小学各年级奥数学习重点难点分析
小学各年级奥数学习重点难点分析
小学奥数学习是培养学生数学思维能力和解决问题的能力的重要环节。
不同年级的学习重点和难点也会有所不同。
本文将对小学各年级奥数学习的重点和难点进行分析。
一、一年级奥数学习重点和难点1.认识和使用数字:一年级学生需要通过对数字的认识和使用来构建基础数学概念,比如数值的大小比较、数的组成和拆分、数的序列等。
这对于学生来说是一个新的挑战,需要老师通过游戏和实践活动来培养学生的数字意识和计数技巧。
2.加法和减法的初步掌握:一年级学生在奥数学习中需要初步掌握加法和减法的基本概念和运算方法。
他们需要学会通过实际操作和图形表示来理解加减法的运算过程,并能够进行简单的列竖式计算。
二、二年级奥数学习重点和难点1.加减法的深入学习:二年级学生需要进一步深入学习加减法的运算方法和技巧。
他们需要学会分别使用竖式和横式来进行加减法计算,并能够通过比较运算符号的大小来判断运算结果的大小。
2.乘法的初步学习:二年级学生需要初步学习乘法的概念和运算方法。
他们需要学会使用乘法口诀表来进行快速计算,并能够通过实际问题来应用乘法运算。
三、三年级奥数学习重点和难点1.乘法和除法的深入学习:三年级学生需要进一步深入学习乘法和除法的运算方法和技巧。
他们需要学会使用列竖式和长除法来进行乘除法的计算,并能够通过实际问题来应用乘除法运算。
2.分数的初步学习:三年级学生需要初步学习分数的概念和运算方法。
他们需要学会通过分形图或者具体物品来表示分数,并能够进行简单的分数运算和比较。
四、四年级奥数学习重点和难点1.分数和小数的深入学习:四年级学生需要进一步深入学习分数和小数的概念和运算方法。
他们需要学会通过数线图和具体物品来表示分数和小数,并能够进行复杂的分数和小数运算。
2.几何图形和坐标系的学习:四年级学生需要学会认识和绘制常见的几何图形,并能够通过坐标系来描述和解决几何问题。
五、五年级奥数学习重点和难点1.数据统计和概率的学习:五年级学生需要学会对数据进行收集、整理、分析和描述,并能够应用统计的方法来解决实际问题。
小学各阶段奥数重点难点
小学各阶段奥数重点难点小学各阶段奥数重点难点小学一年级1. 巧算与速算的基本知识对于一年级的学生来说,计算是学生学习时遇到的第一个问题。
如果能够在看似无序的算式中寻找到一定的规律,化繁为简,那么学生一定能够增强学习数学的信心,提高学习数学的兴趣。
另外,计算与速算是各种后续问题学习的基础。
学好数学,首先就要过计算这关。
2. 认识并学会数各种基本图形正方形、长方体、圆和立方体等是小学学习中最常见的图形。
通过系统的指导,使一年级的学生能够计算出各种基本图形的个数;使学生建立起有序思维,为建立思维模式打下基础。
3. 学习简单的枚举法枚举法对于一年级的学生来说的确是有一定的困难。
在奥数课本中,介绍这一难题时采用数数这种更为直观的方式,将复杂抽象的问题形象化,便于孩子们理解。
枚举法训练的重点在于有序的思维方式,学习之初将抽象问题形象化,能够更好地引导学生去主动思考,建立起自己的思维方式。
4. 数字的奇与偶、不等与相等等关于数论的基础知识数论问题是后续学习中的一个重点,而这学期将要学到的:数字的奇与偶、不等与相等等无疑将会是今后学习的基础,在这里我们把数论问题分解为各种类型逐一讲解,使奥数学习更加系统。
小学二年级1、计算要过关对于二年级学生的奥数学习来说,最先碰到的问题就是计算问题,计算问题是重点也是难点。
根据学校数学的学习情况,孩子还没有学习乘除法的列竖式,尤其是乘法的列竖式在二年级奥数的学习中要求的比较多。
所以对于学习下册奥数的学生,尤其是有志于准备尖子班考试的学生,首先计算关一定要过。
2、枚举是难点对于二年级的学生来说,有序思维和抽象思维是比较困难的,对于问题,二年级的学生更多的愿意以凑数来尝试解答问题。
而枚举法的问题需要的就是孩子的有序思维,比如奥数课本上册几枚硬币凑钱的方法,下册的整数拆分都属于枚举法的问题。
这类问题不仅要求孩子要有序,同时直观性不强,对于孩子理解有一定困难。
建议家长可以比较抽象的问题形象化,比如上面举到的汉堡和汽水的例子就更加形象。
六年级奥数鸡兔同笼问题(假设法)重难点突破-小学数学六年级上册-奥数试题及答案----
六年级奥数鸡兔同笼问题(假设法)重难点突破小学数学六年级上册奥数试题及答案苏教版六年级奥数鸡兔同笼问题(假设法)重难点突破一、热点、考点回顾1.假设法解体的思考方法是先通过假设来改变题目的条件,然后再和已知条件配合推算。
有些题目用假设法思考,能找到巧妙的解答思路。
运用假设法时,可以假设数量增加或减少,从而与已知条件产生联系;也可以假设某个量的分率与另一个量的分率一样,再根据乘法分配律求出这个分率对应的和,最后依据它与实际条件的矛盾求解。
2.对于鸡兔同笼问题来说,题中一般有两个未知量,通常假设成只有一个未知量,再将假设后得的条件与题中实际条件进行比较,利用比较的结果进行分析,找到解题思路二、典型例题例1 甲、乙两数之和是185,已知甲数的1/4与乙数的1/5的和是42,求两数各是多少?变式训练1:小明参加有奖竞答活动,共20题。
规定每答对一题可得10分,答错一题倒扣10分,不答的题按答错处理,结果小明得160分,小明答对了多少题?例2 笼中有若干只鸡和兔,共有50个头和140只脚,问鸡兔各有多少只?变式训练2:甲乙两个容器中共有药水2000毫升,从甲中取出,从乙中取出,结果容器中还剩下1400毫升。
这两个容器原来各有多少毫升?例3 彩色电视机和黑白电视机共250台。
如果彩色电视机卖出1/9,则比黑白电视机多5台。
问:两种电视机原来各有多少台?变式训练3:姐妹俩养兔120只,如果姐姐卖掉1/7,还比妹妹多10只,姐姐和妹妹各养了多少只兔?例4 甲、乙两数的和是300,甲数的2/5比乙数的1/4多55,甲、乙两数各是多少?变式训练4:师傅和徒弟共加工零件840个,师傅加工零件的个数的5/8比徒弟加工零件个数的2/3多60个,师傅和徒弟各加工零件多少个?三、课堂练习1.金放在水里称,重量减轻1/19,银放在水里称,重量减少1/10,一块重770克的金银合金,放在水里称是720克,这块合金含金、银各多少克?2.某中学去年共招新生475人,今年共招新生640人,其中初中招的新生比去年增加48%,高中招的新生比去年增加20%,今年初、高中各招收新生多少人?3.袋子里原有红球和黄球共119个。
四年级上册奥数(教案)第5讲:错中求解
多少?师:要想求出正确的和,就必须知道什么?生:正确的两个加数。
师:从题中条件中我们知道,两个加数都写错了,怎么样变为正确的加数呢?生:变不了。
师:其实我们可以根据错误的加数,减去多加上的数,加上少加上的数,就可以解决。
师:根据题意,一个加数个位上的7被写成了2,个位上跟原来比怎么样?生:一个加数的个位上的7错误地写成2,实际上是少加了5。
师:另一个加数十位上的4错误地写成8,十位跟原来比会有什么不一样呢?生:另一个加数十位上的4错误地写成8,实际上是多加了40;师:现在是比原来多加了数,还是少加了数?生:用多加的数40减去少加的数5,就应该是多加了40-5=35。
师:如何得到正确的答案呢?生:根据和的变化规律,如果一个加数增加一个数,另一个加数不变,那么它们的和也增加同一个数。
反过来想用错误的答案1995减去多算的(40-5)就可以得到正确的答案为1960。
板书:个位上少加了:7-2=5;十位上多加了:8-4=4,也就是多加了40;共多加了40-5=351995-35=1960答:原来两个数相加的正确答案是1960。
练习1:(6分)米德在计算两个数相加时,把一个加数个位的2错写成6,把另一个加数百位上的7错写成3,所得和是2003,原来两个数相加的正确答案是多少?分析:根据题意,一个加数个位上的2被写成了6,多加了4;另一个加数百位上的7被写成3,少加了400。
这样所得的和比原来多了400-4=396。
所以,原来两个数相加的正确答案是2003+(400-4)=2399。
板书:个位上多加了:6-2=4。
百位上少加了:7-3=4,也就是少加了400;400-4=3962003+396=2399答:正确的和应该是2399。
(二)例题2:(13分)欧拉做减法题时,把被减数个位上的7错写成0,把十位上的6错写成2,这样算得的结果是513。
正确的差应该是多少?师:我们知道被减数-减数=差。
师:根据题意,我们要想求出正确的差,就应该从错误的被减数出发。
小学奥数习题难度分析
小学奥数习题难度分析一、课内拓展(难度二星,每题五分,共八题)题型分以下五个板块:1、计算这里以整算和猛算为主,所以难度是很低的,您的孩子在这一块要争取拿满分,平时做套题时这一块要特别细心,计算是很容易因为粗心而丢分的!2、基础应用题(1-2题)既然是基础应用题,考的知识点肯定就不难了,基本上复习好老师上课讲过的应用题中的基本类型就没问题了。
3、几何考点包括勾股定理、图形的面积公式、等积变换、一半模型、差不变等,难度也不大,但是要会灵活应用,看到题目的一些关键字就会想到用什么知识点。
比如只要看到题目里面有谁的面积比谁大(小)多少,就要想到用差不变来做,这些都是老师上课时重点强调过的哦!所以在备考阶段可以有目的性的多做这几点知识点方面的题,以期达到灵活运用。
4、计数方法以枚举为主,所以相信您的孩子细心的话肯定是没有问题的!5、数论这一块出题没有很明显的规律,但是数论的几个大的知识点还是要复习好的,比如分解质因数、整除、同余。
这一部分您的孩子要争取拿到五题,其实只要备考重点放在把计算、基础应用题、计数这三块,五题就很容易拿下了!二、奥数基础(难度三星,每题十分,共五题)这一部分考点包括数列、数表、数字迷、定义新运算,有些题的难度甚至比第一部分还低,其中定义新运算家长们要注意了,这类题难度是不大,但是如果孩子在审题时没读懂题目意思就会很难下笔了,所以您的孩子在备考遇到这类题型时一定不要着急,要耐心的'审题!这一部分孩子们要争取拿到三题!三、思维发展(难度五星,每题十二分,共五题)这一部分是整张试卷的难点,命题人都是参考外国试题,比如几何参考日本、计数参考俄罗斯、代数参考美国,但是无论他们参考哪个国家的试题,考点肯定是不会超出我们的授课范围的。
其中代数一般会以行程问题作为压轴题出现,所以您的孩子备考时行程问题要重点复习了。
几何以五大模型为基础,当然,一般情况下,一道几何题肯定是掺杂了还几个模型的,但是老师在上课时说过,几大模型都是以等积变化为基础的,所以核心还是等积变化!由于这一部分比较难,所以争取拿到一题就很好了!整张试卷的并不一定是由易到难的,由于考试时间有限,当您的孩子在碰到很难、苦思冥想三分钟都没有头绪的题时,请让他马上跳过做下一题,我们并不需要每题都做,但是我们必须把会做的题都拿下!。
二年级奥数题难点
二年级奥数题难点
1. 计算问题:对于二年级的学生来说,计算问题是一个重点和难点,特别是乘法和除法的计算。
例如,学生需要掌握乘法的基本原理,理解乘法口诀的含义,以及能够应用乘法来解决实际问题。
2. 应用题:应用题是二年级奥数中的另一个难点。
学生需要理解问题的背景,找出相关的数学信息,并能够将这些信息转化为数学模型。
此外,学生还需要理解并能够应用基本的数学概念和原理,如加减法、乘法和除法等。
3. 逻辑思维问题:二年级的学生正处于形象思维向逻辑思维过渡的阶段,所以逻辑问题对他们来说可能会有一些困难。
这些问题通常需要学生理解和运用一些基本的逻辑关系和原理,如空间关系、顺序关系等。
4. 规律问题:规律问题需要学生发现和运用一些模式和顺序。
这需要学生有一定的观察力和归纳推理能力。
5. 组合和排列问题:这类问题需要学生理解和运用基本的组合和排列原理,例如在给定的一组物品中选择一些物品的组合方式等。
小学4-5年级奥数重难点解析
小学各年级奥数重难点解析(四、五、六)四年级是一个承前启后的阶段,学习内容的难度和广度有所增加,各种竞赛任务和招生考试的成绩重要性大大增加,不论自己的孩子是刚刚开始学习奥数,还是已经着手为竞赛、升学做准备,如何更好的完成四年级的学习计划,如何做好四年级和五年级的过渡,如何规划小升初之前的这两年时间是每个家长都要面对的问题。
学习重点难点解析1计算计算是贯穿整个小学阶段的重点,每个年级奥数的学习都以计算为基础,较好的计算能力是学好其它章节,取得优异成绩的保证。
每个年级的计算有每个年级的特点,四年级的计算以加入了小数的计算为主,对于奥数基础扎实的同学并且希望在五年级取得一些成绩的同学还应该加入一些分数的计算。
四年级计算应该掌握的重点题型有多位数的计算,小数的基本运算,小数的简便运算。
其中,多位数的计算主要以通过缩放讲多位数凑成各位数全是9的多位数,再利用乘法的分配率进行计算。
小数的简便运算主要与等差数列求和、乘法的分配率和结合率、换元法等结合在一起,需要同学们对各种题型熟练的掌握,尤其是多位数的计算。
最后,小数计算的重点还是最基础的小数的加减乘除混合运算,在初学小数时由于小数点的原因计算经常出错,如果计算不准确,再好的方法和技巧都无从谈起。
所以,四年级学习计算的重点在于以基础计算为主,掌握各种简便运算技巧,提高准确度和速度。
2平均数问题在学习平均数问题的时候一定要先对平均数的概念有很好的理解。
我们在授课过程中经常发现绝大多数同学在解平均数问题时经常犯一个错,尤其是在行程问题中的一道题,错误率最高。
小明从学校到家速度为12,从家到学校速度为24,问往返的平均速度是多少?很多同学答案都是18,误以为平均数度就是速度的平均,这是不对的。
在学习平均数问题的时候还要会利用基准数处理一大串数据的求和问题和求平均数的问题。
很多复杂的平均数问题都是可以利用浓度三角的方法来解决的,尤其是思维导引中后面的一些复杂的平均数问题,同学们应该尝试用浓度三角的方法来解决平均数问题。
小学一到六年级奥数学习重点难点分析
一、基本数学运算小学阶段的奥数学习首先要扎实掌握基本的数学运算,包括加减乘除四则运算以及分数、百分数、小数等的运算。
这是数学学习的基础,需要不断练习和巩固。
二、数的认识与计算数的认识与计算是小学奥数学习的核心内容,包括整数、分数、小数的认识与计算,以及数的性质、数形关系等。
这方面的难点在于学生对于概念的理解和转化能力的培养,需要通过具体的实例和练习进行巩固。
三、数的应用问题数的应用问题是小学奥数学习的重点和难点之一,要求学生将所学的数学知识应用到实际问题中进行解决。
这方面的挑战在于学生需要具备一定的问题分析和解决能力,能够将问题抽象化,运用数学模型进行求解。
四、几何形状与空间思维几何形状与空间思维是小学奥数学习的另一个重点和难点,包括平面图形的认识与性质、空间图形的认识与构造、坐标系与方位关系等。
这方面的难点在于学生需要具备一定的几何直观感觉和空间想象力,能够准确理解和描述几何形状。
五、综合应用与拓展小学奥数学习的另一个重点是综合应用与拓展,包括对于数学模型的应用,对于数学问题的探究和拓展等。
这方面的难点在于学生需要具备一定的数学思维和创造力,能够灵活运用所学的数学知识解决各种问题。
六、题型分析与解题技巧小学奥数学习还需要学生熟悉不同题型的特点和解题技巧,包括逻辑推理、问题求解、证明方法等。
这方面的难点在于学生需要具备一定的思维灵活性和解题技巧,能够根据题目的要求灵活运用相应的方法进行解题。
总之,小学一到六年级的奥数学习的重点和难点主要包括基本数学运算、数的认识与计算、数的应用问题、几何形状与空间思维、综合应用与拓展以及题型分析与解题技巧等方面。
学生在学习中需要注重基础知识的巩固和应用能力的培养,同时注重培养数学思维和解题能力,才能在奥数学习中取得良好的成绩。
小学一到六年级奥数学习重点难点分析
一、数学基础知识的学习重点和难点1.数的认识和运算:包括加减乘除四则运算、整数运算、分数运算、小数运算等。
初级阶段的重点在于掌握计算的基本方法,而中高级阶段则需要掌握运算规律和解决实际问题的能力。
2.几何图形和空间关系:包括平面图形的认识和性质、角度和边的关系、空间图形的认识和性质等。
初级阶段的重点在于几何图形的分类和基本性质的掌握,而中高级阶段则需要掌握几何证明和解决实际问题的能力。
3.数据统计与概率:包括数据的收集和整理、数据的分析和解读、概率的认识和计算等。
初级阶段的重点在于数据的整理和简单的统计处理,而中高级阶段则需要掌握复杂数据的统计和概率计算方法。
二、奥数思维能力的培养重点和难点1.推理与判断能力:奥数中常涉及到的领域有逻辑思维、数学归纳和定理推理等。
初级阶段的重点在于培养学生的思维灵活性和逻辑推理的能力,而中高级阶段则需要培养学生的定理证明和逻辑推理的能力。
2.问题解决能力:奥数中的问题往往需要运用多个数学知识点并进行抽象和变形。
初级阶段的重点在于培养学生的问题理解和分析能力,而中高级阶段则需要培养学生的问题解决思路和方法的灵活运用能力。
3.综合应用能力:奥数中的问题往往涉及到多个领域的知识点和方法。
初级阶段的重点在于培养学生的知识综合运用能力,而中高级阶段则需要培养学生将数学知识应用到实际问题中的能力。
三、奥数竞赛技巧的培养重点和难点1.快速计算和心算能力:奥数竞赛中往往有限时限,需要学生具备快速计算和心算的能力。
初级阶段的重点在于培养学生的计算速度和准确性,而中高级阶段则需要培养学生的心算和估算能力。
2.答题技巧和解题方法:奥数竞赛中常考查一些特定的解题方法和技巧。
初级阶段的重点在于培养学生的题目理解和答题技巧,而中高级阶段则需要培养学生的解题思路和方法的灵活运用能力。
3.考试心态和时间管理:奥数竞赛中的考试压力较大,需要学生具备良好的考试心态和时间管理能力。
初级阶段的重点在于培养学生的自信心和冷静应对能力,而中高级阶段则需要培养学生的时间安排和解题速度的平衡能力。
小学奥数重点难点讲解
小学奥数重点难点讲解随着教育的普及和竞争的加剧,越来越多的家长开始关注孩子的数学学习。
而小学奥数作为一种培养孩子数学思维和解题能力的有效途径,备受家长和孩子的青睐。
然而,小学奥数对于许多孩子来说,仍然存在一些重点和难点。
本文将对小学奥数的重点和难点进行讲解,并提供相应的解题方法和技巧。
一、重点难点一:整数的运算整数的运算是小学奥数的基础知识,也是孩子们最早接触的数学概念之一。
但是对于一些孩子来说,整数的运算仍然存在难点。
1. 加减法运算加法和减法运算是整数运算的基础,需要孩子掌握正确的运算规则和方法。
遇到整数相加时,如果两个整数的符号相同,则将绝对值相加并保留相同的符号;如果两个整数的符号不同,则将绝对值相减并保留绝对值较大的符号。
对于减法运算,可以将减法转化为加法,即将减数取相反数,然后进行加法运算。
2. 乘法运算乘法运算是整数运算中的重点难点之一。
当两个整数都为正数或者都为负数时,结果为正数;当两个整数符号不同时,结果为负数。
孩子可以通过画图或者使用数轴来帮助理解和解决乘法运算问题。
3. 除法运算除法运算是整数运算中的另一个难点。
当除数和被除数符号相同时,结果为正数;当除数和被除数符号不同时,结果为负数。
在解决除法运算问题时,可以借助计算器等工具来检验结果的准确性。
二、重点难点二:比例与比例应用比例是小学奥数的重要内容之一,涉及到比例的概念、比例尺、比例方程等知识点。
1. 比例的概念比例是指两个或多个数之间的关系,常用分数或者比来表示。
例如,当两个数的比为3:5时,可以表示为3/5。
孩子们需要理解比例的含义,并能够根据比例关系进行计算和运用。
2. 比例尺比例尺是指地图上的距离与实际距离之间的比例关系。
例如,当地图上的长度为实际长度的1/1000时,可以表示为1:1000。
在解决比例尺问题时,孩子们需要根据比例关系进行计算和推导。
3. 比例方程比例方程是指含有比例关系的方程式。
孩子们需要根据已知的比例关系,建立相应的比例方程,并解方程求解未知量。
小学各年级奥数学习方法及重难点
小学各年级奥数学习方法及重难点奥数的学习不是每位学生都一定适合,但掌握好奥数的学习技巧,注重孩子在各个阶段的奥数学习习惯及方法的培养,也能取到意想不到的效果。
小学一年级的学习应以培养兴趣为主,只有在低年级时培养起良好的学习兴趣,养成良好的思维习惯,才能够在以后的学习中取得更快的进步。
这个阶段孩子需要积累的是,简单的运算知识和规律,简单图形的认识和分析能力,找规律,让孩子学会一种尝试的方法,简单的逻辑推理能力。
课堂上既想让他们学到知识又想让他们感到轻松有趣,所以对他们采取不同的教学方式,以故事、诗歌、谜语为载体来开展教学的,对孩子来说是在娱乐中学习,并没有您想象中的那么枯燥、乏味。
二年级的学生应把养成好的学习习惯和良好的思维方式作为一个长期学习的重点,而这个习惯都是从小就开始注重培养起来的。
二年级的孩子在习惯上还比拟有可塑性,着重培养良好的学习习惯;假设是一旦不注意养成了习惯,以后等孩子大了要想再改就比拟困难了。
孩子在进入三年级后便会开始接触专题知识,从难度上来讲,专题知识的难度一定会上一个档次。
所以,在专题知识的学习上应该提早准备,而二年级是做好这个准备的最正确时期。
开拓学生的思维,提升学生的数学能力,打好数学根底。
同时兴趣也是学好奥数必不可少的前提条件。
培养奥数思维和兴趣,为以后的三年级奥数做好铺垫。
三年级是学习奥数至关重要的时期,三年级也是开拓思维的时间。
孩子已经掌握了根本的计算能力,逻辑思维能力等,对图形也有一定的认识。
从三年级起,大量的奥数专题便开始有所接触,因此,在专题的学习初期一定要打下良好的根底,好多五六年级专题知识学习比拟差的学生正是因为三四年级根底知识没有学好的缘故。
三年级不可小视——小升初的序幕开始慢慢拉开!它是考证的前奏、能力培养的起点、重点校培训班的开始,从三年级开始各个重点校开始通过培训班的形式筛选精英,像人大附、101等等,为小升初提前培养优秀生源。
考进重点校培训班,标志着我们向成功跨进了一大步!从三年级起,便开始接触大量的奥数专题,到了四五年级,奥数的专题又有所增加和深入。
小学各年级奥数重点与难点分析
小学各年级奥数重点与难点分析
小学各年级奥数重点与难点分析
一年级奥数
二年级奥数:
二年级是开发孩子智力、形成良好思维习惯的最佳时期,学习奥数不仅能够极大地锻炼孩子的思维能力,也能为孩子之后的学习打
下坚实的.基础。
对于二年级的学生家长来说,激发孩子对华数的兴
趣是最主要的。
三年级奥数:
三年级的奥数学习是小学奥数最重要的基础阶段,只有牢固掌握了三年级奥数最基本的知识技巧,才能有效的促进今后的数学学习,最终在竞赛、以及中有所斩获。
五年级奥数:
五年级下学期是前的最后一个学期,对于整个小学阶段的数学学习起着至关重要的作用,只有这一关过好了,才可能在的备考中游
刃有余。
所以这学期的奥数学习应该有更强的针对性,针对自己的
实际情况和目标选择合适的班型。
六年级奥数:
现在正是特别关键的一个时期,无论从信息还是自身的学习方面都要做好充分的准备,我想通过最近巨人组织的活动大家至少能够
看到是有一批非常敬业的老师希望能够给大家提供尽量多的机会,
后面还会陆续有活动,各位家长在信息和机会方面肯定不用担心。
小学三年级数学奥数难点及解析
小学三年级数学奥数难点及解析三年级奥数题:和差倍数问题(一)1、南京长江大桥共分两层,上层是公路桥,下层是铁路桥。
铁路桥和公路桥共长11270米,铁路桥比公路桥长2270米,问南京长江大桥的公路和铁路桥各长多少米?2、三个小组共有180人,一、二两个小组人数之和比第三小组多20人,第一小组比第二小组少2人,求第一小组的人数。
3、甲、乙两筐苹果,甲筐比乙筐多19千克,从甲筐取出多少千克放入乙筐,就可以使乙筐中的苹果比甲筐的多3千克?三年级奥数题:和差倍数问题(二)1、在一个减法算式里,被减数、减数与差的和等于120,而减数是差的3倍,那么差等于多少?2、已知两个数的商是4,而这两个数的差是39,那么这两个数中较小的一个是多少?3、姐姐做自然练习比妹妹做算术练习多用48分钟,比妹妹做英语练习多用42分钟,妹妹做算术、英语两门练习共用了44分钟,那么妹妹做英语练习用了多少分钟?三年级奥数题:和差倍数问题(三)1、已知△,○,□是三个不同的数,并且△+△+△=○+○,○+○+○+○=□+□+□,△+○+○+□=60,那么△+○+□等于多少?2、用中国象棋的车、马、炮分别表示不同的自然数。
如果,车÷马=2,炮÷车=4,炮-马=56,那么“车+马+炮”等于多少?3、聪聪用10元钱买了3支圆珠笔和7本练习本,剩下的钱若买一支圆珠笔就少1角4分;若买一本练习本还多8角,问一支圆珠笔的售价是多少元?三年级奥数题:和差倍数问题(四)1、甲、乙两位学生原计划每天自学的时间相同,若甲每天增加自学时间半小时,乙每天减少自学时间半小时,则乙自学6天的时间仅相等于甲自学一天的时间。
问:甲、乙原订每天自学的时间是多少分钟?2、一大块金帝牌巧克力可以分成若干大小一样的正方形小块。
小明和小强各有一大块金帝巧克力,他们同时开始吃第一小块巧克力。
小明每隔20分钟吃1小块,14时40分吃最后1小方块;小强每隔30分钟吃1小块,18时吃最后1小方块。
最新小学一到六年级奥数学习重点难点分析
小学一到六年级奥数学习重点难点分析首先,奥数教学能够激发小学生学习数学的兴趣。
奥数题目往往从结构到解法都充满着艺术的魅力,易于小学生积极探索解法,而在探索解法的过程中,小学生又亲身体验到数学思想的博大精深和数学方法的创造力,因此会产生进一步对学习数学的向往感、入迷感。
其次,奥数教学能够激发小学生的数学审美感。
数学的美在许多的奥数题目中得到了集中的体现。
让我们先来观察奥数题的—系列解题技巧:构造、对应、逆推、区分、染色、对称、配对、特殊化、一般化、优化、假设、辅助图表……令人眼花缭乱。
这些解题技巧是一种高智力水平的艺术,能带给小学生—种独立于诗歌、音乐、绘画之外的另一种审美感受。
再次,奥数教学能够激发小学生的创造力。
奥数题的求解更要依赖的是整体全面的洞察力、敏锐的直觉和独创性的构思,这些正是创造力构成的主要元素,而这些创造力的主要元素也正是系统接受过奥数教学的小学生之所长。
一年级奥数一年级的孩子刚刚踏入小学。
不论是学习习惯还是学习方法,都需要全面的培养和正确的引导,这就需要家长对整个六年的小学学习有一个全面的规划。
学习重点难点解析:1.巧算与速算的基本知识:对于一年级的学生来说,计算是学生学习时遇到的第一个问题。
如果能够在看似无序的算式中寻找到一定的规律,化繁为简,那么学生一定能够增强学习数学的信心,提高学习数学的兴趣。
另外,计算与速算是各种后续问题学习的基础。
学好数学,首先就要过计算这关。
2.认识并学会数各种基本图形:正方形、长方体、圆和立方体等是小学学习中最常见的图形。
通过系统的指导,使一年级的学生能够计算出各种基本图形的个数;使学生建立起有序思维,为建立思维模式打下基础。
3.学习简单的枚举法:枚举法对于一年级的学生来说的确是有一定的困难。
在华数课本中,介绍这一难题时采用数数这种更为直观的方式,将复杂抽象的问题形象化,便于孩子们理解。
枚举法训练的重点在于有序的思维方式,学习之初将抽象问题形象化,能够更好地引导学生去主动思考,建立起自己的思维方式。
一年级奥数有几种走法的教学重点和难点
一年级奥数有几种走法的教学重点和难点一年级奥数的教学重点和难点一年级是学生接触奥数的起点,对于他们来说,奥数的学习是一项全新而有趣的挑战。
在教学过程中,我们需要关注一些重点和难点,以帮助学生更好地理解和掌握奥数的知识和技巧。
让我们来看一下一年级奥数的教学重点。
1. 培养学生的逻辑思维能力:奥数注重培养学生的逻辑思维能力,帮助他们学会运用各种数学方法解决问题。
在一年级奥数的教学中,我们需要通过一些趣味性强的数学题目,如找规律、推理等,引导学生进行逻辑思考,提高他们的思维灵活性和创造力。
2. 培养学生的数学兴趣和学习动力:一年级是学生接触奥数的第一年,他们对于奥数的兴趣和学习动力需要我们来激发。
教师可以通过讲解奥数的应用场景,如游戏、趣味数学等,让学生感受到数学的乐趣和实际运用的意义,从而激发他们的学习兴趣和动力。
3. 培养学生的问题解决能力:奥数强调解决问题的能力,而不仅仅是记忆和应用公式。
在一年级奥数的教学中,我们需要培养学生分析问题、寻找解决方法的能力。
可以通过一些趣味的问题,引导学生思考不同的解决思路和方法,培养他们的问题解决能力。
接下来,让我们来看一下一年级奥数的教学难点。
1. 抽象概念的理解:一年级的学生对于抽象概念的理解能力有限,因此在教学中,我们需要通过具体的实例和图形来帮助学生理解抽象概念。
比如,在教学数字的大小关系时,可以使用具体的物体来比较大小,让学生通过实际操作来理解数字的大小关系。
2. 逻辑思维的培养:逻辑思维是奥数的重要内容,但对于一年级的学生来说,逻辑思维能力还比较薄弱。
在教学中,我们可以通过一些趣味性强的题目,如找规律、推理等,培养学生的逻辑思维能力。
同时,要注重引导学生进行思考和讨论,帮助他们建立正确的逻辑思维方式。
3. 解决问题的能力:奥数强调解决问题的能力,而不仅仅是应用公式。
对于一年级的学生来说,解决问题的能力还比较薄弱。
在教学中,我们需要通过一些具体的问题,引导学生思考解决问题的方法和步骤。
小学数学奥数难点归纳总结
小学数学奥数难点归纳总结数学奥林匹克竞赛是培养学生逻辑思维、数学推理能力以及解决复杂数学问题的一个重要途径。
在小学阶段,对于数学奥数的难点进行归纳总结,有助于帮助学生更好地应对挑战,提高数学竞赛的成绩。
本文将对小学数学奥数的难点进行归纳总结,并给出相应的解决思路。
一、整数与分数的运算整数与分数的运算是小学数学奥数的一个难点。
在奥数竞赛中,常常涉及到整数与分数之间的四则运算、约分、通分等问题。
学生在解决这类问题时,往往容易出现错误。
解决思路:1. 充分理解整数与分数的概念。
整数表示没有小数部分的数,而分数是用分子与分母表示有小数部分的数。
2. 运用通分的方法,将分数转化为相同分母的分数,再进行运算。
3. 运用约分的方法,将分数化简为最简形式。
二、几何图形的性质几何图形的性质是小学数学奥数的另一个难点。
在奥数竞赛中,经常涉及到平行线、垂直线、三角形、矩形等图形的性质与关系问题。
学生在解决这类问题时,容易出现理解不准确、分析不全面等问题。
解决思路:1. 充分理解几何图形的定义与性质。
掌握平行线、垂直线的判定方法,了解三角形、矩形等图形的性质。
2. 运用图形的相关性质进行推理,合理利用已知条件来推出所需结论。
3. 多画图、分析图形,帮助理解问题与寻找解决方法。
三、方程与方程组的解法方程与方程组的解法是小学数学奥数的又一个难点。
在奥数竞赛中,常常涉及到一元一次方程、一元二次方程以及二元一次方程组等问题。
学生在解决这类问题时,容易出现计算错误、方程式设立错误等情况。
解决思路:1. 掌握方程与方程组的解的概念与求解方法。
了解一元一次方程通解、一元二次方程求根公式以及二元一次方程组的解的求法。
2. 理清问题,确定所需求解的未知数,正确设立方程或方程组。
3. 运用代入、消元、配方法等解题技巧,求得方程或方程组的解。
四、排列组合与概率的问题排列组合与概率是小学数学奥数的一大难点。
在奥数竞赛中,常常涉及到排列组合的问题,以及基本的概率计算与应用。
【四年级奥数】商的变化规律
【四年级奥数】商的变化规律一、知识点分析(1)重点、考点:发现并运用商的变化规律。
(2)难点、易错点:商的变化规律的探究策略。
(3)教学目标1、让学生探索并掌握一个被除数不变,另一个除数乘(或除以)几,商也乘(或除以)几的变化规律;能将这规律恰当地运用于实际计算和解决简单的实际问题。
2、使学生经历商的变化规律的发现过程,初步获得探索和发现数学规律的基本方法和经验。
二、同步教学:商的变化规律【知识点梳理】商的变化规律1、如果两个数相除,如果被除数乘几,除数不变,则商就乘几。
2、如果两个数相除,如果被除数除以几,除数不变,则商就除以几。
3、两个数相除,如果被除数不变,除数乘几,则商就除以几。
4、两个数相除,如果被除数不变,除数除以几,则商就乘几。
【例题详解】例1在除法算式128÷4中,如果被除数乘2,除数稳定,商有甚么变革?拓展1在除法算式128÷4中,如果被除数稳定,除数乘8,商有甚么变革?拓展2在除法算式128÷4中,如果被除数乘4,除数乘2,商有甚么变革?拓展3在除法算式128÷4中,如果被除数乘3,除数乘6,商有甚么变革?拓展4在除法算式144÷12中,被除数乘6,除数除以3,商有甚么变革?拓展5在除法算式128÷4中,被除数除以4,除数乘2,商有甚么变革?拓展6在除法算式128÷4中,被除数除以8,除数除以4,商有甚么变革?例2两个数相除,商是210,如果被除数乘3,除数稳定,新的商是多少?拓展1两个数相除,商是210,如果被除数稳定,除数乘3,新的商是多少?拓展2两个数相除,商是210,如果被除数乘3,除数乘6,新的商是多少?例3两个数相除,商是7,余数是8.如果被除数和除数同时乘10,商是多少?余数是多少?例4XXX在做一道除法算式题时,将被除数乘5,除数乘6,得到的商是80,正确的商应该是多少?【课堂练】1、XXX在做一道除法算式题时,将被除数乘3,除数乘4,得到的商是150,正确的商应该是多少?2、兰兰在做一道整数除法算式题时,将被除数末尾的一个“”漏写了,结果得到的商是20,正确的商应该是多少?3、XXX在做一道整数除法算式题时,给被除数开端多写了一个“”,结果得到的商是250。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
来源:杭州奥数网 2011-12-07 10:26:46[标签:小学奥数学习重点难点]奥数精华资讯免费订阅奥数对小学数学教学将产生以下积极作用:首先,奥数教学能够激发小学生学习数学的兴趣。
奥数题目往往从结构到解法都充满着艺术的魅力,易于小学生积极探索解法,而在探索解法的过程中,小学生又亲身体验到数学思想的博大精深和数学方法的创造力,因此会产生进一步对学习数学的向往感、入迷感。
其次,奥数教学能够激发小学生的数学审美感。
数学的美在许多的奥数题目中得到了集中的体现。
让我们先来观察奥数题的—系列解题技巧:构造、对应、逆推、区分、染色、对称、配对、特殊化、一般化、优化、假设、辅助图表……令人眼花缭乱。
这些解题技巧是一种高智力水平的艺术,能带给小学生—种独立于诗歌、音乐、绘画之外的另一种审美感受。
再次,奥数教学能够激发小学生的创造力。
奥数题的求解更要依赖的是整体全面的洞察力、敏锐的直觉和独创性的构思,这些正是创造力构成的主要元素,而这些创造力的主要元素也正是系统接受过奥数教学的小学生之所长。
一年级奥数:一年级的孩子刚刚踏入小学。
不论是学习习惯还是学习方法,都需要全面的培养和正确的引导,这就需要家长对整个六年的小学学习有一个全面的规划。
学习重点难点解析:1.巧算与速算的基本知识:对于一年级的学生来说,计算是学生学习时遇到的第一个问题。
如果能够在看似无序的算式中寻找到一定的规律,化繁为简,那么学生一定能够增强学习数学的信心,提高学习数学的兴趣。
另外,计算与速算是各种后续问题学习的基础。
学好数学,首先就要过计算这关。
2.认识并学会数各种基本图形:正方形、长方体、圆和立方体等是小学学习中最常见的图形。
通过系统的指导,使一年级的学生能够计算出各种基本图形的个数;使学生建立起有序思维,为建立思维模式打下基础。
3.学习简单的枚举法:枚举法对于一年级的学生来说的确是有一定的困难。
在华数课本中,介绍这一难题时采用数数这种更为直观的方式,将复杂抽象的问题形象化,便于孩子们理解。
枚举法训练的重点在于有序的思维方式,学习之初将抽象问题形象化,能够更好地引导学生去主动思考,建立起自己的思维方式。
4.数字的奇与偶、不等与相等等关于数论的基础知识:数论问题是后续学习中的一个重点,而这学期将要学到的:数字的奇与偶、不等与相等等无疑将会是今后学习的基础,在这里我们把数论问题分解为各种类型逐一讲解,使华数学习更加系统。
二年级奥数:二年级是开发孩子智力、形成良好思维习惯的最佳时期,学习奥数不仅能够极大地锻炼孩子的思维能力,也能为孩子之后的学习打下坚实的基础。
对于二年级的学生家长来说,激发孩子对华数的兴趣是最主要的。
学习重点难点解析:1、计算要过关:对于二年级学生的奥数学习来说,最先碰到的问题就是计算问题,计算问题是重点也是难点。
根据学校数学的学习情况,孩子还没有学习乘除法的列竖式,尤其是乘法的列竖式在二年级华数的学习中要求的比较多,比如华数课本下册第三讲速算与巧算中就多次用到了乘法,另外一些应用题中也会有所应用。
所以对于学习下册华数的学生,首先计算关一定要过。
2、枚举是难点:对于二年级的学生来说,有序思维和抽象思维是比较困难的,对于问题,二年级的学生更多的愿意以凑数来尝试解答问题。
而枚举法的问题需要的就是孩子的有序思维,比如华数课本上册几枚硬币凑钱的方法,下册的整数拆分都属于枚举法的问题。
这类问题不仅要求孩子要有序,同时直观性不强,对于孩子理解有一定困难。
建议家长可以比较抽象的问题形象化,比如上面举到的汉堡和汽水的例子就更加形象。
3、应用题要接触:二年级华数课本下册中的后几讲已经接触到了应用题部分,对于倍数等概念也有学习,建议学有余力的孩子可以适当接触三年级中的部分问题,但是难度不要像三年级华数课本中那样大。
三年级奥数:三年级的奥数学习是小学奥数最重要的基础阶段,只有牢固掌握了三年级奥数最基本的知识技巧,才能有效的促进今后的数学学习,最终在竞赛、以及小升初中有所斩获。
学习重点难点解析:三年级属于奥数学习打基础阶段,孩子进入三年级以后,随着年龄的增长,孩子的计算能力,认知能力,逻辑分析能力相比于一、二年级有很大的提高,这个时期是奥数思维形成的关键时期,是学奥数的黄金时段,所以能否把握住三年级这一黄金时段,关系到以后小升初的成与败。
下面就简要介绍一下三年级下学期学习的关键知识点。
1.运用运算定律及性质速算与巧算计算是数学学习的基本知识,也是学好奥数的基础。
能否又快又准的算出答案,是历年数学竞赛考察的一个基本点。
在三年级,主要学习了加法与乘法运算定律,其中应用乘法分配率是竞赛中考察巧算的一大重点;除此之外,竞赛中还时常考察带符号“搬家”与添括号/去括号这两种通过改变运算顺序进而简便运算的思路。
例如:17×5+17×7+13×5+13×7问题解析:由于四个加项没有公共的乘数,不能直接应用乘法分配率。
可以考虑先分组应用乘法分配率,在观察的思路,原式=(17×5+17×7)+(13×5+13×7)=17×(5+7)+ 13×(5+7)=17×12+13×12=(17+13)×12=30×12=3602.学习假设思想解决鸡兔同笼问题鸡兔同笼问题源于我国1500年前左右的伟大数学著作《孙子算经》,其中记载的31题,“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何”翻译成现代文就是说有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚。
求笼中各有几只鸡和兔问题解析:我们知道每只鸡2只脚,每只兔子4只脚,我们不妨假设笼子里面只有鸡,那么应该有只脚,而事实上有94只脚,原因就是我们把一部分兔子假设成了鸡。
我们知道,每只兔子比鸡多2只脚,那么一共应该有只兔子,剩下了35–12=23只鸡。
对于一般的鸡兔同笼问题,我们有鸡数=(兔的脚数总头数–总脚数)(兔的脚数-鸡的脚数)兔数=(总脚数-鸡的脚数总头数)(兔的脚数-鸡的脚数)3.平均数应用题“平均数”这个数学概念在同学们的日常学习和生活中经常用到。
例如,三年级上学期期末考完试,可以计算全班同学的数学“平均成绩”,同学与爸爸妈妈三个人的“平均年龄”等等,都是我们经常碰到的求平均数的问题。
根据我们所举的例子,可以总结出求平均数的一般公式:总数和÷人数(或个数)=平均数。
比如说人大附小三年级(一)班第2小组5名同学上学期期末数学成绩分别是93,95,98,97,90,那么第2小组5名同学的数学平均分是多少呢问题解析:根据我们总结的公式,首先可以求出第2小组5名同学数学的总分一共是9 3+95+98+97+92=475,所以他们的平均分是475÷5=95(分)。
4.和差倍应用题和差倍问题是由和差问题、和倍问题、差倍问题三类问题组成的。
和倍问题是已知大小两个数的和与它们的倍数关系,求大小两个数的应用题,一般可应用公式:数量和÷对应的倍数和=“1”倍量;差倍问题就是已知大小两个数的差和它们的倍数关系,求大小两个数的应用题,一般可应用公式:数量差÷对应的倍数差=“1”倍量;和差问题是已知大小两个数的和与两个数的差,求大小两个数的应用题一般可应用公式:大数=(数量和+数量差)÷2,小数=(数量和-数量差)÷2。
为了帮助我们理解题意,弄清题目中两种量彼此间的关系,常采用画线段图的方法以线段的相对长度来表示两种量间的关系,以便于找到解题的途径。
5.年龄问题基本的年龄问题可以说是和差倍问题生活化的典型应用。
同时,年龄问题也有其鲜明的特点:任何两个人之间的年龄差保持不变。
解决年龄问题,关键就是要抓住以上两点。
例如:哥哥两年后的年龄是弟弟年龄的2倍,今年哥哥比弟弟大5岁,那么今年弟弟多少岁问题解析:由于两人之间的年龄差不变,在2年之后哥哥仍然比弟弟大5岁,那时哥哥是弟弟年龄的2倍,这就变成了一道差倍问题,也就是说弟弟的年龄在2年后是5÷(2-1)=5(岁),所以今年弟弟5-2=3(岁)。
四年级奥数:四年级是一个承前启后的阶段,学习内容的难度和广度有所增加,各种竞赛任务和招生考试的成绩重要性大大增加,不论自己的孩子是刚刚开始学习奥数,还是已经着手为竞赛、升学做准备,如何更好的完成四年级的学习计划,如何做好四年级和五年级的过渡,如何规划小升初之前的这两年时间是每个家长都要面对的问题。
学习重点难点解析:1、计算:计算是贯穿整个小学阶段的重点,每个年级奥数的学习都以计算为基础,较好的计算能力是学好其它章节,取得优异成绩的保证。
每个年级的计算有每个年级的特点,四年级的计算以加入了小数的计算为主,对于奥数基础扎实的同学并且希望在五年级取得一些成绩的同学还应该加入一些分数的计算。
四年级计算应该掌握的重点题型有多位数的计算,小数的基本运算,小数的简便运算等。
其中,多位数的计算主要以通过缩放讲多位数凑成各位数全是9的多位数,再利用乘法的分配率进行计算。
小数的简便运算主要与等差数列求和、乘法的分配率和结合率、换元法等结合在一起,需要同学们对各种题型熟练的掌握,尤其是多位数的计算。
最后,小数计算的重点还是最基础的小数的加减乘除混合运算,在初学小数时由于小数点的原因计算经常出错,如果计算不准确,再好的方法和技巧都无从谈起。
所以,四年级学习计算的重点在于以基础计算为主,掌握各种简便运算技巧,提高准确度和速度。
2、平均数问题:在学习平均数问题的时候一定要先对平均数的概念有很好的理解。
我们在授课过程中经常发现绝大多数同学在解平均数问题时经常犯一个错,尤其是在行程问题中的一道题,错误率最高。
小明从学校到家速度为12,从家到学校速度为24,问往返的平均速度是多少很多同学答案都是18,误以为平均数度就是速度的平均,这是不对的。
在学习平均数问题的时候还要会利用基准数处理一大串数据的求和问题和求平均数的问题。
很多复杂的平均数问题都是可以利用浓度三角的方法来解决的,尤其是思维导引中后面的一些复杂的平均数问题,同学们应该尝试用浓度三角的方法来解决平均数问题。
平均数问题的学习对以后浓度问题的学习很有好处,因为大部分平均问题的题型和浓度问题的题型从本质上来讲是相同的。
3、行程问题:四年级行程问题要掌握以下各类的问题:相遇问题、追及问题、火车相遇问题、流水行船问题、多次相遇问题等。
首先,我们要对基本的相遇问题和追及问题有非常深刻的了解,在学习过程中经常有同学到六年级了对于追及问题中两个人所走的时间是否相等还经常容易出错。
其次,我们要熟悉并掌握火车相遇问题和流水行船问题这两个行程问题中最基本的专题,对我们后面复杂行程问题的学习起到非常大的帮助。