小学数学奥林匹克模拟试卷(答案)

合集下载

奥林匹克数学竞赛试题及答案

奥林匹克数学竞赛试题及答案

奥林匹克数学竞赛试题及答案奥林匹克数学竞赛是一项国际性的数学竞赛,旨在激发中学生对数学的兴趣和热爱。

以下是一份奥林匹克数学竞赛的模拟试题及答案,供参考:奥林匹克数学竞赛模拟试题一、选择题(每题2分,共10分)1. 如果一个数的平方等于它本身,那么这个数是:A. 0B. 1C. -1D. 0或12. 下列哪个数不是有理数?A. πB. √2C. -3D. 1/33. 将一个圆分成三个扇形,每个扇形的圆心角都是120°,那么这三个扇形的面积之和等于:A. 圆的面积B. 圆面积的1/3C. 圆面积的2/3D. 圆面积的1/24. 如果一个三角形的三边长分别为a, b, c,且满足a^2 + b^2 =c^2,那么这个三角形是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定5. 一个数列的前三项为1, 1, 2,从第四项开始,每一项都是前三项的和。

这个数列的第10项是:A. 144B. 145C. 146D. 147二、填空题(每题3分,共15分)6. 一个数的立方根等于它本身,这个数可以是______。

7. 如果一个直角三角形的两条直角边长分别为3和4,那么它的斜边长是______。

8. 一个圆的半径为5,那么它的周长是______。

9. 一个等差数列的前5项之和为50,如果这个数列的公差为3,那么它的首项是______。

10. 如果一个多项式f(x) = ax^3 + bx^2 + cx + d,其中a, b, c, d是整数,且f(1) = 5,f(-1) = -1,那么a - d的值是______。

三、解答题(每题5分,共20分)11. 证明:对于任意的正整数n,1^3 + 1^2 + 1 + ... + 1/n^3总是大于1/n。

12. 解不等式:2x^2 - 5x + 3 > 0。

13. 一个圆的直径为10,求圆内接正六边形的边长。

14. 给定一个等比数列的前三项分别为2, 6, 18,求这个数列的第20项。

通用小学数学奥林匹克模拟试卷(附答案)

通用小学数学奥林匹克模拟试卷(附答案)

模拟试卷29一、填空题:2.3支铅笔和8支圆珠笔的价钱是11.9元,7支铅笔和6支圆珠笔的价钱是11.3元,一支铅笔和一支钢笔的价钱是______元.3.比较下面两个积的大小:A=9.5876×1.23456,B=9.5875×1.23457,则A______B.第______个分数.5.从1,2,3,4,…,1997这些自然数中,最多可以取______个数,能使这些数中任意两个数的差都不等于8.6.用1至9这九个数字每个数字各一次,组成三个能被9整除的三位数,要求这三个数的和尽可能大,这三个数分别是______.7.如图,AD=DE=EC,F是BC中点,G是FC中点,如果三角形ABC的面积是24平方厘米,则阴影部分是______平方厘米.8.某次考试,A、B、C、D、E五人的平均成绩是90分,A、B两人的平均成绩是96分,C、D两人的平均成绩是92.5分,A、D两人的平均成绩是97.5分,且C比D得分少15分,则B的分数是______.9.某年级学生人数在200至250之间,若列队4人一排余1人,5人一排余3人,6人一排余5人,则这个年级有______名学生.10.商店用相同的费用购进甲、乙两种不同的糖果.已知甲种糖果每公斤18元,乙种糖果每公斤12元,如果把这两种糖果混在一起成为什锦糖,那么这种糖每公斤的成本是______元.二、解答题:1.有一个棱长是10厘米的正方体木块,在它的上、左、前三个面中心分别穿一个3厘米见方的孔,直至对面.求穿孔后木块的体积.2.分母是964的最简真分数共有多少个?3.一个城市交通道路如图,数字表示各段路的路程(单位:千米),求出图中从A到F的最短路程.4.两名运动员在长为30米的游泳池里来回游泳,甲的速度是每秒游1米,乙的速度每秒0.6米,他们同时分别从游泳池的两端出发,来回共游了10分,如果不计转身时间,那么这段时间内共相遇多少次?模拟试卷29一、填空题:2.1.8由3支铅笔+8支圆珠笔=11.9元7支铅笔+ 6支圆珠笔=11.3元得21支铅笔+ 56支圆珠笔= 83.3元21支铅笔+ 18支圆珠笔=33.9元(56- 18)支圆珠笔=83.3-33.91支圆珠笔= 1.3元所以1支铅笔= (11.9- 1.3×8)÷3=0.5(元)故1支铅笔和1支钢笔的价钱是1.8元.3.>A=9.5875×1.23456+0.0001×1.23456B=9.5875×1.23456+9.5875×0.00001因为0.0001×1.23456>9.5875×0.00001所以A>B.将分母相同的分成一组,第1组1个数,第2组3个数,第3组5个数,……,从第2组起每一组比前一组多2个数,每一组分子的规律从1开始逐项加1,和倒数第6个分数,在这串数中是5.1000每16个连续自然数中,最多可以取8个数,使得每两个数的差不等于8.1997÷16=124 (13)把1至1997的自然数分成每16个连续自然数一组,最后剩13个数为一组,共组成125组.即1,2,3,4, (16)17,18,19,20, (32)33,34,35,36, (48)…1969,1967,1968, (1984)1985,1986, (1997)每一组中取前8个数,共取出8×125=1000(个)使得其中任意两个数的差都不等于8.6.954、873、6211+ 2+ 3+ …+ 9= 45= 9×5,有5个9,由于每个三位数的各个数位上的数字之和不会超过3个9,所以这三个三位数的每一个数位上数字之和只能分别是9、18、18(合起来是5个9).要使这三个三位数的和尽可能大,各个数位上的数字之和是9的最大三位数是621,另两个数只能由9、8、7、5、4、3组成,显然百位应尽可能大,得到954、873.所以这三个数分别是954、873、621.7.14因为AD= DE= EC,所以又因为BF=FC,所以由于FG=GC,所以S阴影面积=S△ABD+S△DFE+S△GCE=8+4+2=14(平方厘米)8.97E得分是:90 ×5-96 ×2-92.5 ×2=73(分);C得分是:(92.5×2-15)÷2=85(分);D得分是:85+15=100(分);A得分是:97.5×2-100=95(分);B得分是:96×2-95=97(分).9.233人被4除余1的自然数有5,9,13,17,21,25,…,其中被5除余3的自然数有13,33,53,73,…,(相邻两数后一个数比前一个多20),其中被6除余5的自然数有53,…,且53是被4除余1,被5除余3,被6除余5的最小的一个,又4、5、6的最小公倍数是60,符合上述条件的任意整数写成60n+53,n是整数,所以这个年级的人数为:n=3,60×3+53=233(人)10.14.412、18的最小公倍数是36.为了解题方便,假设分别用36元购进甲、乙两种糖果,可购进甲种糖果36÷18=2公斤,购进乙种糖果36÷12=3公斤,两种糖果混合后总价是36×2元,总重量2+3公斤,得到什锦糖的成本是:36×2÷(2+3)=14.4(元)二、解答题:1.穿孔后木块的体积是784立方厘米.穿一个孔的体积是3×3×10=90立方厘米,穿三个孔时,体积应是:90×3-3×3×3×2=216(立方厘米)所以穿孔后木块的体积是:10×10×10-216=784(立方厘米)2.分母是964的最简真分数有480个.因为964=22×241.所以分母是964的最简真分数中不能有偶数及241的倍数,小于964的偶数有964÷2-1=481个,是241的倍数有3个,其中482是偶数,分母是964的最简真分数有:963-481-3+1=480(个)3.从A到F的最短路程是13千米从A到F有许多条路,要确定一条最短的路线,可以采用排除的方法,逐步去掉比较长的道路,最后确定一条由A到F的最短路线,根据图中给出的路程的长度,有些明显较长的路可以不去考虑.从A出发到F,有三条路线相对较短,沿AIHGF路线走,它的长度是:7+1+5+2=15(千米)沿ABCEF路线走,它的长度是.5+2+5+2=14(千米)沿AJKGF路线走,它的长度是:5+4+2+2=13(千米)所以从A到F的最短路程是13千米.4.10分钟内共相遇20次甲游30米需要30÷1=30秒,乙游30米需要30÷0.6=50秒,经过150秒,甲、乙两人同时游到两端,每隔150秒他们相遇的情况重复出现.如图,实线表示甲,虚线表示乙,两线的交点就是甲、乙相遇的地点(游泳池的两端用两条线段表示),可以看出经过150秒,甲游了5个30米,乙游了3个30米,共相遇了5次.以150秒为一个周期,10分钟是600秒,600÷150=4,有4个150秒,所以在10分钟内相遇的次数是:5×4=20(次).。

小学奥林匹克数学模拟试卷(18)

小学奥林匹克数学模拟试卷(18)

小学数学奥林匹克模拟试卷18一、填空题:1.[240-(0.125×76+12.5%×24)×8]÷14=______.2.下面的加法算式中,不同的汉字代表不同的数字,相同的汉字代表相同的数字。

那么这些不同的汉字代表的数字之和是______.3.如图,长方形ABCD的面积是1,E是BC边的中点,F是CD边的中点。

那么阴影部分的面积等于______.4.一个数除以9余8,除以6余5,这个数加上1就能被5整除,则符合条件的最小自然数是______.5.印刷某一本书的页码时,所用数码的个数是975个(如第23页用2个数码,第100页用3个数码),那么这本书应有的页数是______.6.将1至1997的自然数,分成A、B、C三组:A组:1,6,7,12,13,18,19,…B组:2,5,8,11,14,17,20,…C组:3,4,9,10,15,16,21,…则(1)B组中一共有______个自然数;(2)A组中第600个数是______;(3)1000是______组里的第______个数.则(1)2*(6*7)=______;(2)如果x*(6*7)=109,那么x=______.9.用等长的火柴棍为边长,在桌上摆大小相同的三角形(如图).摆6个三角形至少用12根,那么摆29个三角形,至少要用______根.10.一个长方体的体积是1560,它的长、宽、高均为自然数,它的棱长之和最少是______.二、解答题:1.小明妈妈比他大26岁,去年小明妈妈的年龄是小明年龄的3倍,小明今年多少岁?2.一件工作,甲独做10小时完成,乙独做12小时完成,丙独做15小时完成,现在三人合作,但甲因中途另有任务提前撤出,结果6小时完成,甲只做了多少小时?3.甲、乙、丙三种糖果每千克分别是14元、10元、8元.现把甲种糖果4千克,乙种糖果3千克,丙种糖果5千克混合在一起,问买2千克这种混合糖果需多少元?4.甲、乙两人沿铁路线相向而行,速度相同.一列火车从甲身边开过用了6秒,4分后火车又从乙身边开过用了5秒,那么从火车遇到乙开始,再过多少分甲、乙两人相遇?模拟试卷18答案一、填空题:1.10原式= [ 240- (0.125×76+ 0.125×24)×8] ÷14= [ 240- 0.125×(76+ 24)×8] ÷14= [ 240- 100]÷14= 102.20由于千位相加不向前进位,所以千位数字“我”只能是1或2.若“我”是2,则千位上的“数”是9,个位上的“学”是4,并且个位相加向十位进1;从十位数字看,“爱”是7,并且十位相加向百位进1;再看百位,7+ 5= 12,加上进位1得13,百位上的“学”得3与“学”是4矛盾,所以“我”不是2.若“我”是1,则个位上的“学”是3,并且个位相加向十位进1;由于百位结果是3,必然百位相加向千位进1,因此千位上的“数”是9,这样十位上的“爱”是7,所以1+ 3+ 9+ 7= 20.如图,连结AC,因为E、F分别是BC、DC的中点,所以BE= EC,DF= FC.由于在△ADF与△AFC中,它们的底DF= FC,高均为AD,所以这两个三角形的面积相等;同理,△ABE与△AEC的面积也相等,所以4.89由于这个数除以9余8,除以6余5,根据余数与除数差1的关系知,这个数加上1必能被9与6整除,再由已知这个数加上1就能被5整除知,这个数必是9、6、5的最小公倍数少1,9,6,5的最小公倍数是90,符合条件的最小自然数是89.5. 361一本书从第1页至第9页,共用9个数码;第10页至第99页,共用2×90=180个数码;还剩数码975- 9- 180= 786个,786÷3= 262,即从第100页到第361页,共用数码786个,所以这本书共有361页.6.(1) 666;(2) 1800;(3) C组, 334B组数的排列规律:依次用3乘以1、2、3、4…的积减去1,有3×1- 1= 2,3×2- 1= 5,3×3- 1= 8,3×4-1=11,…1997 ÷3= 665… 2,即B组中有666个自然数.A组数的排列规律:第2、4、6、8、10…个数分别是6的1、2、3、4、5…倍,所以第600个数是6的300倍,即为1800.C组数的排列规律:第1、3、5、7、9…个数分别是3的1、3、5、7、9…倍,第2、4、6、8、10…个数分别是前一个数加1得到的.1000÷3=333…1,所以1000是C组里的第334个数.8.(1)49;(2)x=429.5124个三角形也正好组成一个正六边形,至少需要[(1+2)×3-2]×6=42(根)火柴棍.余下的5个三角形至少需要9根火柴棍,因此摆29个三角形至少需要51根火柴棍(如图).10.140由于1560=3×5×8×13,根据“n个整数之积一定,则这n个整数越接近,其和越小”,所以它的棱长之和最少是:(10+12+13)×4=140二、解答题:1.14岁由于小明妈妈与小明的年龄差是不变的,于是可以知道小明去年的年龄是:26÷(3-1)=13(岁)所以小明今年是14岁.另解:设小明今年x岁,小明妈妈今年是(x+26)岁,列方程得x+26-1=3(x-1)解方程得 2x=26-1+3x=14(岁)2.1小时3.21元甲、乙、丙三种糖混合后的平均价是:(14×4+10×3+8×5)÷(4+3+5)=126÷12=10.5(元)买2千克混合糖果的价钱是:10.5×2=21(元)4.20分甲、乙两人沿铁路线相向而行,速度相同,从甲身边开过用了6秒,从乙身边开过用了5秒,说明火车与甲是同向而行,与乙是相向而行,于是甲行6秒的路程+火车车长=火车行6秒的路程火车车长-乙行5秒的路程=火车行5秒的路程由此知,火车行1秒的路程等于每人行11秒的路程,即火车的速度是人行速度的11倍,火车从甲身边开过到与乙相遇用了4分,这段路程让人步行需要4×11=44(分),由于在火车行驶4分/里,向前甲行了4分,实际余下的人步行需44-4=40分,现这40分的路段由甲乙两人相向而行,且速度相同,所以还需40÷2=20分相遇.。

2024小学三年级奥林匹克数学竞赛决赛试卷及答案

2024小学三年级奥林匹克数学竞赛决赛试卷及答案

2024小学三年级奥林匹克数学竞赛决赛试卷(满分120分,时间90分钟)一、选择题(每小题5分,共80分)1.今年是2022年(农历虎年),那么今年2月有( )天。

A.28B.29C.30D.312.得数不是2022的算式是( )。

A.2022×1B.2022×0C.2022÷1D.2022×2022÷20223.唐诗“飞流直下三千尺,疑是银河落九天”中“三千尺”大约有( )。

A.30多层楼高B.100多层楼高C.150多层楼高D.300多层楼高4.算式1+2+4+8+16+32+…+512+1024=( )。

A.2000B.2022C.2047D.20485.用选项中的3块五格拼板拼出右边的图形,没有用到的五格拼板是( )6.欧欧、小泉、小美发现了一个宝箱,宝箱里有红、黄、蓝三颗宝石,他们一人一颗,欧欧拿的不是黄宝石,小泉拿的是红宝石,那么小美拿的是( )宝石。

A.红B.黄C.蓝 D黄或蓝7.2022年成都世界乒乓球团体锦标赛,中国、美国、日本、韩国进行团体小组循环赛。

到目前为止,中国队已赛了3场,美国队赛了2场,日本队赛了1场,那么韩国队己赛了( )场。

A.1B.2C.3D.48.用七巧板摆出如图所示的正方形,移动两块积木可以得到一个三角形,移动的积木是( )。

A.1和7B.5和6C.3和4D.2和49.龙博士在古玩市场购买了9枚银币,其中有一枚是假的,假银币的外观与真银币一模一样,只是重量稍轻一些。

龙博士想用一架没有砝码的天平来称,那么他至少称( )次可以保证找出这枚假银币。

A.1B.2C.3D.410.“从前有座山,山里有座庙,庙里有个老和尚和小和尚,老和尚给小和尚讲故事:从前有座山,山里有座庙…”这是一个讲不完的故事。

如果有个不怕麻烦的小孩照这样念了2022句话,那么他念的最后一句话是( )。

A.从前有座山B.山里有座庙C.庙里有个老和尚和小和尚D.老和尚给小和尚讲故事11.在下面的一排方格中,每个方格里都写了一个数,其中任意3个连续方格中的数之和都是22,那么“我”+“是”+“中”+“国”+“好”+“娃”=( )。

小学生奥林匹克数学试卷

小学生奥林匹克数学试卷

一、选择题(每题2分,共20分)1. 下列哪个数是质数?A. 15B. 16C. 17D. 182. 小明有5个苹果,小红给了小明3个苹果,小明现在有多少个苹果?A. 2B. 3C. 5D. 83. 一个长方形的长是8厘米,宽是4厘米,它的周长是多少厘米?A. 12B. 16C. 20D. 324. 下列哪个图形是正方形?A. 图形①B. 图形②C. 图形③D. 图形④5. 小华骑自行车去公园,他先向东骑行了10千米,然后向北骑行了5千米,他离出发地有多远?A. 5千米B. 10千米C. 15千米D. 20千米6. 下列哪个数是偶数?A. 17B. 18C. 19D. 207. 一个圆的半径是3厘米,它的面积是多少平方厘米?A. 9πB. 12πC. 15πD. 18π8. 小明有20个橘子,他每天吃掉3个橘子,吃了5天后,他还剩下多少个橘子?A. 10B. 15C. 20D. 259. 下列哪个数是三位数?A. 123B. 12C. 1234D. 12.310. 小刚用4个正方体搭成了一个长方体,每个正方体的棱长是1厘米,这个长方体的体积是多少立方厘米?A. 1B. 2C. 3D. 4二、填空题(每题2分,共20分)11. 2 × 5 = ______12. 100 - 25 = ______13. 3 + 4 × 2 = ______14. 8 ÷ 2 + 3 = ______15. 7 × 6 ÷ 2 = ______16. 24 ÷ 4 = ______17. 5 × 5 + 3 = ______18. 9 × 8 - 4 = ______19. 100 - 7 × 10 = ______20. 6 × 6 ÷ 3 = ______三、解答题(每题5分,共20分)21. 小明有12个铅笔,小红有8个铅笔,他们两个人一共有多少个铅笔?22. 一个正方形的边长是6厘米,求这个正方形的面积。

小学数学奥林匹克模拟试卷三份(含答案)

小学数学奥林匹克模拟试卷三份(含答案)

模拟试卷1一、填空题:3.一个两位数,其十位与个位上的数字交换以后,所得的两位数比原来小27,则满足条件的两位数共有______个.5.图中空白部分占正方形面积的______分之______.6.甲、乙两条船,在同一条河上相距210千米.若两船相向而行,则2小时相遇;若同向而行,则14小时甲赶上乙,则甲船的速度为______.7.将11至17这七个数字,填入图中的○内,使每条线上的三个数的和相等.8.甲、乙、丙三人,平均体重60千克,甲与乙的平均体重比丙的体重多3千克,甲比丙重3千克,则乙的体重为______千克.9.有一个数,除以3的余数是2,除以4的余数是1,则这个数除以12的余数是______.10.现有七枚硬币均正面(有面值的面)朝上排成一列,若每次翻动其中的六枚,能否经过若干次的翻动,使七枚硬币的反面朝上______(填能或不能).二、解答题:1.浓度为70%的酒精溶液500克与浓度为50%的酒精溶液300克,混合后所得到的酒精溶液的浓度是多少?2.数一数图中共有三角形多少个?3.一个四位数,它的第一个数字等于这个数中数字0的个数,第二个数字表示这个数中数字1的个数,第三个数字表示这个数中数字2的个数,第四个数字等于这个数中数字3的个数,求出这个四位数.模拟试卷2一、填空题:1.用简便方法计算:(注意:1/6应为1/5)2.某工厂,三月比二月产量高20%,二月比一月产量高20%,则三月比一月高______%.3.算式:(121+122+…+170)-(41+42+…+98)的结果是______(填奇数或偶数).4.两个桶里共盛水40斤,若把第一桶里的水倒7斤到第2个桶里,两个桶里的水就一样多,则第一桶有______斤水.5.20名乒乓球运动员参加单打比赛,两两配对进行淘汰赛,要决出冠军,一共要比赛______场.6.一个六位数的各位数字都不相同,最左一位数字是3,且它能被11整除,这样的六位数中最小的是______.7.一个周长为20厘米的大圆内有许多小圆,这些小圆的圆心都在大圆的一个直径上.则小圆的周长之和为______厘米.8.某次数学竞赛,试题共有10道,每做对一题得8分,每做错一题倒扣5分.小宇最终得41分,他做对______题.9.在下面16个6之间添上+、-、×、÷(),使下面的算式成立:6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6=1997二、解答题:1.如图中,三角形的个数有多少?2.某次大会安排代表住宿,若每间2人,则有12人没有床位;若每间3人,则多出2个空床位.问宿舍共有几间?代表共有几人?3.现有10吨货物,分装在若干箱内,每箱不超过一吨,现调来若干货车,每车至多装3吨,问至少派出几辆车才能保证一次运走?4.在九个连续的自然数中,至多有多少个质数?模拟试卷3一、填空题:1.用简便方法计算下列各题:(2)1997×19961996-1996×19971997=______;(3)100+99-98-97+…+4+3-2-1=______.2.右面算式中A代表______,B代表______,C代表______,D代表______(A、B、C、D各代表一个数字,且互不相同).3.今年弟弟6岁,哥哥15岁,当两人的年龄和为65时,弟弟______岁.4.在某校周长400米的环形跑道上,每隔8米插一面红旗,然后在相邻两面红旗之间每隔2米插一面黄旗,应准备红旗______面,黄旗______面.5.在乘积1×2×3×…×98×99×100中,末尾有______个零.6.如图中,能看到的方砖有______块,看不到的方砖有______块.7.右图是一个矩形,长为10厘米,宽为5厘米,则阴影部分面积为______平方厘米.8.在已考的4次考试中,张明的平均成绩为90分(每次考试的满分是100分),为了使平均成绩尽快达到95分以上,他至少还要连考______次满分.9.现有一叠纸币,分别是贰元和伍元的纸币.把它分成钱数相等的两堆.第一堆中伍元纸币张数与贰元张数相等;第二堆中伍元与贰元的钱数相等.则这叠纸币至少有______元.10.甲、乙两人同时从相距30千米的两地出发,相向而行.甲每小时走3.5千米,乙每小时走2.5千米.与甲同时、同地、同向出发的还有一只狗,每小时跑5千米,狗碰到乙后就回头向甲跑去,碰到甲后又回头向乙跑去,……这只狗就这样往返于甲、乙之间直到二人相遇而止,则相遇时这只狗共跑了______千米.二、解答题:1.右图是某一个浅湖泊的平面图,图中曲线都是湖岸(1)若P点在岸上,则A点在岸上还是水中?(2)某人过这湖泊,他下水时脱鞋,上岸时穿鞋.若有一点B,他脱鞋的次数与穿鞋的次数和是奇数,那么B点在岸上还是水中?说明理由.2.将1~3000的整数按照下表的方式排列.用一长方形框出九个数,要使九个数的和等于(1)1997(2)2160(3)2142能否办到?若办不到,简单说明理由.若办得到,写出正方框里的最大数和最小数.3.甲、乙、丙、丁四个人比赛乒乓球,每两人要赛一场,结果甲胜了丁,并且甲、乙、丙三人胜的场数相同,问丁胜了几场?4.有四条弧线都是半径为3厘米的圆的一部分,它们成一个花瓶(如图).请你把这个花瓶切成几块,再重新组成一个正方形,并求这个正方形的面积.参考答案:模拟试卷1一、填空题:1.1.2.1又14分之1。

奥林匹克数学试卷小学

奥林匹克数学试卷小学

一、选择题(每题5分,共25分)1. 下列哪个数是质数?A. 21B. 29C. 36D. 452. 小明有苹果和橘子共36个,如果苹果和橘子的个数相同,那么小明有多少个苹果?A. 18个B. 19个C. 20个D. 21个3. 小红有5个红球,小华有3个蓝球,他们一共有多少个球?A. 8个B. 9个C. 10个D. 11个4. 一个长方形的长是8厘米,宽是4厘米,它的周长是多少厘米?A. 16厘米B. 20厘米C. 24厘米D. 28厘米5. 小刚在计算一道题目时,将一个数加了3,然后又减去了2,结果得到的答案是18,请问这个数原来是多少?B. 18C. 19D. 20二、填空题(每题5分,共25分)6. 25除以5等于______。

7. 4乘以6等于______。

8. 一个正方形的边长是3厘米,它的周长是______厘米。

9. 小明有12个巧克力,他吃掉了其中的1/4,那么他还剩下______个巧克力。

10. 一个三角形的高是6厘米,底边是8厘米,它的面积是______平方厘米。

三、解答题(每题10分,共30分)11. 小明和小华两人共有60元,小明比小华多20元,请问小明和小华各自有多少钱?12. 一个圆形的半径是5厘米,求这个圆的周长和面积。

13. 小华有若干个红球和蓝球,红球比蓝球多15个,如果小华再买5个红球,那么红球和蓝球的数量就相等了,请问小华原来有多少个红球和蓝球?四、应用题(每题15分,共30分)14. 小明家养了若干只鸡和鸭,鸡的只数是鸭的2倍,鸡和鸭的只数加起来是30只,请问小明家养了多少只鸡和鸭?15. 小华家花园的长是8米,宽是5米,他在花园的一角种了一棵树,树的影子长度是4米,请问树的影子在花园的另一角吗?为什么?答案:一、选择题1. B2. A4. B5. D二、填空题6. 57. 248. 129. 910. 24三、解答题11. 小明有40元,小华有20元。

12. 周长:2×π×5=10π厘米,面积:π×5×5=25π平方厘米。

小学数学奥林匹克试题及答案

小学数学奥林匹克试题及答案

小学数学奥林匹克试题及答案小学数学奥林匹克试题预赛(A)卷1.计算:$(1+0.12+0.23)×(0.12+0.23+0.34)-(1+0.12+0.23+0.34)×(0.12+0.23)=\_\_\_\_\_\_\_\_\_\_\_$.2.计算:$\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{ 1}{6}+\dfrac{1}{7}=\_\_\_\_\_\_\_\_\_\_\_$.3.用两个3,一个1,一个2可组成种种不同的四位数,这些四位数共有$\_\_\_\_\_\_\_\_\_\_\_$个.4.在一本数学书的插图中,有100个平行四边形。

80个长方形。

40个菱形.这本书的插图中正方形最多有$\_\_\_\_\_\_\_\_\_\_\_$.5.如下图,已知正方形ABCD和正方形CEFG,且正方形ABCD每边长为10厘米,则图中阴影(三角形BFD)部分的面积为$\_\_\_\_\_\_\_\_\_\_\_$.6.在右上图中,三个圆的半径分别为1厘米、2厘米、3厘米,AB和CD垂直且过这三个圆的共有圆心O.图中阴影部分面积与非阴影部分的面积之比是$\_\_\_\_\_\_\_\_\_\_\_$.7.在下式的圆圈和方框中,分别填入适当的自然数,使等式成立.方框中应填$\_\_\_\_\_\_\_\_\_\_\_$.circ+7)\div 5-6\times 2=\square$$8.圆珠笔和铅笔的价格比是4:3.20支圆珠笔和21支铅笔共用71.5元,则圆珠笔的单价是每支$\_\_\_\_\_\_\_\_\_\_\_$元.9.将一个四位数的数字顺序颠倒过来,得到一个新的四位数.如果新数比原数大7992,那么所有符合这样条件的四位数中原数最大的是$\_\_\_\_\_\_\_\_\_\_\_$.10.两个带小数相乘,乘积四舍五入以后是22.5.已知这两个数都只有一位小数,且个位数字都是4,则这两个数的乘积四舍五入前是$\_\_\_\_\_\_\_\_\_\_\_$.11.下面三个正方形内的数有相同的规律,请你找出它们的规律,并填出B,C,然后确定A,那么A是$\_\_\_\_\_\_\_\_\_\_\_$.begin{matrix}9 & 1 \\2 &3 &。

小学数学奥林匹克模拟试卷(答案)

小学数学奥林匹克模拟试卷(答案)

模拟试卷一、填空题:2.将1、2、3、4、5、6、8、9这八个数组成两个四位数,使这两个数的差最小,这个差是______.3.如图,将它折成一个正方体,相交于同一顶点的三个面上的数之和最大是______.4.将1至9这九个数分别填在下面九个方框中,使等式成立:5.如图,平行四边形ABCD的一边AB=8厘米,AB上的高等于3厘米,四边形EFOG的面积等于2平方厘米,则阴影部分的面积与平行四边形的面积之比是______.6.200个连续自然数的和是32300,取出其中所有的第偶数个数(第2个,第4个,……,第200个),将它们相加,则和是______.7.某人从甲地到乙地,如果每分钟走75米,迟到8分,如果每分钟走80米,迟到6分,他应以每分钟走______米的速度走才能准时到达.8.快慢两列火车的长分别是200米、300米,它们相向而行.坐在慢车上的人见快车通过此人窗口的时间是8秒,则坐在快车上的人见慢车通过此人窗口所用的时间是______秒.9.至少有一个数字是0,且能被4整除的四位数有______个.10.如图,九个小正方形内各有一个一位数,并且每行、每列及两条对角线上的三个整数的和相等,那么x=______.二、解答题:2.甲、乙、丙三人,甲每五天去李老师家,乙每四天去李老师家,丙每六天去李老师家。

三人在1997年元旦去了李老师家,下一次三人在李老师家相聚是几月几日?3.编号为1至7的7个盘子,每盘都放有玻璃球,共放有80个,其中第1号盘里放有18个,并且编号相邻的三个盘里的玻璃球数的和相等,问第6个盘中玻璃球最多可能是多少个?已知他骑车每小时行8千米,乘车每小时行16千米,则此人从家到单位的距离是多少千米?模拟试卷24一、填空题:2.137要使差最小,被减数与减数应该尽量接近.被减数的千位与减数千位的差是1,它们的末三位数,被减数应该最小,是123,减数应该最大,是986,这样得到被减数是5123,减数是4986,差等于137.3.相交于同一顶点三个面上的数之和是13.6+3+4=134.73把4234分解质因数,然后进行计算和调整,有:4234=2×29×73=58×73=29×146所以最大的两位数是73.5.1∶3因为O是AC、BD的中点,所以S△AEF+S△BGE=S△AOB-S四边形EFOG=6-2=4(平方厘米)S阴影=S平ABCD-(S△AEF+S△BGE)=12-4=8(平方厘米)S阴影∶S平ABCD=8∶24=1∶36.16200连续自然数相邻两数之差是1,所以第2个数比第1个数大1,第4个数比第3个数大1,…,第200个数比第199个数大1,100个取出的数比没取出的100个数总共多100,因此所有的第偶数个数之和是(32300+100)÷2=162007.100设从甲地出发准时到达乙地需x分,则75×(x+8)=80×(x+6)80x-75x=600-480x=24甲、乙两地距离是:80×(24+6)=2400(米)从甲地准时到达乙地这人的速度是每分走:2400÷24=100(米)8.坐在慢车上的人见快车通过此人窗口时,两列火车共行了200米,用了8秒,得到两列火车的速度和是200÷8=(25米/秒),坐在快车上的人见慢车通过此人窗口时,两列火车共行了300米,所用时间是:300÷25=12(秒).9.792个一个数能被4整除的特征是末两位数能被4整除.末两位数应是00、04、08、12、16、20、…、92、96,共25个,其中含有数字0的有7个(00、04、08、20、40、60、80),其余18个末两位都不含有数字0.一个四位数的末两位含有数字0,那么它的千位可以是1至9的任意一个,百位是0至9的任意一个,这个四位数的前两位数字共9×10=90个,则末两位含有数字0且能被4整除的四位数共有:90×7=630(个)如果末两位不含有数字0,那么要求四位数的百位是0,千位是1至9的任意一个,共有9个,则末两位不含数字0,前两位含有数字0,且能被4整除的四位数共有:9×18=162(个)所以至少有一个数字0,且能被4整除的四位数有630+162=792(个).10.x=5如图所示,a+x+f=9+x+1,有a+f=10;同理d+x+c=9+x+1得d+c=10;所以a+f+d+c=20又a+9+d=9+x+1,得a+d=x+1;c+1+f=9+x+1,得c+f==x+9,则a+d+c+f=2x+10.所以2x+10=20,x=5.二、解答题:1.厂里现有工人120名所以厂里现有工人120名.2.3月1日[5,4,6]=60,60-(31+28)=1所以下一次三人在李老师家相聚是3月1日.3.第6个盘中的玻璃球最多是12个.由于相邻三个盘中的玻璃球相等,有编号为1、4、7的盘中玻璃球均相等,等于18个,于是2、3盘中的玻璃球数的和与5、6盘中的玻璃球数的和相等,所以5、6盘中玻璃球数之和是:(80-18×3)÷2=13(个)要使第6盘中的玻璃球数最多,第5盘至少是1个(每盘都有玻璃球),所以第6盘最多可能是12个.4.此人家到单位的距离是78千米.设此人家到单位的距离是s千米,他从单位回家用了t小时,则13t=12t+6t=6S=13×6=78(千米)所以此人家到单位的距离是78千米.模拟试卷24一、填空题:2.137要使差最小,被减数与减数应该尽量接近.被减数的千位与减数千位的差是1,它们的末三位数,被减数应该最小,是123,减数应该最大,是986,这样得到被减数是5123,减数是4986,差等于137.3.相交于同一顶点三个面上的数之和是13.6+3+4=134.73把4234分解质因数,然后进行计算和调整,有:4234=2×29×73=58×73=29×146所以最大的两位数是73.5.1∶3因为O是AC、BD的中点,所以S△AEF+S△BGE=S△AOB-S四边形EFOG=6-2=4(平方厘米)S阴影=S平ABCD-(S△AEF+S△BGE)=12-4=8(平方厘米)S阴影∶S平ABCD=8∶24=1∶36.16200连续自然数相邻两数之差是1,所以第2个数比第1个数大1,第4个数比第3个数大1,…,第200个数比第199个数大1,100个取出的数比没取出的100个数总共多100,因此所有的第偶数个数之和是(32300+100)÷2=162007.100设从甲地出发准时到达乙地需x分,则75×(x+8)=80×(x+6)80x-75x=600-480x=24甲、乙两地距离是:80×(24+6)=2400(米)从甲地准时到达乙地这人的速度是每分走:2400÷24=100(米)8.坐在慢车上的人见快车通过此人窗口时,两列火车共行了200米,用了8秒,得到两列火车的速度和是200÷8=(25米/秒),坐在快车上的人见慢车通过此人窗口时,两列火车共行了300米,所用时间是:300÷25=12(秒).9.792个一个数能被4整除的特征是末两位数能被4整除.末两位数应是00、04、08、12、16、20、…、92、96,共25个,其中含有数字0的有7个(00、04、08、20、40、60、80),其余18个末两位都不含有数字0.一个四位数的末两位含有数字0,那么它的千位可以是1至9的任意一个,百位是0至9的任意一个,这个四位数的前两位数字共9×10=90个,则末两位含有数字0且能被4整除的四位数共有:90×7=630(个)如果末两位不含有数字0,那么要求四位数的百位是0,千位是1至9的任意一个,共有9个,则末两位不含数字0,前两位含有数字0,且能被4整除的四位数共有:9×18=162(个)所以至少有一个数字0,且能被4整除的四位数有630+162=792(个).10.x=5如图所示,a+x+f=9+x+1,有a+f=10;同理d+x+c=9+x+1得d+c=10;所以a+f+d+c=20又a+9+d=9+x+1,得a+d=x+1;c+1+f=9+x+1,得c+f==x+9,则a+d+c+f=2x+10.所以2x+10=20,x=5.二、解答题:1.厂里现有工人120名所以厂里现有工人120名.2.3月1日[5,4,6]=60,60-(31+28)=1所以下一次三人在李老师家相聚是3月1日.3.第6个盘中的玻璃球最多是12个.由于相邻三个盘中的玻璃球相等,有编号为1、4、7的盘中玻璃球均相等,等于18个,于是2、3盘中的玻璃球数的和与5、6盘中的玻璃球数的和相等,所以5、6盘中玻璃球数之和是:(80-18×3)÷2=13(个)要使第6盘中的玻璃球数最多,第5盘至少是1个(每盘都有玻璃球),所以第6盘最多可能是12个.4.此人家到单位的距离是78千米.设此人家到单位的距离是s千米,他从单位回家用了t小时,则13t=12t+6t=6S=13×6=78(千米)所以此人家到单位的距离是78千米.。

世界少年奥林匹克数学竞赛全真模拟卷及答案(五年级)

世界少年奥林匹克数学竞赛全真模拟卷及答案(五年级)

五年级世界少年奥林匹克数学竞赛全真模拟卷(一)姓名一、填空题(每题6分,共48分)l、按下面摆法摆80个三角形,有()个白色的。

▲▲△△▲△▲▲△△▲△▲▲……2、右图中有()个三角形。

3、用24块面积都是1平方分米的木块,拼成的长方形(不含正方形)中,最小的周长是多少分米?4、如图所示,一个矩形被分成A、B、C、D四个矩形。

现知A的面积是2㎝2,B的面积是4㎝2,C的面积是6㎝2。

那么原矩形的面积是()平方厘米。

5、找规律,填得数。

22=2×2=12×4=4;222=22×22=112×4=484;2222=222×222=1112×4=49284;…………2222222222=()2×()=()6、四位数“3AA1”是9的倍数,那么A=()。

7、最小的质数与最接近100的质数的乘积是多少?8、28的所有约数之和是多少?二、计算题(每题8分,共16分)9、计算:1.996+19.97+199.810、计算:100+99+98-97-96+95+94+93-92-91+……+10+9+8-7-6+5+4+3-2-1三、解答题(11、12、13题,每题10分,14题12分,15题14分,共56分)11、小玲问一老爷爷今年多大年龄,老爷爷说:“把我的年龄加上17后用4除,再减去15后用10乘,恰好是100岁”,那么,这位老爷爷今年多少岁?12、下面的两个正方形,边长分别是8厘米和4厘米,那么阴影部分的面积是多少平方厘米?13、幼儿园某班学生做游戏,如果每个学生分得的弹子一样多,弹子就多12颗,如果再增加12颗弹子,那么每个学生正好分得12颗,问这班有多少个学生?原有多少颗弹子?14、两列对开的火车途中相遇,甲车上的乘客从看到乙车到乙车从旁边开过去,共用6秒钟。

已知甲车每小时行45千米,乙车每小时行36千米,乙车全长多少米?15、亮亮从家步行去学校,每小时走5千米。

小学数学奥林匹克试题及答案

小学数学奥林匹克试题及答案

小学数学奥林匹克试题及答案小学数学奥林匹克试题及答案数学奥林匹克是针对小学阶段学生的数学竞赛,旨在培养孩子的数学思维和解决问题的能力。

以下是一份小学数学奥林匹克试题及答案,供家长和老师们参考。

1、有一个正方形的池塘,池塘的边长为5米。

请问池塘的周长和面积分别是多少?解:池塘的周长是20米,面积是25平方米。

2、一只青蛙一次可以跳上1级台阶,也可以跳上2级。

请问这只青蛙跳n级台阶最少要跳几次?解:当n为偶数时,青蛙需要跳n/2次;当n为奇数时,青蛙需要跳(n+1)/2次。

3、小明有4个苹果,小红有3个苹果,他们把这些苹果放在一起,请问他们一共有多少个苹果?解:一共有7个苹果。

4、一个数的平方减去这个数的本身等于14,请问这个数是多少?解:这个数是7或-7。

5、小明从家到学校有5个红绿灯,每个红绿灯有3种状态:红灯、黄灯和绿灯。

请问小明从家到学校一共有多少种不同的红绿灯组合?解:小明从家到学校一共有3^5=243种不同的红绿灯组合。

希望以上试题和答案能够为家长和老师们提供一些帮助。

也建议家长们在平时的生活中多引导孩子发现生活中的数学问题,培养孩子的数学思维和解决问题的能力。

小学数学奥林匹克竞赛试题及答案小学数学奥林匹克竞赛试题及答案一、选择题1、以下哪个数是质数? A. 10 B. 17 C. 23 D. 25 答案:B2、下列哪个图形是正方形? A. ① B. ② C. ③ D. ④答案:C3、下列哪个算式的结果为偶数? A. 2 + 4 + 6 + ... + 100 B. 3 + 6 + 9 + ... + 99 C. 1 + 3 + 5 + ... + 99 D. 1 + 4 + 7 + ... + 100 答案:A二、填空题4、一个长方形的长比宽多2,若长和宽均为整数,则这个长方形的面积最小为______。

答案:641、若将1至200的整数均匀写在一张纸上,则纸上所有数字的总和为______。

2020年奥林匹克数学竞赛模拟试题(小升初可用含答案)

2020年奥林匹克数学竞赛模拟试题(小升初可用含答案)

2020年六年级奥林匹克数学竞赛模拟试题(小升初可用)时间:120分钟 满分:150分 一、填空(每空2分,共20分)1.自然数360一共有__________个因数.2.如果甲数比乙数少71,那么乙数就比甲数多__________. 3.找规律:0、1、3、8、21、__________、144、377.4.一个最简分数,若分子加3,约分之后得32,若分子减3,约分后得61,这个分数是______. 5.定义新运算:A &B=2A+B,若A &2A &3A &4A &5A=171,则A 得值为_________. 6.89个连续的8相乘:888888⨯⋅⋅⋅⨯⨯⨯⨯⨯的积的个位是_________.7.一辆汽车从甲地到乙地每小时行驶40千米,返回时每小时行驶50千米,这辆汽车往返甲乙两地的平均速度为_________.8.一个各面均涂有红色正方体,棱长为1分米,把它锯成棱长为1厘米的小正方体,则三面涂有红色的小正方体有_________个,四面均没有涂色的小正方体占全部小正方体的_________.9.在一个正六边形的纸片内有60个点,以这60个点和6边形的6个顶点为三角形,最多能画出____________个.10.一个集装箱,它的内尺寸是181818⨯⨯,现在有一批货箱,它的外部尺寸是941⨯⨯,这个集装箱能装__________个货箱. 二、判断题(每题1分,共5分)1.83的分子增加6,要使分数大小不变,分母也应该增加6. ( ) 2.任何质数加上2仍是质数. ( ) 3.把50分解质因数是552150⨯⨯⨯= ( ) 4.如果()()20003219994321+⋅⋅⋅++⨯+⋅⋅⋅++++=A()()19994322000321+⋅⋅⋅+++⨯+⋅⋅⋅+++=B ,那么A 与B 比较,较大数是A. ( )5.有10根小木棒长度分别为19cm 17cm 13cm 11cm 7cm 6cm 5cm 4cm 3cm 2cm 、、、、、、、、、,每次用3根小棒围成一个三角形,共可以围成11个不同的三角形. ( ) 三、选择题。

小学奥林匹克数学模拟训练(7)

小学奥林匹克数学模拟训练(7)

小学奥数模拟训练及答案 7一、填空题1. 计算: 3-5+7-9+11-13+…+1995-1997+1999=_____。

2. 一辆货车从甲城到乙城需8小时,一辆客车从乙城到甲城需6小时,货车开了两小时后,客车出发,客车出发后____小时两车相遇。

3. 某笔奖金原计划8人均分,现退出一人,其余每人多得2元,则这笔奖金共_____元。

4. 两个数4000000004和5000000005的乘积的各位数字和是_____。

5. 16÷(0.40+0.41+0.42+…+0.59)的商的整数部分是_____。

6. 游泳池里,一些学生在学游泳,男同学一律戴蓝色游泳帽,女同学一律戴红色游泳帽。

有趣的是,在每个男同学看来,蓝色游泳帽与红色游泳帽一样多;而在每个女同学看来,蓝色游泳帽多一倍。

那么游泳池里有____个学生在学游泳。

7. 有黑白小球各三个,平均分装在、甲、乙、丙三只小盒里,并在盒子外面贴上“白、白”(甲),“黑、黑”(乙),“黑、白”(丙)的小纸片,但是没有一只小盒里装的小球的颜色与纸片上的相符合,现已知丙盒子里装一个白色小球,那么这三个盒子里装的两只小球颜色分别为_____。

8. 七名学生在一次数学竞赛中共得110分,各人得分互不相同,其中得分最高的是19分,那么最低得分至少是_____分。

9. 如图,在一个长为60厘米,宽为30厘米的长方形黑板上涂满白色,现有一块长为10厘米的长方形黑板擦,用它在黑板内紧紧沿着黑板的边擦黑板一周(黑板擦只作平移,不旋转)。

如果黑板上没有擦到部分的面积恰好是黑板面积的一半,那么这个黑板擦的宽是_____厘米。

10306010. 如图,三角形中一共有____个梯形。

二、解答题11. 用1,9,9,8四个数字可以组成若干个不同的四位数,所有这些四位数的平均值是多少?12. 如图,在梯形ABCD 中,对角线AC 、BD 相交于O 点,OE 平行于AB 交腰BC 于E 点,如果三角形OBC 的面积是115平方厘米,求三角形ADE 的面积?13. 某工程先由甲独做63天,再由乙单独做28天即可完成;如果由甲、乙两人合作,需要48天完成。

数学奥林匹克小学五年级竞赛试卷及答案

数学奥林匹克小学五年级竞赛试卷及答案

数学奥林匹克小学五年级竞赛试卷及答案1.两个数的和是61.6,其中一个数的小数点向右移动一位,就与另一个数相同。

两个数分别是(23.2)、(38.4)。

2.有三根木料,打算把每根锯成3段,每锯开一处需要3分钟,全部锯完需要(9)分钟。

3.XXX同学的家住在5楼,每层楼梯有16级,她从1楼走到5楼,共要走(64)级楼梯。

4.把一张边长24厘米的正方形纸对折4次后得到一个小正方形,这个小正方形的面积是(3)平方厘米。

5.一副扑克牌有54张,至少抽取(5)张扑克牌,方能使其中至少有两张牌有相同的点数。

6.一个长方形的长为9厘米,把它的长的一边减少3厘米,另一边不变,面积就减少9平方厘米,这时变成的梯形面积是(27)平方厘米。

7.XXX和XXX两人同时从甲、乙两地相向而行,XXX每分钟行a米,XXX每分钟行b米,行了4分钟两人相遇。

甲、乙两地的路程是((a+b)*2)米。

8.街道上有一排路灯,共40根,每相邻两根距离原来是45米,现在要改成30米,可以有(24)根路灯不需要移动。

9.XXX计算20道题目,规定做对一道题得5分,做错一道题反扣3分。

结果XXX20道题都做,却只得了60分,问他做对了(12)题。

10.五(1)班的同学去划船。

他们算了一下,如果增加一条船,正好每条船坐6人;如果减少一条船,正好每条船坐9人。

这个班共有(27)名同学。

11.×12.√13.√14.√15.√16.12517.819.D(通用公式为面积=底×高)20.A(因为XXX和农民不同岁,所以XXX是农民,剩下的XXX是工人)21.720022.31.2523.16平方分米(大正方形面积减去四个小正方形面积)24.火车速度为16米/秒,车长为300米解题思路:根据题意,可以列出两个方程式:1200=75v+15v(火车在桥上和信号杆上的时间之和),300=v×t(车长等于速度乘以时间)。

解方程可得到火车速度和车长。

小学数学奥林匹克模拟试卷附答案

小学数学奥林匹克模拟试卷附答案

模拟试卷一、填空题:2.乔乔每天早上步行上学,如果每分走50米,则要迟到5分,如果每分走70米,则可提前5分到校.乔乔到学校的路程是______.3.三个连续自然数的乘积是504,则这三个数是______.4.现在是九点,时针与分针第二次重合时的时刻是______.5.如果把一个数码6写在某个自然数的右端,该数增加了7999A,这里的A表示一个看不清的数码,则A=______,这个数是______.7.两个数的最大公约数是126,最小公倍数是7938,其中一个数是1134,则另一个数是______.8.如图所示,正方形ABCD的面积为2平方厘米,它的对角线长AC=2厘米,扇形ACD是以D为圆心,以AD为半径的圆面积的一部分,那么阴影部分的面积是______平方厘米.9.如图中的正方体,用两个平面去截这个正方体,请你在这个正立方体的展开图中画出相应的截线.10.用一个自然数去除另一个整数,商是28,余数是10,且被除数、除数、商数、余数的和是715,则被除数为______,除数为______.二、解答题:1.一只船在河里航行,顺流而行时航速为每小时20千米.已知此船顺水航行3小时和逆水航行5小时所行的路程相等,问船速和水速分别为多少?2.蔡明家有很多书,他把这些书借给同班同学看,他先借给了甲2本3.某班有26个女生,在期末考试中全班有34人超过95分,问:男生中超过95分的比女生中未超过95分的多几人?4.某小商店进了三种不同的果仁,所用的钱一样多.已知三种果仁的价钱分别是每斤7元、8元和9元,若将三种果仁混合后再卖,那么,混合后果仁的成本是每斤多少元?模拟试卷40一、填空题:2.1750米3.7,8,9504=2×2×2×7×9=7×8×9分针走一圈60个格,时针走5个格.在九点时,分针指12,时针指9,分针与时针第二次重合,就是使分针比时针多走45+60=105格,需要:5.A=8,8888设这个自然数为x,则有:10x+6-x=7999A∴9x=7999A-6.又∵等号右边是9的倍数,∴A=8,x=8888.6.119970或519975∵45=5×9,∴y只可取0或5.当y=0时,根据9|x11970及数的整除性质可知:x=1;当y=5时,根据9|x19975及数的整隐性质可知:x=5.∴满足条件的六位数是119970或5199757.882因为7938÷1134=7,因而7是另一个数的因子,所以,另一个数为126×7=882.8.π-2∵SABCD=AB2=2(平方厘米), AC=2(厘米)9.10.654,23按题意,被除数+除数=715-28-10=677除数=(677-10)÷(28+1)=667÷29=667÷29=23被除数=677-23=654二、解答题:1.船速:16千米/时,水速:4千米/时逆水速度:20×3÷5=12(千米/时)船速:(20+12)÷2=16(千米/时)水流速度:(20-12)÷2=4(千米/时)出蔡明共有34本书.3.8人设男生中超过95分的人有x个,则女生中未超过95分的有26-(34-x)=(x-8)人.所以,男生中超过95分的比女生中未超过95分的人多x-(x-8)=8人.4.7.92元由7、8、9的最小公倍数为504可知,用504元能分别买三种果仁:72斤、63斤、56斤,所以,三种果仁混合后每斤的成本为:504×3÷(72+63+56)≈7.92(元).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

模拟试卷
一、填空题:
2.将1、2、3、4、5、6、8、9这八个数组成两个四位数,使这两个数的差最小,这个差是______.
3.如图,将它折成一个正方体,相交于同一顶点的三个面上的数之和最大是______.
4.将1至9这九个数分别填在下面九个方框中,使等式成立:
5.如图,平行四边形ABCD的一边AB=8厘米,AB上的高等于3厘米,四边形EFOG的面积等于2平方厘米,则阴影部分的面积与平行四边形的面积之比是______.
6.200个连续自然数的和是32300,取出其中所有的第偶数个数(第2个,第4个,……,第200个),将它们相加,则和是______.
7.某人从甲地到乙地,如果每分钟走75米,迟到8分,如果每分钟走80米,迟到6分,他应以每分钟走______米的速度走才能准时到达.
8.快慢两列火车的长分别是200米、300米,它们相向而行.坐在慢车上的人见快车通过此人窗口的时间是8秒,则坐在快车上的人见慢车通过此人窗口所用的时间是______秒.
9.至少有一个数字是0,且能被4整除的四位数有______个.
10.如图,九个小正方形内各有一个一位数,并且每行、每列及两条对角线上的三个整数的和相等,那么x=______.
二、解答题:
2.甲、乙、丙三人,甲每五天去李老师家,乙每四天去李老师家,丙每六天去李老师家。

三人在1997年元旦去了李老师家,下一次三人在李老师家相聚是几月几日?
3.编号为1至7的7个盘子,每盘都放有玻璃球,共放有80个,其中第1号盘里放有18个,并且编号相邻的三个盘里的玻璃球数的和相等,问第6个盘中玻璃球最多可能是多少个?
已知他骑车每小时行8千米,乘车每小时行16千米,则此人从家到单位的距离是多少千米?
模拟试卷24
一、填空题:
2.137
要使差最小,被减数与减数应该尽量接近.被减数的千位与减数千位的差是1,它们的末三位数,被减数应该最小,是123,减数应该最大,是986,这样得到被减数是5123,减数是4986,差等于137.
3.相交于同一顶点三个面上的数之和是13.
6+3+4=13
4.73
把4234分解质因数,然后进行计算和调整,有:4234=2×29×73=58×73=29×146
所以最大的两位数是73.
5.1∶3
因为O是AC、BD的中点,所以
S△AEF+S△BGE=S△AOB-S四边形EFOG
=6-2=4(平方厘米)
S阴影=S平ABCD-(S△AEF+S△BGE)
=12-4=8(平方厘米)
S阴影∶S平ABCD=8∶24=1∶3
6.16200
连续自然数相邻两数之差是1,所以第2个数比第1个数大1,第4个数比第3个数大1,…,第200个数比第199个数大1,100个取出的数比没取出的100个数总共多100,因此所有的第偶数个数之和是
(32300+100)÷2=16200
7.100
设从甲地出发准时到达乙地需x分,则
75×(x+8)=80×(x+6)
80x-75x=600-480
x=24
甲、乙两地距离是:80×(24+6)=2400(米)
从甲地准时到达乙地这人的速度是每分走:
2400÷24=100(米)
8.坐在慢车上的人见快车通过此人窗口时,两列火车共行了200米,用了8秒,得到两列火车的速度和是200÷8=(25米/秒),坐在快车上的人见慢车通过此人窗口时,两列火车共行了300米,所用时间是:300÷25=12(秒).
9.792个
一个数能被4整除的特征是末两位数能被4整除.末两位数应是00、04、08、12、16、20、…、92、96,共25个,其中含有数字0的有7个(00、04、08、20、40、60、80),其余18个末两位都不含有数字0.
一个四位数的末两位含有数字0,那么它的千位可以是1至9的任意一个,百位是0至9的任意一个,这个四位数的前两位数字共9×10=90个,则末两位含有数字0且能被4整除的四位数共有:
90×7=630(个)
如果末两位不含有数字0,那么要求四位数的百位是0,千位是1至9的任意一个,共有9个,则末两位不含数字0,前两位含有数字0,且能被4整除的四位数共有:
9×18=162(个)
所以至少有一个数字0,且能被4整除的四位数有630+162=792(个).
10.x=5
如图所示,a+x+f=9+x+1,有a+f=10;同理d+x+c=9+x+1得d+c=10;
所以a+f+d+c=20
又a+9+d=9+x+1,得a+d=x+1;
c+1+f=9+x+1,得c+f==x+9,
则a+d+c+f=2x+10.
所以2x+10=20,x=5.
二、解答题:
1.厂里现有工人120名
所以厂里现有工人120名.
2.3月1日
[5,4,6]=60,60-(31+28)=1
所以下一次三人在李老师家相聚是3月1日.
3.第6个盘中的玻璃球最多是12个.
由于相邻三个盘中的玻璃球相等,有编号为1、4、7的盘中玻璃球均相等,等于18个,于是2、3盘中的玻璃球数的和与5、6盘中的玻璃球数的和相等,所以5、6盘中玻璃球数之和是:
(80-18×3)÷2=13(个)
要使第6盘中的玻璃球数最多,第5盘至少是1个(每盘都有玻璃球),所以第6盘最多可能是12个.4.此人家到单位的距离是78千米.设此人家到单位的距离是s千米,他从单位回家用了t小时,则
13t=12t+6
t=6
S=13×6=78(千米)
所以此人家到单位的距离是78千米.
模拟试卷24
一、填空题:
2.137
要使差最小,被减数与减数应该尽量接近.被减数的千位与减数千位的差是1,它们的末三位数,被减数应该最小,是123,减数应该最大,是986,这样得到被减数是5123,减数是4986,差等于137.
3.相交于同一顶点三个面上的数之和是13.
6+3+4=13
4.73
把4234分解质因数,然后进行计算和调整,有:4234=2×29×73=58×73=29×146
所以最大的两位数是73.
5.1∶3
因为O是AC、BD的中点,所以
S△AEF+S△BGE=S△AOB-S四边形EFOG
=6-2=4(平方厘米)
S阴影=S平ABCD-(S△AEF+S△BGE)
=12-4=8(平方厘米)
S阴影∶S平ABCD=8∶24=1∶3
6.16200
连续自然数相邻两数之差是1,所以第2个数比第1个数大1,第4个数比第3个数大1,…,第200个数比第199个数大1,100个取出的数比没取出的100个数总共多100,因此所有的第偶数个数之和是
(32300+100)÷2=16200
7.100
设从甲地出发准时到达乙地需x分,则
75×(x+8)=80×(x+6)
80x-75x=600-480
x=24
甲、乙两地距离是:80×(24+6)=2400(米)
从甲地准时到达乙地这人的速度是每分走:
2400÷24=100(米)
8.坐在慢车上的人见快车通过此人窗口时,两列火车共行了200米,用了8秒,得到两列火车的速度和是200÷8=(25米/秒),坐在快车上的人见慢车通过此人窗口时,两列火车共行了300米,所用时间是:300÷25=12(秒).
9.792个
一个数能被4整除的特征是末两位数能被4整除.末两位数应是00、04、08、12、16、20、…、92、96,共25个,其中含有数字0的有7个(00、04、08、20、40、60、80),其余18个末两位都不含有数字0.
一个四位数的末两位含有数字0,那么它的千位可以是1至9的任意一个,百位是0至9的任意一个,这个四位数的前两位数字共9×10=90个,则末两位含有数字0且能被4整除的四位数共有:
90×7=630(个)
如果末两位不含有数字0,那么要求四位数的百位是0,千位是1至9的任意一个,共有9个,则末两位不含数字0,前两位含有数字0,且能被4整除的四位数共有:
9×18=162(个)
所以至少有一个数字0,且能被4整除的四位数有630+162=792(个).
10.x=5
如图所示,a+x+f=9+x+1,有a+f=10;同理d+x+c=9+x+1得d+c=10;
所以a+f+d+c=20
又a+9+d=9+x+1,得a+d=x+1;
c+1+f=9+x+1,得c+f==x+9,
则a+d+c+f=2x+10.
所以2x+10=20,x=5.
二、解答题:
1.厂里现有工人120名
所以厂里现有工人120名.
2.3月1日
[5,4,6]=60,60-(31+28)=1
所以下一次三人在李老师家相聚是3月1日.
3.第6个盘中的玻璃球最多是12个.
由于相邻三个盘中的玻璃球相等,有编号为1、4、7的盘中玻璃球均相等,等于18个,于是2、3盘中的玻璃球数的和与5、6盘中的玻璃球数的和相等,所以5、6盘中玻璃球数之和是:
(80-18×3)÷2=13(个)
要使第6盘中的玻璃球数最多,第5盘至少是1个(每盘都有玻璃球),所以第6盘最多可能是12个.4.此人家到单位的距离是78千米.设此人家到单位的距离是s千米,他从单位回家用了t小时,则
13t=12t+6
t=6
S=13×6=78(千米)
所以此人家到单位的距离是78千米.。

相关文档
最新文档