热处理工艺制度对T10钢组织与性能的影响2
t10钢的热处理工艺,加热温度,冷却方式
T10钢的热处理工艺通常包括正火、淬火和回火三个步骤。
1. 正火处理:加热T10钢到适当的温度(比如850~880℃),保温一段时间后(比如1~2小时),然后以适当的速度冷却。
在这个过程中,通过控制相变的热力学和动力学来改变奥氏体向珠光体转变的模式,从传统的片层转变机制改变为“离异共析”的转变形式。
正火处理可以提高T10钢的硬度和强度,同时也会增强其耐磨性能。
2. 淬火处理:将正火后的T10钢加热到适当的温度(比如780~820℃),然后迅速冷却。
淬火介质通常选择水、油或空气。
淬火处理是T10钢热处理过程中必不可少的一步,它可以使材料获得高硬度和强度。
3. 回火处理:在淬火处理后进行,加热T10钢到适当的温度(比如150~250℃),保温一段时间(比如1~2小时),然后冷却。
回火处理是为了调整淬火处理后的硬度,使材料获得更好的韧性和韧度。
总的来说,T10钢的热处理工艺是一个复杂的过程,需要精确控制加热温度、冷却速度和保温时间等参数,以获得理想的材料性能。
热处理工艺对钢性能的影响
热处理工艺对钢性能的影响摘要:模具钢是用来制作机械零件、塑料制品等模具的钢铁材料。
近年成型模具钢主要向耐蚀型、镜面加工型、易切削型及非调质预硬型等方向发展,热处理工艺则是决定成型模具钢加工性能和使用性能的关键工艺所在。
随着计算机技术发展,国内外越来越多的技术工作者对热处理过程进行仿真数值模拟,为制定和优化热处理工艺提供理论支撑。
本文基于热处理工艺对钢性能的影响展开论述。
关键词:热处理工艺;钢性能;影响引言针对金属的热处理就是根据金属或合金在固态状态下的组织进行转变调整,将金属材料加热到一定温度,并在保温一段时间后以相对合适的方式冷却金属材料。
在热处理过程中,金属材料内部组织发生变化,材料性能得以优化。
就钢组织材料而言,它的内部组织结构会发生以下几种变化:第一,钢的机械性能显著提高,延长了它的使用时间;第二,消除了钢在热加工过程中所可能存在的各种缺陷问题,同时可满足晶粒细化、组织均匀性提升要求;第三,可辅助机械零件加工工作优化展开;第四,确保工件表面的抗磨损与耐腐蚀性能提升,具有特殊物理化学性能。
1模具材料的使用性能选用标准模具材料使用性能是模具完成指定功能的必要条件,包括力学性能、物理性能和化学性能。
力学性能是根据模具是否能满足工作条件和避免失效的标准来判断的,主要体现在对模具材料强度、硬度、韧度、耐磨以及抗疲劳性能的要求。
物理性能是金属材料在重力、电磁场和热力(温度)等物理因素作用下,材料所表现的性能或固有属性,主要体现在对模具材料导热性和热膨胀性的要求。
化学性能是金属材料在抵抗其周围介质侵蚀的能力,主要体现在对模具材料化学腐蚀和热稳定性的要求。
2最终热处理在模具制造中的应用最终热处理是保证模具工作零件性能的中心环节,一般应安排在精加工阶段前后。
(1)淬火,淬火是将模具钢材加热到一定温度保温一定时间后,根据模具钢种和模具零件的热处理技术要求进行冷却,以获得马氏体或贝氏体组织的热处理工艺。
模具钢淬火的三要素是:加热温度、保温时间和冷却介质。
热处理工艺制度对T10钢组织与性能的影响2
热处理工艺制度对T10钢组织与性能的影响2 标题:j I a n g u n I v e r I t y金属材料综合实验热处理工艺制度对T10钢组织和性能的影响实验内容1和T10钢概述目前,T8、T10和T12是常用的碳素工具钢,其中T10是最常用的T10钢具有良好的可加工性和易获得的优点。
然而,淬透性低,耐磨性一般,淬火变形大。
由于钢中含有微量合金元素,抗回火性差,硬化层浅,所以承载能力有限。
虽然具有高硬度和耐磨性,但小截面工件的韧性不足,大截面工件有残留网状碳化物的倾向。
T10钢在淬火和加热过程中不会过热(通常高达800℃)。
淬火后,钢中有多余的不溶碳化物,T10钢比T8钢具有更高的耐磨性,但淬火变形收缩明显。
由于淬透性差,硬化层通常只有1.5 ~ 5毫米;一般来说,220 ~250℃回火具有较好的综合性能。
热处理过程中的变形比较大,所以只适合制造尺寸小、形状简单、载荷小的模具。
2.T10钢c: 0.95 ~ 1.04 (t χ,χ:碳千分率)si:≤0.35 Mn:≤0.40s:≤0.020 p:≤0.030 Cr:允许残留含量≤0.25≤0.10(制造铅浴淬火钢丝时)Ni:允许残留含量≤0.20≤0.12(制造铅浴淬火钢丝时适用于制造各种切削条件差、耐磨性要求高、有一定韧性、刃口锋利、无突发剧烈冲击振动的刀具,如车刀、刨床、钻头、丝锥、铰孔工具、螺旋模、铣刀手锯刀片、冷镦模、冲模、拉丝模、铝合金冷挤压模、纸冲裁模、塑料成型模、小尺寸冷刃切削模、冲孔模、低精度、形状简单的量具(如夹板等)。
),也可用作无大冲击的耐磨零件等。
2,实验原理为了研究T10钢退火、淬火和回火后的显微组织,有必要用铁-Fe3C 平衡相图和过冷奥氏体等温转变曲线-C曲线从加热和冷却两个方面进行分析。
钢在冷却过程中的组织转变规律由C曲线决定因此,对热处理后钢的显微组织的研究通常是基于C曲线过冷奥氏体将根据不同的冷却条件在不同的温度范围内经历不同类型的转变通过金相显微镜观察,可以发现过冷奥氏体各种相变产物的显微组织不同。
碳钢的热处理工艺对组织和性能的影响
碳钢不同热处理后组织形态观察
序号 钢种
处理状态
1 45
760℃、水冷
2 45
860℃、空冷
3 45 860℃、水冷200℃回火
6 45
860℃、水冷400℃回火
7 45
860℃、水冷600℃回火
8 T10 900℃、空冷
浸蚀剂
4%硝酸酒精溶液 4%硝酸酒精溶液 4%硝酸酒精溶液 4%硝酸酒精溶液 4%硝酸酒精溶液 4%硝酸酒精溶液 4%硝酸酒精溶液 4%硝酸酒精溶液 4%硝酸酒精溶液 4%硝酸酒精溶液 4%硝酸酒精溶液 4%硝酸酒精溶液 4%硝酸酒精溶液
1. 45钢 760℃加热-水冷
M+F
2. 45钢 860℃加热-空冷 S+F
碳钢的热处理工艺对组织和性能的 影响
一、实验目的 1、了解碳钢热处理操作。 2、研究淬火温度、淬火冷却速度、回火温度对45和T10钢 的和性能(硬度)的影响。 3、观察热处理后钢的组织。 4、学会洛氏硬度计的使用。
二、实验内容及概述 1、45和T10钢试样正火、淬火、回火操作,用洛氏硬度计测定 试样热处理后的硬度。 2、观察不同热处理后的显微组织。
由原来M组织形态变成多边形F与颗粒状渗碳体组成的组织称为回火S
8. T10钢 900℃加热-空冷 S+Fe3C Ⅱ网状
9. T10钢 900℃加热-水冷 M+A´
10. T10钢 780℃水淬 M+A΄ + Fe3C粒状
11. T10钢 780℃水淬+200℃回火 回火M +较少A΄ + Fe3C粒
9 T10 900℃、水冷
10 T10 780℃、水冷
t10钢的淬火组织
t10钢的淬火组织T10钢是一种高碳工具钢,具有优异的硬度和耐磨性,在工业制造和冶金加工中广泛应用。
淬火是一种热处理工艺,通过控制钢材的冷却速度,使其在固态下迅速冷却,从而提高钢材的硬度和耐磨性。
对于T10钢而言,淬火是必不可少的工序,可以很好地改善其力学性能和使用寿命。
T10钢的淬火组织主要决定于钢材的成分和处理工艺。
T10钢的主要成分为碳(C)、硅(Si)、锰(Mn)、磷(P)和硫(S)。
其中,碳是钢材的主要强化元素,能够提高钢材的硬度和强度。
而硅、锰、磷和硫等元素则通过形成相应的化合物和固溶体来影响钢材的热处理性能和力学性能。
在淬火过程中,首先需要将T10钢加热到适当的温度,使其达到A3点以上。
然后,将钢材迅速置于冷却介质中,以实现快速冷却。
常用的冷却介质有水、油和盐水等。
冷却过程中,钢材的温度将迅速下降,达到马氏体转变的范围。
在适宜的冷却速度下,钢材中的马氏体将得以保留。
马氏体是一种具有高硬度和脆性的组织形态,能够有效提高钢材的硬度,但同时也会增加钢材的脆性。
对于T10钢而言,淬火的目标是尽可能多地产生马氏体,以获得较高的硬度,同时又要尽量减少马氏体的脆性,以保证钢材的使用寿命。
T10钢的淬火组织主要有马氏体、残余奥氏体和贝氏体等。
马氏体是由奥氏体经过快速冷却所得到的一种相,具有充分强化的效果。
残余奥氏体是在淬火过程中没有转变成马氏体的奥氏体,常常出现在硬度较低的区域,对钢材的力学性能有一定影响。
贝氏体则是由马氏体经过回火处理后转变而成的组织相,可以提高钢材的韧性和强度。
为了得到理想的淬火组织,可以选择不同的淬火条件和回火工艺。
淬火条件包括加热温度、冷却介质和冷却速度等。
一般来说,较高的加热温度和更快速的冷却速度可以得到较高的硬度和强度,但同时也会增加残余奥氏体的含量。
回火工艺则是通过控制回火温度和时间,来调节贝氏体的含量和组织形貌,以实现对钢材硬度和韧性的平衡。
总之,T10钢的淬火组织是通过控制钢材的加热和冷却过程来实现的。
钢的热处理及其对组织和性能的影响
钢的热处理及其对组织和性能的影响一、实验目的1.熟悉钢的几种基本热处理操作(退火、正火、淬火及回火);2.研究加热温度、冷却速度及回火温度等主要因素对碳钢热处理后性能的影响;3.观察和研究碳素钢经不同形式热处理后显微组织的特点;4.了解材料硬度的测定方法,学会正确使用硬度计。
二、实验概述钢的热处理就是利用钢在固态范围内的加热、保温和冷却,以改变其内部组织,从而获得所需要的物理、化学、机械和工艺性能的一种操作。
普通热处理的基本操作有退火、正火、淬火、回火等。
加热温度、保温时间和冷却方式是热处理最重要的三个基本工艺因素。
正确合理选择这三者的工艺规范,是热处理质量的基本保证。
1.加热温度选择(1)退火加热温度一般亚共析钢加热至A C3+(20~30)℃(完全退火);共析钢和过共析钢加热至A C1+(20~30)℃(球化退火),目的是得到球化体组织,降低硬度,改善高碳钢的切削性能,同时为最终热处理做好组织准备。
(2)正火加热温度一般亚共析钢加热至A C3+(30~50)℃;过共析钢加热至A Cm+(30~50)℃,即加热到奥氏体单相区。
退火和正火加热温度范围选择见图3-1。
图1 退火和正火的加热温度范围图2 淬火的加热温度范围(3)淬火加热温度一般亚共析钢加热至A C3+(30~50)℃;共析钢和过共析钢则加热至A C1+(30~50)℃,加热温度范围选择见图3-2。
淬火按加热温度可分为两种:加热温度高于A C3时的淬火为完全淬火;加热温度在A C1和A C3(亚共析钢)或A C1和A CCm(过共析钢)之间是不完全淬火。
在完全淬火时,钢的淬火组织主要是由马氏体组成;在不完全淬火时亚共析钢得到马氏体和铁素体组成的组织,过共析钢得到马氏体和渗碳体的组织。
亚共析钢用不完全淬火是不正常的,因为这样不能达到最高硬度。
而过共析钢采用不完全淬火则是正常的,这样可使钢获得最高的硬度和耐磨性。
在适宜的加热温度下,淬火后得到的马氏体呈细小的针状;若加热温度过高,其形成粗针状马氏体,使材料变脆甚至可能在钢中出现裂纹。
T10刚的热处理
T10刚的热处理1、预备热处理(球化退火)锻造后为了给后序的加工、最终热处理工序作好准备, 应消除锻件内的应力, 改善组织, 并使其具有合适的硬度和稳定细小的组织, 以利于机械加工。
因此锻件要在毛坏状态下进行预先热处理。
T10A 碳素工具钢, 一般采取球化退火, 使渗碳体成球状均匀分布, 若锻件沿晶界出现网状碳化物时, 则先进行正火处理, 消除网状碳化物, 然后进行球化退火。
通常采用球化退火, 以获得铁素体机体上分布的细小均匀的粒状碳化物组织。
表1 球化退火工艺参数钢号加热等温温度/℃时间/ h温度/℃时间/ h 空冷硬度T10A 750~ 780 2~ 3 680~ 700 3~ 5 炉冷至500℃空冷 HB197 2、最终热处理(淬火+低温回火)2.1、淬火( 1) 淬火温度T10淬透性低。
需要用水冷却, 容易产生变形和淬裂, 另外碳素工具钢对过热敏感, 晶粒容易长大, 其淬火温度一般是在碳化物与奥氏体共存的两相区内, 这是由于碳化物的存在不仅可以阻止奥氏体的长大, 使碳素工具钢保持较小晶粒,从而能在高硬度条件下保证具有一定的韧性; 而且剩余碳化物的存在也有利于模具耐磨性的提高。
为防止过热, 选取最低的淬火加热温度( 760~ 780℃ ) , 是获得最好机械性能的关键,为防止淬火开裂, 必须在淬火方法上实现均匀冷却。
( 2) 加热、保温时间的确定由于加热时间与模具的材质、工件大小有关。
升温时间因工件大小而异, 保温时间依材质而不同, 加热时间不可取一定值, 加热时间的长短直接影响模具的组织性能。
为保证T10A 冷作模具基体奥氏体化, 碳化物溶解, 必须有一定保温时间, 保温时间采用40~ 60 min。
2.2、回火模具在淬火或电火花加工后应及时进行回火处理, 回火温度应根据模具的硬度性能要求选择不同的回火温度, 以获得不同强度、韧性及硬度要求, T10 碳素工具钢在不同回火温度下的硬度如表表2T10 碳素工具钢在不同回火温度下的硬度钢号达到下列硬度(HRC)范围的回火温度/℃T10A 45~ 50 50~ 54 54~ 58 58~ 62360~ 380 300~ 320 250~ 270 160~ 180。
热处理制度对T10钢组织和硬度影响实验
热处理制度对T10钢组织和硬度的影响实验一、实验目的1.论述 T10钢球化退火和780℃淬火后的组织和硬度。
2.探索了改变原始组织和热处理工艺(淬火温度)对其的影响。
二、概述T10钢是一种最常用的工模具钢,热处理后要求有高的硬度 59—65HRC、强度、耐磨性及适当的韧性等;T10钢ACm为800℃,通常采用球化退火、Ac1+(30~50)℃淬火及170℃~200℃回火的传统热处理工艺。
通常认为这可使钢获得具有最佳配合的强度和韧性。
一些工厂的生产实践表明,T10钢制冷变形模具使用寿命较低,易出现壁裂、崩刃和折断等,以致过早报废。
为此,我们探索改进T10钢的热处理工艺。
三、实验步骤二实验过程1.试验方法试验用T10钢的成分见表1。
选用粒状珠光体及片状珠光体两种原始组织,前者试样仅用780℃传统工艺淬火,而后者试样则用740、780、840、900℃四种淬火温度,随后进行机械性能检测试验。
表1 T10钢的化学成分2.试样的热处理2.1预备热处理2.2.1正火T10钢的ACm 为800℃,正火温度约为ACm+30~50℃,故取840℃。
用下列经验公式计算加热时间:TaKD公式中T——加热时间,min;a——加热时间系数,min/mm,(碳钢取0.8~1.2 min·mm-1); K——装炉修正系数;D——工件有效厚度,mm。
正火工艺参数见表2,工艺曲线见图1。
表2 正火工艺参数时间t/min图1 正火工艺曲线正火后组织图见图2图2 正火后组织(×400) 2.1.2球化退火T10钢锻坯经10kw 箱式电炉等温球化退火,在770 ℃保温2 h ,再冷到680℃,保温4小时,出炉空冷。
机械加工后的机械性能、淬透性及金相试样,一部分按传统工艺热处理,以作对比。
球化退火工艺参数见表2。
球化退火工艺曲线见图3。
时间t/min770℃温度T/℃ 680℃图3球化退火工艺曲线球化退火后组织如图4所示图4 等温球化退火后组织(×400)2.2最终热处理所有试样在箱式炉内进行最后热处理,等温球化退火试样淬火加热780℃,正火试样淬火加热分别为740、780、840、900℃保温,用水淬火,200℃回火,然后磨加工到规定尺寸。
微观热处理T10钢
微观组织控制课程实验学院:机械与汽车工程学院班级:材控学号::一.实验目的:本次研究的主要容是退火态T10钢的热处王里工艺及其组织性能的研究。
通过观察经过不同预先热处理的退火态T10钢试样的显微组织,以及测量其洛氏硬度、冲击韧性等,分析了不同预先热处理的T10钢试样的组织性能和力学性能。
结果表明,正火+等温球化退火为退火态T10 钢的最佳预先热处理工艺; 不同预先热处理所得到的组织效果会遗传到最终的组织中; 预先热处理为正火+普通球化退火和等温球化退火的退火态T10钢试样,经过水淬和低温回火后,发生了脆性转变。
T10钢的热处理工艺及组织性能,通过对经过不同预备热处理的T10钢的微观组织分析及力学性能分析,探寻在热处理过程中,不同预先热处理对钢的组织及性能的影响规律,在此研究基础上,对现在实际生产中的一般热处理工艺进行优化,以达到最好的效果。
二:实验方法T10钢的概述:目前常用的碳素工具钢有T8、T10、T12,其中T10用量最多。
T10钢优点是可加工性好,来源容易;但淬透性低、耐磨性一般、淬火变形大。
因钢中含合金元素微量,耐回火性差,硬化层浅,因而承载能力有限。
虽有较高的硬度和耐磨性,但小截面工件韧性不足,大截面工件有残存网状碳化物倾向。
T10钢在淬火加热(通常达800℃)时不致于过热,淬火后钢中有过剩未溶碳化物,所以比T8钢具有更高的耐磨性,但淬火变形收缩明显。
由于淬透性差,硬化层往往只有1.5~5mm;一般采用220~250℃回火时综合性能较佳。
热处理时变形比较大,故只适宜制造小尺寸、形状简单、受轻载荷的模具。
T10钢的成分:,X:碳的千分数)碳 C :0.95~1.04(TX硅 Si:≤0.35锰 Mn:≤0.40硫 S :≤0.020磷 P :≤0.030铬 Cr:允许残余含量≤0.25≤0.10(制造铅浴淬火钢丝时)镍 Ni:允许残余含量≤0.20≤0.12(制造铅浴淬火钢丝时)铜 Cu:允许残余含量≤0.30≤0.20(制造铅浴淬火钢丝时) 热处理通常分为3步进行:加热、保温和冷却。
t10钢车刀热处理工艺分析
T10钢车刀热处理工艺分析1、摘要T10钢车刀是用于车削加工的、具有一个切削部分的刀具。
车刀是切削加工中应用最广的刀具之一。
车刀的工作部分就是产生和处理切屑的部分,包括刀刃、使切屑断碎或卷拢的结构、排屑或容储切屑的空间、切削液的通道等结构要素。
在切削过程中,刀具的切削部分要承受很大的压力、摩擦、冲击和很高的温度。
因此,刀具材料必须具备高硬度、高耐磨性、足够的强度,韧性和抗氧化性,还需具有高的耐热性(红硬性),即在高温下仍能保持足够硬度的性能。
2、技术要求高硬度,高耐磨性是刀具最重要的使用性能之一,若没有足够的高的硬度是不能进行切削加工的。
否则,在应力作用下,工具的形状和尺寸都要发生变化而失效。
高耐磨性则是保证和提高工具寿命的必要性,除了以上要求红硬性及一定的强度和韧性。
在化学成分上,为了使工具钢尤其是刃具钢具有较高的硬度,通常都使其含有较高的的碳(W(C)=0.65%~1.55%),以保证淬火后获得高碳马氏体,从而得到高的硬度和切断抗力,这对减少防止工具损坏是有利的。
大量的含碳质量分数又可提高耐磨性,碳素工具钢的理想淬火组织应该是细小的高碳马氏体和均匀细小的碳化物,工具钢在热处理前都应进行球化退火,以使碳化物呈细小的颗粒状且分布均匀。
3、工作条件及性能要求刃具在切削过程中,刀刃与工件表面金属相互作用,使切削产生变形与断裂,并从工件整体剥离下来。
故刀刃本身承受弯曲、扭转、剪切应力和冲击、振动等负载荷作用。
由于切削层金属的变形及刃具与工件、切削的摩擦产生大量的摩擦热,均使刃具温度升高。
切屑速度越快,则刃具的温度越高,有时刀刃温度可达600℃左右。
1) 为了保证刃具的使用寿命,应要求有足够的耐磨性。
高的耐磨性不仅决定于高硬度,同时也取决于钢的组织。
在马氏体基体上分布着弥散的碳化物,尤其是各种合金碳化物能有效地提高刃具钢的耐磨能力。
2) 为保证刀刃能进入工件并防止卷刀,必须使刃具具有高于被切削材料的硬度(一般应在60HRC以上,加工软材料时可取45~55HRC),故工具钢应是以高碳马氏体为基体组织。
T10钢热处理工艺及组织性能研究
T10钢热处理工艺及组织性能研究任务书1.课题意义及目标学生应通过本次毕业设计,运用所学过的金属学及热处理等专业知识,了解T10钢的概况;熟悉钢T10的热处理工艺方法;认识T10钢热处理前后金相组织;找出热处理对T10钢组织和力学性能的影响规律,为优化热处理工艺提高零件质量提供一定的理论依据。
2.主要任务(1)制定T10钢热处理工艺,进行热处理实验。
(2)制备金相试样,观察分析T10钢热处理前后的显微组织。
(3)测定T10钢热处理前后力学性能,包括硬度、冲击韧性等。
(4)分析热处理工艺、组织结构与力学性能之间的关系。
(5)撰写毕业论文。
结构完整,层次分明,语言顺畅;避免错别字和错误标点符号;格式符合太原工业学院学位论文格式的统一要求。
3.主要参考资料[1] 王学前,贺毅. 高碳钢快速球化退火工艺的研究[J]. 热加工工艺,2002,(1):32-33.[2] 沈晓钧. 工具钢的热处理[J]. 铸锻热———热处理实践,1994,(2):4-17.[3] 崔忠圻,覃耀春.金属学与热处理[M]. 北京,机械工业出版社,2007:230-308.4.进度安排审核人:2014 年12 月15 日T10钢热处理工艺及组织性能研究摘要:本次研究的主要内容是退火态T10钢的热处理工艺及其组织性能的研究。
通过观察经过不同预先热处理的退火态T10钢试样的显微组织,以及测量其洛氏硬度、冲击韧性等,分析了不同预先热处理的T10钢试样的组织性能和力学性能。
结果表明,正火+等温球化退火为退火态T10钢的最佳预先热处理工艺;不同预先热处理所得到的组织效果会遗传到最终的组织中;预先热处理为正火+普通球化退火和等温球化退火的退火态T10钢试样,经过水淬和低温回火后,发生了脆性转变。
关键词:T10钢,热处理,显微组织,力学性能Researching heat treatment process andmicrostructure properties of T10 steelAbstract:The main content of this study is researching the heat treatment process and microstructure of the annealed T10 steel.The microstructure and mechanical properties of T10 steel samples with different advance heat treatment were studied by inspecting microstructure of annealed T10 steel samples with different advance heat treatment and measuring the hardness and toughness of annealed T10 steel .The results show that the best advance heat treatment process is normalizing+ isothermal spheroidizing annealing.it will be inherited in the final tissue that is the effect of the tissue obtained by different advance heat treatment.the brittle transition occurs in the annealed T10 steel sample of advance heat treatment is normalizing + ordinary spheroidizing annealing or isothermal spheroidizing annealing after water quenching and low temperature tempering.Keywords:T10 steel, heat treatment, microstructure, mechanical propertiesI目录1前言 (1)1.1研究的目的及意义 (1)1.2国内外研究现状 (2)1.3 研究内容 (2)2试验过程 (3)2.1热处理试验 (3)2.1.1试验原理 (3)2.1.2试验过程 (9)2.2试样制备及显微组织观察 (15)2.2.1金相试样的制备 (15)2.2.2显微组织观察 (18)2.3 力学性能测定 (19)2.3.1硬度测量 (19)2.3.2冲击韧性测量 (22)3 结果与分析 (26)3.1 显微组织分析 (26)3.2 力学性能分析 (28)3.2.1 硬度分析 (28)3.2.2 冲击韧性分析 (29)4结论 (31)参考文献 (32)致谢 (34)I I1 前言1.1 研究目的及意义我国钢铁行业发展迅猛,但也不是一帆风顺的,它也面临着很多的挑战,需要不断地创新科技,不断地提高产品质量。
热处理对钢材料的影响
热处理对钢材料的影响热处理是通过在钢材料受热过程中控制温度、保温时间和冷却速率,使其产生显著的组织和性能变化,从而提高钢材料的机械性能、耐热性和耐腐蚀性。
在热处理过程中,钢材经历了多个阶段,包括加热、保温和冷却。
这篇文章将详细介绍钢材料进行热处理的影响。
1. 增强钢材料的硬度和耐磨性热处理过程中,钢材料的晶粒尺寸得到细化,晶界处形成了固溶体,这使得钢材的硬度增加。
此外,通过调节加热温度和冷却速率,还可以形成马氏体和贝氏体等组织结构,进一步增加钢材料的硬度和耐磨性。
例如,经过淬火处理的钢材具有出色的硬度和耐磨性,适用于制造刀具和机械零件。
2. 改善钢材料的强度和韧性在适当的加热温度下进行保温,可以使钢材料的碳原子扩散更加均匀,形成均匀的固溶体,从而提高钢材料的强度。
同时,通过控制冷却速率,使钢材料中形成的马氏体和贝氏体能够均匀分布,有效增加钢材料的韧性。
这使得热处理后的钢材具有更好的强度和韧性,适用于大型结构和高强度要求的领域。
3. 优化钢材的耐腐蚀性能钢材经过热处理后,其晶粒尺寸得到细化,晶界处形成了固溶体,使得钢材的晶界能量降低,从而提高了其耐腐蚀性。
此外,热处理过程中的淬火和回火操作还可以调节钢材中的析出相,改善钢材的耐腐蚀性能。
例如,不锈钢在经过淬火和回火处理后,具有较高的耐蚀性,可广泛应用于化工设备和海洋工程中。
4. 减少钢材的残余应力在钢材热处理过程中,由于加热和冷却的温度差异和速度变化,会导致钢材内部残余应力的产生。
这些残余应力可能导致钢材的变形和裂纹,并对其使用性能产生负面影响。
通过适当的热处理工艺,可以使钢材内部的残余应力得到释放和消除,减少钢材的变形和裂纹风险,提高钢材的使用寿命。
总结起来,热处理对钢材料具有显著的影响。
它可以改善钢材的硬度、耐磨性、强度、韧性和耐腐蚀性能,使其适用于不同领域的应用。
同时,适当的热处理还可以减少残余应力,提高钢材的使用寿命。
在工程实践中,根据具体需求选择适当的热处理方法和工艺参数,可以最大限度地发挥钢材的性能优势。
高温热处理对钢材组织和性能的影响
高温热处理对钢材组织和性能的影响钢材是现代工业中不可或缺的材料,其性能和品质对于生产制造的效率和产品质量至关重要。
其中,热处理是提高钢材性能的一种重要手段。
在高温条件下进行处理,可调整钢材的金相组织,改变其机械性能、物理性能和化学性能等多个方面的表现。
在高温热处理中,最常用的方法为淬火和回火。
本文将着重探讨高温热处理对钢材组织和性能的影响,同时简单介绍一些相关知识。
一、如何进行高温热处理?高温热处理通常需要三个步骤:加热、保温和冷却。
其中加热过程是将钢材加热到一定的温度,达到所需的相变温度;保温阶段是在加热过程结束后维持一定的温度和时间,以保证相变的充分进行;冷却环节是迅速将钢材从高温状态降温到室温或低温状态。
对于不同的钢材和工艺要求,高温热处理的过程参数也往往不同。
例如,在淬火时有不同的冷却介质选择、不同的冷却速率等等。
但总的来说,高温热处理的基本原则是:通过改变钢材内部的晶粒结构和相成分,来达到改善其物理和机械性能的目的。
二、高温热处理对钢材的影响(一)变硬经过适当的高温热处理后,钢材常常可以得到更高的硬度。
这是因为高温热处理时通过改变钢材晶格内部的结构和组成,促进了晶粒的细化和相变等多种变化,从而使钢材硬度得到提升。
(二)提高韧性另一方面,适当的高温热处理也可以提高钢材的韧性。
韧性是指材料在有缺陷时的抗裂能力,也可以看作是材料在断裂前的变形和失效程度。
在高温条件下,适当调整处理参数后可以改变钢材的组织结构,使其具有更好的塑性和延展性,从而提高其韧性水平。
(三)提高抗蚀性高温热处理也可以改善钢材的抗蚀性。
钢材在高温状态下与一些特定的气体、液体等物质相接触时,会发生化学反应,从而使钢材表面形成一层薄的氧化膜。
这层氧化膜可以保护钢材内部的组织和成分不受腐蚀和氧化等环境影响。
(四)改善织构高温热处理也是改变钢材织构的一种重要手段。
织构是指材料中晶粒在排列方向上的取向规律,它对材料的性能和断裂机制具有重要影响。
热处理对钢的组织与性能的影响
热处理参数对钢性能和组织变化的影响锅炉管子的热处理锅炉设备中过热器管子、蒸汽导管等零部件在工业性生产中的热处理一般是正火+回火。
正火温度和回火温度的选择主要是根据管子性能要求而决定的。
实验[49]表明,为了获得良好的强度与韧性匹配,9Cr-1Mo类钢最佳热处理工艺参数为:1060℃lh正火+760℃1h回火。
另外,需指出,随着钢的化学成分复杂化,钢管的正火温度有所提高。
1-4-2.奥氏体化温度的影响热处理规范中奥氏体化温度对耐热钢性能有显著的影响。
许多试验证明:随着奥氏体化温度提高,使耐热钢的热强性增加[’]。
如1Cr-0. 5Mo钢、Mo-V钢、12Cr1MoV钢和12Cr3Mo1VSiTiB等管子钢均随正火温度提高而使钢的持久强度增加。
日本的藤田利夫等人[57, 58]曾研究过淬火温度对数种1296 Cr型钢持久强度的影响,也表明高的淬火温度通常具有高的持久强度;并认为,第二相粒子的大小、数量、形状和分布及晶粒大小是导致不同温度淬火后持久性能不同的主要原因。
Ik-Min Park等[[59]对低Si-12Cr-Mo-V-Nb钢的研究表明:1100℃淬火,其1000小时断裂强度比1050℃淬火提高2^-3. 5kgf/mm2,而蠕变延伸率略有下降,在550℃至700℃的蠕变温度下,·下降了大约3^-5960材料的性能与材料内部的组织结构有着密切的关系。
实验证明:提高奥氏体化温度可以引起a固溶体合金化程度增加、晶粒尺寸增大、回火或使用过程中碳化物在基体上析出数量的增加及金相组织改变等〔’〕。
这些因素的改变对耐热钢的热强性有一定的影响。
文献[[60〕曾考察了奥氏体化温度对20Cr11MoVNbNB钢的组织和性能的影响,提出了与上述一致的观点。
下面简述与奥氏体化温度有关的一些因素:a.晶粒度一般地说,奥氏体化温度高,晶粒尺寸就大,同时影响固溶强化和析出硬化的合金元素的固溶量也多。
因此,’‘对于利用固溶强化和析出硬化的实际耐热钢来讲,既受晶粒大小的影响,也受合金元素固溶量的影响,一般认为后者的影响大,晶粒尺寸的影响,,J、〔110 文献[[6i〕对Cr-Mo-V钢650℃持久强度的研究指出,持久强度随奥氏体晶粒尺寸增大而增加,但当奥氏体晶粒度超过6级(相当晶粒直径>50 um)后,则持久强度开始下降或达到饱和值;看来,奥氏体晶粒度不仅对室温强度,而且对持久强度也有一个最佳范围。
t10钢经淬火+低温回火后的组织
一、t10钢的特点和用途t10钢是一种碳含量较高的工具钢,其碳含量在0.95-1.04之间,属于高碳钢的范畴。
t10钢具有优良的硬度和耐磨性,适用于制作刀具、刀片、弹簧和其他要求高强度和耐磨性的机械零件。
因其优异的性能,t10钢在冶金、机械制造和刀具加工等领域得到广泛应用。
二、t10钢的组织t10钢的组织主要由铁素体和适量的珠光体组成,碳化物在组织中分布均匀。
未经热处理的t10钢具有较粗的组织,硬度较低,无法满足实际工作中的需求。
需要通过热处理过程来改善其组织和性能。
三、淬火过程1. 加热淬火是提高钢的硬度和强度的重要工艺。
对t10钢进行淬火前,首先需将钢件加热至适当温度,使其完全均匀地吸热。
2. 淬透在加热到适当温度后,将t10钢迅速放入冷却介质中(如水、油或盐水淬火液)进行淬火。
淬火过程中,t10钢的组织迅速发生相变,生成马氏体组织,从而提高钢的硬度和强度。
四、低温回火1. 回火介质选择t10钢在淬火后过于脆硬,需要通过回火过程来消除内部应力,降低脆性,提高韧性。
低温回火是常用的回火方法之一,一般通过炉内空气进行低温回火。
2. 回火温度低温回火的温度一般在150-250摄氏度之间,此温度范围可有效消除马氏体的部分内应力,使得t10钢的硬度适中,同时提高其韧性。
3. 回火时间低温回火的时间要根据具体材料和尺寸来确定,通常在1-2小时左右。
回火时间过短导致内部应力未完全消除,回火时间过长则可能引起组织退火,影响钢的硬度。
五、淬火+低温回火后的组织和性能通过淬火+低温回火后,t10钢的组织得到了显著改善。
在金相显微镜下观察,其组织细化,珠光体分布均匀,碳化物颗粒尺寸减小。
这些结构上的变化使得t10钢具有较高的硬度和韧性,并保持了良好的耐磨性。
六、结论t10钢经过淬火+低温回火处理后,其组织和性能均得到了显著改善。
淬火后,t10钢的硬度和强度显著提高;低温回火后,钢的韧性得到提高,同时保持了良好的硬度。
浅谈钢的热处理及其对组织和性能的影响
浅谈钢的热处理及其对组织和性能的影响一、实验目的1.熟悉钢的几种基本热处理操作(退火、正火、淬火及回火);2.研究加热温度、冷却速度及回火温度等主要因素对碳钢热处理后性能的影响;3.观察和研究碳素钢经不同形式热处理后显微组织的特点;4.了解材料硬度的测定方法,学会正确使用硬度计。
二、实验概述钢的热处理就是利用钢在固态范围内的加热、保温和冷却,以改变其内部组织,从而获得所需要的物理、化学、机械和工艺性能的一种操作。
普通热处理的基本操作有退火、正火、淬火、回火等。
加热温度、保温时间和冷却方式是热处理最重要的三个基本工艺因素。
正确合理选择这三者的工艺规范,是热处理质量的基本保证。
1. 加热温度选择(1)退火加热温度一般亚共析钢加热至AC3+(20~30)℃(完全退火);共析钢和过共析钢加热至AC1+(20~30)℃(球化退火),目的是得到球化体组织,降低硬度,改善高碳钢的切削性能,同时为最终热处理做好组织准备。
(2)正火加热温度一般亚共析钢加热至AC3+(30~50)℃;过共析钢加热至ACm+(30~50)℃,即加热到奥氏体单相区。
退火和正火加热温度范围选择见图3-1。
图1 退火和正火的加热温度范围图2 淬火的加热温度范围(3)淬火加热温度一般亚共析钢加热至AC3+(30~50)℃;共析钢和过共析钢则加热至AC1+(30~50)℃,加热温度范围选择见图3-2。
淬火按加热温度可分为两种:加热温度高于AC3时的淬火为完全淬火;加热温度在AC1和AC3(亚共析钢)或AC1和ACCm(过共析钢)之间是不完全淬火。
在完全淬火时,钢的淬火组织主要是由马氏体组成;在不完全淬火时亚共析钢得到马氏体和铁素体组成的组织,过共析钢得到马氏体和渗碳体的组织。
亚共析钢用不完全淬火是不正常的,因为这样不能达到最高硬度。
而过共析钢采用不完全淬火则是正常的,这样可使钢获得最高的硬度和耐磨性。
在适宜的加热温度下,淬火后得到的马氏体呈细小的针状;若加热温度过高,其形成粗针状马氏体,使材料变脆甚至可能在钢中出现裂纹。
T10钢热处理工艺及组织性能研究
T10钢热处理⼯艺及组织性能研究T10钢热处理⼯艺及组织性能研究任务书1.课题意义及⽬标学⽣应通过本次毕业设计,运⽤所学过的⾦属学及热处理等专业知识,了解T10钢的概况;熟悉钢T10的热处理⼯艺⽅法;认识T10钢热处理前后⾦相组织;找出热处理对T10钢组织和⼒学性能的影响规律,为优化热处理⼯艺提⾼零件质量提供⼀定的理论依据。
2.主要任务(1)制定T10钢热处理⼯艺,进⾏热处理实验。
(2)制备⾦相试样,观察分析T10钢热处理前后的显微组织。
(3)测定T10钢热处理前后⼒学性能,包括硬度、冲击韧性等。
(4)分析热处理⼯艺、组织结构与⼒学性能之间的关系。
(5)撰写毕业论⽂。
结构完整,层次分明,语⾔顺畅;避免错别字和错误标点符号;格式符合太原⼯业学院学位论⽂格式的统⼀要求。
3.主要参考资料[1] 王学前,贺毅. ⾼碳钢快速球化退⽕⼯艺的研究[J]. 热加⼯⼯艺,2002,(1):32-33.[2] 沈晓钧. ⼯具钢的热处理[J]. 铸锻热———热处理实践,1994,(2):4-17.[3] 崔忠圻,覃耀春.⾦属学与热处理[M]. 北京,机械⼯业出版社,2007:230-308.4.进度安排审核⼈:2014 年12 ⽉15 ⽇T10钢热处理⼯艺及组织性能研究摘要:本次研究的主要内容是退⽕态T10钢的热处理⼯艺及其组织性能的研究。
通过观察经过不同预先热处理的退⽕态T10钢试样的显微组织,以及测量其洛⽒硬度、冲击韧性等,分析了不同预先热处理的T10钢试样的组织性能和⼒学性能。
结果表明,正⽕+等温球化退⽕为退⽕态T10钢的最佳预先热处理⼯艺;不同预先热处理所得到的组织效果会遗传到最终的组织中;预先热处理为正⽕+普通球化退⽕和等温球化退⽕的退⽕态T10钢试样,经过⽔淬和低温回⽕后,发⽣了脆性转变。
关键词:T10钢,热处理,显微组织,⼒学性能Researching heat treatment process andmicrostructure properties of T10 steelAbstract:The main content of this study is researching the heat treatment process and microstructure of the annealed T10 steel.The microstructure and mechanical properties of T10 steel samples with different advance heat treatment were studied by inspecting microstructure of annealed T10 steel samples with different advance heat treatment and measuring the hardness and toughness of annealed T10 steel .The results show that the best advance heat treatment process is normalizing+ isothermal spheroidizing annealing.it will be inherited in the final tissue that is the effect of the tissue obtained by different advance heat treatment.the brittle transition occurs in the annealed T10 steel sample of advance heat treatment is normalizing + ordinary spheroidizing annealing or isothermal spheroidizing annealing after water quenching and low temperature tempering.Keywords:T10 steel, heat treatment, microstructure, mechanical propertiesI⽬录1前⾔ (1)1.1研究的⽬的及意义 (1)1.2国内外研究现状 (2)1.3 研究内容 (2)2试验过程 (3)2.1热处理试验 (3)2.1.1试验原理 (3)2.1.2试验过程 (9)2.2试样制备及显微组织观察 (15)2.2.1⾦相试样的制备 (15)2.2.2显微组织观察 (18)2.3 ⼒学性能测定 (19)2.3.1硬度测量 (19)2.3.2冲击韧性测量 (22)3 结果与分析 (26)3.1 显微组织分析 (26)3.2 ⼒学性能分析 (28)3.2.1 硬度分析 (28)3.2.2 冲击韧性分析 (29)4结论 (31)参考⽂献 (32)致谢 (34)I I1 前⾔1.1 研究⽬的及意义我国钢铁⾏业发展迅猛,但也不是⼀帆风顺的,它也⾯临着很多的挑战,需要不断地创新科技,不断地提⾼产品质量。
热处理工艺制度对T10钢组织与性能的影响2资料
J I A N G S U U N I V E R S I T Y金属材料综合实验题目:热处理工艺制度对T10钢组织与性能的影响学院名称:材料科学与工程学院专业班级:金属1202*名:**学号:**********小组成员:任宁庆、韦明敢、李鑫宇指导老师:邵红红、王兰、吴晶老师2016年1月热处理工艺制度对T10钢组织与性能的影响一、实验内容1、T10钢概述目前常用的碳素工具钢有T8、T10、T12,其中T10用量最多。
T10钢优点是可加工性好,来源容易;但淬透性低、耐磨性一般、淬火变形大。
因钢中含合金元素微量,耐回火性差,硬化层浅,因而承载能力有限。
虽有较高的硬度和耐磨性,但小截面工件韧性不足,大截面工件有残存网状碳化物倾向。
T10钢在淬火加热(通常达800℃)时不致于过热,淬火后钢中有过剩未溶碳化物,所以比T8钢具有更高的耐磨性,但淬火变形收缩明显。
由于淬透性差,硬化层往往只有1.5~5mm;一般采用220~250℃回火时综合性能较佳。
热处理时变形比较大,故只适宜制造小尺寸、形状简单、受轻载荷的模具。
2、T10钢化学成分碳 C :0.95~1.04(Tχ,χ:碳的千分数)硅 Si:≤0.35锰 Mn:≤0.40硫 S :≤0.020磷 P :≤0.030铬 Cr:允许残余含量≤0.25≤0.10(制造铅浴淬火钢丝时)镍 Ni:允许残余含量≤0.20≤0.12(制造铅浴淬火钢丝时)铜 Cu:允许残余含量≤0.30≤0.20(制造铅浴淬火钢丝时)注:允许残余含量Cr+Ni+Cu≤0.40(制造铅浴淬火钢丝时)3、T10钢适用范围这种钢应用较广,适于制造切削条件较差、耐磨性要求较高且不受突然和剧烈冲击振动而需要一定的韧性及具有锋利刃口的各种工具,如车刀、刨刀、钻头、丝锥、扩孔刀具、螺丝板牙、铣刀手锯锯条、还可以制作冷镦模、冲模、拉丝模、铝合金用冷挤压凹模、纸品下料模、塑料成型模具、小尺寸冷切边模及冲孔模,低精度而形状简单的量具(如卡板等),也可用作不受较大冲击的耐磨零件等。
T10刚的热处理
T10刚的热处理1、预备热处理(球化退火)锻造后为了给后序的加工、最终热处理工序作好准备, 应消除锻件内的应力, 改善组织, 并使其具有合适的硬度和稳定细小的组织, 以利于机械加工。
因此锻件要在毛坏状态下进行预先热处理。
T10A 碳素工具钢, 一般采取球化退火, 使渗碳体成球状均匀分布, 若锻件沿晶界出现网状碳化物时, 则先进行正火处理, 消除网状碳化物, 然后进行球化退火。
通常采用球化退火, 以获得铁素体机体上分布的细小均匀的粒状碳化物组织。
表1 球化退火工艺参数钢号加热等温温度/℃时间/ h温度/℃时间/ h 空冷硬度T10A 750~ 780 2~ 3 680~ 700 3~ 5 炉冷至500℃空冷 HB197 2、最终热处理(淬火+低温回火)2.1、淬火( 1) 淬火温度T10淬透性低。
需要用水冷却, 容易产生变形和淬裂, 另外碳素工具钢对过热敏感, 晶粒容易长大, 其淬火温度一般是在碳化物与奥氏体共存的两相区内, 这是由于碳化物的存在不仅可以阻止奥氏体的长大, 使碳素工具钢保持较小晶粒,从而能在高硬度条件下保证具有一定的韧性; 而且剩余碳化物的存在也有利于模具耐磨性的提高。
为防止过热, 选取最低的淬火加热温度( 760~ 780℃ ) , 是获得最好机械性能的关键,为防止淬火开裂, 必须在淬火方法上实现均匀冷却。
( 2) 加热、保温时间的确定由于加热时间与模具的材质、工件大小有关。
升温时间因工件大小而异, 保温时间依材质而不同, 加热时间不可取一定值, 加热时间的长短直接影响模具的组织性能。
为保证T10A 冷作模具基体奥氏体化, 碳化物溶解, 必须有一定保温时间, 保温时间采用40~ 60 min。
2.2、回火模具在淬火或电火花加工后应及时进行回火处理, 回火温度应根据模具的硬度性能要求选择不同的回火温度, 以获得不同强度、韧性及硬度要求, T10 碳素工具钢在不同回火温度下的硬度如表表2T10 碳素工具钢在不同回火温度下的硬度钢号达到下列硬度(HRC)范围的回火温度/℃T10A 45~ 50 50~ 54 54~ 58 58~ 62360~ 380 300~ 320 250~ 270 160~ 180。
锻后热处理温度对 TA10钛合金组织及性能的影响
锻后热处理温度对 TA10钛合金组织及性能的影响摘要:本文研究了锻后热处理温度对TA10钛合金组织及性能的影响。
研究结果表明:随着热处理温度的升高,TA10钛合金的晶粒逐渐变粗,晶界清晰度逐渐降低,硬度和强度逐渐降低,塑性逐渐增加。
最佳的热处理温度范围为600℃~700℃,此时TA10钛合金的晶粒尺寸适中,晶界清晰度较高,硬度和强度较高,塑性较好。
关键词:TA10钛合金;锻后热处理;温度;组织;性能正文:TA10钛合金是一种重要的结构材料,具有较高的强度、硬度、延展性和耐腐蚀性能,被广泛应用于航空、航天、化工等领域。
锻造是TA10钛合金制备过程中的重要工艺之一,可以有效提高其强度和塑性。
但锻造后的TA10钛合金晶粒较大,晶界不清晰,需要热处理来优化其组织结构和性能。
本文对TA10钛合金进行了锻后热处理实验,研究了不同温度下的组织结构和性能的变化。
实验中,TA10钛合金经过锻造后,分别在500℃、600℃、700℃、800℃、900℃的温度下进行了1小时的热处理。
热处理后,采用光学显微镜、扫描电镜、拉伸试验机等仪器测试了TA10钛合金的晶粒尺寸、晶界清晰度、硬度、强度和延展性等性能指标。
实验结果表明,随着热处理温度的升高,TA10钛合金的晶粒逐渐变粗,晶界清晰度逐渐降低。
当热处理温度超过700℃时,TA10钛合金的硬度和强度逐渐降低,但其塑性逐渐增加。
最佳的热处理温度范围为600℃~700℃,此时TA10钛合金的晶粒尺寸适中,晶界清晰度较高,硬度和强度较高,塑性较好。
此外,随着热处理温度的升高,TA10钛合金的组织结构中出现了致密的α相,这也是其硬度和强度降低的原因之一。
综上所述,本文研究了锻后热处理温度对TA10钛合金组织及性能的影响。
实验结果表明,热处理温度对TA10钛合金的晶粒尺寸、晶界清晰度、硬度、强度和塑性等性能指标有明显的影响,最佳的热处理温度范围为600℃~700℃。
这些研究结果为TA10钛合金的制备和应用提供了重要的参考价值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
J I A N G S U U N I V E R S I T Y金属材料综合实验题目:热处理工艺制度对T10钢组织与性能的影响学院名称:材料科学与工程学院专业班级:金属1202姓名:马英学号:3120702041小组成员:任宁庆、韦明敢、李鑫宇指导老师:邵红红、王兰、吴晶老师2016年1月热处理工艺制度对T10钢组织与性能的影响一、实验内容1、T10钢概述目前常用的碳素工具钢有T8、T10、T12,其中T10用量最多。
T10钢优点是可加工性好,来源容易;但淬透性低、耐磨性一般、淬火变形大。
因钢中含合金元素微量,耐回火性差,硬化层浅,因而承载能力有限。
虽有较高的硬度和耐磨性,但小截面工件韧性不足,大截面工件有残存网状碳化物倾向。
T10钢在淬火加热(通常达800℃)时不致于过热,淬火后钢中有过剩未溶碳化物,所以比T8钢具有更高的耐磨性,但淬火变形收缩明显。
由于淬透性差,硬化层往往只有1.5~5mm;一般采用220~250℃回火时综合性能较佳。
热处理时变形比较大,故只适宜制造小尺寸、形状简单、受轻载荷的模具。
2、T10钢化学成分碳 C :0.95~1.04(Tχ,χ:碳的千分数)硅 Si:≤0.35锰 Mn:≤0.40硫 S :≤0.020磷 P :≤0.030铬 Cr:允许残余含量≤0.25≤0.10(制造铅浴淬火钢丝时)镍 Ni:允许残余含量≤0.20≤0.12(制造铅浴淬火钢丝时)铜 Cu:允许残余含量≤0.30≤0.20(制造铅浴淬火钢丝时)注:允许残余含量Cr+Ni+Cu≤0.40(制造铅浴淬火钢丝时)3、T10钢适用范围这种钢应用较广,适于制造切削条件较差、耐磨性要求较高且不受突然和剧烈冲击振动而需要一定的韧性及具有锋利刃口的各种工具,如车刀、刨刀、钻头、丝锥、扩孔刀具、螺丝板牙、铣刀手锯锯条、还可以制作冷镦模、冲模、拉丝模、铝合金用冷挤压凹模、纸品下料模、塑料成型模具、小尺寸冷切边模及冲孔模,低精度而形状简单的量具(如卡板等),也可用作不受较大冲击的耐磨零件等。
二、实验原理研究T10钢经退火、淬火、回火后的组织,需要运用Fe-FeC平衡相图及过3冷奥氏体等温转变曲线图—C曲线从加热和冷却2个方面进行分析,钢在冷却时的组织转变规律是由C曲线确定的。
因此,研究钢热处理后的组织通常以C曲线为理论依据。
按照不同的冷却条件,过冷奥氏体将在不同的温度范围发生不同类型的转变。
通过金相显微镜观察,可以发现过冷奥氏体各种转变产物的组织形态各不相同。
T10钢是过共析钢,过共析钢的C曲线跟亚共析钢的相似,先析出的是渗碳体。
随着冷却速度的增大,钢的显微组织变化是:渗碳体+珠光体→渗碳体+索氏体→渗碳体+托氏体→托氏体+马氏体+残余奥氏体→马氏体+残余奥氏体。
为了使渗碳体呈球状并且均匀分布,改善切削加工性能,为最终热处理做好组织准备,碳素工具钢必须先进行球化退火。
碳素工具钢经不完全淬火和低温回火,硬度在58~64HRC范围,可作为低切削的刃具和形状简单的冷冲模。
本实验重点研究这些热处理工艺对T10钢的组织与性能的影响。
三、实验流程工艺1、球化退火表1 球化退火工艺参数含碳量大于0.75%的高碳钢或工具钢一般采用球化退火作为预备热处理,如果有二次网状渗碳体的存在,则应先进行正火消除网状渗碳体。
球化退火是使钢中碳化物球化,获得球化体的一种热处理工艺。
球化效果作用于T10钢,其目的是降低硬度、均匀组织、改善切削加工性,并为淬火作组织准备,因为球状组织不易过热,即球体溶入奥氏体较慢,所以奥氏体晶粒不易长大,淬火后组织为隐晶马氏体,且淬火开裂倾向小。
T10碳素工具钢,一般采取球化退火,使渗碳体成球状均匀分布,若锻件沿晶界出现网状碳化物时,则先进行正火处理,消除网状碳化物,然后进行球化退火。
其目的是降低硬度、均匀组织、改善切削加工性能,并为淬火作组织准备。
因为球状组织不易过热,即球体溶入奥氏体慢,所以奥氏体晶粒不易长大,淬火后组织为隐晶马氏体,且淬火开裂倾向小。
常用的球化退火工艺如图1所示(以T12为例)。
图a为一次加热球化退火工艺,要求退火前的原始组织为细片状珠光体,图b是目前生产上应用较多的球化退火工艺,图c为反复球化退火工艺。
图1 常用的几种球化退火T10钢是高碳钢,实验采用图b球化退火工艺,将其加热到A以上20~30℃c1保温4h后,再以30~40℃/h冷却到700℃等温4h,再炉冷到600℃出炉。
球化退火实现了碳化物快速球化的关键在于通过控制相变的热力学和动力学来改变奥氏体向珠光体转变的模式-从传统的片层转变机制改变为“离异共析”的转变形式。
“离异共析”的转变形式是将奥氏体奥氏体直接转变成球状珠光体,时间大为缩短。
为此,在加热过程中奥氏体转变完成之后必须在奥氏体基体上残留足够的未溶碳化物颗粒作为随后冷却过程中珠光体离异共析转变的核心。
快速球化退火工艺去除加热时间和冷却时间,奥氏体化保温时间和等温转变时间总和仅需2h(时间与工件大小无关)。
对于工具钢而言,有时可以采用调质处理来代替球化退火,这样不但省时省电,完全可以达到球化效果,而且经调质后的粒状珠光体,比球化退火后的粒状珠光体更细小,更均匀,更有利于最后的退火。
T10钢球化退火金相图例如下:图2 T10钢球化退火P组织 500X2、不完全淬火表2 T10钢淬火工艺T10钢淬透性低,容易产生变形和淬裂,需要用盐水或碱水水冷却。
另外碳素工具钢对过热敏感,晶粒容易长大,所以采用不完全淬火其淬火温度一般是在碳化物与奥氏体共存的两相区内(A以上30~50℃)。
这是由于碳化物的存在c1不仅可以阻止奥氏体的长大,使碳素工具钢保持较小晶粒,从而能在高硬度条件下保证具有一定的韧性,而且剩余碳化物的存在也有利于模具耐磨性的提高。
为防止过热,选取最低的淬火加热温度(760~780℃),为防止淬火开裂,必须在淬火方法上实现均匀冷却。
在实际生产中,只有在大型工件或装炉量很多的情况下,才能把升温时间和保温时间分开考虑。
由于淬火温度高于相变温度,所以升温时间包括组织转变的时间。
保温时间实际上只要考虑碳化物的溶解和奥氏体成分均匀化所需时间即可。
确定淬火加热时间是个较为复杂的问题。
到目前为止,还没有一个可靠的计算方法,一般用经验公式来计算,通过试验最终确定。
常用经验公式为t=α·K·D (1)式中:t为加热时间(min);α为加热系数(min/mm);K为装炉修正系数;D为工件有效厚度。
加热系数α表示工件单位厚度需要的加热时间,其大小与工件尺寸、加热介质和钢的化学成分有关。
T10钢淬火金相图例如下:图3 T10钢760℃水淬组织 500X(隐晶马氏体+粒状碳化物+少量Ar)3、低温回火对于要求高的硬度、强度、耐磨性及一定韧性的淬火工件,通常淬火后再150℃~250摄氏度之间进行回火。
回火后得到隐晶的回火马氏体及在其分布均匀的细小碳化物颗粒组织,硬度一般可达61~65HRC。
低温回火主要用于各种高碳钢制作的切削工具、冷做模具。
为了避开200~300℃之间出现的低温回火脆性,本次实验采用180℃低温回火,回火保温时间2h。
四、实验步骤1.选择T10钢零件4个。
2.试样预处理:T10钢分析并检测其性能(硬度、金相组织、冲击韧性、抗拉强度),观察是否有网状渗碳体(如果有正火去除)以上20~30℃保温4h后,再以30~40℃/h 3.热处理工艺:将T10钢加热到Ac1冷却到700℃等温4h,再炉冷到600℃出炉(球化退火),观察组织并测试硬度,计算出淬火保温时间,确定淬火加热温度(760~780℃),进行淬火并且观察组织,180℃低温回火2h,最后测试硬度、冲击韧性及抗拉强度。
表3 T10钢最终热处理工艺规范五、实验检测 1、硬度:HRC2、工件的有效厚度:圆柱体取直径,正方形截面取边长,长方形截面取短边边长,板件取板厚,套筒累工件取壁厚,圆锥体取离小头2/3长度处直径,球体取球径的0.6倍作为有效厚度。
3、金相组织六、实验数据6.1、金相组织图4 等温球化退火后组织(×400)图5 780℃直接淬火(400×)图6 球化退火后的780℃直接淬火后组织(400×)图7 780℃直接淬火+低温回火2h (400×)七、实验小结这次课程实验,由于理论知识的不足,再加上平时没有什么设计经验,一开始的时候有些手忙脚乱,不知从何入手。
在老师的谆谆教导,和同学们的热情帮助下,使我找到了信心,其中每一个数据都要从图书馆借阅的电镀手册上查找或者所学课本及网上来找到出处。
虽然种种困难我都已经克服,但还是难免有些疏忽和遗漏的地方。
完美总是可望而不可求的,不在同一个地方跌倒两次才是最重要的。
抱着这个心理我一步步走了过来,最终完成了我的实验任务。
十几天的综合课程实验结束了,在这次实验的过程中我学到了一些除技能以外的其他东西,领略到了别人在处理专业技能问题时显示出的优秀品质,更深切的体会到人与人之间的那种相互协调合作的机制,最重要的还是自己对一些问题的看法产生了良性的变化. 在今后的学习中,我一定要戒骄戒躁,态度端正,虚心认真。
要永远的记住一句话:态度决定一切。
在没有做课程实验设计以前觉得课程实验只是对这两年来所学知识的单纯总结,但是通过这次做课程实验发现自己的看法有点太片面。
课程实验不仅是对前面所学知识的一种检验,而且也是对自己能力的一种提高。
通过这次课程实验使我明白了自己原来知识还比较欠缺。
自己要学习的东西还太多,以前老是觉得自己什么东西都会,什么东西都懂,有点眼高手低。
通过这次课程实验,我才明白学习是一个长期积累的过程,在以后的工作、生活中都应该不断的学习,努力提高自己知识和综合素质。
最后感谢指导老师:(王老师和吴老师)对我的实验孜孜不倦的指导,相信此次综合实验会对今后的学习工作生活有非常重要的影响。
而且大大提高了动手的能力,使我充分体会到了在创造过程中探索的艰难和成功时的喜悦。
虽然这个实验做的也不太好,但是在实验过程中所学到的东西是这次综合实验的最大收获和财富,使我终身受益。
八、参考文献[1].吴晶,纪嘉明,丁红燕金属材料实验指导[M] 镇江市江苏大学出版社2009年4月 26-50,93-100[2].邵红红,纪嘉明金属组织控制技术与设备[M] 北京市北京大学出版社2011年9月 7-8,13[3].汪东红等 GCr15钢的快速球化退火工艺[J] 安徽省安徽工业大学学报2009年,26(3) 239-242[4].李泉华等材料热处理工程师资格考试指导书[M] 北京市中国机械工程学会热处理学会 359-374[5].赵步青工具用钢热处理手册[M] 北京市机械工业出版社2014 444-510[6].李泉华、赵步青等工具用钢热处理手册北京市机械工业出版社2014年3月152-155。