备成本高、工艺时间长,且需要严格控制反应条件。
溅射法
溅射法是一种制备磁性材料的方法,通 过将靶材置于真空室内,利用高能粒子 轰击靶材表面,使靶材原子或分子溅射 出来并沉积在基材上形成薄膜。
元素掺杂
通过在磁性材料中掺入其他元素,以改变其磁学性质。例如,通过掺入稀土元 素,可以提高磁性材料的磁能积和剩磁。
热处理与磁场处理
热处理
通过控制加热和冷却过程,改变磁性材料的晶体结构和相变 ,从而优化其磁学性能。例如,通过控制热处理条件,可以 提高磁性材料的矫顽力和稳定性。
磁场处理
在磁场中处理磁性材料,可以改变其内部的磁畴结构和磁矩 方向,从而优化其磁学性能。例如,通过磁场处理,可以减 小磁性材料的磁损耗和提高磁导率。
磁性材料的基础知识讲座剖析课件
目录
• 磁性材料概述 • 磁性材料的物理性质 • 磁性材料的制备工艺 • 磁性材料的性能优化 • 磁性材料的发展趋势与挑战
01
磁性材料概述
定义与特性
1 2
磁性材料基础知识-ppt课件
求其轴线上一点 p 的磁感强度的方向和大小.
Idl
r
dB
B
o
R
p B
x
*
x
I
dB 0
4π
Idl r2
解: 根据对称性分析
毕奥—萨伐尔定律的应用2
Idl
sin R
R
o
r
x
dB
*p x
r2 R
B0I
4π
r 2 x2
sindl
l r2
dB x
dB 0
4π
Idl r2
dB xdsBin4 π 0Isri2 n dl
0I dl
2πR l
I B
dl
oR
l
l 设 l 与 I 成右螺旋
关系
3.3 安培环路定理-应用
求载流螺绕环内的磁场 (已知 n N I)
1) 对称性分析;环内 B 线为同心圆,环外 B 为零.
2 )选 回路(顺时针圆周) .
lB d Bl 2 0π NR I B 0 NI
2π R
d
令L2πRB0NIL
内部交流报告
磁性材料基础知识
提纲
1 磁性材料的发展简史
2 磁学基本常识
磁性来源 磁学基本概念 磁性材料分类
3 电磁学主要定律-恒稳/交变磁场
4 磁性材料性能分析
5 磁性材料应用实例
精品资料
• 你怎么称呼老师? • 如果老师最后没有总结一节课的重点的难点,你
是否会认为老师的教学方法需要改进? • 你所经历的课堂,是讲座式还是讨论式? • 教师的教鞭 • “不怕太阳晒,也不怕那风雨狂,只怕先生骂我
一、磁性材料发展简史(续)
• 1946年 Bioembergen发现NMR效应 • 1948年 Neel建立亜铁磁理论
第1章磁学与磁性材料基础知识PPT课件精选全文完整版
( )
H
d
=
NxM xi
+ NyMy
j
+ NzMzk
( )
Fd
=
1 2
m0
N
x
M
2 x
+
N
yM
2 y
+
NzM
2 z
N x + N y + N z = 1
球体:Fd = (1/ 6)m0M 2
( ) 细长圆柱体:Fd = (1/ 4)m0 M x2 + M y2
薄圆板片:Fd = (1/ 2)m0M z2
适用条件:磁体内部均匀一致,磁化均匀。
16
1.2. 材料的磁化
▼磁化曲线
表示磁场强度H与所感生的B或M之间的关系 O点:H=0、B=0、M=0,磁中性或原始退磁状态 OA段:近似线性,起始磁化阶段 AB段:较陡峭,表明急剧磁化 H<Hm时,二曲线基本重合。 H>Hm后,M逐渐趋于一定值 MS(饱和磁化强度),而B 则仍不断增大(原因?) 由B-H(M-H)曲线可求 出μ或 χ
FeO, MnO, NiO, CoO, Cr2O3, FeCl2, FeF2, MnF2, FeS, MnS
右图是1938 年测到的MnO 磁化率温度曲线,它是被 发现的第一个反铁磁物质, 转变温度 122K。
38
T
p
该表取自Kittel 书2005中文版p236,从中看出反铁磁物质的 转变温度一般较低,只能在低温下才观察到反铁磁性。
2
磁极和电流周围都存在磁场,磁场可以用磁力线表示:
磁力线特点:
从N极出发,进入与其最邻近的S极,并形成闭合回路; 通常呈直线或曲线,不存在呈直角拐弯的磁力线; 任意二条同向磁力线之间相互排斥,因此不存在相交的磁力线;
(优质文档)磁性材料PPT演示课件
硬磁材料
永磁材料种类
铝镍钴系硬磁合金 硬磁铁氧体材料 稀土永磁材料
可加工的永磁合金 永磁材料用途:硬磁材料主要用来储藏和供给 磁能,作为磁场源。硬磁材料在电子工业中广 泛用于各种电声器件、在微波技术的磁控管中 . 29 亦有应用
永磁材料的退磁曲线和磁能曲线
.
30
可加工的永磁合金
在淬火态具有可塑性,可以进行各种机械加 工。合金的矫顽力是通过塑性变形和时效 (回火)硬化后得到的 四个主要系列
湿法,如电镀和化学镀 干法,如溅射法、真空蒸镀法及离子喷镀法
. 5
其他磁性材料
超磁致伸缩材料
磁致伸缩现象:铁磁性材料在磁场中被磁化时,沿外磁 场方向其尺寸会发生微小变化 一般材料的磁致伸缩系数:30~60×10-6 超磁致伸缩效应:(1~2)×10-3 超磁致伸缩材料与压电陶瓷的性能比较
铝镍钴系硬磁合金
按成分分类:铝镍型,铝镍钴型,铝镍钴钛型三种 铝镍钴型合金具有高的剩余磁感应强度 铝镍钴钛型则以高矫顽力为主要特征 铸造铝镍钴系合金从织构角度可划分为各向同性合 金,磁场取向合金和定向结晶合金三种 逐渐被永磁铁氧体和稀土永磁合金被取代。但在对 永磁体稳定性具有高要求的许多应用中,铝镍钴系 永磁合金往往是最佳的选择。 铝镍钴合金广泛用于电机器件上,如发电机,电动 机继电器和磁电机;电子行业中的扬声器,行波管, . 33 电话耳机和受话器等
. 3
磁记录材料
磁记录材料
磁头材料
磁头的基本结构 基本功能:写入、读出 磁头材料得到基本性能要求:高的磁导率、高的饱和 磁感应强度、高的电阻率和耐磨性 常用的磁头铁芯材料:合金、铁氧体、非晶态合金、 薄膜磁头材料
. 4
磁记录材料
第三章(磁性材料)ppt课件
磁感应强度 /T,不小于 B10 B25 B50 1.71 B100 1.80
不大于 96 72 48 32
1.40 1.50 1.62
B5、B10、B25、B50和B100分别表示H 为500、1000、2500、5000和10000A/m时
的磁感应强度值。
第三章 磁性材料-§3.1 软磁材料
2、影响电工用纯铁性能的因素及改善性能的方法
第三章 磁性材料-§3.1 软磁材料
电工用纯铁的磁性
磁性 等级 普级 高级 特级 超级 牌号 DT3, DT4, DT5, DT6 DT3A, DT4A, DT5A, DT6A DT4E, DT6E DT4C, DT6C Hc /A· m1
m /10-3H· m-1
不小于 7.50 8.75 11.30 15.00 B5
第三章 磁性材料-§3.1 软磁材料
二、软磁材料的基本性能要求
贮能高:要求单位体积贮存的磁能量高。
磁性参量的要求:高的Bs或Br。 灵敏度高:要求在弱磁场中对信号有高灵敏性。
B Br Bs
磁性参量的要求:高的i和m。
效率高:要求在磁场中工作时具有低的磁滞损耗 和涡流损耗。
-Hc O
磁各向异性减小
磁致伸缩效应降低 脆性增大,加工性能差
综合考虑: Si% ≤ 4%
第三章 磁性材料-§3.1 软磁材料
3、高斯织构硅钢片
结构特点:
易磁化方向[100]与轧制方向平行 55 [110] 难磁化方向[111]与轧制方向成55角 横向 中等磁化方向[110]与轧制方向成90角 高斯织构硅钢片具有磁各向异性,沿[100](轧制方向)磁性能最佳。
第三章(磁性材 料)
第三章 磁性材料
磁性材料的介绍 ppt课件
磁性材料
复合材料研究所
2016.12.19
复合材料研究所
复合材料研究所
磁性材料拥有数千年应用历史,如今更与信 息化、自动化、机电一体化、国防、国民经济 的方方面面紧密相关。
磁性材料是高科技发展的重要分支之一。
一个国家的磁性材料能反映其技术 发展水平,对这种材料的需求量能反 映一个国家的经济状况和平均生活水 平。
磁矩m:表征磁性物体磁性大小的物理量,磁矩愈大,磁性愈强,即 物体在磁场中所受的力也大。 磁矩只与物体本身有关,与外磁场无关。
磁 学 磁化强度M:衡量物质有无磁性或磁性大小的物理量,定义为物质单 基 位体积中的磁矩大小,矢量,由S极指向N极。 本 参 磁场强度H:指外界磁场的大小,也是一个矢量,由S极指向N极,磁 量 场强度H一般是由导体中的电流或者永磁体产生。
复合材料研究所
一、材料的磁性
磁学是一门既古老又年轻的学科,磁学基础研究与应用的需求互相促
进,在国防和国民经济中起着重要作用。 早期观点
• 安培分子电流:在磁介质中分子、
磁
原子存在着一种环形电流(分子
性
电流),分子电流使每个物质微
的
粒都成为微小的磁体;在磁场中, 分子电流沿磁场方向排列,显磁
来
性。
源
复合材料研究所
电磁炮
复合材料研究所
原理
传统的火炮都是利用弹药爆 炸时的瞬间膨胀产生的推力将炮 弹迅速加速,推出炮膛。而电磁 炮则是把炮弹放在螺线管中,给 螺线管通电,那么螺线管产生的 磁场对炮弹将产生巨大的推动力, 将炮弹射出。
磁性材料市场的代表企业
……
复合材料研究所
国内磁粉生产商
• 麦格昆磁 • 四川银河 • 上海纪元 • 天津津滨 • 浙江朝日科 • 浙江韵升 • 上海爱普生
复合材料研究所
2016.12.19
复合材料研究所
复合材料研究所
磁性材料拥有数千年应用历史,如今更与信 息化、自动化、机电一体化、国防、国民经济 的方方面面紧密相关。
磁性材料是高科技发展的重要分支之一。
一个国家的磁性材料能反映其技术 发展水平,对这种材料的需求量能反 映一个国家的经济状况和平均生活水 平。
磁矩m:表征磁性物体磁性大小的物理量,磁矩愈大,磁性愈强,即 物体在磁场中所受的力也大。 磁矩只与物体本身有关,与外磁场无关。
磁 学 磁化强度M:衡量物质有无磁性或磁性大小的物理量,定义为物质单 基 位体积中的磁矩大小,矢量,由S极指向N极。 本 参 磁场强度H:指外界磁场的大小,也是一个矢量,由S极指向N极,磁 量 场强度H一般是由导体中的电流或者永磁体产生。
复合材料研究所
一、材料的磁性
磁学是一门既古老又年轻的学科,磁学基础研究与应用的需求互相促
进,在国防和国民经济中起着重要作用。 早期观点
• 安培分子电流:在磁介质中分子、
磁
原子存在着一种环形电流(分子
性
电流),分子电流使每个物质微
的
粒都成为微小的磁体;在磁场中, 分子电流沿磁场方向排列,显磁
来
性。
源
复合材料研究所
电磁炮
复合材料研究所
原理
传统的火炮都是利用弹药爆 炸时的瞬间膨胀产生的推力将炮 弹迅速加速,推出炮膛。而电磁 炮则是把炮弹放在螺线管中,给 螺线管通电,那么螺线管产生的 磁场对炮弹将产生巨大的推动力, 将炮弹射出。
磁性材料市场的代表企业
……
复合材料研究所
国内磁粉生产商
• 麦格昆磁 • 四川银河 • 上海纪元 • 天津津滨 • 浙江朝日科 • 浙江韵升 • 上海爱普生
磁性材料的基础知识讲座课件
磁性材料的分类
总结词
磁性材料可以根据其磁化强度的不同分为硬磁材料和 软磁材料两类。
详细描述
硬磁材料是指那些具有高剩磁、高矫顽力和高磁能积 的材料,如铁氧体、稀土永磁材料等。这些材料具有 较高的磁能积和矫顽力,因此能够保持较强的剩磁状 态,常用于制造永磁体。软磁材料则是指那些具有低 矫顽力和低剩磁的材料,如硅钢片、纯铁、低碳钢等 。这些材料在磁场中被磁化后容易退磁,因此常用于 制造变压器、电机等需要频繁改变磁场方向的电器设 备。
低成本化与环保化生产
01
02
03
资源勤俭
优化生产工艺,降低生产 成本,提高磁性材料的资 源利用率。
环保材料
研发可降解或可回收的磁 性材料,减少对环境的污 染和破坏。
节能减排
降低生产过程中的能耗和 排放,推广绿色生产技术 。
新应用领域的拓展与开发
新能源领域
利用磁性材料在新能源领域如风 能、太阳能等领域的应用,推动
磁性材料在核磁共振成像 中的应用
核磁共振成像是一种重要的医学检测手段, 而磁性材料在其中扮演着关键角色。超导磁 体是核磁共振成像系统的核心部件,其性能 直接影响到成像质量。随着技术的不断发展 ,对超导磁体的性能要求也越来越高,研究 和开发具有更高磁场强度和稳定性的磁性材
料是未来的重要研究方向。
THANK YOU
感谢各位观看
02
磁性材料的物理性质
磁化曲线与磁滞回线
磁化曲线
描述了材料在磁场变化时磁化强 度与磁场强度的关系。
磁滞回线
表示磁场强度与磁感应强度的关 系,反应了磁性材料在周期性变 化磁场中的磁化过程。
磁导率与矫顽力
磁导率
描述了材料在磁场中的导磁能力,是 衡量材料磁性能的重要参数。
磁性材料基础知识PPT课件
矫顽力Hc
法定计量单位为:安每米(A/m)。以前常用奥斯特(Oe)为计量 单位
两个单位之间的换算为:1 (Oe)=79.6 (A/m);为方便起见, 常取整数80进行换算。1(kOe)=80 ( kA/m)
最大磁能积(BH)max
法定计量单位为:千焦耳每立方米(kJ/m3),以前常用兆高奥 (MGOe)为计量单位
在磁场中,铁磁体的磁感应强度与磁场强度的关系可用曲 线来表示,当磁化磁场作周期的变化时,铁磁体中的磁感 应强度与磁场强度的关系是一条闭合线,这条闭合线叫做 磁滞回线。
B-H磁滞回线的面积表示经历一个周期过程后铁磁体损耗 的能量。
磁滞回线和磁化曲线
永磁材料的退磁曲线
磁滞迴线上各参数的意义
磁性材料的特性
磁性材料的磁滞回线和磁化曲线 永磁材料的退磁曲线 永磁材料的常用磁性能参数 永磁材料各项性能参数的单位换算
磁滞回线的定义
当铁磁性物质达到磁饱ຫໍສະໝຸດ 状态后,如果减小磁化场H,介 质的磁化强度M(或磁感应强度B)并不沿着起始磁化曲 线减小,M(或B)的变化滞后于H的变化。这种现象叫 磁滞。
按使用又分为软磁材料、永磁材料和功能磁性材料。
按生产手段的不同,又分为烧结磁性材料和粘接磁性材料。 按成型时是否外加成型磁场,永磁材料还有各向同性和各
向异性之别。 永磁材料铁氧体材料按压制方式的不同还有干压和湿压之
分。
三、磁性材料的应用
永磁材料有多种用途。 ①基于电磁力作用原理的应用主要有:扬声器、话筒、电
磁性材料按磁化后去磁的难易可分为软磁性材料和硬磁性 材料。磁化后容易去掉磁性的物质叫软磁性材料,不容易 去磁的物质叫硬磁性材料。一般来讲软磁性材料矫顽力较 小,硬磁性材料矫顽力较大。
法定计量单位为:安每米(A/m)。以前常用奥斯特(Oe)为计量 单位
两个单位之间的换算为:1 (Oe)=79.6 (A/m);为方便起见, 常取整数80进行换算。1(kOe)=80 ( kA/m)
最大磁能积(BH)max
法定计量单位为:千焦耳每立方米(kJ/m3),以前常用兆高奥 (MGOe)为计量单位
在磁场中,铁磁体的磁感应强度与磁场强度的关系可用曲 线来表示,当磁化磁场作周期的变化时,铁磁体中的磁感 应强度与磁场强度的关系是一条闭合线,这条闭合线叫做 磁滞回线。
B-H磁滞回线的面积表示经历一个周期过程后铁磁体损耗 的能量。
磁滞回线和磁化曲线
永磁材料的退磁曲线
磁滞迴线上各参数的意义
磁性材料的特性
磁性材料的磁滞回线和磁化曲线 永磁材料的退磁曲线 永磁材料的常用磁性能参数 永磁材料各项性能参数的单位换算
磁滞回线的定义
当铁磁性物质达到磁饱ຫໍສະໝຸດ 状态后,如果减小磁化场H,介 质的磁化强度M(或磁感应强度B)并不沿着起始磁化曲 线减小,M(或B)的变化滞后于H的变化。这种现象叫 磁滞。
按使用又分为软磁材料、永磁材料和功能磁性材料。
按生产手段的不同,又分为烧结磁性材料和粘接磁性材料。 按成型时是否外加成型磁场,永磁材料还有各向同性和各
向异性之别。 永磁材料铁氧体材料按压制方式的不同还有干压和湿压之
分。
三、磁性材料的应用
永磁材料有多种用途。 ①基于电磁力作用原理的应用主要有:扬声器、话筒、电
磁性材料按磁化后去磁的难易可分为软磁性材料和硬磁性 材料。磁化后容易去掉磁性的物质叫软磁性材料,不容易 去磁的物质叫硬磁性材料。一般来讲软磁性材料矫顽力较 小,硬磁性材料矫顽力较大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Magic 具有魔力的 Magnet
指南针
罗盘
一、磁性材料发展简史
指南针 1086年 1119年 18世纪 1907年 1928年 1931年 1933年 1935年 1935年
司马迁《史记》描述黄帝作战用 宋朝沈括《梦溪笔谈》指南针的制造方法等 宋朝朱或《萍洲可谈》 罗盘,用于航海的记载
一、磁性材料发展简史(续)
• 1946年 Bioembergen发现NMR效应 • 1948年 Neel建立亜铁磁理论
古老而年轻的
• 1954-1957年 RKKY相互作用的建立 • 1958年 Mössbauer效应的发现
功能材料
• 1960年 非晶态物质的理论预言
• 1965年 Mader和Nowick制备了CoP铁磁非晶态合金
B
H
(A)
B
H
(C)
B
H
(B)
B
H
(D)
2.2 磁学基本概念
1、单位体积磁体磁体内磁偶极子的磁矩矢量和称为磁化强度M;
2、磁感应强度(B ):物质在外磁场(H)作用下,其内部原子磁矩的有序排 列还将产生一个附加磁场。在磁性材料内部的磁场为外加磁场与附加磁场的 和,单位为T(特斯拉)。B与H关系比较复杂。
M m V
AA·mm-1 1
J m和M亦有如下关系:
Jm=µ0M
2.1 磁性来源
(a)无外磁场情况
铁磁材料内部的 磁畴排列杂乱无章, 磁性相互抵消,因此
对外不显示磁性。
磁畴是怎 么形成的
?
铁磁材料之所以具有高导磁 性,是因为在它们的内部具有 一种特殊的物质结构—磁畴。
(b)有外磁场情况
按 软磁材料
Hc<100A/m(1.25 Oe)
矫
顽 力 分
半硬磁材料
Hc :100~1000A/m (1.25~12.5Oe)
类 硬(永)磁材料 Hc>1000A/m(12.5Oe)
按化学组成分类: 金属(合金);无机(氧化物);有机化合物
按维度分类: 纳米(零维;一维;二维);微晶;非晶;块体
提纲
粉纹法演示磁力线分布
磁极之间同性相斥、异性相吸 磁铁不论大小,都有唯一的N
极和S极。
2.1 磁性来源
磁偶极子和磁矩
+m
如果一个小磁体能够用无限小的电流回路
来表示,我们就称为磁偶极子。用磁偶极矩jm表
i
示:
jm=ml
-m
l
与磁偶极子等效的平面回路的电流和回路 面积的乘积定义为磁矩——表征磁性物体磁性 大小的物理量,用µm表示:
内部交流报告
磁性材料基础知识
提纲
1 磁性材料的发展简史
2 磁学基本常识
磁性来源 磁学基本概念 磁性材料分类
3 电磁学主要定律-恒稳/交变磁场
4 磁性材料性能分析
5 磁性材料应用实例
一、磁性材料发展简史
磁性材料是最早被人类认识和利用的功能材料, 伴随了人类文明的发展。
磁
石头、后记录为磁铁
• 1994年 CMR庞磁电阻的发现,Jin等LaCaMnO3 • 1995年 隧道磁电阻TMR的发现,T.Miyazaki
提纲
1 磁性材料的发展简史
2 磁学基本常识
磁性来源 磁学基本概念 磁性材料分类
3 电磁学主要定律-恒稳/交变磁场
4 磁性材料性能分析
5 磁性材料应用实例
二、磁学常识-磁性来源
1 磁性材料的发展简史
2 磁学基本常识
磁性来源 磁学基本概念 磁性材料分类
3 电磁学主要定律-恒稳/交变磁场
4 磁性材料性能分析
5 磁性材料应用实例
三、电磁学主要定律
3.1毕奥—萨伐尔定律
Idl
dB
奥斯特试验:
r
问题:电流产生磁场,如何计算? dB
I
1. 电流元产生的磁场 (1)电流元:Id l •大小: Idl
W. Gilbert 《De Magnete》磁石,最早的著作 奥斯特 电流产生磁场
法拉弟效应 在磁场中运动导体产生电流 安培定律 构成电磁学的基础, 开创现代电气工业 P. Weiss的磁畴和分子场假说 海森堡模型,用量子力学解释分子场起源 Bitter在显微镜下直接观察到磁畴 加藤与武井发现含Co的永磁铁氧体 荷兰Snoek发明软磁铁氧体 Landau和Lifshitz考虑退磁场, 理论上预言了磁畴结构
P * r
Idl
•方向:线元上电流的方向。
• 1970年 SmCo5稀土永磁材料的发现
• 1982年 扫描隧道显微镜, Brining和Rohrer,( 1986年,AFM )
• 1984年 NdFeB稀土永磁材料的发现 Sagawa(佐川)
• 1986年 高温超导体,Bednortz-muller
• 1988年 巨磁电阻GMR的发现(M.N. Baibich),法国Paris-Sud大 学的Albert Fert以及德国尤里希研究中心的Peter Grünberg获 2007年诺贝尔物理学奖
µm=i·A
磁偶极矩和磁矩具有相同的物理意义,存在关系:
jm=µ0µm ,µo=4π×10-7H·m-1 ,真空磁导率
2.1 磁性来源
磁化强度M
单位体积磁体内磁偶极子的磁偶极矩矢量和称为磁极化强度Jm ;
J m
jm V
WWbb·mm-22
单位体积磁体磁体内磁偶极子的磁矩矢量和称为磁化强度M
2.3 磁性材料分类
磁性材料按磁性分类:
根据固体中电子与外部磁场之间交互作用 的性质与强度,将磁性材料分为5类:
与外部无响应(基本):
抗磁性
顺磁性
X≤ 1
反铁磁性
与外部磁场有强烈的相互作用:
铁磁性
X≥1
亚铁磁性
物质内部原子磁矩的排列 a:顺磁性 b:铁磁性 c:反铁磁性 d:亚铁磁性
2.3 磁性材料分类
磁畴因受外磁
场作用而顺着外磁 场的方向发生归顺 性重新排列,在内 部形成一个很强的 附加磁场。
铁磁材料内部往往有相邻的 几百个分子电流圈流向一致,因此在 这些极小的区域内就形成了一个个天 然的磁性区域—磁畴。
2.1 磁性来源-磁畴和畴壁
体示意图
2.1 磁性来源-典型磁化过程
B=µ0(H+M)
3、磁化率χ : χ = M/H
4、磁导率μ 0 :在真空中磁感应强度B与磁场强度H间的关系为:
B=μ0H
磁性材料的磁导率定义为磁感应强度与磁场强度之比:
μ=B/H
μ0 : 真空磁导率; μ: 绝对磁导率,单位为 H/m, μr: 相对磁导率 μr =μ/μ0
5、磁通量Φ: Φ =BS