平方差公式测试题与答案

合集下载

平方差公式练习题精选(含答案)

平方差公式练习题精选(含答案)

平方差公式练习题精选一、基础训练1.下列运算中,正确的是()A.(a+3)(a-3)=a2-3 B.(3b+2)(3b-2)=3b2-4 C.(3m-2n)(-2n-3m)=4n2-9m2 D.(x+2)(x-3)=x2-6 2.在下列多项式的乘法中,可以用平方差公式计算的是()A.(x+1)(1+x)B.(12a+b)(b-12a)C.(-a+b)(a-b)D.(x2-y)(x+y2)3.对于任意的正整数n,能整除代数式(3n+1)(3n-1)-(3-n)(3+n)的整数是() A.3 B.6 C.10 D.94.若(x-5)2=x2+kx+25,则k=()A.5 B.-5 C.10 D.-105.9.8×10.2=________; 6.a2+b2=(a+b)2+______=(a-b)2+________.7.(x-y+z)(x+y+z)=________; 8.(a+b+c)2=_______.9.(12x+3)2-(12x-3)2=________.10.(1)(2a-3b)(2a+3b);(2)(-p2+q)(-p2-q);(3)(x-2y)2;(4)(-2x-12y)2.11.(1)(2a-b)(2a+b)(4a2+b2);(2)(x+y-z)(x-y+z)-(x+y+z)(x-y-z).12.有一块边长为m的正方形空地,想在中间位置修一条“十”字型小路,•小路的宽为n,试求剩余的空地面积;用两种方法表示出来,比较这两种表示方法,•验证了什么公式?二、能力训练13.如果x2+4x+k2恰好是另一个整式的平方,那么常数k的值为() A.4 B.2 C.-2 D.±214.已知a+1a=3,则a2+21a,则a+的值是()A.1 B.7 C.9 D.1115.若a-b=2,a-c=1,则(2a-b-c)2+(c-a)2的值为()A.10 B.9 C.2 D.116.│5x-2y│·│2y-5x│的结果是()A.25x2-4y2B.25x2-20xy+4y2C.25x2+20xy+4y2D.-25x2+20xy-4y2 17.若a2+2a=1,则(a+1)2=_________.三、综合训练18.(1)已知a+b=3,ab=2,求a2+b2;(2)若已知a+b=10,a2+b2=4,ab的值呢?19.解不等式(3x-4)2>(-4+3x)(3x+4).20.观察下列各式的规律.12+(1×2)2+22=(1×2+1)2;22+(2×3)2+32=(2×3+1)2;32+(3×4)2+42=(3×4+1)2;…(1)写出第2007行的式子;(2)写出第n行的式子,并说明你的结论是正确的.参考答案1.C 点拨:在运用平方差公式写结果时,要注意平方后作差,尤其当出现数与字母乘积的项,系数不要忘记平方;D项不具有平方差公式的结构,不能用平方差公式,•而应是多项式乘多项式.2.B 点拨:(a+b)(b-a)=(b+a)(b-a)=b2-a2.3.C 点拨:利用平方差公式化简得10(n2-1),故能被10整除.4.D 点拨:(x-5)2=x2-2x×5+25=x2-10x+25.5.99.96 点拨:9.8×10.2=(10-0.2)(10+0.2)=10-0.2=100-0.04=99.96.6.(-2ab);2ab7.x2+z2-y2+2xz点拨:把(x+z)作为整体,先利用平方差公式,•然后运用完全平方公式.8.a2+b2+c2+2ab+2ac+2bc点拨:把三项中的某两项看做一个整体,•运用完全平方公式展开.9.6x 点拨:把(12x+3)和(12x-3)分别看做两个整体,运用平方差公式(12x+3)2-(12x-3)2=(12x+3+12x-3)[12x+3-(12x-3)]=x·6=6x.10.(1)4a2-9b2;(2)原式=(-p2)2-q2=p4-q2.点拨:在运用平方差公式时,要注意找准公式中的a,b.(3)x4-4xy+4y2;(4)解法一:(-2x-12y)2=(-2x)2+2·(-2x)·(-12y)+(-12y)2=4x2+2xy+14y2.解法二:(-2x-12y)2=(2x+12y)2=4x2+2xy+14y2.点拨:运用完全平方公式时,要注意中间项的符号.11.(1)原式=(4a2-b2)(4a2+b2)=(4a2)2-(b2)2=16a4-b4.点拨:当出现三个或三个以上多项式相乘时,根据多项式的结构特征,•先进行恰当的组合.(2)原式=[x+(y-z)][x-(y-z)]-[x+(y+z)][x-(y+z)]=x2-(y-z)2-[x2-(y+z)2]=x2-(y-z)2-x2+(y+z)2=(y+z)2-(y-z)2=(y+z+y-z)[y+z-(y-z)]=2y·2z=4yz.点拨:此题若用多项式乘多项式法则,会出现18项,书写会非常繁琐,认真观察此式子的特点,恰当选择公式,会使计算过程简化.12.解法一:如图(1),剩余部分面积=m 2-mn-mn+n 2=m 2-2mn+n 2.解法二:如图(2),剩余部分面积=(m-n )2.∴(m-n )2=m 2-2mn+n 2,此即完全平方公式.点拨:解法一:是用边长为m 的正方形面积减去两条小路的面积,注意两条小路有一个重合的边长为n 的正方形.解法二:运用运动的方法把两条小路分别移到边缘,剩余面积即为边长为(m-n )•的正方形面积.做此类题要注意数形结合.13.D 点拨:x 2+4x+k 2=(x+2)2=x 2+4x+4,所以k 2=4,k 取±2.14.B 点拨:a 2+21a=(a+1a )2-2=32-2=7. 15.A 点拨:(2a-b-c )2+(c-a )2=(a+a-b-c )2+(c -a )2=[(a-b )+(a-c )] 2+(c-a )2=(2+1)2+(-1)2=9+1=10.16.B 点拨:(5x-2y )与(2y-5x )互为相反数;│5x-2y │·│2y-5x │=(5x-•2y )2•=25x 2-20xy+4y 2. 17.2 点拨:(a+1)2=a 2+2a+1,然后把a 2+2a=1整体代入上式.18.(1)a 2+b 2=(a+b )2-2ab .∵a+b=3,ab=2,∴a 2+b 2=32-2×2=5.(2)∵a+b=10,∴(a+b )2=102,a 2+2ab+b 2=100,∴2ab=100-(a 2+b 2).又∵a 2+b 2=4,∴2ab=100-4,ab=48.点拨:上述两个小题都是利用完全平方公式(a+b )2=a 2+2ab+b 2中(a+)、ab 、(a 2+b 2)•三者之间的关系,只要已知其中两者利用整体代入的方法可求出第三者.19.(3x -4)2>(-4+3x )(3x+4),(3x)2+2×3x·(-4)+(-4)2>(3x)2-42,9x2-24x+16>9x2-16,-24x>-32.x<43.点拨:先利用完全平方公式,平方差公式分别把不等式两边展开,然后移项,合并同类项,解一元一次不等式.20.(1)(2007)2+(2007×2008)2+(2008)2=(2007×2008+1)2(2)n2+[n(n+1)] 2+(n+1)2=[n(n+1)+1] 2.证明:∵n2+[n(n+1)] 2+(n+1)2=n2+n2(n+1)2+n2+2n+1=n2+n2(n2+2n+1)+n2+2n+1=n2+n4+2n3+n2+n2+2n+1=n4+2n3+3n2+2n+1.而[n(n+1)+1] 2=[n(n+1)] 2+2n(n+1)+1=n2(n2+2n+1)+2n2+2n+1=n4+2n3+n2+2n2+2n+1=n4+2n3+3n2+2n+1,所以n2+[n(n+1)] 2+(n+1)2=[n(n+1)+1] 2.。

平方差公式练习题(含答案)

平方差公式练习题(含答案)

平方差公式(总分100分 时间40分钟)一、填空题:(每题4分,共24分) 1.(x+6)(6-x)=________,11()()22x x -+--=_____________.2.222(25)()425a b a b --=-. 3.(x-1)(2x +1)( )=4x -1.4.(a+b+c)(a-b-c)=[a+( )][a-( )].5.(a-b-c-d)(a+b-c+d)=[( )+( )][( )-( )]6. 18201999⨯=_________,403×397=_________. 二、选择题:(每题6分,共18分)7.下列式中能用平方差公式计算的有( )①(x-12y)(x+12y), ②(3a-bc)(-bc-3a), ③(3-x+y)(3+x+y), ④(100+1)(100-1) A.1个 B.2个 C.3个 D.4个8.下列式中,运算正确的是( )①222(2)4a a =, ②2111(1)(1)1339x x x -++=-, ③235(1)(1)(1)m m m --=-, ④232482a b a b ++⨯⨯=.A.①②B.②③C.②④D.③④9.乘法等式中的字母a 、b 表示( )A.只能是数B.只能是单项式C.只能是多项式D.单项式、•多项式都可以三、解答题:(共58分)10.计算(a+1)(a-1)(2a +1)(4a +1)(8a +1).(7分)11.计算:22222110099989721-+-++- .(7分)12.(1)化简求值:(x+5)2-(x-5)2-5(2x+1)(2x-1)+x ·(2x)2,其中x=-1.(6分)(2)解方程5x+6(3x+2)(-2+3x)-54(x-13)(x+13)=2.(8分)13.计算:2222211111(1)(1)(1)(1)(1)23499100-----. (7分)14.计算:2481511111(1)(1)(1)(1)22222+++++. (7分)15.已知9621-可以被在60至70之间的两个整数整除,则这两个整数是多少?(8分)16.已知3n m +能被13整除,求证33n m ++也能被13整除.(8分)答案:1.36-x 2,x 2-142.-2a 2+5b3.x+14.b+c,b+c5.a-c,b+d,a-c,b+d6.3239981, 159991 7.D 8.C 9.D 10.16a -1 11.5050 12.(1)-36 (2)x=413.原式=22222(21)(21)(31)(31)(41)(41)(991)(991)(1001)(1001)23499100+-+-+-+-+-⨯⨯⨯⨯⨯ =11011012100200⨯=⨯.14.原式=248151111112(1)(1)(1)(1)(1)222222-+++++=1615112(1)222-+=.15.96148248482(2)1(21)(21)-=-=+-=482424(21)(21)(21)++-=48241266(21)(21)(21)(21)(21)++++-=482412(21)(21)(21)6563+++⨯⨯∴这两个整数为65和63.16.33n m ++333273(261)32633n n n n n m m m m =⨯+=⨯+=+⨯+=⨯++∵263n ⨯能被13整除,3n m +能被13整除∴33n m ++能被13整除.。

(完整版)平方差公式练习题精选(含答案)(可编辑修改word版)

(完整版)平方差公式练习题精选(含答案)(可编辑修改word版)

(1)(m+2) (m-2)(2)(1+3a) (1-3a)(3) (x+5y)(x-5y)(4)(y+3z) (y-3z)2、利用平方差公式计算 (1)(5+6x) (5-6x)(2)(x-2y) (x+2y)(3)(-m+n)(-m-n)3 利用平方差公式计算(1)(1)(- 1 41x-y)(- x+y)4(2)(ab+8)(ab-8)(3)(m+n)(m-n)+3n 24、利用平方差公式计算(1)(a+2)(a-2)(2)(3a+2b)(3a-2b)(3)(-x+1)(-x-1)(4)(-4k+3)(-4k-3)(1)803×797(2)398×4027.下列多项式的乘法中,可以用平方差公式计算的是()A.(a+b)(b+a)B.(-a+b)(a-b)C.(1a+b)(b-1a)D.(a2-b)(b2+a)3 38.下列计算中,错误的有()①(3a+4)(3a-4)=9a2-4;②(2a2-b)(2a2+b)=4a2-b2;③(3-x)(x+3)=x2-9;④(-x+y)(x+y)=-(x-y(x+y)=-x2-y2.A.1 个B.2 个C.3 个D.4 个9.若x2-y2=30,且x-y=-5,则x+y 的值是()A.5 B.6 C.-6 D.-510.(-2x+y)(-2x-y)= .11.(-3x2+2y2)()=9x4-4y4.12.(a+b-1)(a-b+1)=()2-()2.13.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是.14.计算:(a+2)(a2+4)(a4+16)(a-2).( x- y )1 利用完全平方公式计算:完全平方公式(1)( 1 2 2x+ y)32 (2)(-2m+5n)2(3)(2a+5b)2(4)(4p-2q)2 2 利用完全平方公式计算:(1) 1 2 2 2(2)(1.2m-3n)22 3123 22(3)(- a+5b) (4)(- x- y)2 4 33 (1)(3x-2y)2+(3x+2y)2 (2)4(x-1)(x+1)-(2x+3)2(3)(a+b)2-(a-b)2(4)(a+b-c)2(5)(x-y+z)(x+y+z)(6)(mn-1)2—(mn-1)(mn+1)4 先化简,再求值:(x+y)2 —— 4xy, 其中 x=12,y=9。

(完整版)平方差公式练习题精选(含答案)

(完整版)平方差公式练习题精选(含答案)

(1)(m+2) (m-2)(2)(1+3a) (1-3a)(3) (x+5y)(x-5y)(4)(y+3z) (y-3z)2、利用平方差公式计算(1)(5+6x) (5-6x)(2)(x-2y) (x+2y)(3)(-m+n)(-m-n)3利用平方差公式计算(1)(1)(-41x-y)(-41x+y)(2)(ab+8)(ab-8)(3)(m+n)(m-n)+3n 24、利用平方差公式计算(1)(a+2)(a-2)(2)(3a+2b)(3a-2b)(3)(-x+1)(-x-1)(4)(-4k+3)(-4k-3)(1)803×797(2)398×4027.下列多项式的乘法中,可以用平方差公式计算的是()A.(a+b)(b+a)B.(-a+b)(a-b)C.(13a+b)(b-13a)D.(a2-b)(b2+a)8.下列计算中,错误的有()①(3a+4)(3a-4)=9a2-4;②(2a2-b)(2a2+b)=4a2-b2;③(3-x)(x+3)=x2-9;④(-x+y)(x+y)=-(x-y(x+y)=-x2-y2.A.1个B.2个C.3个D.4个9.若x2-y2=30,且x-y=-5,则x+y的值是()A.5 B.6 C.-6 D.-510.(-2x+y)(-2x-y)=______.11.(-3x2+2y2)(______)=9x4-4y4.12.(a+b-1)(a-b+1)=(_____)2-(_____)2.13.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____.14.计算:(a+2)(a2+4)(a4+16)(a-2).完全平方公式1利用完全平方公式计算:(1)(21x+32y)2 (2)(-2m+5n)2(3)(2a+5b)2(4)(4p-2q)2 2利用完全平方公式计算:(1)(21x-32y 2)2 (2)(1.2m-3n)2(3)(-21a+5b)2 (4)(-43x-32y)23 (1)(3x-2y)2+(3x+2y)2 (2)4(x-1)(x+1)-(2x+3)2(3)(a+b)2-(a-b)2 (4)(a+b-c)2(5)(x-y+z)(x+y+z) (6)(mn-1)2—(mn-1)(mn+1)4先化简,再求值:(x+y)2 —— 4xy,其中x=12,y=9。

平方差公式练习题精选(含答案)

平方差公式练习题精选(含答案)

平方差公式练习题精选(含答案)平方差公式是一种用于计算两个数的平方差的公式,可以用于简化计算。

下面给出了一些例子:1.(m+2)(m-2) = m^2 - 42.(1+3a)(1-3a) = 1 - 9a^23.(x+5y)(x-5y) = x^2 - 25y^24.(y+3z)(y-3z) = y^2 - 9z^2利用平方差公式,可以简化计算,例如:1.(5+6x)(5-6x) = 25 - 36x^22.(x-2y)(x+2y) = x^2 - 4y^23.(-m+n)(-m-n) = m^2 - n^2有些多项式的乘法可以用平方差公式计算,例如:7.B。

(-a+b)(a-b)有些计算中存在错误,例如:8.②(2a2-b)(2a2+b)=4a4-b2完全平方公式是一种用于计算两个数的平方和的公式,可以用于简化计算。

下面给出了一些例子:1.(x+y)^2 = x^2 + 2xy + y^22.(-2m+5n)^2 = 4m^2 - 20mn + 25n^23.(2a+5b)^2 = 4a^2 + 20ab + 25b^24.(4p-2q)^2 = 16p^2 - 16pq + 4q^2利用完全平方公式,可以简化计算,例如:1.(x-y^2)^2 = x^2 - 2xy^2 + y^42.(1.2m-3n)^2 = 1.44m^2 - 7.2mn + 9n^23.(-a+5b)^2 = a^2 - 10ab + 25b^24.(-x-y)^2 = x^2 + 2xy + y^2最后,我们可以用完全平方公式计算一些复杂的表达式,例如:14.(a+2)(a^2+4)(a^4+16)(a-2) = (a^6 - 4a^5 - 24a^4 - 64a^3+ 16a^2 + 128a + 128)完全平方公式还可以用于解方程,例如:9.x+y = -310.4x^2 - y^211.(3x^2+2y^2)^2 = 9x^4 - 4y^412.(a+b)^2 - (a-b+1)^2 = 4ab - 2a + 2b13.31.下列运算中,正确的是()A.(a+3)(a-3)=a2-9B.(3b+2)(3b-2)=9b2-4C.(3m-2n)(-2n-3m)=-12mnD.(x+2)(x-3)=x2-x-62.在下列多项式的乘法中,可以用平方差公式计算的是()C.(-a+b)(a-b)3.对于任意的正整数n,能整除代数式(3n+1)(3n-1)-(3-n)(3+n)的整数是()B.64.若(x-5)2=x2+kx+25,则k=()D.-105.9.8×10.2=100.366.a2+b2=(a+b)2-2ab=(a-b)2+2ab7.(x-y+z)(x+y+z)=x2+y2+z2+2xy+2xz+2yz8.(a+b+c)2=a2+b2+c2+2ab+2ac+2bc9.(x+3)2-(x-3)2=12x+1810.1) 4a2-9b22) p4-q23) x2-4xy+4y24) 4x2+4xy+y211.1) 4a4-b22) 4xy(x+y)12.剩余的空地面积为(m-2n)2-n2(m-2n)2-n2,验证了平方差公式:(a-b)(a+b)=a2-b2.13.如果x2+4x+k2恰好是另一个整式的平方,那么常数k 的值为()D.±214.已知a+=3,则a2+2,则a+的值是()B.715.若 $a-b=2$,$a-c=1$,则 $(2a-b-c)^2+(c-a)^2$ 的值为()答案:B。

平方差公式练习题精选(含答案)

平方差公式练习题精选(含答案)

平方差公式1、利用平方差公式计算:(1)(m+2) (m-2)(2)(1+3a) (1-3a)(3) (x+5y)(x-5y)(4)(y+3z) (y-3z)2、利用平方差公式计算(1)(5+6x)(5-6x)(2)(x-2y)(x+2y)(3)(-m+n)(-m-n)3利用平方差公式计算(1)(1)(-41x-y)(-41x+y)(2)(ab+8)(ab-8)(3)(m+n)(m-n)+3n 24、利用平方差公式计算(1)(a+2)(a-2)(2)(3a+2b)(3a-2b)(3)(-x+1)(-x-1)(4)(-4k+3)(-4k-3)5、利用平方差公式计算(1)803×797(2)398×4027.下列多项式的乘法中,可以用平方差公式计算的是( )A .(a+b )(b+a )B .(-a+b )(a -b )C .(13a+b )(b -13a ) D .(a 2-b )(b 2+a ) 8.下列计算中,错误的有( )①(3a+4)(3a -4)=9a 2-4;②(2a 2-b )(2a 2+b )=4a 2-b 2;③(3-x )(x+3)=x 2-9;④(-x+y )·(x+y )=-(x -y )(x+y )=-x 2-y 2.A .1个B .2个C .3个D .4个9.若x 2-y 2=30,且x -y=-5,则x+y 的值是( )A .5B .6C .-6D .-510.(-2x+y )(-2x -y )=______.11.(-3x 2+2y 2)(______)=9x 4-4y 4.12.(a+b -1)(a -b+1)=(_____)2-(_____)2.13.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____.14.计算:(a+2)(a 2+4)(a 4+16)(a -2).完全平方公式1利用完全平方公式计算:(1)(21x+32y)2 (2)(-2m+5n)2(3)(2a+5b)2(4)(4p-2q)2 2利用完全平方公式计算:(1)(21x-32y 2)2 (2)(1.2m-3n)2(3)(-21a+5b)2 (4)(-43x-32y)23 (1)(3x-2y)2+(3x+2y)2 (2)4(x-1)(x+1)-(2x+3)2(a+b)2-(a-b)2 (4)(a+b-c)2(5)(x-y+z)(x+y+z) (6)(mn-1)2—(mn-1)(mn+1)4先化简,再求值:(x+y)2-4xy,其中x=12,y=9。

平方差公式练习题(含答案)

平方差公式练习题(含答案)

平方差公式(总分100分时间40分钟)一、填空题:(每题4分,共24分)1 11. (x+6)(6-x)= _____ , (_x + —)(—x ——)=2 2 -------------------2 2 22. (_2a -5b)( ) =4a -25b .3.(x-1)( x2+1)( )= x4-1.4. (a+b+c)(a-b-c)=[a+(5. (a-b-c-d)(a+b-c+d)=[(1 86. 20—汉19一=9 9 )][a-()+(,403)].)][( )-()]X 397=二、选择题:(每题6分,共18分)7. 下列式中能用平方差公式计算的有()1 1①(x- y)(x+ y),②(3a-bc)(-bc-3a), ③(3-x+y)(3+x+y), ④(100+1)(100-1)2 2A.1 个B.2 个C.3 个D.4 个8. 下列式中,运算正确的是()1 1 1①(2苛皿2,②(一亍1)(1齐亠討③(m_1)2(1—m)35—1)5,④ 2a 4b 8 = 2a 2b 3A.①②B. ②③C. ②④9.乘法等式中的字母a、b表示()A.只能是数B. 只能是单项式三、解答题:(共58分)D.③④C.只能是多项式D.单项式、?多项式都可以10.计算(a+1)(a-1)( a2+1)( a4+1)( 8a +1).(7 分)11.计算:1002 -992 982 -972川22 -11.(7 分)2 212.(1)化简求值:(x+5) -(x-5) -5(2x+1)(2x-1)+x 2-(2x),其中x=-1.(6 分)1 1(2)解方程5x+6(3x+2)(-2+3x)-54(x- - )(x+ — )=2.(8 分)3 313・计算:(仁》仆-訥-》川仆-右)(〔禽).(7分)14计算:(1 2)(1 l)(r J L)(r_8)._!5.(7 分)15. 已知296-1可以被在60至70之间的两个整数整除,则这两个整数是多少?(8分)16. 已知3n m能被13整除,求证3「3 m也能被13整除.(8分)答案:2 2 1 21.36-x ,x -2.-2a +5b3.x+14.b+c,b+c5.a-c,b+d,a-c,b+d6.416a -1 11.5050 12.(1)-36 (2)x=413.原式=1 101 1012 10^200111 1 11 1 114.原式=2(1 -才仆2)(1F)(1尹(1 ^8)尹=2(1 -尹)尹=2.15. 296 ±-(2 48 ) 2 -1 =(2 48• 1)(248 -1)= (248-1)(2241)(224-1)48 24 12 6 6=(2 1)(2 1)(2 1)(2 1)(2 -1)48 24 12=(2 1)(2 1)(212 1) 65 63•••这两个整数为65和63.16. 3n 3 m = 33 3n m =27 3n m =(26 1) 3n m = 26 3n 3n m••• 26. 3n能被13整除,3n m能被13整除•- 3n 3 - m能被13整除. 32399 81159991 7.D 8.C 9.D 10.(2 1)(2-1) (3 1)(3-1) (4 1)(4-1)223242川(99 1)(99-1) (100 1)(100-1)'2 工 29921002。

平方差公式专题练习50题有答案

平方差公式专题练习50题有答案

平方差公式专项练习50题(有答案)知识点:(a+b)(a-b)=a2-b2两数和与这两数差的积,等于它们的平方差特点:具有完全相同的两项具有互为相反数的两项使用注意的问题:1、是否符合平方差公式使用的特点2、判断公式中的“a”和“b”是一个数还是一个代数式3、对“式”平方时要把全部平方,切忌出现漏乘系数的错误,如(a+2b)(a-2b)不要计算成a2-2b24、最好先把能用平方差的式子变形为(a+b)(a-b)的形式,再利用公式进行计算。

专项练习:1.9.8×10.22.(x-y+z)(x+y+z)3.(12x+3)2-(12x-3)24.(2a-3b)(2a+3b)5.(-p2+q)(-p2-q)6.(-1+3x)(-1-3x)7.(x+3) (x2+9) (x-3)8.(x+2y-1)(x+1-2y)9.(x-4)(4+x )10.(a+b+1)(a+b-1)11.(8m+6n )(8m-6n )12. (4a -3b )(-4a -3b )13. (a+b)(a-b )(a ²+b ²)14..15..16..17..,则18. 1.01×0.9919.20.21.22.23.23.24.25.26.27.28.29.30.(2a-b)(2a+b)(4a2+b2)=(4a2-b2)(4a2+b2)31.(x+y-z)(x-y+z)-(x+y+z)(x-y-z).32. 2023×191333.(a+2)(a2+4)(a4+16)(a-2).34.(2+1)(22+1)(24+1)…(22n+1)+1(n是正整数);35.(3+1)(32+1)(34+1)…(32008+1)-4016 3236. 2009×2007-20082.37.22007200720082006-⨯.38.22007 200820061⨯+.39.解不等式(3x-4)2>(-4+3x)(3x+4).40.x(x+2)+(2x+1)(2x-1)=5(x2+3),41.广场内有一块边长为2a米的正方形草坪,经统一规划后,南北方向要缩短3米,东西方向要加长3米,则改造后的长方形草坪的面积是多少?42.先化简,再求值,其中43.解方程:.44.计算:45.求值:46.(规律探究题)已知x≠1,计算(1+x)(1-x)=1-x2,(1-x)(1+x+x2)=1-x3,(1-x)(•1+x+x2+x3)=1-x4.(1)观察以上各式并猜想:(1-x)(1+x+x2+…+x n)=______.(n为正整数)(2)根据你的猜想计算:①(1-2)(1+2+22+23+24+25)=______.②2+22+23+…+2n=______(n为正整数).③(x-1)(x99+x98+x97+…+x2+x+1)=_______.(3)通过以上规律请你进行下面的探索:①(a-b)(a+b)=_______.②(a-b)(a2+ab+b2)=______.③(a-b)(a3+a2b+ab2+b3)=______.47(结论开放题)请写出一个平方差公式,使其中含有字母m,n和数字4.48.从边长为a的大正方形纸板中挖去一个边长为b的小正方形纸板后,•将剩下的纸板沿虚线裁成四个相同的等腰梯形,如图1所示,然后拼成一个平行四边形,如图2所示,分别计算这两个图形阴影部分的面积,结果验证了什么公式?请将结果与同伴交流一下.49.你能求出的值吗?50.观察下列各式:根据前面的规律,你能求出的值吗?平方差公式50题专项练习答案: 1.9.8×10.2=(10-0.2)(10+0.2)=10-0.2=100-0.04=99.96.2.(x-y+z )(x+y+z )=x 2+z 2-y 2+2xz3.(12x+3)2-(12x -3)2=(12x+3+12x -3)[12x+3-(12x -3)]=x ·6=6x .4.(2a-3b )(2a+3b )= 4a 2-9b 2;5.(-p 2+q )(-p 2-q )=(-p 2)2-q 2=p 4-q 26.(-1+3x )(-1-3x )=1-9x ²7.(x+3) (x 2+9) (x-3) =x 4-818.(x+2y-1)(x+1-2y)= x ²-4y ²+4y-19.(x-4)(4+x )=x ²-1610.(a+b+1)(a+b-1)=(a+b )²-1=a ²+2ab+b ²-111.(8m+6n )(8m-6n )=64m ²-36n ²12. (4a -3b )(-4a -3b )=13. (a+b)(a-b )(a ²+b ²)=.14.. 15.. 答: 16.. 答: 17..,则18.1.01×0.99=0.9999 19.= 20.= 21.=22.= 23. =8096 23. =24. =125. =26. =27. =28. =29. =.30.(2a-b)(2a+b)(4a2+b2)=(4a2-b2)(4a2+b2)=(4a2)2-(b2)2=16a4-b4.31.(x+y-z)(x-y+z)-(x+y+z)(x-y-z).=[x+(y-z)][x-(y-z)]-[x+(y+z)][x-(y+z)]=x2-(y-z)2-[x2-(y+z)2]=x2-(y-z)2-x2+(y+z)2=(y+z)2-(y-z)2=(y+z+y-z)[y+z-(y-z)]=2y·2z=4yz.32. 2023×1913=(20+23)×(20-23)=202-(23)2=400-49=39959.33.(a+2)(a2+4)(a4+16)(a-2)=(a-2)(a+2)(a2+4)·(a4+16)=(a2-4)(a2+4)(a4+16)=(a4-16)(a4+16)=a8-162=a8-256.34. 解:(1)(2+1)(22+1)(24+1)…(22n+1)+1=(2-1)(2+1)(22+1)(24+1)…(22n+1)+1=(22-1)(22+1)(24+1)…(22n+1)+1=(24-1)(24+1)…(22n+1)+1=…=[(22n)2-1]+1=24n-1+1=24n;35.(3+1)(32+1)(34+1)…(32008+1)-4016 32=12(3-1)(3+1)(32+1)(34+1)…(32008+1)-401632=12(32-1)(32+1)·(34+1)…(32008+1)-401632=…=12(34-1)(34+1)…(32008+1)-401632=…=12(34016-1)-401632=401632-12-401632=-12.36. 2009×2007-20082=(2008+1)×(2008-1)-20082=20082-1-20082=-1.37.22007200720082006-⨯=220072007(20071)(20071)-+⨯-=2220072007(20071)--=2007.38.22007200820061⨯+=22007(20071)(20071)1+⨯-+=222007200711-+=2220072007=1.39.解不等式(3x-4)2>(-4+3x)(3x+4).(3x-4)2>(-4+3x)(3x+4),(3x)2+2×3x·(-4)+(-4)2>(3x)2-42,9x2-24x+16>9x2-16,-24x>-32.x<43.40.x(x+2)+(2x+1)(2x-1)=5(x2+3),x2+2x+4x2-1=5x2+15,x2+4x2-5x2+2x=15+1,2x=16,x=8.41.解:(2a+3)(2a-3)=(2a)2-32=4a2-9(平方米).42. 原式=43.解方程:.百度文库- 让每个人平等地提升自我44.计算: =5050.45.求值: =46.(1)1-x n+1(2)①-63;②2n+1-2;③x100-1(3)①a2-b2②a3-b3③a4-b4点拨:(1),(3)题根据观察到的规律正确填写即可;(2)题①中利用观察到的规律可知,原式=1-26=1-64=-63;②中原式=2(1+2+22+…+2n-1)=-2(1-2)(1+2+22+…+2n-1)=-2(1-2n)=-2+2·2n=2n+1-2;③中原式=-(1-x)(1+x+x2+…+x97+x98+x99)=-(1-x100)=x100-1.47.解:(m+2n)(m-2n)=m2-4n2.点拨:本题答案不唯一,只要符合要求即可.48.解:题图1中的阴影部分(四个等腰梯形)的面积为a2-b2,题图2•中的阴影部分(平行四边形)的底为(a+b),这个底上的高为(a-b),故它的面积为(a+b)(a-b),•由此可验证:(a+b)(a-b)=a2-b 2.图1 图249.解; 提示:可以乘以再除以.50.解:=11。

平方差公式练习题精选(答案)

平方差公式练习题精选(答案)

平方差公式1、利用平方差公式计算: (1)(m+2) (m-2)(2)(1+3a) (1-3a)(3) (x+5y)(x-5y)(4)(y+3z) (y-3z)2、利用平方差公式计算 (1)(5+6x)(5-6x)(2)(x-2y)(x+2y)(3)(-m+n)(-m-n)3利用平方差公式计算 (1)(1)(-41x-y)(-41x+y)(2)(ab+8)(ab-8)(3)(m+n)(m-n)+3n24、利用平方差公式计算(1)(a+2)(a-2)(2)(3a+2b)(3a-2b)(3)(-x+1)(-x-1)(4)(-4k+3)(-4k-3)5、利用平方差公式计算(1)803×797(2)398×4027.下列多项式的乘法中,可以用平方差公式计算的是()A.(a+b)(b+a)B.(-a+b)(a-b)C.(13a+b)(b-13a)D.(a2-b)(b2+a)8.下列计算中,错误的有()①(3a+4)(3a-4)=9a2-4;②(2a2-b)(2a2+b)=4a2-b2;③(3-x)(x+3)=x2-9;④(-x+y)·(x+y)=-(x-y)(x+y)=-x2-y2.A.1个B.2个C.3个D.4个9.若x2-y2=30,且x-y=-5,则x+y的值是()A.5 B.6 C.-6 D.-510.(-2x+y)(-2x-y)=______.11.(-3x2+2y2)(______)=9x4-4y4.12.(a+b-1)(a-b+1)=(_____)2-(_____)2.13.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____.14.计算:(a+2)(a2+4)(a4+16)(a-2).完全平方公式1利用完全平方公式计算:(1)(21x+32y)2(2)(-2m+5n)2(3)(2a+5b)2(4)(4p-2q)22利用完全平方公式计算:(1)(21x-32y 2)2(2)(1.2m-3n)2(3)(-21a+5b)2(4)(-43x-32y)23 (1)(3x-2y)2+(3x+2y)2 (2)4(x-1)(x+1)-(2x+3)2(a+b)2-(a-b)2(4)(a+b-c)2(5)(x-y+z)(x+y+z) (6)(mn-1)2—(mn-1)(mn+1)4先化简,再求值:(x+y)2-4xy,其中x=12,y=9。

(完整版)平方差公式练习题精选(含答案)

(完整版)平方差公式练习题精选(含答案)

1、利用平方差公式计算:(1)(m+2) (m-2)(2)(1+3a) (1-3a)(3)(x+5y)(x-5y)(4)(y+3z) (y-3z)2、利用平方差公式计算(1)(5+6x) (5-6x)(2)(x-2y) (x+2y)(3)(-m+n)(-m-n)3 利用平方差公式计算1 (1)(1)(- 1 x-y)(- 1x+y) 4(2)(ab+8)(ab-8)2(3)(m+n)(m-n)+3n 24、利用平方差公式计算(1)(a+2)(a-2)(2)(3a+2b)(3a-2b)(3)(-x+1)(-x-1)(4)(-4k+3)(-4k-3)5、利用平方差公式计算(1)803×797(2)398×4027.下列多项式的乘法中,可以用平方差公式计算的是()A .(a+b)(b+a)B.(-a+b)(a-b)C.(1 a+b)(b-1a)D.(a2-b)(b2+a)338.下列计算中,错误的)①(3a+4)(3a-4)=9a2-4;②(2a2-b)(2a2+b)=4a2-b2;③(3-x)(x+3)=x2-9;④(-x+y )(x+y )=-(x-y(x+y)=-x2-y2A.1 个B.2 个C.3 个D 4个9.若x 2-y2=30,且x-y=-5,则x+y 的值是()A .5 B.6 C.-6 D.-510 .(-2x+y )(-2x -y)= ______ .11 .(-3x2+2y2)(________________________ )=9x4-4y4.12 .(a+b-1)(a-b+1)=( ____ )2-(________)2.13 .两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_.14.计算:(a+2)(a2+4)(a4+16)(a-2)完全平方公式1 利用完全平方公式计算:(1)( 21 x+ 32 y)2(3)(2a+5b)22 利用完全平方公式计算:1 2 2 2(1)( x- y )23(3)(- 12a+5b)23 (1)(3x-2y)2+(3x+2y) 23)(a+b)2-(a-b)2(2)(-2m+5n)2 (4)(4p-2q)2(2)(1.2m-3n)23 2 2(4)(- 3 x- 2y)243(2)4(x-1)(x+1)- (2x+3)2(4)(a+b-c)2(5)(x-y+z)(x+y+z) (6)(mn-1)2—(mn-1)(mn+1)4 先化简,再求值:(x+y) 24xy, 其中x=12,y=9 。

平方差公式练习题精选(含答案)

平方差公式练习题精选(含答案)

平方差公式之阿布丰王创作1、利用平方差公式计算: (1)(m+2) (m-2) (2)(1+3a) (1-3a) (3) (x+5y)(x-5y) (4)(y+3z) (y-3z)2、利用平方差公式计算(1)(5+6x)(5-6x) (2)(x-2y)(x+2y) (3)(-m+n)(-m-n) 3利用平方差公式计算(1)(1)(-41x-y)(-41x+y) (2)(ab+8)(ab-8) (3)(m+n)(m-n)+3n 24、利用平方差公式计算 (1)(a+2)(a-2) (2)(3a+2b)(3a-2b) (3)(-x+1)(-x-1) (4)(-4k+3)(-4k-3)5、利用平方差公式计算(1)803×797(2)398×4027.下列多项式的乘法中,可以用平方差公式计算的是() A.(a+b)(b+a) B.(-a+b)(a-b)C.(13a+b)(b-13a) D.(a2-b)(b2+a)8.下列计算中,错误的有()①(3a+4)(3a-4)=9a2-4;②(2a2-b)(2a2+b)=4a2-b2;③(3-x)(x+3)=x2-9;④(-x+y)·(x+y)=-(x-y)(x+y)=-x2-y2.A.1个 B.2个 C.3个 D.4个9.若x2-y2=30,且x-y=-5,则x+y的值是()A.5 B.6 C.-6 D.-510.(-2x+y)(-2x-y)=______.11.(-3x2+2y2)(______)=9x4-4y4.12.(a+b-1)(a-b+1)=(_____)2-(_____)2.13.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____.14.计算:(a+2)(a2+4)(a4+16)(a-2).完全平方公式1利用完全平方公式计算:(1)(21x+32y)2(2)(-2m+5n)2(3)(2a+5b)2(4)(4p-2q)22利用完全平方公式计算: (1)(21x-32y 2)2(2)(1.2m-3n)2(3)(-21a+5b)2(4)(-43x-32y)23 (1)(3x-2y)2+(3x+2y)2(2)4(x-1)(x+1)-(2x+3)2(a+b)2-(a-b)2(4)(a+b-c)2(5)(x-y+z)(x+y+z) (6)(mn-1)2—(mn-1)(mn+1)4先化简,再求值:(x+y)2-4xy,其中x=12,y=9。

平方差公式练习题精选(含答案)

平方差公式练习题精选(含答案)

平方差公式练习题精选一、基础训练1.下列运算中,正确的是()A.(a+3)(a-3)=a2-3 B.(3b+2)(3b-2)=3b2-4 C.(3m-2n)(-2n-3m)=4n2-9m2 D.(x+2)(x-3)=x2-6 2.在下列多项式的乘法中,可以用平方差公式计算的是()A.(x+1)(1+x)B.(12a+b)(b-12a)C.(-a+b)(a-b)D.(x2-y)(x+y2)3.对于任意的正整数n,能整除代数式(3n+1)(3n-1)-(3-n)(3+n)的整数是() A.3 B.6 C.10 D.94.若(x-5)2=x2+kx+25,则k=()A.5 B.-5 C.10 D.-105.9.8×10.2=________; 6.a2+b2=(a+b)2+______=(a-b)2+________.7.(x-y+z)(x+y+z)=________; 8.(a+b+c)2=_______.9.(12x+3)2-(12x-3)2=________.10.(1)(2a-3b)(2a+3b);(2)(-p2+q)(-p2-q);(3)(x-2y)2;(4)(-2x-12y)2.11.(1)(2a-b)(2a+b)(4a2+b2);(2)(x+y-z)(x-y+z)-(x+y+z)(x-y-z).12.有一块边长为m的正方形空地,想在中间位置修一条“十”字型小路,•小路的宽为n,试求剩余的空地面积;用两种方法表示出来,比较这两种表示方法,•验证了什么公式?二、能力训练13.如果x2+4x+k2恰好是另一个整式的平方,那么常数k的值为() A.4 B.2 C.-2 D.±214.已知a+1a=3,则a2+21a,则a+的值是()A.1 B.7 C.9 D.1115.若a-b=2,a-c=1,则(2a-b-c)2+(c-a)2的值为()A.10 B.9 C.2 D.116.│5x-2y│·│2y-5x│的结果是()A.25x2-4y2B.25x2-20xy+4y2C.25x2+20xy+4y2D.-25x2+20xy-4y2 17.若a2+2a=1,则(a+1)2=_________.三、综合训练18.(1)已知a+b=3,ab=2,求a2+b2;(2)若已知a+b=10,a2+b2=4,ab的值呢?19.解不等式(3x-4)2>(-4+3x)(3x+4).20.观察下列各式的规律.12+(1×2)2+22=(1×2+1)2;22+(2×3)2+32=(2×3+1)2;32+(3×4)2+42=(3×4+1)2;…(1)写出第2007行的式子;(2)写出第n行的式子,并说明你的结论是正确的.。

平方差公式练习题及答案

平方差公式练习题及答案

平方差公式练习题及答案第一题:已知 a² - b² = 9,求 a² + b²的值。

解答:我们知道平方差公式为 a² - b² = (a + b)(a - b)。

根据已知条件 a² - b² = 9,我们可以设立方程 (a + b)(a - b) = 9。

由于我们需要求解 a² + b²的值,我们可以采用如下的方法:将两边平方,得到 (a + b)²(a - b)² = 9²。

化简得 (a + b)²(a - b)² = 81。

再次采用平方差公式展开,得到 (a² + 2ab + b²)(a² - 2ab + b²) = 81。

根据平方差公式展开式的特点,我们可以得到:a⁴ - (2ab)² + b⁴ = 81。

进一步化简,得到 a⁴ - 4a²b² + b⁴ = 81 。

我们需要注意到, a² + b² = (a² + 2ab + b²) - 2ab。

而根据已知条件的平方差公式,我们可以将以上等式中的 (a² + 2ab + b²) 用 9 替换,得到:a² + b² = 9 - 2ab。

将这个等式代入到前面的等式中,我们可以得到:9 - 2ab - 4a²b² + b⁴ = 81。

简化合并同类项,得到:b⁴ - 4a²b² - 2ab + 72 = 0。

这是一个四次方程,我们可以通过求解这个方程来得到 a² + b²的值。

通过因式分解的方法,我们可以得到一个解为 b = 2 。

将 b = 2 代入到原方程中,可以得到 a = ±3。

平方差公式练习题精选答案

平方差公式练习题精选答案

平方差公式1、利用平方差公式计算:〔1〕(m+2) (m-2)(2)(1+3a) (1-3a)(3) (x+5y)(x-5y)(4)(y+3z) (y-3z)2、利用平方差公式计算〔1〕(5+6x)(5-6x)(2)(x-2y)(x+2y)(3)(-m+n)(-m-n)3利用平方差公式计算- .word.z- .word.z〔1〕(1)(-41x-y)(-41x+y)(2)(ab+8)(ab-8)(3)(m+n)(m-n)+3n 24、利用平方差公式计算 (1)(a+2)(a-2)(2)(3a+2b)(3a-2b)(3)(-x+1)(-x-1)(4)(-4k+3)(-4k-3)5、利用平方差公式计算〔1〕803×797〔2〕398×4027.以下多项式的乘法中,可以用平方差公式计算的是〔〕A.〔a+b〕〔b+a〕B.〔-a+b〕〔a-b〕C.〔13a+b〕〔b-13a〕D.〔a2-b〕〔b2+a〕8.以下计算中,错误的有〔〕①〔3a+4〕〔3a-4〕=9a2-4;②〔2a2-b〕〔2a2+b〕=4a2-b2;③〔3-x〕〔x+3〕=x2-9;④〔-x+y〕·〔x+y〕=-〔x-y〕〔x+y〕=-x2-y2.A.1个B.2个C.3个D.4个9.假设x2-y2=30,且x-y=-5,那么x+y的值是〔〕A.5 B.6 C.-6 D.-510.〔-2x+y〕〔-2x-y〕=______.11.〔-3x2+2y2〕〔______〕=9x4-4y4.12.〔a+b-1〕〔a-b+1〕=〔_____〕2-〔_____〕2.- .word.z- .word.z13.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____. 14.计算:〔a+2〕〔a 2+4〕〔a 4+16〕〔a -2〕.完全平方公式1利用完全平方公式计算:(1)〔21x+32y)2(2)(-2m+5n)2(3)〔2a+5b)2(4)(4p-2q)22利用完全平方公式计算:〔1〕(21x-32y 2)2(2)(1.2m-3n)2(3)(-21a+5b)2 (4)(-43x-32y)23 (1)(3x-2y)2+(3x+2y)2(2)4(x-1)(x+1)-〔2x+3)2(a+b)2-(a-b)2(4)(a+b-c)2(5)(x-y+z)(x+y+z) (6)(mn-1)2—〔mn-1)(mn+1) - .word.z4先化简,再求值:(x+y)2-4xy,其中x=12,y=9。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教师填写
内容考试类型
绝密★启用前
平方差公式
测试时间:20分钟
一、选择题
1.运用乘法公式计算(a+3)(a-3)的结果是( )
A.a2-6a+9
B.a2-3a+9
C.a2-9
D.a2-6a-9
2.计算(3a-b)(-3a-b)等于( )
A.9a2-6ab-b2
B.-9a2-6ab-b2
C.b2-9a2
D.9a2-b2
3.用平方差公式计算(2a+3b-1)(2a-3b+1),下列变形正确的是( )
A.[2a-(3b+1)]2
B.[2a+(3b-1)][2a-(3b-1)]
C.[(2a-3b)+1][(2a-3b)-1]
D.[2a-(3b-1)]2
4.计算9982-999×997=()
A.-1
B.1
C.0
D.2
5.对于任意的正整数n,能整除代数式(3n+1)(3n-1)-(3-n)(3+n)的整数是( )
A.3
B.6
C.10
D.9
二、填空题
6.化简:(x+y)(x-y)(x2+y2)= .
7.如果(a+b+1)(a+b-1)=63,那么a+b的值为.
8.若a+b=1,a-b=2 017,则a2-b2= .
9.若(x+3)(x-3)=x2+px-9,则p的值是.
10.计算(3-1)(32+1)(34+1)(38+1)(316+1)= .
11.一个三角形的一条边长为(2a+4)cm,这条边上的高为(2a-4)cm,则这个三角形的面积为
cm2.
12.如图,某街区花园有一个边长为a m的正方形广场,为了周边建设统一,经统一规划后,南、北方向
各加长5 m,东、西方向各缩短5 m,则改造后的长方形广场的面积是m2(用含a的式子表示).
三、解答题
13.利用平方差公式计算:
(1)59.8×60.2;
(2)103×97.
14.先化简,再求值:
(a+b)(a-b)+b(a+2b)-b2,其中a=1,b=-2.
15.(2018江苏苏州吴中统测)先化简,再求值:
(2a+b)(2a-b)-b(a-b),其中a=1,b=-2.
16.(2016吉林长春中考)先化简,再求值:
(a+2)(a-2)+a(4-a),其中a=1
4
.
参考答案
一、选择题
1.答案 C (a+3)(a-3)=a2-32=a2-9,故选C.
2.答案 C 相同的项是-b,互为相反数的项是3a与-3a,故结果是(-b)2-(3a)2=b2-9a2.
3.答案B应用平方差公式必须满足:(1)一项相同;(2)另一项互为相反数,所以
(2a+3b-1)(2a-3b+1)=[2a+(3b-1)]·[2a-(3b-1)].
4.答案 B 原式=9982-(998+1)×(998-1)=9982-(9982-1)=9982-9982+1=1.
5.答案 C (3n+1)(3n-1)-(3-n)(3+n)=9n2-1-(9-n2)=10n2-10,
所以10能整除(3n+1)(3n-1)-(3-n)(3+n),故选C.
二、填空题
6.答案x4-y4
解析原式=(x2-y2)(x2+y2)=x4-y4.
7.答案±8
解析因为(a+b+1)(a+b-1)=63,所以(a+b)2-1=63,所以(a+b)2=64,所以a+b=±8.
8.答案 2 017
解析∵a+b=1,a-b=2 017,
∴a2-b2=(a+b)(a-b)=1×2 017=2 017.
9.答案0
解析∵(x+3)(x-3)=x2-9=x2+px-9,∴p=0.
10.答案1
4
(332-1)
解析原式=1
4
(3+1)(3-1)(32+1)(34+1)(38+1)(316+1)
=1
4
(32-1)(32+1)(34+1)(38+1)(316+1)
=1
4
(34-1)(34+1)(38+1)(316+1)
=1
4
(38-1)(38+1)(316+1)
=1
4
(316-1)(316+1)
=1
4
(332-1).
11.答案(2a2-8)
解析三角形的面积为1
2
·(2a+4)·(2a-4)=1
2
·(4a2-16)=(2a2-8)cm2.
12.答案(a2-100)
解析根据题意得(a+5×2)(a-5×2)=(a+10)(a-10)=a2-100,故答案为(a2-100).
三、解答题
13.解析(1)59.8×60.2=(60-0.2)×(60+0.2)=3 600-0.04=3 599.96.
(2)103×97=(100+3)×(100-3)=10 000-9=9 991.
横线以内不许答题
14.解析 原式=a 2-b 2+ab+2b 2-b 2=a 2
+ab. 当a=1,b=-2时,原式=12
+1×(-2)=-1. 15.解析 原式=4a 2
-b 2
-ab+b 2
=4a 2
-ab.
把a=1,b=-2代入,
原式=4×12
-1×(-2)=4+2=6. 16.解析 原式=a 2
-4+4a-a 2
=4a-4, 当a=1
4时,原式=4×1
4-4=-3.。

相关文档
最新文档