广东省深圳市罗湖区九年级(上)期末数学试卷

合集下载

广东省深圳市罗湖区九年级(上)期末数学试卷 (3)

广东省深圳市罗湖区九年级(上)期末数学试卷 (3)

15.(3 分)如图,抛物线 y=ax2+bx+c(a>0)的对称轴是直线 x=1,若点 P(4,
0)在该抛物线上,则一元二次方程 ax2+bx+c=0 的两根为

16.(3 分)如图,四边形 ABCD 和四边形 ACED 都是平行四边形,点 R 在 DE
上,且 DR:RE=5:4,BR 分别与 AC、CD 相交于点 P、Q,则 BP:PQ:
(1)连结 AQ、DP 相交于点 F,求证:AQ⊥DP; (2)当正方形边长为 4,而 t=3 时,求 tan∠QDF 的值.
23.(10 分)如图,在平面直角坐标系中,抛物线 y=ax2+bx+c 与 x 轴相交于 A、 B 两点,与 y 轴相交于点 C(0,3).且点 A 的坐标为(﹣1,0),点 B 的坐 标为(3,0),点 P 是抛物线上第一象限内的一个点.
D.1.4<x<1.5
6.(3 分)如图,在 2×2 的正方形网格中有 9 个格点,已经取定点 A、B、C,
在余下的 6 个点中任取一点 P,满足△ABP 与△ABC 相似的概率是( )
第1页(共7页)
A.
B.
C.
D.
7.(3 分)对于抛物线 y=﹣3(x﹣2)2+1,下列说法中错误的是( )
A.抛物线开口向下
QR=

三、解答题:本题共 7 小题,其中第 17 小题 6 分,第 18 小题 6 分,第 19 小题 7 分,第 20 小题 7 分,第 21 小题 8 分,第 22 小题 8 分,第 23 小题 10 分, 共 52 分
17.(6 分)计算:|﹣ |+ sin45°﹣( )﹣1﹣ (π﹣3)0.
B.对称轴是直线 x=2

广东省深圳市2023-2024学年九年级上学期期末数学试题

广东省深圳市2023-2024学年九年级上学期期末数学试题

广东省深圳市2023-2024学年九年级上学期期末数学试题学校:___________姓名:___________班级:___________考号:___________
A.B.C.
D.
100
5
BF
二、填空题
三、解答题
那么平均每天就能多售出10本.设这种画册每本降价x 元.
(1)平均每天的销售量为 本(用含x 的代数式表示);
(2)商家想要使这种画册的销售利润平均每天达到2240元,且要求每本售价不低于55元,求每本画册应降价多少元?
20.如图,点O 是矩形ABCD 的对角线AC 上一点,过点O 作EF AC ⊥,交BC 于点E ,交AD 于点F .
(1)在不添加新的点和线的前提下,请增加一个条件: ,使得OE OF =,并说明理由;
(2)若,6,8OE OF AB BC ===,求EF 的长.
21.【项目式学习】
项目主题:守护生命,“数”说安全.
项目背景:随着社会的发展,安全问题变得日益重要.某校为了提高学生的安全意识,开展以“守护生命,'数'说安全”为主题的项目式学习活动.创新小组通过考察测量、模拟探究和成果迁移等环节,开展地下弯道对通行车辆长度的限制研究.
任务一:考察测量
(1)如图1,创新小组所选取弯道的内、外侧均为直角,道路宽均为4m ,则AB =m ; 任务二:模拟探究
如果汽车在行驶中与弯道内、外侧均无接触,则可安全通过.
(2)创新小组用线段模拟汽车通过宽度相同的直角弯道,探究发现:
①当2CD AB <时(如图1),线段CD 能通过直角弯道;。

2022-2023学年广东省深圳市九年级上学期期末考试数学试卷含详解

2022-2023学年广东省深圳市九年级上学期期末考试数学试卷含详解

2022-2023学年第一学期九年级数学期末质量检测一、选择题(本大题共10小题,共30.0分在每小题列出的选项中,选出符合题目的一项)1.如图所示的立体图形是一个圆柱被截去四分之一后得到的几何体,它的左视图是()A. B. C. D.2.已知x =1是方程x 2﹣3x +c =0的一个根,则实数c 的值是()A.﹣1B.0C.1D.23.矩形、菱形都具有的性质是()A.对角线互相垂直B.对角线互相平分C.对角线相等D.对角线互相垂直且相等4.如图,已知某广场菱形花坛ABCD 的周长是24米,∠BAD =60°,则花坛对角线AC 的长等于()A.B.6米C. D.3米5.如图,ABC ∽A B C ''' ,AD 、BE 分别是ABC 的高和中线,A D ''、B E ''分别是A B C ''' 的高和中线,且4=AD ,3A D ''=,6BE =,则B E ''的长为().A.32B.52C.72D.926.若点()()()1231,,2,,3,A y B y C y -在反比例函数6y x=-的图象上,则123,,y y y 的大小关系是()A.123y y y >> B.231y y y >> C.132y y y >> D.321y y y >>7.如图,小明在A 时测得某树的影长为8m ,B 时又测得该树的影长为2m ,若两次日照的光线互相垂直,则树的高度为()A .2mB.4mC.6mD.8m8.函数y =kx ﹣k 与y kx-=在同一平面直角坐标系中的图象可能是()A.B.C.D.9.如图,在四边形ABCD 中,∠A =∠B =90°,点F 为边CD 上一点,且FE ⊥AB 交AB 于点E ,若AD =2,BC =8,四边形AEFD ~四边形EBCF ,则DFFC的值是()A.14B.12C.15D.4510.如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD 与正方形EFGH .连结EG ,BD 相交于点O ,BD 与HC 相交于点P .若GO=GP ,则ABCD EFGHS S 正方形正方形的值是()A.12B.22+C.52D.154二、填空题(本大题共5小题,共15.0分)11.若43a b =,则2a bb+=_______.12.在一个不透明的盒子里,装有5个黑球和若干个白球,这些球除颜色外都相同,将其摇匀后从中随机摸出一个球,记下颜色后再把它放回盒子中,不断重复,共摸球40次,其中10次摸到黑球,估计盒子中白球的个数是_____.13.如果=1x -是关于x 的一元二次方程()2300ax bx a ++=≠的一个根,那么202144a b -+=_______.14.如图,在矩形ABCD 中,AC 、BD 交于点O ,DE ⊥AC 于点E ,若∠AOD =110°,则∠CDE =________°.15.如图,已知点A 是一次函数y =23x(x≥0)图象上一点,过点A 作x 轴的垂线l ,B 是l 上一点(B 在A 上方),在AB 的右侧以AB 为斜边作等腰直角三角形ABC ,反比例函数y =kx(x >0)的图象过点B ,C ,若△OAB 的面积为5,则△ABC 的面积是________.三、解答题(本大题共7小题,共55.0分解答应写出文字说明,证明过程或演算步骤)16.用适当的方法解下列方程:(1)22(21)(3)x x -=+;(2)21202x x +-=.17.如图,在平面直角坐标系中,ABC 的三个顶点的坐标分别为(4,1)A ,()2,3B ,(1,2)C .(1)画出与ABC 关于y 轴对称的111A B C △;(2)以原点O 为位似中心,在第三象限内画一个222A B C △,使它与ABC 的相似比为2:1,并写出点2A ,2B ,2C 的坐标.(3)若方格中每个小正方形的边长为1个单位长度,求222A B C △的面积.18.“校园安全”越来越受到人们的关注,我市某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图.根据图中信息回答下列问题:(1)接受问卷调查的学生共有______人,条形统计图中m 的值为______;(2)扇形统计图中“了解很少”部分所对应扇形的圆心角的度数为______;(3)若该中学共有学生1800人,根据上述调查结果,可以估计出该学校学生中对校园安全知识达到“非常了解”和“基本了解”程度的总人数为______人;(4)若从对校园安全知识达到“非常了解”程度的2名男生和2名女生中随机抽取2人参加校园安全知识竞赛,请用列表或画树状图的方法,求恰好抽到1名男生和1名女生的概率.19.如图,在菱形ABCD 中,点E 、F 分别在,BC CD 上,连接,AE AF ,且BAE DAF ∠=∠,延长,AE DC 交于点G .(1)若AD AF =,求证:2AF DG DF =⋅;(2)连接BD ,交AG 于点H ,若4HE =,12EG =,求AH 的长.20.2022年北京冬奥会吉祥物冰墩墩和雪容融在一开售时,就深受大家的喜欢.某供应商今年2月第一周购进一批冰墩墩和雪容融,已知一个冰墩墩的进价比一个雪容融的进价多40元,购买20个冰墩墩和30个雪容融的价格相同.(1)今年2月第一周每个冰墩墩和雪容融的进价分别是多少元?(2)今年2月第一周,供应商以100元每个售出雪容融140个,150元每个售出冰墩墩120个.第二周供应商决定调整价格,每个雪容融的售价在第一周的基础上下降了m 元,每个冰墩墩的价格不变,由于冬奥赛事的火热进行,第二周雪容融的销量比第一周增加了m 个,而冰墩墩的销量比第一周增加了0.2m 个,最终商家获利5160元,求m .21.如图,直线y =ax +2与x 轴交于点A (1,0),与y 轴交于点B (0,b ).将线段AB 先向右平移1个单位长度、再向上平移t (t >0)个单位长度,得到对应线段CD ,反比例函数ky x=(x >0)的图象恰好经过C 、D 两点,连接AC 、BD .(1)求a 和b 的值;(2)求反比例函数的表达式及四边形ABDC 的面积;(3)点N 在x 轴正半轴上,点M 是反比例函数ky x=(x >0)的图象上的一个点,若△CMN 是以CM 为直角边的等腰直角三角形时,求所有满足条件的点M 的坐标.22.在ABC ∆,CA CB =,ACB α∠=.点P 是平面内不与点A ,C 重合的任意一点.连接AP ,将线段AP 绕点P 逆时针旋转α得到线段DP ,连接AD ,BD ,CP .(1)观察猜想如图1,当60α︒=时,BDCP的值是,直线BD 与直线CP 相交所成的较小角的度数是.(2)类比探究如图2,当90α︒=时,请写出BDCP的值及直线BD 与直线CP 相交所成的小角的度数,并就图2的情形说明理由.(3)解决问题当90α︒=时,若点E ,F 分别是CA ,CB 的中点,点P 在直线EF 上,请直接写出点C ,P ,D 在同一直线上时AD CP的值.2022-2023学年第一学期九年级数学期末质量检测一、选择题(本大题共10小题,共30.0分在每小题列出的选项中,选出符合题目的一项)1.如图所示的立体图形是一个圆柱被截去四分之一后得到的几何体,它的左视图是()A. B. C. D.【答案】C【分析】根据左视图的定义,左视图就是物体由左向右方投影得到的视图,即可得出结论.【详解】解:根据左视图的定义,该几何体的左视图是:故选:C.【点睛】此题考查了几何体左视图的判断,掌握左视图的定义是解题关键.2.已知x=1是方程x2﹣3x+c=0的一个根,则实数c的值是()A.﹣1B.0C.1D.2【答案】D【分析】将x=1代入已知方程求出c即可.【详解】解:把x=1代入x2﹣3x+c=0得:1﹣3+c=0,解得:c=2,故选:D.【点睛】本题考查的是一元二次方程的根即方程的解的定义.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.3.矩形、菱形都具有的性质是()A.对角线互相垂直B.对角线互相平分C.对角线相等D.对角线互相垂直且相等【答案】B【分析】由矩形的性质和菱形的性质可直接求解.【详解】解: 菱形的对角线互相垂直平分,矩形的对角线互相平分且相等,∴矩形、菱形都具有的性质是对角线互相平分,故选:B .【点睛】本题考查了矩形的性质,菱形的性质,灵活运用这些性质解决问题是解题的关键.4.如图,已知某广场菱形花坛ABCD 的周长是24米,∠BAD =60°,则花坛对角线AC 的长等于()A.B.6米C. D.3米【答案】A【分析】本题考查的是菱形的性质,直角三角形的性质解决即可.【详解】因为菱形周长为24米,所以边长为6米,因为60BAD ∠=︒,所以∠BAO=30°,∴OA=米,∴AC=米.故选A .5.如图,ABC ∽A B C ''' ,AD 、BE 分别是ABC 的高和中线,A D ''、B E ''分别是A B C ''' 的高和中线,且4=AD ,3A D ''=,6BE =,则B E ''的长为().A.32B.52C.72D.92【答案】D【分析】利用相似三角形对应高的比、对应中线的比都等于相似比,进行求解即可.【详解】解:∵△ABC ∽△A′B′C′,AD 、BE 分别是△ABC 的高和中线,A′D′、B′E′分别是△A′B′C′的高和中线,∴''''AD BEA DB E =,∵4=AD ,3A D ''=,6BE =,∴463''B E =,∴92B E ''=;故选择:D.【点睛】本题考查了相似三角形的性质,掌握相似三角形对应高的比、对应中线的比都等于相似比是解题的关键.6.若点()()()1231,,2,,3,A y B y C y -在反比例函数6y x=-的图象上,则123,,y y y 的大小关系是()A.123y y y >>B.231y y y >> C.132y y y >> D.321y y y >>【答案】C【分析】本题主要考查了比较反比例函数值的大小,根据解析式判断出反比例函数图象经过第二、四象限,且在每个象限内y 随x 增大而增大是解题的关键.【详解】解:∵反比例函数解析式为6y x=-,60-<,∴反比例函数图象经过第二、四象限,且在每个象限内y 随x 增大而增大,∵点()()()1231,,2,,3,A y B y C y -在反比例函数6y x=-的图象上,1023-<<<,∴132y y y >>,故选C .7.如图,小明在A 时测得某树的影长为8m ,B 时又测得该树的影长为2m ,若两次日照的光线互相垂直,则树的高度为()A.2mB.4mC.6mD.8m【答案】B【分析】根据题意,画出示意图,易得Rt Rt EDC CDF ∽F ,进而可得DE CDCD DF=,代入数据求解即可得答案.【详解】解:根据题意做出示意图,则CD EF ⊥,CE CF ⊥,2m DE =,8m DF =,∴90EDC CDF ECF ∠=∠=∠=︒,∴90E ECD ECD DCF ∠+∠=∠+∠=︒,∴E DCF ∠=∠,∴Rt Rt EDC CDF ∽,∴DE CD CD DF=,即28CDCD =,∴22816CD =⨯=,∴4m CD =(负值舍去).故选:B .【点睛】本题主要考查了相似三角形的应用,能够将实际问题转化为相似三角形的问题是解题的关键.8.函数y =kx ﹣k 与y kx-=在同一平面直角坐标系中的图象可能是()A. B.C. D.【答案】C【分析】分两种情况讨论,当k >0时,分析出一次函数和反比例函数所过象限;再分析出k <0时,一次函数和反比例函数所过象限,符合题意者即为正确答案.【详解】分类讨论①当0k <时,y kx k =-的图象过第一、二、四象限,ky x-=的图象过第一、三象限,②当0k >时,y kx k =-的图象过第一、三、四象限,k y x-=的图象过经过第二、四象限.综上,符合题意的选项为C .故答案为:C .【点睛】此题考查的是反比例函数和一次函数的综合题型,掌握反比例函数和一次函数的图象所经过的象限与各项系数的关系是解决此题的关键.9.如图,在四边形ABCD 中,∠A =∠B =90°,点F 为边CD 上一点,且FE ⊥AB 交AB 于点E ,若AD =2,BC =8,四边形AEFD ~四边形EBCF ,则DF FC 的值是()A.14 B.12 C.15 D.45【答案】B 【分析】根据相似多边形的对应边成比例,可得出DF AD EF FC EF BC ==,先求出EF 的长度,即可得出结论.【详解】解:∵四边形AEFD ~四边形EBCF ,∴DF AD EF FC EF BC==,即:22816EF AD BC ==⨯= ,∴EF =4(舍去负值),∴2142DF AD FC EF ===,故选:B .【点睛】本题考查相似多边形的性质,比例的性质等,掌握相似多边形的基本性质,准确计算比例式是解题关键.10.如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD 与正方形EFGH .连结EG ,BD 相交于点O ,BD 与HC 相交于点P .若GO=GP ,则ABCDEFGH S S 正方形正方形的值是()A.1B.2+C.5D.154【答案】B 【分析】证明()BPG BCG ASA D @D ,得出PG CG =.设OG PG CG x ===,则2EG x =,FG =,由勾股定理得出22(4BC x =+,则可得出答案.【详解】解: 四边形EFGH 为正方形,45EGH \Ð=°,90FGH ∠=︒,OG GP =Q ,67.5GOP OPG \Ð=Ð=°,22.5PBG \Ð=°,又45DBC ∠=︒ ,22.5GBC \Ð=°,PBG GBC \Ð=Ð,90BGP BG Ð=Ð=°Q ,BGBG =,()BPG BCG ASA \D @D ,PG CG \=.设OG PG CG x ===,O 为EG ,BD 的交点,2EG x \=,FG =,四个全等的直角三角形拼成“赵爽弦图”,BF CG x \==,BG x \=+,22222221)(4BC BG CG x x x \=+=+=+,∴(22422ABCDEFGH x S S x +==+正方形正方形.故选:B .【点睛】本题考查了正方形的性质,全等三角形的判定与性质,勾股定理,直角三角形的性质等知识,熟练掌握勾股定理的应用是解题的关键.二、填空题(本大题共5小题,共15.0分)11.若43a b =,则2a b b +=_______.【答案】103【分析】本题主要考查了比例的性质,先根据已知条件得到43a b =,再把43a b =代入所求式子中求解即可.【详解】解:∵43a b =,∴43a b =,∴4221033b b a b b b ++==,故答案为:103.12.在一个不透明的盒子里,装有5个黑球和若干个白球,这些球除颜色外都相同,将其摇匀后从中随机摸出一个球,记下颜色后再把它放回盒子中,不断重复,共摸球40次,其中10次摸到黑球,估计盒子中白球的个数是_____.【答案】15【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,设未知数列出方程求解.【详解】解:∵共试验40次,其中有10次摸到黑球,∴白球所占的比例为40103404-=,设盒子中共有白球x 个,则354x x =+,解得:15x =.故答案为:15.【点睛】本题考查利用利用频率估计概率.正确列出算式是解题关键.13.如果=1x -是关于x 的一元二次方程()2300ax bx a ++=≠的一个根,那么202144a b -+=_______.【答案】2033【分析】本题主要考查了一元二次方程解的定义,根据一元二次方程的解是使方程左右两边相等的未知数的值把=1x -代入原方程中推出3a b -=-,再根据()20214420214a b a b -+=--进行求解即可.【详解】解:∵=1x -是关于x 的一元二次方程()2300ax bx a ++=≠的一个根,∴30a b -+=,∴3a b -=-,∴()()202144202142021432021122033a b a b -+=--=-⨯-=+=,故答案为:2033.14.如图,在矩形ABCD 中,AC 、BD 交于点O ,DE ⊥AC 于点E ,若∠AOD =110°,则∠CDE =________°.【答案】35【分析】先根据三角形外角的性质和矩形的性质得到∠OCD 的度数,再根据DE ⊥AC 即可得到∠CDE 的度数.【详解】∵∠AOD =110°,∴∠ODC+∠OCD=110°,∵四边形ABCD 是矩形,∴OC=OD ,∴∠ODC=∠OCD=55°,又∵DE ⊥AC ,∴∠CDE=180°-∠OCD-∠DEC=180°-55°-90°=35°,故答案为:35.【点睛】本题考查了矩形的性质,三角形内角和,三角形外角的性质,掌握知识点是解题关键.15.如图,已知点A 是一次函数y =23x(x≥0)图象上一点,过点A 作x 轴的垂线l ,B 是l 上一点(B 在A 上方),在AB 的右侧以AB 为斜边作等腰直角三角形ABC ,反比例函数y =k x(x >0)的图象过点B ,C ,若△OAB 的面积为5,则△ABC 的面积是________.【答案】53【分析】如图,过C 作CD ⊥y 轴于D ,交AB 于E .设AB=2a ,则BE=AE=CE=a ,再设A (x ,23x ),则B (x ,23x+2a )、C (x+a ,23x+a ),再由B 、C 在反比例函数的图象上可得x (23x+2a )=(x+a )(23x+a ),解得x=3a ,由△OAB 的面积为5求得ax=5,即可得a 2=53,根据S △ABC =12AB•CE 即可求解.【详解】如图,过C 作CD ⊥y 轴于D ,交AB 于E .∵AB ⊥x 轴,∴CD ⊥AB ,∵△ABC 是等腰直角三角形,∴BE=AE=CE ,设AB=2a ,则BE=AE=CE=a ,设A (x ,23x ),则B (x ,23x+2a ),C (x+a ,23x+a ),∵B 、C 在反比例函数的图象上,∴x (23x+2a )=(x+a )(23x+a ),解得x=3a ,∵S △OAB =12AB•DE=12•2a•x=5,∴ax=5,∴3a 2=5,∴a 2=53,∴S △ABC =12AB•CE=12•2a•a=a 2=53.故答案为:53.【点睛】本题考查了反比例函数图象上点的坐标特征、等腰直角三角形的性质、三角形面积,熟练掌握反比例函数上的点符合反比例函数的关系式是关键.三、解答题(本大题共7小题,共55.0分解答应写出文字说明,证明过程或演算步骤)16.用适当的方法解下列方程:(1)22(21)(3)x x -=+;(2)21202x x +-=.【答案】(1)1224,3x x ==-(2)121515,44x x -+--==【分析】(1)根据因式分解法即可求解;(2)根据公式法解方程即可求解.【小问1详解】解:22(21)(3)0x x --+=,(213)(213)0x x x x -++---=,,21302130-++=---=x x x x ,∴1224,3x x ==-;【小问2详解】解:方程化为:24210x x +-=,4,2,1a b c ===-.224244(1)200b ac =-=-⨯⨯-=> ,方程有两个不相等的根2b x a-±=21244--==⨯,∴121515,44x x --==.【点睛】本题考查了解一元二次方程—公式法与因式分解法,用公式法解一元二次方程的一般步骤为:①把方程化成一般形式,进而确定a ,b ,c 的值(注意符号);②求出b 2-4ac 的值(若b 2-4ac <0,方程无实数根);③在b 2-4ac ≥0的前提下,把a 、b 、c 的值代入公式进行计算求出方程的根.注意:用公式法解一元二次方程的前提条件有两个:①a ≠0;②b 2-4ac ≥0.17.如图,在平面直角坐标系中,ABC 的三个顶点的坐标分别为(4,1)A ,()2,3B ,(1,2)C .(1)画出与ABC 关于y 轴对称的111A B C △;(2)以原点O 为位似中心,在第三象限内画一个222A B C △,使它与ABC 的相似比为2:1,并写出点2A ,2B ,2C 的坐标.(3)若方格中每个小正方形的边长为1个单位长度,求222A B C △的面积.【答案】(1)见解析;(2)2(8,2)A --,2(4,6)B --,2(2,4)C --;图见解析;(3)8.【分析】(1)根据关于y 轴对称的点的坐标得到111,,A B C 的坐标,然后描点即可;(2)把A 、B 、C 的坐标都乘以2-得到222,,A B C 的坐标,然后描点即可;(3)用割补法求解即可.【小问1详解】解:如图,△111A B C 为所作;【小问2详解】解:如图,222A B C △为所作,2(8,2)A --,2(4,6)B --,2(2,4)C --;【小问3详解】222A B C △的面积111642226448222=⨯-⨯⨯-⨯⨯-⨯⨯=.【点睛】本题考查了位似变换:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或k -.也考查了轴对称变换.18.“校园安全”越来越受到人们的关注,我市某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图.根据图中信息回答下列问题:(1)接受问卷调查的学生共有______人,条形统计图中m 的值为______;(2)扇形统计图中“了解很少”部分所对应扇形的圆心角的度数为______;(3)若该中学共有学生1800人,根据上述调查结果,可以估计出该学校学生中对校园安全知识达到“非常了解”和“基本了解”程度的总人数为______人;(4)若从对校园安全知识达到“非常了解”程度的2名男生和2名女生中随机抽取2人参加校园安全知识竞赛,请用列表或画树状图的方法,求恰好抽到1名男生和1名女生的概率.【答案】(1)60,10;(2)96°;(3)1020;(4)23【分析】(1)根据基本了解的人数以及所占的百分比可求得接受调查问卷的人数,进行求得不了解的人数,即可求得m 的值;(2)用360度乘以“了解很少”的比例即可得;(3)用“非常了解”和“基本了解”的人数和除以接受问卷的人数,再乘以1800即可求得答案;(4)画树状图表示出所有可能的情况数,再找出符合条件的情况数,利用概率公式进行求解即可.【详解】(1)接受问卷调查的学生共有3050%60÷=(人),604301610m =---=,故答案为60,10;(2)扇形统计图中“了解很少”部分所对应扇形的圆心角的度数163609660=︒⨯=︒,故答案为96°;(3)该学校学生中对校园安全知识达到“非常了解”和“基本了解”程度的总人数为:4301800102060+⨯=(人),故答案为1020;(4)由题意列树状图:由树状图可知,所有等可能的结果有12种,恰好抽到1名男生和1名女生的结果有8种,∴恰好抽到1名男生和1名女生的概率为82123=.【点睛】本题考查了条形统计图与扇形统计图信息关联,列表法或树状图法求概率,弄清题意,读懂统计图,从中找到必要的信息是解题的关键.19.如图,在菱形ABCD 中,点E 、F 分别在,BC CD 上,连接,AE AF ,且BAE DAF ∠=∠,延长,AE DC 交于点G .(1)若AD AF =,求证:2AF DG DF =⋅;(2)连接BD ,交AG 于点H ,若4HE =,12EG =,求AH 的长.【答案】(1)见解析(2)8AH =【分析】(1)根据菱形的性质可得AB CD ∥,从而得到BAE AGD ∠=∠,进而得到AGD DAF ∠=∠,可证得GAD AFD ∽△△,可得到2DA DG DF =⋅,再由AD AF =,即可求证;(2)根据菱形的性质可证得ABH GDH ∽,AHD EHB ∽,从而得到AH BH DH AH GH DH BH EH===,进而得到2AH EH GH =⋅,即可求解.【小问1详解】证明:∵四边形ABCD 是菱形,∴AB CD ∥,∴BAE AGD ∠=∠,∵BAE DAF ∠=∠,∴AGD DAF ∠=∠,又∵ADG FDA ∠=∠,∴GAD AFD ∽△△,∴DG DA DA DF=,∴2DA DG DF =⋅,∵AD AF =,∴2AF DG DF =⋅.【小问2详解】解:四边形ABCD 是菱形,∴,AB CD AD BC ∥∥,∴ABH GDH ∠=∠,BAH DGH ∠=∠,ADH EBH ∠=∠,DAH BEH ∠=∠,∴ABH GDH ∽,AHD EHB ∽,∴AH BH DH AH GH DH BH EH ==,,∴AH EH GH AH =,∴2AH EH GH =⋅,∵4HE =,12EC =,∴16GH EC HE =+=.∴2416AH =⨯.解得8AH =.【点睛】本题主要考查了相似三角形的判定和性质,菱形的性质,熟练掌握相似三角形的判定和性质,菱形的性质是解题的关键.20.2022年北京冬奥会吉祥物冰墩墩和雪容融在一开售时,就深受大家的喜欢.某供应商今年2月第一周购进一批冰墩墩和雪容融,已知一个冰墩墩的进价比一个雪容融的进价多40元,购买20个冰墩墩和30个雪容融的价格相同.(1)今年2月第一周每个冰墩墩和雪容融的进价分别是多少元?(2)今年2月第一周,供应商以100元每个售出雪容融140个,150元每个售出冰墩墩120个.第二周供应商决定调整价格,每个雪容融的售价在第一周的基础上下降了m 元,每个冰墩墩的价格不变,由于冬奥赛事的火热进行,第二周雪容融的销量比第一周增加了m 个,而冰墩墩的销量比第一周增加了0.2m 个,最终商家获利5160元,求m .【答案】(1)雪容融的进价为80元,冰墩墩的进价为120元(2)10m =【分析】(1)设雪容融的进价为x 元,则冰墩墩的进价为(40)x +元,由题意列出20(40)30x x ⨯+=,求解即可;(2)根据题意列出(10080)(140)(150120)(1200.2)5160m m m --⨯++-⨯+=,求解一元二次方程即可.【小问1详解】解:设雪容融的进价为x 元,则冰墩墩的进价为(40)x +元,由题意得:20(40)30x x ⨯+=,解得:80x =,答:雪容融的进价为80元,冰墩墩的进价为120元;【小问2详解】解:根据题意得:(10080)(140)(150120)(1200.2)5160m m m --⨯++-⨯+=,(20)(140)30(1200.2)5160m m m -⨯++⨯+=,2(57)4489m +=,解得:10m =或124m =-(舍去),答:10m =.【点睛】本题考查了一元一次方程的应用,一元二次方程的应用,解题的关键是根据题意列出方程进行求解.21.如图,直线y =ax +2与x 轴交于点A (1,0),与y 轴交于点B (0,b ).将线段AB 先向右平移1个单位长度、再向上平移t (t >0)个单位长度,得到对应线段CD ,反比例函数k y x =(x >0)的图象恰好经过C 、D 两点,连接AC 、BD .(1)求a 和b 的值;(2)求反比例函数的表达式及四边形ABDC 的面积;(3)点N 在x 轴正半轴上,点M 是反比例函数k y x=(x >0)的图象上的一个点,若△CMN 是以CM 为直角边的等腰直角三角形时,求所有满足条件的点M 的坐标.【答案】(1)a =﹣2,b =2;(2)y =4x,4;(3)点M 的坐标为(4,15,51)【分析】(1)利用坐标轴上的点的特点即可得出结论;(2)先表示出点C ,D 坐标,进而代入反比例函数解析式中求解得出k ,再判断出BC ⊥AD ,最后用对角线积的一半即可求出四边形的面积;(3)分两种情况,构造全等的直角三角形即可得出结论.【详解】(1)将点A (1,0)代入y =ax +2,得0=a +2,∴a =﹣2,∴直线的解析式为y =﹣2x +2.将x =0代入上式,得y =2,∴b =2.(2)由(1)知,b =2,∴B (0,2),由平移可得:点C (2,t )、D (1,2+t ).将点C (2,t )、D (1,2+t )分别代入y =k x ,得221k t kt ⎧=⎪⎪⎨⎪+=⎪⎩∴42k t =⎧⎨=⎩,∴反比例函数的解析式y =4x ,点C (2,2)、点D (1,4).如图1,连接BC 、AD.∵B (0,2)、C (2,2),∴BC ∥x 轴,BC =2.∵A (1,0)、D (1,4),∴AD ⊥x 轴,AD =4,∴BC ⊥AD ,∴S 四边形ABD =12×BC ×AD =12×2×4=4.(3)①当∠NCM =90°、CM =CN 时,如图2,过点C 作直线l ∥x 轴,交y 轴于点G .过点M 作MF ⊥直线l 于点F ,交x 轴于点H .过点N 作NE ⊥直线l 于点E .设点N (m ,0)(其中m >0),则ON =m ,CE =2﹣m .∵∠MCN =90°,∴∠MCF +∠NCE =90°.∵NE ⊥直线l 于点E ,∴∠ENC +∠NCE =90°,∴∠MCF =∠ENC .∵∠MFC =∠NEC =90°,CN =CM ,∴△NEC ≌△CFM ,∴CF =EN =2,FM =CE =2﹣m ,∴FG =CG +CF =2+2=4,∴x M =4.将x =4代入y =4x,得y =1,∴点M (4,1);②当∠NMC =90°、MC =MN 时,如图3,过点C 作直线l ⊥y 轴与点F ,则CF =x C =2.过点M 作MG ⊥x 轴于点G ,MG 交直线l 与点E ,则MG ⊥直线l 于点E ,EG =y C =2.∵∠CMN =90°,∴∠CME +∠NMG =90°.∵ME ⊥直线l 于点E ,∴∠ECM +∠CME =90°,∴∠NMG =∠ECM .又∵∠CEM =∠NGM =90°,CM =MN ,∴△CEM ≌△MGN ,∴CE =MG ,EM =NG .设CE =MG =a ,则y M =a ,x M =CF +CE =2+a ,∴点M (2+a ,a ).将点M (2+a ,a )代入y =4x ,得a =42a+.解得a 151,a 2=51,∴x M =2+a 5,∴点M 5,51).综合①②可知:点M 的坐标为(4,1551).【点睛】此题是反比例函数综合题,主要考查待定系数法,全等三角形的判定和性质,四边形的面积的计算方法,构造出全等三角形是解本题的关键.22.在ABC ∆,CA CB =,ACB α∠=.点P 是平面内不与点A ,C 重合的任意一点.连接AP ,将线段AP 绕点P 逆时针旋转α得到线段DP ,连接AD ,BD ,CP .(1)观察猜想如图1,当60α︒=时,BD CP 的值是,直线BD 与直线CP 相交所成的较小角的度数是.(2)类比探究如图2,当90α︒=时,请写出BD CP 的值及直线BD 与直线CP 相交所成的小角的度数,并就图2的情形说明理由.(3)解决问题当90α︒=时,若点E ,F 分别是CA ,CB 的中点,点P 在直线EF 上,请直接写出点C ,P ,D 在同一直线上时AD CP 的值.【答案】(1)1,60︒(2)45°(3)22+【分析】(1)如图1中,延长CP 交BD 的延长线于E ,设AB 交EC 于点O .证明()CAP BAD SAS ∆≅∆,即可解决问题.(2)如图2中,设BD 交AC 于点O ,BD 交PC 于点E .证明DAB PAC ∆∆ ,即可解决问题.(3)分两种情形:①如图3﹣1中,当点D 在线段PC 上时,延长AD 交BC 的延长线于H .证明AD DC =即可解决问题.②如图3﹣2中,当点P 在线段CD 上时,同法可证:DA DC =解决问题.【详解】解:(1)如图1中,延长CP 交BD 的延长线于E ,设AB 交EC 于点O .60PAD CAB ︒∠=∠= ,CAP BAD ∴∠=∠,CA BA = ,PA DA =,()CAP BAD SAS ∴∆≅∆,PC BD ∴=,ACP ABD ∠=∠,AOC BOE ∠=∠ ,60BEO CAO ︒∴∠=∠=,1BD PC∴=,线BD 与直线CP 相交所成的较小角的度数是60︒,故答案为1,60︒.(2)如图2中,设BD 交AC 于点O ,BD 交PC 于点E .45PAD CAB ︒∠=∠= ,PAC DAB ∴∠=∠,AB ADAC AP== ,DAB PAC ∴∆∆ ,PCA DBA ∴∠=∠,BD AB PC AC ==,EOC AOB ∠=∠ ,45CEO OAB ︒∴∠=∠=,∴直线BD 与直线CP 相交所成的小角的度数为45︒.(3)如图3﹣1中,当点D 在线段PC 上时,延长AD 交BC 的延长线于H .CE EA=,CF FB=,EF AB∴∥,45EFC ABC︒∴∠=∠=,45PAO︒∠=,PAO OFH∴∠=∠,POA FOH∠=∠,H APO∴∠=∠,90APC︒∠=,EA EC=,PE EA EC∴==,EPA EAP BAH∴∠=∠=∠,H BAH∴∠=∠,BH BA∴=,45ADP BDC︒∠=∠=,90ADB︒∴∠=,BD AH∴⊥,22.5DBA DBC︒∴∠=∠=,90ADB ACB︒∠=∠=,∴A,D,C,B四点共圆,22.5DAC DBC︒∠=∠=,22.5DCA ABD︒∠=∠=,22.5DAC DCA︒∴∠=∠=,DA DC∴=,设=AD a,则DC AD a==,2 PD=,222ADCP∴==-c.如图3﹣2中,当点P在线段CD上时,同法可证:=DA DC,设=AD a,则CD AD a==,2PD a=,22PC a a ∴=-,2222AD PC a a ∴==+-.【点睛】本题属于相似形综合题,考查了旋转变换,等边三角形的性质,等腰直角三角形的性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.。

深圳市罗湖区九年级上册期末数学模拟试卷(有答案)

深圳市罗湖区九年级上册期末数学模拟试卷(有答案)

广东省深圳市罗湖区九年级(上)期末数学模拟试卷一.选择题(共12小题,满分36分)1.如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是()A.B.C.D.2.下面四个图是同一天四个不同时刻树的影子,其时间由早到晚的顺序为()A.1234B.4312C.3421D.42313.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.4.tan30°的值为()A.B.C.D.5.关于的一元二次方程a2+3﹣2=0有两个不相等的实数根,则a的值可以是()A.0B.﹣1C.﹣2D.﹣36.下列命题中,逆命题为真命题的是()A.对顶角相等B.若a=b,则|a|=|b|C.同位角相等,两直线平行D .若ac 2<bc 2,则a <b7.根据下列表格中的对应值,判断一元二次方程2﹣4+2=0的解的取值范围是( )C .0.5<<1,或2<<2.5D .0<<0.5,或3<<3.58.在平面直角坐标系中,点P (m ,n )是线段AB 上一点,以原点O 为位似中心把△AOB 放大到原的两倍,则点P 的对应点的坐标为( ) A .(2m ,2n )B .(2m ,2n )或(﹣2m ,﹣2n ) C .(m , n )D .(m , n )或(﹣m ,﹣n)9.若二次函数y 1=a 2+b 与一次函数y 2=a +b 的图象经过相同的象限,给出下列结论:①a ,b 同号;②若b <0,则>1时,y 1<y 2.则下列判断正确的是( ) A .①,②都对B .①,②都错C .①对,②错D .①错,②对10.已知二次函数y=a 2+b +c (a ≠0)的图象如图所示,下列结论:①abc >0;②2a +b >0;③b 2﹣4ac >0;④a ﹣b +c >0,其中正确的个数是( )A .1B .2C .3D .411.如图,在△AOB 中,∠BOA=90°,∠BOA 的两边分别与函数、的图象交于B 、A两点,若,则AO 的值为( )A .B .2C .D .12.如图,正方形ABCD 中,E ,F 分别在边AD ,CD 上,AF ,BE 相交于点G ,若AE=3ED ,DF=CF,则的值是()A.B.C.D.二.填空题(共4小题,满分12分,每小题3分)13.2018年5月18日,益阳新建西流湾大桥竣工通车,如图,从沅江A地到资阳B地有两条路线可走,从资阳B地到益阳火车站可经会龙山大桥或西流湾大桥或龙洲大桥到达,现让你随机选择一条从沅江A地出发经过资阳B地到达益阳火车站的行走路线,那么恰好选到经过西流湾大桥的路线的概率是.14.如图是由一些完全相同的小正方体搭成的几何体的俯视图和左视图,组成这个几何体的小正方体的个数最少是.15.计算:﹣|2﹣|=16.如图,直线MN∥PQ,直线AB分别与MN,PQ相交于点A,B.小宇同学利用尺规按以下步骤作图:①以点A为圆心,以任意长为半径作弧交AN于点C,交AB于点D;②分别以C,D为圆心,以大于CD长为半径作弧,两弧在∠NAB内交于点E;③作射线AE交PQ于点F.若AB=2,∠ABP=60°,则线段AF的长为.三.解答题(共7小题,满分42分,每小题6分)17.(6分)2﹣8+12=0.18.(6分)小明和小亮计划暑期结伴参加志愿者活动.小明想参加敬老服务活动,小亮想参加文明礼仪宣传活动.他们想通过做游戏决定参加哪个活动,于是小明设计了一个游戏,游戏规则是:在三张完全相同的卡片上分别标记4、5、6三个数字,一人先从三张卡片中随机抽出一张,记下数字后放回,另一人再从中随机抽出一张,记下数字,若抽出的两张卡片标记的数字之和为偶数,则按照小明的想法参加敬老服务活动,若抽出的两张卡片标记的数字之和为奇数,则按照小亮的想法参加文明礼仪宣传活动.你认为这个游戏公平吗?请说明理由.19.(7分)如图,直线y1=﹣+4,y2=+b都与双曲线y=交于点A(1,m),这两条直线分别与轴交于B,C两点.(1)求y与之间的函数关系式;(2)直接写出当>0时,不等式+b>的解集;(3)若点P在轴上,连接AP把△ABC的面积分成1:3两部分,求此时点P的坐标.20.(7分)投资1万元围一个矩形菜园(如图),其中一边靠墙,另外三边选用不同材料建造.墙长24m,平行于墙的边的费用为200元/m,垂直于墙的边的费用为150元/m,设平行于墙的边长为m(1)设垂直于墙的一边长为y m,直接写出y与之间的函数关系式;(2)若菜园面积为384m2,求的值;(3)求菜园的最大面积.21.(8分)小明在热气球A上看到正前方横跨河流两岸的大桥BC,并测得B,C两点的俯角分别为53°和45°,已知大桥BC与地面在同一水平面上,其长度为75m,请求出热气球离地面的高度.(参考数据:sin53°≈,cos53°≈,tan53°≈).22.(8分)如图①,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PE=PA,PE交CD于F.(1)求证:PC=PE;(2)求∠CPE的度数;(3)如图②,把正方形ABCD改为菱形ABCD,其它条件不变,若∠ABC=65°,则∠CPE=度.23.如图①,已知抛物线y=a2+b+c的图象经过点A(0,3)、B(1,0),其对称轴为直线l:=2,过点A作AC∥轴交抛物线于点C,∠AOB的平分线交线段AC于点E,点P是抛物线上的一个动点,设其横坐标为m.(1)求抛物线的解析式;(2)若动点P在直线OE下方的抛物线上,连结PE、PO,当m为何值时,四边形AOPE面积最大,并求出其最大值;(3)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.参考答案一.选择题1.解:∵共6个数,大于3的有3个,∴P(大于3)==;故选:D.2.解:时间由早到晚的顺序为4312.故选:B.3.解:A、既是轴对称图形,又是中心对称图形,故此选项正确;B、不是轴对称图形,是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项错误;故选:A.4.解:tan30°=,故选:B.5.解:∵关于的一元二次方程a2+3﹣2=0有两个不相等的实数根,∴△>0且a≠0,即32﹣4a×(﹣2)>0且a≠0,解得a>﹣1且a≠0,故选:B.6.【解答】解:A、对顶角相等的逆命题是两个相等的角是对顶角,假命题;B、若a=b,则|a|=|b|的逆命题是若|a|=|b|,则a=b,假命题;C、同位角相等,两直线平行的逆命题是两直线平行,两直线平行,真命题;D、若ac2<bc2,则a<b的逆命题是若a<b,则ac2<bc2,假命题;故选:C.7.解:根据下列表格中的对应值,得=0.5时,2﹣4+2=0.25,=1.5时,2﹣4+2=﹣1;=3时,2﹣4+2=﹣1,=3.5时,2﹣4+2=0.25,判断一元二次方程2﹣4+2=0的解的取值范围是0.5<<1,或3<<3.5,故选:B.8.解:点P(m,n)是线段AB上一点,以原点O为位似中心把△AOB放大到原的两倍,则点P的对应点的坐标为(m×2,n×2)或(m×(﹣2),n×(﹣2)),即(2m,2n)或(﹣2m,﹣2n),故选:B.9.解:由题意a、b同号,当a、b都是负数时,>1时,y1<y2故①正确,②正确.故选:A.10.解:①∵抛物线对称轴是y轴的右侧,∴ab<0,∵与y轴交于负半轴,∴c<0,∴abc>0,故①正确;②∵a>0,=﹣<1,∴﹣b<2a,∴2a+b>0,故②正确;③∵抛物线与轴有两个交点,∴b2﹣4ac>0,故③正确;④当=﹣1时,y>0,∴a﹣b+c>0,故④正确.故选:D.11.解:∵∠AOB=90°,∴∠AOC+∠BOD=∠AOC+∠CAO=90°,∠CAO=∠BOD,∴△ACO∽△BDO,∴=()2,=×2=1,S△BOD=×1=,∵S△AOC∴()2==2,∴OA2=2OB2,∵OA2+OB2=AB2,∴OA2+OA2=6,∴OA=2,故选:B.12.解:如图作,FN∥AD,交AB于N,交BE于M.∵四边形ABCD是正方形,∴AB∥CD,∵FN∥AD,∴四边形ANFD是平行四边形,∵∠D=90°,∴四边形ANFD是矩形,∵AE=3DE,设DE=a,则AE=3a,AD=AB=CD=FN=4a,AN=DF=2a,∵AN=BN,MN∥AE,∴BM=ME,∴MN=a ,∴FM=a , ∵AE ∥FM ,∴===,故选:C .二.填空题(共4小题,满分12分,每小题3分)13.解:由题意可知一共有6种可能,经过西流湾大桥的路线有2种可能,所以恰好选到经过西流湾大桥的路线的概率==.故答案为.14.解:根据几何体的左视图,可得这个几何体共有3层, 从俯视图可以可以看出最底层的个数是4个,(1)当第一层有1个小正方体,第二层有1个小正方体时, 组成这个几何体的小正方体的个数是: 1+1+4=6(个);(2)当第一层有1个小正方体,第二层有2个小正方体时, 或当第一层有2个小正方体,第二层有1个小正方体时, 组成这个几何体的小正方体的个数是: 1+2+4=7(个);(3)当第一层有2个小正方体,第二层有2个小正方体时, 组成这个几何体的小正方体的个数是: 2+2+4=8(个). 综上,可得组成这个几何体的小正方体的个数是6或7或8. 所以组成这个几何体的小正方体的个数最少是6 故答案为:615.解:原式=2﹣2+=,故答案为:16.解:∵MN ∥PQ ,∴∠NAB=∠ABP=60°,由题意得:AF平分∠NAB,∴∠1=∠2=30°,∵∠ABP=∠1+∠3,∴∠3=30°,∴∠1=∠3=30°,∴AB=BF,AG=GF,∵AB=2,∴BG=AB=1,∴AG=,∴AF=2AG=2,故答案为:2.三.解答题(共7小题,满分42分,每小题6分)17.解:2﹣8+12=0,分解因式得(﹣6)(﹣2)=0,∴﹣6=0,﹣2=0,解方程得:1=6,2=2,∴方程的解是1=6,2=2.18.解:不公平,列表如下:由表可知,共有9种等可能结果,其中和为偶数的有5种结果,和为奇数的有4种结果,所以按照小明的想法参加敬老服务活动的概率为,按照小亮的想法参加文明礼仪宣传活动的概率为,由≠知这个游戏不公平;19.解:(1)把A(1,m)代入y1=﹣+4,可得m=﹣1+4=3,∴A(1,3),把A(1,3)代入双曲线y=,可得=1×3=3,∴y与之间的函数关系式为:y=;(2)∵A(1,3),∴当>0时,不等式+b>的解集为:>1;(3)y1=﹣+4,令y=0,则=4,∴点B的坐标为(4,0),把A(1,3)代入y2=+b,可得3=+b,∴b=,∴y2=+,令y=0,则=﹣3,即C(﹣3,0),∴BC=7,∵AP把△ABC的面积分成1:3两部分,∴CP=BC=,或BP=BC=,∴OP=3﹣=,或OP=4﹣=,∴P(﹣,0)或(,0).20.解:(1)根据题意知,y==﹣+;(2)根据题意,得:(﹣+)=384,解得:=18或=32,∵墙的长度为24m,∴=18;(3)设菜园的面积是S,则S=(﹣+)=﹣2+=﹣(﹣25)2+∵﹣<0,∴当<25时,S随的增大而增大,∵≤24,∴当=24时,S取得最大值,最大值为416,答:菜园的最大面积为416m2.21.解:过A作AD⊥BC,在Rt△ACD中,tan∠ACD=,即CD==AD,在Rt△ABD中,tan∠ABD=,即BD==AD,由题意得:AD﹣AD=75,解得:AD=300m,则热气球离底面的高度是300m.22.解:(1)证明:在正方形ABCD中,AB=BC,∠ABP=∠CBP=45°,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴PA=PC,∵PA=PE,∴PC=PE;(2)由(1)知,△ABP≌△CBP,∴∠BAP=∠BCP,∴∠DAP=∠DCP,∵PA=PE,∴∠DAP=∠E,∴∠DCP=∠E,∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,即∠CPF=∠EDF=90°;(3)在菱形ABCD中,AD=DC,∠ADP=∠CDP,DP=DP,∴△DPA≌△DPC,∴∠DAP=∠DCP,PA=PC,∵PA=PE,∴∠DAP=∠E,∴∠E=∠PCD,∵∠DFE=∠CFP,∴∠CPF=∠EDF,∵∠ABC=∠ADC=65°,∴∠CPE=∠EDF=180°﹣∠ADC=115°故答案为115.23.解:(1)如图1,设抛物线与轴的另一个交点为D,由对称性得:D(3,0),设抛物线的解析式为:y=a(﹣1)(﹣3),把A(0,3)代入得:3=3a,a=1,∴抛物线的解析式;y=2﹣4+3;(2)如图2,设P(m,m2﹣4m+3),∵OE平分∠AOB,∠AOB=90°,∴∠AOE=45°,∴△AOE是等腰直角三角形,∴AE=OA=3,∴E(3,3),易得OE的解析式为:y=,过P作PG∥y轴,交OE于点G,∴G(m,m),∴PG=m﹣(m2﹣4m+3)=﹣m2+5m﹣3,=S△AOE+S△POE,∴S四边形AOPE=×3×3+PG•AE,=+×3×(﹣m2+5m﹣3),=﹣+,=﹣(m﹣)2+,∵﹣<0,∴当m=时,S有最大值是;(3)如图3,过P作MN⊥y轴,交y轴于M,交l于N,∵△OPF是等腰直角三角形,且OP=PF,易得△OMP≌△PNF,∴OM=PN,∵P(m,m2﹣4m+3),则﹣m2+4m﹣3=2﹣m,解得:m=或,∴P的坐标为(,)或(,);如图4,过P作MN⊥轴于N,过F作FM⊥MN于M,同理得△ONP≌△PMF,∴PN=FM,则﹣m2+4m﹣3=m﹣2,解得:=或;P的坐标为(,)或(,);综上所述,点P的坐标是:(,)或(,)或(,)或(,).。

深圳罗湖区明珠学校九年级上册期末数学试题(word版,含解析)

深圳罗湖区明珠学校九年级上册期末数学试题(word版,含解析)

深圳罗湖区明珠学校九年级上册期末数学试题(word 版,含解析)一、选择题1.如图,等边三角形ABC 的边长为5,D 、E 分别是边AB 、AC 上的点,将△ADE 沿DE 折叠,点A 恰好落在BC 边上的点F 处,若BF =2,则BD 的长是( )A .2B .3C .218D .2472.如图,ABC ∆与A B C '''∆是以坐标原点O 为位似中心的位似图形,若点A 是OA '的中点,ABC ∆的面积是6,则A B C '''∆的面积为( )A .9B .12C .18D .243.在平面直角坐标系中,如图是二次函数y =ax 2+bx +c (a ≠0)的图象的一部分,给出下列命题:①a +b +c =0;②b >2a ;③方程ax 2+bx +c =0的两根分别为﹣3和1;④b 2﹣4ac >0,其中正确的命题有( )A .1个B .2个C .3个D .4个4.已知圆内接正六边形的边长是1,则该圆的内接正三角形的面积为( )A .433B .3C .334D .3225.已知⊙O 的半径为4,点P 到圆心O 的距离为4.5,则点P 与⊙O 的位置关系是( ) A .P 在圆内B .P 在圆上C .P 在圆外D .无法确定6.二次函数22y x x =-+在下列( )范围内,y 随着x 的增大而增大. A .2x < B .2x > C .0x <D .0x >7.如图在△ABC中,点D、E分别在△ABC的边AB、AC上,不一定能使△ADE与△ABC相似的条件是()A.∠AED=∠B B.∠ADE=∠C C.AD DEAB BC=D.AD AEAC AB=8.如图,点A、B、C都在⊙O上,若∠ABC=60°,则∠AOC的度数是()A.100°B.110°C.120°D.130°9.我国传统文化中的“福禄寿喜”图(如图)由四个图案构成.这四个图案中既是轴对称图形,又是中心对称图形的是()A.B.C.D.10.下列方程中,关于x的一元二次方程是()A.2x﹣3=x B.2x+3y=5 C.2x﹣x2=1 D.17 xx+=11.设A(﹣2,y1),B(1,y2),C(2,y3)是抛物线y=﹣(x+1)2+m上的三点,则y1,y2,y3的大小关系为()A.y3>y2>y1B.y1>y2>y3C.y1>y3>y2D.y2>y1>y312.二次函数y=ax2+bx+c的y与x的部分对应值如下表:x…0134…y…242﹣2…则下列判断中正确的是()A.抛物线开口向上B.抛物线与y轴交于负半轴C.当x=﹣1时y>0 D.方程ax2+bx+c=0的负根在0与﹣1之间13.下列说法正确的是()A.所有等边三角形都相似B.有一个角相等的两个等腰三角形相似C.所有直角三角形都相似D.所有矩形都相似14.已知在△ABC中,∠ACB=90°,AC=6cm,BC=8cm,CM是它的中线,以C为圆心,5cm为半径作⊙C,则点M与⊙C的位置关系为( )A.点M在⊙C上B.点M在⊙C内C.点M在⊙C外D.点M不在⊙C内15.如图,在正方形 ABCD 中,E是BC的中点,F是CD上一点,AE⊥EF.有下列结论:①∠BAE=30°;②射线FE是∠AFC的角平分线;③CF=13 CD;④AF=AB+CF.其中正确结论的个数为()A.1 个B.2 个C.3 个D.4 个二、填空题16.三角形的两边长分别为3和6,第三边的长是方程x2﹣6x+8=0的解,则此三角形的周长是_____.17.如图,在平面直角坐标系中,将△ABO绕点A顺指针旋转到△AB1C1的位置,点B、O 分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去…,若点A(53,0)、B(0,4),则点B2020的横坐标为_____.18.若圆锥的底面半径为3cm ,高为4cm ,则它的侧面展开图的面积为_____cm 2.19.关于x 的方程(m ﹣2)x 2﹣2x +1=0是一元二次方程,则m 满足的条件是_____.20.如图是二次函数2y ax bx c =++的部分图象,由图象可知不等式20ax bx c ++>的解集是_______.21.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径2r cm =,扇形的圆心角120θ=,则该圆锥的母线长l 为___cm .22.把抛物线22(1)1y x =-+向左平移2个单位长度再向下平移3个单位长度后所得到的抛物线的函数表达式是__________.23.如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是_________.24.如图,抛物线2143115y x =-与x 轴交于A 、B 两点,与y 轴交于C 点,⊙B 的圆心为B ,半径是1,点P 是直线AC 上的动点,过点P 作⊙B 的切线,切点是Q ,则切线长PQ 的最小值是__.25.如图,ABC是⊙O的内接三角形,AD是△ABC的高,AE是⊙O的直径,且AE=4,若CD=1,AD=3,则AB的长为______.26.已知关于x的一元二次方程(m﹣1)x2+x+1=0有实数根,则m的取值范围是.27.如图,已知PA,PB是⊙O的两条切线,A,B为切点.C是⊙O上一个动点.且不与A,B重合.若∠PAC=α,∠ABC=β,则α与β的关系是_______.28.若⊙O的直径是4,圆心O到直线l的距离为3,则直线l与⊙O的位置关系是_________.29.如图,AB是⊙O的直径,弦BC=2cm,F是弦BC的中点,∠ABC=60°.若动点E以2cm/s的速度从A点出发沿着A⇒B⇒A方向运动,设运动时间为t(s)(0≤t<3),连接EF,当t为_____s时,△BEF是直角三角形.30.如图,在△ABC中,AC:BC:AB=3:4:5,⊙O沿着△ABC的内部边缘滚动一圈,若⊙O的半径为1,且圆心O运动的路径长为18,则△ABC的周长为_____.三、解答题31.某商场以每件42元的价格购进一种服装,由试销知,每天的销量t (件)与每件的销售价x (元)之间的函数关系为t=204-3x.(1)试写出每天销售这种服装的毛利润y (元)与每件售价x (元)之间的函数关系式(毛利润=销售价-进货价);(2)每件销售价为多少元,才能使每天的毛利润最大?最大毛利润是多少?32.计算(1)02020318(1)2⎛⎫-+- ⎪⎝⎭ (2)2430x x -+=33.如图,⊙O 为ABC ∆的外接圆,9012ACB AB ∠=︒=,,过点C 的切线与AB 的延长线交于点D ,OE 交AC 于点F ,CAB E ∠=∠.(1)判断OE 与BC 的位置关系,并说明理由;(2)若3tan 4BCD ∠=,求EF 的长. 34.如图,Rt △ABC 中,∠ABC=90°,以AB 为直径作⊙O ,点D 为⊙O 上一点,且CD=CB 、连接DO 并延长交CB 的延长线于点E(1)判断直线CD 与⊙O 的位置关系,并说明理由;(2)若BE=4,DE=8,求AC 的长.35.已知二次函数223y x x =--+的图象和x 轴交于点A 、B ,与y 轴交于点C ,点P 是直线AC 上方的抛物线上的动点.(1)求直线AC 的解析式.(2)当P 是抛物线顶点时,求APC ∆面积.(3)在P 点运动过程中,求APC ∆面积的最大值.四、压轴题36.如图①,O 经过等边ABC 的顶点A ,C (圆心O 在ABC 内),分别与AB ,CB 的延长线交于点D ,E ,连结DE ,BF EC ⊥交AE 于点F .(1)求证:BD BE =.(2)当:3:2AF EF =,6AC =,求AE 的长.(3)当:3:2AF EF =,AC a =时,如图②,连结OF ,OB ,求OFB △的面积(用含a 的代数式表示).37.已知:如图1,在O 中,弦2AB =,1CD =,AD BD ⊥.直线,AD BC 相交于点E .(1)求E ∠的度数; (2)如果点,C D 在O 上运动,且保持弦CD 的长度不变,那么,直线,AD BC 相交所成锐角的大小是否改变?试就以下三种情况进行探究,并说明理由(图形未画完整,请你根据需要补全).①如图2,弦AB 与弦CD 交于点F ;②如图3,弦AB 与弦CD 不相交:③如图4,点B 与点C 重合.38.如图,在Rt△AOB中,∠AOB=90°,tan B=34,OB=8.(1)求OA、AB的长;(2)点Q从点O出发,沿着OA方向以1个单位长度/秒的速度匀速运动,同时动点P从点A出发,沿着AB方向也以1个单位长度秒的速度匀速运动,设运动时间为t秒(0<t≤5)以P为圆心,PA长为半径的⊙P与AB、OA的另一个交点分别为C、D,连结CD,QC.①当t为何值时,点Q与点D重合?②若⊙P与线段QC只有一个公共点,求t的取值范围.39.如图,一次函数122y x=-+的图象交y轴于点A,交x轴于点B点,抛物线2y x bx c=-++过A、B两点.(1)求A,B两点的坐标;并求这个抛物线的解析式;(2)作垂直x轴的直线x=t,在第一象限交直线AB于M,交这个抛物线于N.求当t取何值时,MN有最大值?最大值是多少?(3)在(2)的情况下,以A、M、N、D为顶点作平行四边形,求第四个顶点D的坐标.40.如图1,ABC ∆是⊙O 的内接等腰三角形,点D 是弧AC 上异于,A C 的一个动点,射线AD 交底边BC 所在的直线于点E ,连结BD 交AC 于点F .(1)求证:ADB CDE ∠=∠;(2)若7BD =,3CD =,①求AD DE •的值;②如图2,若AC BD ⊥,求tan ACB ∠;(3)若5tan 2CDE ∠=,记AD x =,ABC ∆面积和DBC ∆面积的差为y ,直接写出y 关于x 的函数关系式.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据折叠得出∠DFE =∠A =60°,AD =DF ,AE =EF ,设BD =x ,AD =DF =5﹣x ,求出∠DFB =∠FEC ,证△DBF ∽△FCE ,进而利用相似三角形的性质解答即可.【详解】解:∵△ABC 是等边三角形,∴∠A =∠B =∠C =60°,AB =BC =AC =5,∵沿DE 折叠A 落在BC 边上的点F 上,∴△ADE ≌△FDE ,∴∠DFE =∠A =60°,AD =DF ,AE =EF ,设BD =x ,AD =DF =5﹣x ,CE =y ,AE =5﹣y ,∵BF =2,BC =5,∴CF =3,∵∠C =60°,∠DFE =60°,∴∠EFC +∠FEC =120°,∠DFB +∠EFC =120°,∴∠DFB =∠FEC ,∵∠C =∠B ,∴△DBF ∽△FCE , ∴BD BF DF FC CE EF==, 即2535x x y y-==-, 解得:x =218, 即BD =218, 故选:C .【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知折叠的性质、相似三角形的判定定理.2.D解析:D【解析】【分析】根据位似图形的性质,再结合点A 与点A '的坐标关系可得出两个三角形的相似比,再根据面积比等于相似比的平方即可得出答案.【详解】解:∵△ABC 与△A B C '''是以坐标原点O 为位似中心的位似图形,且A 为O A '的中心, ∴△ABC 与△A B C '''的相似比为:1:2;∵位似图形的面积比等于相似比的平方,∴△A B C '''的面积等于4倍的△ABC 的面积,即4624⨯=.故答案为:D.【点睛】本题考查的知识点是位似图形的性质,位似是特殊的相似,熟记位似图形的面积比等于相似比的平方是解题的关键.3.C解析:C【解析】【分析】根据二次函数的图象可知抛物线开口向上,对称轴为x =﹣1,且过点(1,0),根据对称轴可得抛物线与x 轴的另一个交点为(﹣3,0),把(1,0)代入可对①做出判断;由对称轴为x =﹣1,可对②做出判断;根据二次函数与一元二次方程的关系,可对③做出判断,根据根的判别式解答即可.【详解】由图象可知:抛物线开口向上,对称轴为直线x =﹣1,过(1,0)点,把(1,0)代入y =ax 2+bx +c 得,a +b +c =0,因此①正确;对称轴为直线x =﹣1,即:﹣2b a=﹣1,整理得,b =2a ,因此②不正确; 由抛物线的对称性,可知抛物线与x 轴的两个交点为(1,0)(﹣3,0),因此方程ax 2+bx +c =0的两根分别为﹣3和1;故③是正确的;由图可得,抛物线有两个交点,所以b 2﹣4ac >0,故④正确;故选C .【点睛】考查二次函数的图象和性质,抛物线通常从开口方向、对称轴、顶点坐标、与x 轴,y 轴的交点,以及增减性上寻找其性质.4.C解析:C【解析】【分析】根据圆内接正六边形的边长是1可得出圆的半径为1,利用勾股定理可求出该内接正三角形的边长为3,高为32,从而可得出面积. 【详解】解:由题意可得出圆的半径为1,∵△ABC 为正三角形,AO=1,AD BC ⊥,BD=CD ,AO=BO ,∴1DO 2=,32AD =,∴BD 2==,∴BC =∴1322ABC S =⨯=. 故选:C .【点睛】本题考查的知识点是正多边形的性质以及解直角三角形,根据圆内接正多边形的边长求出圆的半径是解此题的关键.5.C解析:C【解析】【分析】点到圆心的距离大于半径,得到点在圆外.【详解】∵点P 到圆心O 的距离为4.5,⊙O 的半径为4,∴点P 在圆外.故选:C.【点睛】此题考查点与圆的位置关系,通过比较点到圆心的距离d 的距离与半径r 的大小确定点与圆的位置关系.6.C解析:C【解析】【分析】先求函数的对称轴,再根据开口方向确定x 的取值范围.【详解】222(1)1y x x x =-+=--+,∵图像的对称轴为x=1,a=-10<,∴当x 1<时,y 随着x 的增大而增大,故选:C.【点睛】此题考查二次函数的性质,当a 0a 0<时,对称轴左增右减,当>时,对称轴左减右增. 7.C解析:C【解析】【分析】由题意根据相似三角形的判定定理依次对各选项进行分析判断即可.解:A、∠AED=∠B,∠A=∠A,则可判断△ADE∽△ACB,故A选项错误;B、∠ADE=∠C,∠A=∠A,则可判断△ADE∽△ACB,故B选项错误;C、AD DEAB BC=不能判定△ADE∽△ACB,故C选项正确;D、AD AEAC AB=,且夹角∠A=∠A,能确定△ADE∽△ACB,故D选项错误.故选:C.【点睛】本题考查的是相似三角形的判定,熟练掌握相似三角形的判定定理是解答此题的关键.8.C解析:C【解析】【分析】直接利用圆周角定理求解.【详解】解:∵∠ABC和∠AOC所对的弧为AC,∠ABC=60°,∴∠AOC=2∠ABC=2×60°=120°.故选:C.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.9.B解析:B【解析】试题分析:根据轴对称图形与中心对称图形的概念求解.解:A、不是轴对称图形,也不是中心对称图形.故错误;B、是轴对称图形,也是中心对称图形.故正确;C、是轴对称图形,不是中心对称图形.故错误;D、不是轴对称图形,也不是中心对称图形.故错误.故选B.点睛:掌握中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.10.C解析:C【解析】【分析】利用一元二次方程的定义判断即可.A、方程2x﹣3=x为一元一次方程,不符合题意;B、方程2x+3y=5是二元一次方程,不符合题意;C、方程2x﹣x2=1是一元二次方程,符合题意;D、方程x+1x=7是分式方程,不符合题意,故选:C.【点睛】本题考查了一元一次方程的问题,掌握一元一次方程的定义是解题的关键.11.B解析:B【解析】【分析】本题要比较y1,y2,y3的大小,由于y1,y2,y3是抛物线上三个点的纵坐标,所以可以根据二次函数的性质进行解答:先求出抛物线的对称轴,再由对称性得A点关于对称轴的对称点A'的坐标,再根据抛物线开口向下,在对称轴右边,y随x的增大而减小,便可得出y1,y2,y3的大小关系.【详解】∵抛物线y=﹣(x+1)2+m,如图所示,∴对称轴为x=﹣1,∵A(﹣2,y1),∴A点关于x=﹣1的对称点A'(0,y1),∵a=﹣1<0,∴在x=﹣1的右边y随x的增大而减小,∵A'(0,y1),B(1,y2),C(2,y3),0<1<2,∴y1>y2>y3,故选:B.【点睛】本题考查了二次函数图象上点的坐标的特征,解题的关键是能画出二次函数的大致图象,据图判断.12.D【解析】【分析】根据表中的对应值,求出二次函数2y ax bx c =++的表达式即可求解.【详解】解:选取02(,),14(,),32(,)三点分别代入2y ax bx c =++得 24932c a b c a b c =⎧⎪++=⎨⎪++=⎩解得:132a b c =-⎧⎪=⎨⎪=⎩∴二次函数表达式为232y x x =-++∵1a =-,抛物线开口向下;∴选项A 错误;∵2c =函数图象与y 的正半轴相交;∴选项B 错误;当x=-1时,2(1)3(1)220y =--+⨯-+=-<;∴选项C 错误;令0y =,得2320x x -++=,解得:132x +=,232x =∵3102--<,方程20ax bx c ++=的负根在0与-1之间; 故选:D .【点睛】本题考查二次函数图象与性质,掌握性质,利用数形结合思想解题是关键.13.A解析:A【解析】【分析】根据等边三角形各内角为60°的性质、矩形边长的性质、直角三角形、等腰三角形的性质可以解题.【详解】解:A 、等边三角形各内角为60°,各边长相等,所以所有的等边三角形均相似,故本选项正确;B 、一对等腰三角形中,若底角和顶角相等且不等于60°,则该对三角形不相似,故本选项错误;C 、直角三角形中的两个锐角的大小不确定,无法判定三角形相似,故本选项错误;D 、矩形的邻边的关系不确定,所以并不是所有矩形都相似,故本选项错误.故选:A .本题考查了等边三角形各内角为60°,各边长相等的性质,考查了等腰三角形底角相等的性质,本题中熟练掌握等边三角形、等腰三角形、直角三角形、矩形的性质是解题的关键.14.A解析:A【解析】【分析】根据题意可求得CM 的长,再根据点和圆的位置关系判断即可.【详解】如图,∵由勾股定理得2268+,∵CM 是AB 的中线,∴CM=5cm ,∴d=r ,所以点M 在⊙C 上,故选A .【点睛】本题考查了点和圆的位置关系,解决的根据是点在圆上⇔圆心到点的距离=圆的半径.15.B解析:B【解析】【分析】根据点E 为BC 中点和正方形的性质,得出∠BAE 的正切值,从而判断①,再证明△ABE ∽△ECF ,利用有两边对应成比例且夹角相等三角形相似即可证得△ABE ∽△AEF ,可判断②③,过点E 作AF 的垂线于点G ,再证明△ABE ≌△AGE ,△ECF ≌△EGF ,即可证明④.【详解】解:∵E 是BC 的中点,∴tan ∠BAE=1=2BE AB , ∴∠BAE ≠30°,故①错误;∵四边形ABCD 是正方形,∴∠B=∠C=90°,AB=BC=CD ,∵AE ⊥EF ,∴∠AEF=∠B=90°,∴∠BAE+∠AEB=90°,∠AEB+FEC=90°,∴∠BAE=∠CEF ,在△BAE 和△CEF 中,==B C BAE CEF ∠∠⎧⎨∠∠⎩, ∴△BAE ∽△CEF , ∴==2AB BE EC CF, ∴BE=CE=2CF ,∵BE=CF=12BC=12CD , 即2CF=12CD , ∴CF=14CD , 故③错误;设CF=a ,则BE=CE=2a ,AB=CD=AD=4a ,DF=3a ,∴AE=,,AF=5a ,∴AE AFBE EF , ∴=AE BE AF EF, 又∵∠B=∠AEF ,∴△ABE ∽△AEF ,∴∠AEB=∠AFE ,∠BAE=∠EAG ,又∵∠AEB=∠EFC ,∴∠AFE=∠EFC ,∴射线FE 是∠AFC 的角平分线,故②正确;过点E 作AF 的垂线于点G ,在△ABE 和△AGE 中,===BAE GAE B AGE AE AE ∠∠⎧⎪∠∠⎨⎪⎩,∴△ABE ≌△AGE (AAS ),∴AG=AB ,GE=BE=CE ,在Rt △EFG 和Rt △EFC 中,==GE CE EF EF⎧⎨⎩, Rt △EFG ≌Rt △EFC (HL ),∴GF=CF ,∴AB+CF=AG+GF=AF ,故④正确.故选B.【点睛】此题考查了相似三角形的判定与性质和全等三角形的判定和性质,以及正方形的性质.题目综合性较强,注意数形结合思想的应用.二、填空题16.14【解析】【分析】先求出方程的两根,然后根据三角形的三边关系,得到合题意的边,进而求得三角形周长即可.【详解】解:x2﹣6x+8=0,(x ﹣2)(x ﹣4)=0,x ﹣2=0,x ﹣4=0解析:14【解析】【分析】先求出方程的两根,然后根据三角形的三边关系,得到合题意的边,进而求得三角形周长即可.【详解】解:x 2﹣6x+8=0,(x ﹣2)(x ﹣4)=0,x ﹣2=0,x ﹣4=0,x1=2,x2=4,当x=2时,2+3<6,不符合三角形的三边关系定理,所以x=2舍去,当x=4时,符合三角形的三边关系定理,三角形的周长是3+6+4=13,故答案为:13.【点睛】本题考查了因式分解法解一元二次方程以及三角形的三边关系,不能盲目地将三边长相加起来,而应养成检验三边长能否成三角形的好习惯,熟练掌握一元二次方程的解法是解法本题的关键.17.10100【解析】【分析】首先根据已知求出三角形三边长度,然后通过旋转发现,B、B2、B4…每偶数之间的B相差10个单位长度,根据这个规律可以求解.【详解】由图象可知点B2020在第一象限解析:10100【解析】【分析】首先根据已知求出三角形三边长度,然后通过旋转发现,B、B2、B4…每偶数之间的B相差10个单位长度,根据这个规律可以求解.【详解】由图象可知点B2020在第一象限,∵OA=53,OB=4,∠AOB=90°,∴AB133===,∴OA+AB1+B1C2=53+133+4=10,∴B2的横坐标为:10,同理:B4的横坐标为:2×10=20,B6的横坐标为:3×10=30,∴点B2020横坐标为:2020102⨯=10100.故答案为:10100.【点睛】本题考查了点的坐标规律变换,通过图形旋转,找到所有B点之间的关系是本题的关键.题目难易程度适中,可以考察学生观察、发现问题的能力.18.15【解析】【分析】先根据勾股定理计算出母线长,然后利用圆锥的侧面积公式进行计算.【详解】∵圆锥的底面半径为3cm ,高为4cm∴圆锥的母线长∴圆锥的侧面展开图的面积故填:.【点睛】解析:15π【解析】【分析】先根据勾股定理计算出母线长,然后利用圆锥的侧面积公式进行计算.【详解】∵圆锥的底面半径为3cm ,高为4cm∴圆锥的母线长5()cm ==∴圆锥的侧面展开图的面积()23515cmππ=⨯⨯=故填:15π.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长. 19.【解析】【分析】根据一元二次方程的定义ax2+bx+c=0(a≠0),列含m 的不等式求解即可.【详解】解:∵关于x 的方程(m ﹣2)x2﹣2x+1=0是一元二次方程,∴m-2≠0,∴m≠解析:2m ≠【解析】【分析】根据一元二次方程的定义ax 2+bx+c=0(a ≠0),列含m 的不等式求解即可.【详解】解:∵关于x 的方程(m ﹣2)x 2﹣2x+1=0是一元二次方程,∴m-2≠0,∴m ≠2.故答案为:m ≠2.【点睛】本题考查了一元二次方程的概念,满足二次项系数不为0是解答此题的关键.20.【解析】【分析】求方程的解即是求函数图象与x 轴的交点坐标,因为图像具有对称性,知道一个坐标,就可求出另一个,分析x 轴上方的图象可得结果.【详解】由图像可知,二次函数的对称轴x=2,图像与x解析:15x -<<【解析】【分析】求方程的解即是求函数图象与x 轴的交点坐标,因为图像具有对称性,知道一个坐标,就可求出另一个,分析x 轴上方的图象可得结果.【详解】由图像可知,二次函数的对称轴x=2,图像与x 轴的一个交点为5,所以,另一交点为2-3=-1. ∴x 1=-1,x 2=5. ∴不等式20ax bx c ++>的解集是15x -<<.故答案为15x -<<【点睛】要了解二次函数性质与图像,由于图像的开口向下,所以,有两个交点,知一易求另一个,本题属于基础题.21.【解析】【分析】易得圆锥的底面周长,也就是侧面展开图的弧长,进而利用弧长公式即可求得圆锥的母线长.【详解】圆锥的底面周长cm ,设圆锥的母线长为,则: ,解得,故答案为.【点睛】本解析:【解析】【分析】易得圆锥的底面周长,也就是侧面展开图的弧长,进而利用弧长公式即可求得圆锥的母线长.【详解】圆锥的底面周长224ππ=⨯=cm ,设圆锥的母线长为R ,则:1204180R ππ⨯=, 解得6R =,故答案为6.【点睛】本题考查了圆锥的计算,用到的知识点为:圆锥的侧面展开图的弧长等于底面周长;弧长公式为: 180n r π. 22.【解析】【分析】根据二次函数图象的平移规律平移即可.【详解】抛物线向左平移2个单位长度再向下平移3个单位长度后所得到的抛物线的函数表达式是即故答案为:.【点睛】本题主要考查二次函解析:22(1)2y x =+-【解析】【分析】根据二次函数图象的平移规律平移即可.【详解】抛物线22(1)1y x =-+向左平移2个单位长度再向下平移3个单位长度后所得到的抛物线的函数表达式是 22(12)13y x =-++-即22(1)2y x =+-故答案为:22(1)2y x =+-.【点睛】本题主要考查二次函数的平移,掌握平移规律“左加右减,上加下减”是解题的关键. 23.【解析】【分析】根据几何概率的求法:飞镖落在阴影部分的概率就是阴影区域的面积与总面积的比值.【详解】∵总面积为3×3=9,其中阴影部分面积为4××1×2=4,∴飞镖落在阴影部分的概率是, 解析:49【解析】【分析】根据几何概率的求法:飞镖落在阴影部分的概率就是阴影区域的面积与总面积的比值.【详解】∵总面积为3×3=9,其中阴影部分面积为4×12×1×2=4, ∴飞镖落在阴影部分的概率是49, 故答案为:49. 【点睛】此题考查几何概率,解题关键在于掌握运算法则. 24.【解析】【分析】先根据解析式求出点A 、B 、C 的坐标,求出直线AC的解析式,设点P 的坐标,根据过点P 作⊙B 的切线,切点是Q 得到PQ 的函数关系式,求出最小值即可.【详解】令中y=0,得x1=【解析】【分析】先根据解析式求出点A 、B 、C 的坐标,求出直线AC 的解析式,设点P 的坐标,根据过点P 作⊙B 的切线,切点是Q 得到PQ 的函数关系式,求出最小值即可.【详解】令21115y x =-中y=0,得x 1x 2∴直线AC 的解析式为1y =-, 设P (x ,31x ), ∵过点P 作⊙B 的切线,切点是Q ,BQ=1∴PQ 2=PB 2-BQ 2,2+(313x )2-1, =24283753x x , ∵43a =0<, ∴PQ 2有最小值24283475()3326443, ∴PQ【点睛】此题考查二次函数最小值的实际应用,求动线段的最小值,需构建关于此线段的函数解析式,利用二次函数顶点坐标公式求最值,此题找到线段PQ 、BQ 、PB 之间的关系式是解题的关键.25.【解析】【分析】利用勾股定理求出AC ,证明△ABE ∽△ADC ,推出,由此即可解决问题.【详解】解:∵AD 是△ABC 的高,∴∠ADC=90°,∴,∵AE 是直径,∴∠ABE=90°,解析:5【解析】【分析】利用勾股定理求出AC ,证明△ABE ∽△ADC ,推出AB AE AD AC =,由此即可解决问题. 【详解】解:∵AD 是△ABC的高,∴∠ADC=90°,∴AC ==∵AE 是直径,∴∠ABE=90°,∴∠ABE=∠ADC ,∵∠E=∠C ,∴△ABE ∽△ADC , ∴AB AE AD AC =, ∴3AB =∴AB =故答案为:5 【点睛】本题考查相似三角形的判定和性质,勾股定理、圆周角定理等知识,解题的关键是正确寻找相似三角形解决问题.26.m≤且m≠1.【解析】【分析】【详解】本题考查的是一元二次方程根与系数的关系.有实数根则△=即1-4(-1)(m-1)≥0解得m≥,又一元二次方程所以m-1≠0综上m≥且m≠1.解析:m≤54且m≠1. 【解析】【分析】【详解】本题考查的是一元二次方程根与系数的关系.有实数根则△=240b ac -≥即1-4(-1)(m-1)≥0解得m≥34,又一元二次方程所以m-1≠0综上m≥34且m≠1. 27.或【解析】【分析】分点C 在优弧AB 上和劣弧AB 上两种情况讨论,根据切线的性质得到∠OAC 的度数,再根据圆周角定理得到∠AOC 的度数,再利用三角形内角和定理得出α与β的关系.【详解】解:当点解析:αβ=或180αβ+︒=【解析】【分析】分点C 在优弧AB 上和劣弧AB 上两种情况讨论,根据切线的性质得到∠OAC 的度数,再根据圆周角定理得到∠AOC 的度数,再利用三角形内角和定理得出α与β的关系.【详解】解:当点C 在优弧AB 上时,如图,连接OA 、OB 、OC ,∵PA 是⊙O 的切线,∴∠PAO=90°,∴∠OAC=α-90°=∠OCA ,∵∠AOC=2∠ABC=2β,∴2(α-90°)+2β=180°,∴180αβ+︒=;当点C 在劣弧AB 上时,如图,∵PA 是⊙O 的切线,∴∠PAO=90°,∴∠OAC= 90°-α=∠OCA ,∵∠AOC=2∠ABC=2β,∴2(90°-α)+2β=180°,∴αβ=.综上:α与β的关系是180αβ+︒=或αβ=. 故答案为:αβ=或180αβ+︒=. 【点睛】本题考查了切线的性质,圆周角定理,三角形内角和定理,等腰三角形的性质,利用圆周角定理是解题的关键,同时注意分类讨论.28.相离【解析】r=2,d=3, 则直线l与⊙O的位置关系是相离解析:相离【解析】r=2,d=3,则直线l与⊙O的位置关系是相离29.1或1.75或2.25s【解析】试题分析:∵AB是⊙O的直径,∴∠C=90°.∵∠ABC=60°,∴∠A=30°.又BC=3cm,∴AB=6cm.则当0≤t<3时,即点E从A到B再到解析:1或1.75或2.25s【解析】试题分析:∵AB是⊙O的直径,∴∠C=90°.∵∠ABC=60°,∴∠A=30°.又BC=3cm,∴AB=6cm.则当0≤t<3时,即点E从A到B再到O(此时和O不重合).若△BEF是直角三角形,则当∠BFE=90°时,根据垂径定理,知点E与点O重合,即t=1;当∠BEF=90°时,则BE=BF=34,此时点E走过的路程是214或274,则运动时间是74s或94s.故答案是t=1或74或94.考点:圆周角定理.30.30【解析】【分析】如图,首先利用勾股定理判定△ABC是直角三角形,由题意得圆心O所能达到的区域是△DEG,且与△ABC三边相切,设切点分别为G、H、P、Q、M、N,连接DH、DG、EP、EQ解析:30【解析】【分析】如图,首先利用勾股定理判定△ABC 是直角三角形,由题意得圆心O 所能达到的区域是△DEG ,且与△ABC 三边相切,设切点分别为G 、H 、P 、Q 、M 、N ,连接DH 、DG 、EP 、EQ 、FM 、FN ,根据切线性质可得:AG =AH ,PC =CQ ,BN =BM ,DG 、EP 分别垂直于AC ,EQ 、FN 分别垂直于BC ,FM 、DH 分别垂直于AB ,继而则有矩形DEPG 、矩形EQNF 、矩形DFMH ,从而可知DE =GP ,EF =QN ,DF =HM ,DE ∥GP ,DF ∥HM ,EF ∥QN ,∠PEF =90°,根据题意可知四边形CPEQ 是边长为1的正方形,根据相似三角形的判定可得△DEF ∽△ACB ,根据相似三角形的性质可知:DE ∶EF ∶FD =AC ∶CB ∶BA =3∶4∶5,进而根据圆心O 运动的路径长列出方程,求解算出DE 、EF 、FD 的长,根据矩形的性质可得:GP 、QN 、MH 的长,根据切线长定理可设:AG =AH =x ,BN =BM =y ,根据线段的和差表示出AC 、BC 、AB 的长,进而根据AC ∶CB ∶BA =3∶4∶5列出比例式,继而求出x 、y 的值,进而即可求解△ABC 的周长.【详解】∵AC ∶CB ∶BA =3∶4∶5,设AC =3a ,CB =4a ,BA =5a (a >0)∴()()()222222=345AC CB a a a BA ++==∴△ABC 是直角三角形,设⊙O 沿着△ABC 的内部边缘滚动一圈,如图所示,连接DE 、EF 、DF ,设切点分别为G 、H 、P 、Q 、M 、N ,连接DH 、DG 、EP 、EQ 、FM 、FN ,根据切线性质可得:AG =AH ,PC =CQ ,BN =BMDG 、EP 分别垂直于AC ,EQ 、FN 分别垂直于BC ,FM 、DH 分别垂直于AB ,∴DG ∥EP ,EQ ∥FN ,FM ∥DH ,∵⊙O 的半径为1∴DG =DH =PE =QE =FN =FM =1,则有矩形DEPG 、矩形EQNF 、矩形DFMH ,∴DE =GP ,EF =QN ,DF =HM ,DE ∥GP ,DF ∥HM ,EF ∥QN,∠PEF =90°又∵∠CPE =∠CQE =90°, PE =QE =1∴四边形CPEQ 是正方形,∴PC =PE =EQ =CQ =1,。

2015-2016学年广东省深圳市罗湖区九年级(上)期末数学试卷

2015-2016学年广东省深圳市罗湖区九年级(上)期末数学试卷

广东省深圳市罗湖区九年级(上)期末数学试卷一、选择题:本题共12小题,每小题3分,共36分,每小题给出的四个选项中,其中只有一项是正确的1.(3分)一元二次方程(x﹣1)(x﹣2)=0的解是()A.x=1 B.x=2 C.x1=1,x2=2 D.x1=﹣1,x2=﹣22.(3分)如图,在△ABC中,点D、E分别是AB、C的中点,则S△ADE:S△ABC=()A.1:2 B.1:3 C.1:4 D.1:53.(3分)如图,平行四边形、矩形、菱形、正方形的包含关系可用如图表示,则图中阴影部分所表示的图形是()A.矩形 B.菱形 C.矩形或菱形D.正方形4.(3分)在Rt△ABC中,∠C=90°,BC=a,AC=b,AB=c,则sinA=()A.B.C.D.5.(3分)小亮根据取x的值为:1.1,1.2,1.3,1.4,1.5时,代入x2﹣12x﹣15求值,估6.(3分)如图,在2×2的正方形网格中有9个格点,已经取定点A、B、C,在余下的6个点中任取一点P,满足△ABP与△ABC相似的概率是()A.B.C.D.7.(3分)对于抛物线y=﹣3(x﹣2)2+1,下列说法中错误的是()A.抛物线开口向下B.对称轴是直线x=2C.顶点坐标是(2,1)D.抛物线与x轴没有交点8.(3分)如图是一个几何体的三视图,则这个几何体的侧面积是()A.12πcm2B.8πcm2C.6πcm2D.3πcm29.(3分)如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC于点D,下列结论正确的有()①AD=BD=BC;②△BCD≌△ABC;③AD2=AC•DC;④点D是AC的黄金分割点.A.1个B.2个C.3个D.4个10.(3分)如图,A、D是电线杆AB上的两个瓷壶,AC和DE分别表示太阳光线,若某一时刻线段AD在地面上的影长CE=1m,BD在地面上的影长BE=3m,瓷壶D到地面的距离DB=20m,则电线杆AB的高为()A.15m B.m C.21m D.m11.(3分)如图,将n个边长都为2的正方形按如图所示摆放,点A1,A2,…A n分别是正方形的中心,则这n个正方形重叠部分的面积之和是()A.n B.n﹣1 C.4(n﹣1)D.4n12.(3分)如图,点A在双曲线y=上,且OA=4,过点A作AC⊥x轴,垂足为C,OA的垂直平分线交OC于点B,如果AB+BC﹣AC=2,则k的值为()A.8﹣2B.8+2C.3 D.6二、填空题:本题共4小题,每小题3分,共12分13.(3分)在某校组织的知识竞赛中共有三种试题,其中语文类4题,综合类8题,数学类若干题.已知从中随机抽取一题,是数学类的概率是,则数学类有题.14.(3分)如图,小明在A时测得某树的影长为2m,B时又测得该树的影长为8m,若两次日照的光线互相垂直,则树的高度为m.15.(3分)如图,抛物线y=ax2+bx+c(a>0)的对称轴是直线x=1,若点P(4,0)在该抛物线上,则一元二次方程ax2+bx+c=0的两根为.16.(3分)如图,四边形ABCD和四边形ACED都是平行四边形,点R在DE上,且DR:RE=5:4,BR分别与AC、CD相交于点P、Q,则BP:PQ:QR=.三、解答题:本题共7小题,其中第17小题6分,第18小题6分,第19小题7分,第20小题7分,第21小题8分,第22小题8分,第23小题10分,共52分17.(6分)计算:|﹣|+sin45°﹣()﹣1﹣(π﹣3)0.18.(6分)如图,把带有指针的圆形转盘A、B分别分成4等份、3等份的扇形区域,并在每一个小区域内标上数字(如图所示).小明、小乐两个人玩转盘游戏,游戏规则是:同时转动两个转盘,当转盘停止时,若指针所指两区域的数字之积为3的倍数,则小明胜;否则,小乐胜.(若有指针落在分割线上,则无效,需重新转动转盘)(1)试用列表或画树状图的方法,求小明获胜的概率;(2)请问这个游戏规则对小明、小乐双方公平吗?做出判断并说明理由.19.(7分)如图,一次函数的图象与反比例函数y=的图象交于点A(m,6)和点B(4,﹣3).(1)求反比例函数的表达式和点A的坐标;(2)根据图象回答,x在什么范围时,一次函数的值大于反比例函数的值.20.(7分)人民公园划出一块矩形区域,用以栽植鲜花.(1)经测量,该矩形区域的周长是72m,面积为320m2,请求出该区域的长与宽;(2)公园管理处曾设想使矩形的周长和面积分别为(1)中区域的周长和面积的一半,你认为此设想合理吗?如果此设想合理,请求出其长和宽;如果不合理,请说明理由,并求出在(1)中周长减半的条件下矩形面积的最大值.21.(8分)如图,某测量员测量公园内一棵树DE的高度,他们在这棵树左侧一斜坡上端点A处测得树顶端D的仰角为30°,朝着这棵树的方向走到台阶下的点C处,测得树顶端D 的仰角为60°.已知A点的高度AB为3米,台阶AC的坡度为1:(即AB:BC=1:),且B、C、E三点在同一条直线上.(1)求斜坡AC的长;(2)请根据以上条件求出树DE的高度(侧倾器的高度忽略不计).22.(8分)如图,正方形ABCD中,P、Q分别是边AB、BC上的两个动点,P、Q同时分别从A、B出发,点P沿AB向B运动;点Q沿BC向C运动,速度都是1个单位长度/秒.运动时间为t秒.(1)连结AQ、DP相交于点F,求证:AQ⊥DP;(2)当正方形边长为4,而t=3时,求tan∠QDF的值.23.(10分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c与x轴相交于A、B两点,与y轴相交于点C(0,3).且点A的坐标为(﹣1,0),点B的坐标为(3,0),点P是抛物线上第一象限内的一个点.(1)求抛物线的函数表达式;(2)连PO、PB,如果把△POB沿OB翻转,所得四边形POP′B恰为菱形,那么在抛物线的对称轴上是否存在点Q,使△QAB与△POB相似?若存在求出点Q的坐标;若不存在,说明理由;(3)若(2)中点Q存在,指出△QAB与△POB是否位似?若位似,请直接写出其位似中心的坐标.2015-2016学年广东省深圳市罗湖区九年级(上)期末数学试卷参考答案与试题解析一、选择题:本题共12小题,每小题3分,共36分,每小题给出的四个选项中,其中只有一项是正确的1.(3分)(2015秋•罗湖区期末)一元二次方程(x﹣1)(x﹣2)=0的解是()A.x=1 B.x=2 C.x1=1,x2=2 D.x1=﹣1,x2=﹣2【解答】解:x﹣1=0或x﹣2=0,所以x1=1,x2=2.故选C.2.(3分)(2015秋•罗湖区期末)如图,在△ABC中,点D、E分别是AB、C的中点,则S△ADE:S△ABC=()A.1:2 B.1:3 C.1:4 D.1:5【解答】解:∵点D、E分别是AB、C的中点,∴DE是△ABC的中位线,∴DE∥BC,DE=BC,∴△ADE∽△ABC,∴S△ADE:S△ABC=()2=;故选:C.3.(3分)(2015秋•罗湖区期末)如图,平行四边形、矩形、菱形、正方形的包含关系可用如图表示,则图中阴影部分所表示的图形是()A.矩形 B.菱形 C.矩形或菱形D.正方形【解答】解:正方形是特殊的矩形,即是邻边相等的矩形,也是特殊的菱形,即有是一个角为直角的菱形;正方形、矩形和菱形都是特殊的平行四边形,故图中阴影部分表示的图形是正方形.故选:D.4.(3分)(2015秋•罗湖区期末)在Rt△ABC中,∠C=90°,BC=a,AC=b,AB=c,则sinA=()A.B.C.D.【解答】解:sinA==,故选:B.5.(3分)(2015秋•罗湖区期末)小亮根据取x的值为:1.1,1.2,1.3,1.4,1.5时,代入2【解答】解:由表可以看出,当x取1.1与1.2之间的某个数时,y=0,即这个数是x2﹣12x ﹣15=0的一个根.x2﹣12x﹣15=0的一个解x的取值范围为1.1<x<1.2.故选:A.6.(3分)(2015秋•罗湖区期末)如图,在2×2的正方形网格中有9个格点,已经取定点A、B、C,在余下的6个点中任取一点P,满足△ABP与△ABC相似的概率是()A.B.C.D.【解答】解:满足△ABP与△ABC相似的点有3个,所以满足△ABP与△ABC相似的概率是.故选A.7.(3分)(2015秋•罗湖区期末)对于抛物线y=﹣3(x﹣2)2+1,下列说法中错误的是()A.抛物线开口向下B.对称轴是直线x=2C.顶点坐标是(2,1)D.抛物线与x轴没有交点【解答】解:∵抛物线y=﹣3(x﹣2)2+1,∴a=﹣3<0,抛物线的开口向下,故选项A错误;顶点坐标是(2,1),则对称轴为直线x=2,故选项B、C错误;∵顶点在第一象限,开口向下,∴抛物线与x轴有两个交点,故选项D正确;故选D.8.(3分)(2013•临沂)如图是一个几何体的三视图,则这个几何体的侧面积是()A.12πcm2B.8πcm2C.6πcm2D.3πcm2【解答】解:观察三视图知:该几何体为圆柱,高为3cm,底面直径为2cm,侧面积为:πdh=2×3π=6π,故选C.9.(3分)(2015秋•罗湖区期末)如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC 交AC于点D,下列结论正确的有()①AD=BD=BC;②△BCD≌△ABC;③AD2=AC•DC;④点D是AC的黄金分割点.A.1个B.2个C.3个D.4个【解答】解:①由AB=AC,∠A=36°,得∠ABC=∠C=72°,又BD平分∠ABC交AC于点D,∴∠ABD=∠CBD=∠ABC=36°=∠A,∴AD=BD,∠BDC=∠ABD+∠A=72°=∠C,∴BC=BD,∴BC=BD=AD,∴①正确;②∵△BCD是△ABC的一部分,∴②错误;③由①知:∠CBD=∠A,∵∠C=∠C,∴△BCD∽△ACB,∴BC:AC=CD:BC,∴BC2=CD•AC,∵AD=BD=BC,AD2=CD•AC,∴③正确;④设AD=x,AC=AB=1,CD=AC﹣AD=1﹣x,由AD2=CD•AC,得x2=(1﹣x),解得x=±﹣1(舍去负值),∴AD=,∴④正确.正确的有3个.故选C.10.(3分)(2015秋•罗湖区期末)如图,A、D是电线杆AB上的两个瓷壶,AC和DE分别表示太阳光线,若某一时刻线段AD在地面上的影长CE=1m,BD在地面上的影长BE=3m,瓷壶D到地面的距离DB=20m,则电线杆AB的高为()A.15m B.m C.21m D.m【解答】解:∵太阳光线是平行的,∴AC∥DE,∴△BDE∽△BAC,∴,∵BE=3m,CE=1m,∴BC=4m,∴,解得:AB=.故选:B.11.(3分)(2015秋•罗湖区期末)如图,将n个边长都为2的正方形按如图所示摆放,点A1,A2,…A n分别是正方形的中心,则这n个正方形重叠部分的面积之和是()A.n B.n﹣1 C.4(n﹣1)D.4n【解答】解:由题意可得一个阴影部分面积等于正方形面积的,即是×4=1,n个这样的正方形重叠部分(阴影部分)的面积和为:1×(n﹣1)=n﹣1.故选:B.12.(3分)(2015秋•罗湖区期末)如图,点A在双曲线y=上,且OA=4,过点A作AC ⊥x轴,垂足为C,OA的垂直平分线交OC于点B,如果AB+BC﹣AC=2,则k的值为()A.8﹣2B.8+2C.3 D.6【解答】解:设点A的坐标为(x,y),∵OA=4,∴x2+y2=16①,∵OA的垂直平分线交OC于B,∴AB=OB,∵AB+BC﹣AC=OB+BC+AC=OC+AC=x﹣y=2②,由①②得:xy=6,∵点A在双曲线y=上,∴k=6.故选:D.二、填空题:本题共4小题,每小题3分,共12分13.(3分)(2015秋•罗湖区期末)在某校组织的知识竞赛中共有三种试题,其中语文类4题,综合类8题,数学类若干题.已知从中随机抽取一题,是数学类的概率是,则数学类有24题.【解答】解:设数学类有x题.根据题意得:=,解得:x=24,经检验,x=24是原分式方程的解,故数学类有24题.故答案为:24.14.(3分)(2010•德州)如图,小明在A时测得某树的影长为2m,B时又测得该树的影长为8m,若两次日照的光线互相垂直,则树的高度为4m.【解答】解:如图:过点C作CD⊥EF,由题意得:△EFC是直角三角形,∠ECF=90°,∴∠EDC=∠CDF=90°,∴∠E+∠ECD=∠ECD+∠DCF=90°,∴∠E=∠DCF,∴Rt△EDC∽Rt△CDF,有=;即DC2=ED•FD,代入数据可得DC2=16,DC=4;故答案为:4.15.(3分)(2015秋•罗湖区期末)如图,抛物线y=ax2+bx+c(a>0)的对称轴是直线x=1,若点P(4,0)在该抛物线上,则一元二次方程ax2+bx+c=0的两根为﹣2和4.【解答】解:∵抛物线y=ax2+bx+c(a>0)的对称轴是直线x=1,点P(4,0),∴另一个交点坐标为(﹣2,0),∴一元二次方程ax2+bx+c=0的两根为﹣2和4,故答案为:﹣2和4.16.(3分)(2015秋•罗湖区期末)如图,四边形ABCD和四边形ACED都是平行四边形,点R在DE上,且DR:RE=5:4,BR分别与AC、CD相交于点P、Q,则BP:PQ:QR= 7:2:5.【解答】解:∵四边形ABCD和四边形ACED都是平行四边形,∴BC=AD=CE,AC∥DE,∴PB=PR,,又∵PC∥DR,∴△PCQ∽△RDQ,∴,∵DR:RE=5:4,∴RE=DR,∴=,∴QR=PQ,又∵BP=PR=PQ+QR=PQ,∴BP:PQ:QR=7:2:5,故答案为:7:2:5.三、解答题:本题共7小题,其中第17小题6分,第18小题6分,第19小题7分,第20小题7分,第21小题8分,第22小题8分,第23小题10分,共52分17.(6分)(2016•大安区模拟)计算:|﹣|+sin45°﹣()﹣1﹣(π﹣3)0.【解答】解:原式=+×﹣3﹣2=﹣2﹣.18.(6分)(2015秋•罗湖区期末)如图,把带有指针的圆形转盘A、B分别分成4等份、3等份的扇形区域,并在每一个小区域内标上数字(如图所示).小明、小乐两个人玩转盘游戏,游戏规则是:同时转动两个转盘,当转盘停止时,若指针所指两区域的数字之积为3的倍数,则小明胜;否则,小乐胜.(若有指针落在分割线上,则无效,需重新转动转盘)(1)试用列表或画树状图的方法,求小明获胜的概率;(2)请问这个游戏规则对小明、小乐双方公平吗?做出判断并说明理由.【解答】解:(1)根据题意画图如下:共有12种情况,指针所指两区域的数字之积为3的倍数的有6种情况,则小明胜的概率是=;(2)由(1)得小乐胜的概率为1﹣=,两人获胜的概率相同,所以游戏公平.19.(7分)(2015秋•罗湖区期末)如图,一次函数的图象与反比例函数y=的图象交于点A(m,6)和点B(4,﹣3).(1)求反比例函数的表达式和点A的坐标;(2)根据图象回答,x在什么范围时,一次函数的值大于反比例函数的值.【解答】解:(1)由反比例函数解析式可知,k=xy=6m=4×(﹣3),解得k=﹣12,m=﹣2,∴反比例函数解析式为y=﹣,A(﹣2,6).(2)一次函数的值大于反比例函数的值的x的取值范围为:x<﹣2或0<x<4.20.(7分)(2015秋•罗湖区期末)人民公园划出一块矩形区域,用以栽植鲜花.(1)经测量,该矩形区域的周长是72m,面积为320m2,请求出该区域的长与宽;(2)公园管理处曾设想使矩形的周长和面积分别为(1)中区域的周长和面积的一半,你认为此设想合理吗?如果此设想合理,请求出其长和宽;如果不合理,请说明理由,并求出在(1)中周长减半的条件下矩形面积的最大值.【解答】解:(1)设矩形的一边长为x,则另一边的长为36﹣x米,根据题意得:x(36﹣x)=320,解得:x=20或x=16,答:矩形的长和宽分别为20米和16米;(2)设矩形的一边长为y,根据题意得矩形的另一边的长为(18﹣y)米,根据题意得:y(18﹣y)=160,整理得:y2﹣18y+160=0,∵△=b2﹣4ac=(﹣18)2﹣4×160=﹣316<0,∴此设想不合理.设周长减少一半后的一边的长为y,则另一边的长为18﹣y米,面积S=y(18﹣y)=﹣y2+18y=﹣(y﹣9)2+81,所以面积的最大值为81平方米.21.(8分)(2015秋•罗湖区期末)如图,某测量员测量公园内一棵树DE的高度,他们在这棵树左侧一斜坡上端点A处测得树顶端D的仰角为30°,朝着这棵树的方向走到台阶下的点C处,测得树顶端D的仰角为60°.已知A点的高度AB为3米,台阶AC的坡度为1:(即AB:BC=1:),且B、C、E三点在同一条直线上.(1)求斜坡AC的长;(2)请根据以上条件求出树DE的高度(侧倾器的高度忽略不计).【解答】解:(1)如图,过点A作AF⊥DE于F,则四边形ABEF为矩形,∴AF=BE,EF=AB=3米,设DE=x,在Rt△CDE中,CE==x,在Rt△ABC中,∵=,AB=3,∴BC=3,AC===6(米).(2)在Rt△AFD中,DF=DE﹣EF=x﹣3,∴AF==(x﹣3),∵AF=BE=BC+CE,∴(x﹣3)=3+x,解得x=9.答:树高为9米.22.(8分)(2015秋•罗湖区期末)如图,正方形ABCD中,P、Q分别是边AB、BC上的两个动点,P、Q同时分别从A、B出发,点P沿AB向B运动;点Q沿BC向C运动,速度都是1个单位长度/秒.运动时间为t秒.(1)连结AQ、DP相交于点F,求证:AQ⊥DP;(2)当正方形边长为4,而t=3时,求tan∠QDF的值.【解答】解:(1)在正方形ABCD中,∵AB=AD,∠BAD=∠B=90°,由题意得:AP=BQ,在△ADP与△ABQ中,,∴△ADP≌△ABQ,∴∠BAQ=∠ADP,∵∠PAF+∠DAF=90°,∴∠DAF+∠ADF=90°,∴∠AFD=90°,∴AQ⊥DP;(2)∵正方形边长为4,而t=3时,∴AD=AB=4,AP=BQ=3,∴PD=AQ=5,∵∠PAF=∠ADP,∠AFP=∠PAD=90°,∴△APF∽△ADP,∴,∴PF=,∴DF=,∵∠AFP=∠AFD=90°,∴△APF∽△ADF,∴,∴AF=,∴FQ=,∴tan∠QDF==.23.(10分)(2015秋•罗湖区期末)如图,在平面直角坐标系中,抛物线y=ax2+bx+c与x 轴相交于A、B两点,与y轴相交于点C(0,3).且点A的坐标为(﹣1,0),点B的坐标为(3,0),点P是抛物线上第一象限内的一个点.(1)求抛物线的函数表达式;(2)连PO、PB,如果把△POB沿OB翻转,所得四边形POP′B恰为菱形,那么在抛物线的对称轴上是否存在点Q,使△QAB与△POB相似?若存在求出点Q的坐标;若不存在,说明理由;(3)若(2)中点Q存在,指出△QAB与△POB是否位似?若位似,请直接写出其位似中心的坐标.【解答】解:(1)∵A(﹣1,0)、B(3,0)、C(0,3)在抛物线y=ax2+bx+c上,∴,解得.∴抛物线的解析式为y=﹣x2+2x+3;(2)在抛物线的对称轴上存在点Q,使△QAB与△POB相似,如图所示.∵四边形POP′B为菱形,∴PO=PB,∴∠POB=∠PBO.∵点Q在抛物线的对称轴上,∴QA=QB,∴∠QAB=∠QBA.由△QAB与△POB相似可得∠PBO=∠QBA,∴点Q、P、B共线.∵PO=PB,∴点P在OB的垂直平分线上,∴x P=,此时y P=﹣()2+2×+3=,点P的坐标为(,).设直线PB的解析式为y=mx+n,则有,解得.∴直线PB的解析式为y=﹣x+.∵抛物线的对称轴为x=﹣=1,∴x Q=1,y Q=﹣×1+=5,∴点Q的坐标为(1,5)根据对称性点Q坐标还可以为(1.﹣5).(3)△QAB与△POB位似,位似中心为点B,点B的坐标为(3,0).参与本试卷答题和审题的老师有:gsls;家有儿女;sdwdmahongye;知足长乐;守拙;1987483819;sjzx;王学峰;wd1899;gbl210;zcx;疯跑的蜗牛;自由人;sks;lantin;zhjh;1160374(排名不分先后)菁优网2016年12月20日。

初中数学广东省深圳市罗湖区九年级上学期期末考数学试卷(Word版详解)

初中数学广东省深圳市罗湖区九年级上学期期末考数学试卷(Word版详解)

2020-2021学年罗湖区九上期末考数学试卷(Word版详解)一.选择题(每题3分,共30分)1.一元二次方程x2+2x=0的解是()A.x1=x2=-2 B.x1=2,x2=0 C.x1=-2,x2=0 D.x1=2,x2=-2 2.下面立体图形中,从正面、侧面、上面看,都不能看到长方形的是()A.长方体B.圆柱C.圆锥D.正四棱锥3.在同一副扑克牌中抽取2张“方块”,3张“梅花”,1张“红桃”,将这6张牌背面朝上,从中任意抽取1张,是“梅花”的概率为()A.16B.13C.12D.234.若反比例函数y=2−kx的图象分布在第二、四象限,则k的取值范围是()A.k<-2 B.k<2 C.k>-2 D.k>25.国家实施“精准扶贫”政策以来,很多贫困人口走向了致富的道路.某地区2017年底有贫困人口10 万人,通过社会各界的努力,2019年底贫困人口减少至1万人.设2017年底至2019年底该地区贫困人口的年平均下降率为x,根据题意列方程得()A.10(1-2x)=1 B.10(1-x)2=1 C.10(1+2x)=D.10(1+x)2=16.下列命题中,真命题是()A.对角线相等的四边形是矩形 B.对角线互相垂直的四边形是菱形C.平行四边形的对角线平分且相等 D.顺次连结菱形各边中点所得的四边形是矩形7.如图,已知△AOB与△A1OB1是以点O为位似中心的位似图形,且相似比为1∶2,点B的坐标为(-2,4),则点B1的坐标为()A.(4,-8) B.(2,-4) C.(-1,8) D.(-8,4)8.若关于x的一元二次方程(k-1)x2+x+1=0有两个实数根,则k的取值范围是()A.k≤54B.k>54C.k<54且k≠1D.k≤54且k≠19.如图,菱形ABCD∽菱形AEFG,菱形AEFG的顶点G在菱形ABCD的BC边上运动,GF与AB相交于点H,∠E=60°,若CG=3,AH=7,则菱形ABCD的边长为()A.8 B.9 C.83 D.9310.二次函数y=ax2+bx+c的图象如图所示,下列结论中正确的有()①abc>0;②b2-4ac<0;③2a>b;④(a+c)2<b2;⑤a-2b+4c>0.A.1个 B.2个 C.3个 D.4个二.填空题(每题3分,共15分)11.如图所示,某校数学兴趣小组利用标杆BE测量建筑物的高度.已知标杆BE高为1.5m,测得AB=3m,AC=10m,则建筑物CD的高是________m12.将抛物线y=-2x2+5向左平移1个单位长度,再向下平移2个单位长度,所得到的抛物线为____13.已知a,b为有理数,如果规定一种新的运算“※”,规定:a※b=3b-5a,例如:1※2=3×2-5 ×1=6-5=1,计算:(2※3)※5=________.14.如图,在平面直角坐标系中,菱形OABC的边OA在x轴上,OA=5,tan∠COA=34.若反比例函数y=kx(k>0,x>0)经过点C,则k的值等于________.15.如图,矩形ABCD 中,AE =13AD ,将△ABE 沿BE 折叠后得到△GBE ,延长BG 交CD 于F 点,若CF =FD=3,则BC 的长为________.三.解答题(共7小题,共55分)16.(5分)计算:11()2--2tan 45°+4sin 60°-212.17.(6分)化简分式:(22369a aa a --++23a-)÷229a a --,并在2,3,4,5这四个数中取一个合适的数作为a 的值代入求值.18.(8分)在刚刚结束的“东门68小时不打烊”活动中,某商场为了扩大销售额,举办抽奖活动,规则 如下:在不透明的袋子中有2个红球和2个黑球,这些球除颜色外都相同,顾客每次摸出一个球,若摸 到红球,则获得1份奖品,若摸到黑球,则没有奖品.(1)如果小芳只有一次摸球机会,那么小芳获得奖品的概率为________;(2)如果小芳有两次摸球机会(摸出后不放回),求小芳获得2份奖品的概率.(请用“画树状图”或“列表”等方法写出分析过程)19.(8分)如图,一次函数y =-x +3的图象与反比例函数y =kx (k≠0)在第一象限的图象交于A(1,a)和B 两点,与x 轴交于点C . (1)求反比例函数的解析式; (2)求ABBC 的值.20.(8分)如图,某数学兴趣小组为测量一棵古树BH 和教学楼CG 的高,先在A 处用高2米的测角仪测得古树顶端H 的仰角∠HDE 为45°,此时教学楼顶端G 恰好在视线DH 上,再向前走6米到达B 处,又测得教学楼顶端G 的仰角∠GEF 为60°,点A 、B 、C 三点在同一水平线上. (1)计算古树BH 的高;GF E D CBA(2)计算教学楼CG 的高.(结果保留根号)21.(10分)如图,在平面直角坐标系中,矩形OABC 中,OA =8,OC =6,点D 是对角线AC 的中点,过点D 的直线分别交OA 、BC 边于点E 、F . (1)求证:四边形EAFC 是平行四边形; (2)当CE =CF 时,求EF 的长;(3)在条件(2)的情况下,点P 为x 轴上一点,当以E 、F 、P为顶点的三角形是等腰三角形时,请求出点P 的坐标.22.(10分)在平面直角坐标系中,抛物线y =ax 2+bx +c 经过点A 、B 、C ,已知A (-1,0),B (6,0),C (0,-6).(1)求此抛物线的函数表达式;(2)若点D 为第四象限内抛物线上一动点,当△BCD 面积最大时,求△BCD 面积最大值;(3)在x 轴上是否存在点M ,使∠OCM +∠ACO =45°,若存在,请求出点M 的坐标;若不存在,请说明理由.答案详解1. 解析:解一元二次方程可得x=0或-2,选C2. 解析:圆锥的三视图分别是圆和三角形,故选C3. 解析:依概率公式可解答。

深圳市罗湖区九年级上册期末数学试卷与答案

深圳市罗湖区九年级上册期末数学试卷与答案

深圳市罗湖区九年级上册期末数学试卷一、选择题(每题3分,共36分)1.实数2sin45°、4cos60°、﹣2、四个数中,最大的数是()A .2sin45°B .4cos60°C .﹣2D .2.如图是一个零件的示意图,它的俯视图是()A .B .C .D .3.若2b =3a ,则=()A .6B .2C .D .4.菱形具有而矩形不一定具有的性质是()A .对角线互相垂直B .对角线相等C .对角线互相平分D .对角互补5.关于x 的一元二次方程ax 2+3x ﹣2=0有两个不相等的实数根,则a 的值可以是()A .﹣3B .﹣2C .﹣1D .06.在一个不透明的袋子里装有若干个白球和15个黄球,这些球除颜色不同外其余均相同,每次从袋子中摸出一个球记录下颜色后再放回,经过很多次重复试验,发现摸到黄球的频率稳定在0.75,则袋中白球有()A .5个B .15个C .20个D .35个7.河堤横断面如图所示,堤高BC =3m ,迎水坡AB 的坡比为,则斜坡AB 的长为()A .3mB .mC .6mD .12m8.如图,EF过平行四边形ABCD的对角线的交点O,交AD于点E,交BC于点F,已知AB=4,BC=6,OE=3,那么四边形EFCD的周长是()A.16B.13C.11D.109.关于二次函数y=﹣x2+6x﹣11的图象与性质,下列结论错误的是()A.抛物线开口方向向下B.当x=3时,函数有最大值﹣2C.当x>3时,y随x的增大而减小D.抛物线可由y=x2经过平移得到10.如图,Rt△ABC,∠BAC=90°,AB=2,AC=3,斜边BC绕点B逆时针方向旋转90°至BD的位置,连接AD,则AD的长是()A.B.C.D.11.如图,在△ABC中,BC∥x轴,点A在x轴上,AB=AC=5,点M、N分别是线段BC 与BA上两点(与三角形顶点不重合),当△BMN≌△ACO,时,反比例函数(k>0,x>0)的图象经过点M,则k的值是()A.2B.3C.4D.612.如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为直线x=1.分析下列5个结论:①2c<3b;②若0<x<3,则ax2+bx+c>0;③(a+c)2<b2;④a (k2+1)2+b(k2+1)<a(k2+2)2+b(k2+2)(k为实数);⑤a2m2+abm≤a2+ab(m为实数).其中正确的结论个数有()A.1个B.2个C.3个D.4个二、填空题(每题3分,共12分)13.方程2x﹣4=0的解也是关于x的方程x2+mx+2=0的一个解,则m的值为.14.若抛物线y=(m+2)x2+(m2﹣4)x+m﹣1的顶点在y轴上,则m=.15.如图,在边长为4的正方形ABCD中,E,F分别为BC、CD的中点,连接AE,BF交于点G,将△BCF沿BF对折,得到△BPF,延长FP交BA延长线于点Q,分析下列四个结论:①QB=QF;②BG=;③tan∠BQP=;④S四边形ECFG=2S△BGE,其中正确的是.16.如图,矩形ABCD中,AB=20,AD=30,点E,F分别是AB,BC边上的两个动点,且EF=10,点G为EF的中点,点H为AD边上一动点,连接CH、GH,则GH+CH的最小值为.三、解答题(共52分)17.(5分)计算:18.(6分)在一个不透明的布袋里装有4个标有﹣1,2,3,4的小球,它们的形状、大小、质地完全相同,小李从布袋里随机取出一个小球,记下数字为x,小张在剩下的3个小球中随机取出一个小球,记下数字为y,这样确定了点Q的坐标(x,y).(1)画树状图或列表,写出点Q所有可能的坐标;(2)求点Q(x,y)落在第二象限的概率.19.(7分)为庆祝中华人民共和国成立70周年,深圳举办了灯光秀,某数学兴趣小组为测量“平安金融中心”AB的高度,他们在地面C处测得另一幢大厦DE的顶部E处的仰角为32°,测得“平安中心”AB的顶部A处的仰角为44°.登上大厦DE的顶部E处后,测得“平安中心”AB的顶部A处的仰角为60°,(如图).已知C、D、B三点在同一水平直线上,且CD=400米,求平安金融中心AB的高度.(参考数据:sin32°≈0.53,cos32°≈0.85,tan32°≈0.62,tan44°≈0.99,≈1.41,)20.(8分)如图,在四边形ABCD中,AB=AD,AC与BD交于点E,∠ADB=∠ACB.(1)求证:=;(2)若AB⊥AC,AE:EC=1:2,F是BC中点,求证:四边形ABFD是菱形.21.(8分)某种商品的标价为600元/件,经过两次降价后的价格为486元/件,并且两次降价的百分率相同.(1)求该种商品每次降价的百分率;(2)若该种商品进价为460元/件,两次降价共售出此种商品100件,为使两次降价销售的总利润不少于3788元.问第一次降价后至少要售出该种商品多少件?22.(9分)如图,直线y =ax +b (a ≠0)与双曲线(k ≠0)交于一、三象限内的A ,B两点与x 轴交于点C ,点A 的坐标为(2,m ),点B 的坐标为(﹣1,n ),cos ∠AOC =(1)求该反比例函数和一次函数的解析式;(2)点Q 为y 轴上一点,△ABQ 是以AB 为直角边的直角三角形,求点Q 的坐标;(3)点P (s ,t )(s >2)在直线AB 上运动,PM ∥x 轴交双曲线于M ,PN ∥y 轴交双曲线于N ,直线MN 分别交x 轴,y 轴于E ,D ,求的值.23.(9分)在平面直角坐标系中,抛物线y =ax 2+bx +3与x 轴的两个交点分别为A 、B (1,0),与y 轴交于点D ,直线AD :y =x +3,抛物线顶点为C ,作CH ⊥x 轴于点H .(1)求抛物线的解析式;(2)抛物线上是否存在点M ,使得S △ACD =S △MAB ?若存在,求出点M 的坐标;若不存在,说明理由;(3)若点P 为x 轴上方的抛物线上一动点(点P 与顶点C 不重合),PQ ⊥AC 于点Q ,当△PCQ 与△ACH 相似时,求点P 的坐标.深圳市罗湖区九年级上册期末数学试卷答案1.解:2sin45°=2×=,4cos60°=4×=2,∵2>>>﹣2,∴4cos60°>2sin45°>>﹣2,∴实数2sin45°、4cos60°、﹣2、四个数中,最大的数是4cos60°.故选:B.2.解:从上面看该零件的示意图是一个大矩形,且中间有2条实线段,故选:C.3.解:∵2b=3a,∴=,故选:D.4.解:A、菱形对角线相互垂直,而矩形的对角线则不垂直;故本选项符合要求;B、矩形的对角线相等,而菱形的不具备这一性质;故本选项不符合要求;C、菱形和矩形的对角线都互相平分;故本选项不符合要求;D、菱形对角相等;但菱形不具备对角互补,故本选项不符合要求;故选:A.5.解:根据题意得a≠0且Δ=32﹣4a×(﹣2)>0,解得a>﹣且a≠0,所以a可以取﹣1.故选:C.6.解:设袋中白球有x个,根据题意得:=0.75,解得:x=5,经检验:x=5是分式方程的解,故袋中白球有5个.故选:A.7.解:∵迎水坡AB的坡比为,∴BC:AC=,即3:AC=,解得,AC=3,由勾股定理得,AB===6,故选:C.8.解:∵四边形ABCD为平行四边形,∴OB=OD,AD∥BC,AB=CD=4,∴∠OBF=∠ODE,在△BOF和△DOE中∴△BOF≌△DOE(ASA),∴BF=DE,OE=OF=3,∴CF+DE=CF+BF=BC=6,∴DE+EF+FC+CD=BC+OE+OF+CD=6+3+3+4=16,故选:A.9.解:A、∵a=﹣1<0,∴抛物线开口方向向下,故此选项正确,不合题意;B、∵y=﹣(x﹣3)2﹣2的顶点坐标为:(3,﹣2),故当x=3时,函数有最大值﹣2,故此选项正确,不合题意;C、当x>3时,y随x的增大而减小,此选项正确,不合题意;D、抛物线y=﹣(x﹣3)2﹣2可由y=﹣x2经过平移得到,不是由y=x2经过平移得到,故此选项错误,符合题意.故选:D.10.解:过D作DE⊥AB交AB的延长线于E,∴∠E=∠CAB=90°,∵斜边BC绕点B逆时针方向旋转90°至BD的位置,∴BD=BC,∠CBD=90°,∴∠DBE+∠CBA=∠CBA+∠C=90°,∴∠DBE=∠C,∴△ABC≌△EDB(AAS),∴DE=AB=2,BE=AC=3,∴AE=2+3=5,∴AD===,故选:B.11.解:当△BMN≌△ACO时,可得BM=AC=5,过A作AD⊥BC于点D,如图,∵AB=AC,∴BC=2CD=2OA=6,∴CM=BC﹣BM=6﹣5=1,∵sin∠ACO=,∴OC=4,∴M点坐标为(1,4),∴k=1×4=4.故选:C.12.解:∵对称轴x=1,∴b=﹣2a,∴y=﹣bx2+bx+c;①当x=3时,﹣b+3b+c<0,∴2c<3b;②当x=1时,图象上可知y>0,当x=3时,y<0,∴0<x<3,函数值有小于零的部分;③当x=1时,a+b+c>0,当x=﹣1时,a﹣b+c<0,∴(a+b+c)(a﹣b+c)<0,∴(a+c)2<b2;④∵k是实数,∴k+1<k+2,当k+2<1时,(k2+1)2+b(k2+1)<a(k2+2)2+b(k2+2);⑤当m≥1时,am<a,a2m2+abm+c≤a2+ab+c;当m≤1时,am>a,a2m2+abm+c≥a2+ab+c;∴①③正确,故选:B.13.解:2x﹣4=0,解得:x=2,把x=2代入方程x2+mx+2=0得:4+2m+2=0,解得:m=﹣3.故答案为:﹣3.14.解:根据题意知,对称轴x=0,即﹣=0且m+2≠0,解得m=2.故答案为:2.15.解:①根据题意得,FP=FC,∠PFB=∠BFC,∠FPB=90°∵CD∥AB,∴∠CFB=∠ABF,∴∠ABF=∠PFB,∴QF=QB,故正确;②∵E,F分别是正方形ABCD边BC,CD的中点,∴CF=BE,在△ABE和△BCF中,,∴△ABE≌△BCF(SAS),∴∠BAE=∠CBF,又∵∠BAE+∠BEA=90°,∴∠CBF+∠BEA=90°,∴∠BGE=90°,∴AE⊥BF;∵△ABE≌△BCF,则AE=BF==2,∵AE⊥BF∴AB•BE=AE•BG,故BG===.故错误;③由①知,QF=QB,令PF=k(k>0),则PB=2k在Rt△BPQ中,设QB=x,∴x2=(x﹣k)2+4k2,∴x=,∴PQ=,∴tan∠BQP==,故正确;④∵∠BGE=∠BCF,∠GBE=∠CBF,∴△BGE∽△BCF,∵BE=BC,BF=BC,∴BE:BF=1:,∴△BGE的面积:△BCF的面积=1:5,=4S△BGE,故错误.∴S四边形ECFG综上所述,其中正确的是①③.故答案为:①③.16.解:由已知,点G在以B圆心,5为半径的圆在与长方形重合的弧上运动.作C关于AD的对称点C′,连接C′B,交AD于H,交以B为圆心,以5为半径的圆于G由两点之间线段最短,此时C′B的值最小最小值为==50,则GH+CH的最小值=50﹣5=45,故答案为:45.17.解:=﹣4+×+3﹣1=﹣4+3+2=118.解:(1)列表得:点Q所有可能的坐标有:(﹣1,2),(﹣1,3),(﹣1,4),(2,﹣1),(2,3),(2,4),(3,﹣1),(3,2),(3,4),(4,﹣1),(4,2),(4,3)共12种;(2)∵共有12种等可能的结果,其中点Q(x,y)落在第二象限的结果有3个,即:(﹣1,2),(﹣1,3),(﹣1,4),∴点Q(x,y)落在第二象限的概率==.19.解:如图,作EF⊥AB于F.∵在Rt△DCE中,∠CDE=90°,∠ECD=32°,CD=400米,∴DE=CD•tan∠ECD≈400×0.62=248(米).设EF=DB=x米,BF=DE=248米,∠AEF=60°.∵在Rt△ABC中,∠ABC=90°,AB=BC•tan∠ACB≈0.99(400+x)(米),∵在Rt△AFE中,∠AFE=90°,∴AF=EF•tan∠AEF=x(米),∴AB=BF+AF=248+x=0.99(400+x),解得x=200,AB=0.99(400+x)=0.99×(400+200)=594.故平安金融中心AB的高度约为594米.20.证明:(1)∵AB=AD,∴∠ADB=∠ABE,又∵∠ADB=∠ACB,∴∠ABE=∠ACB,又∵∠BAE=∠CAB,∴△ABE∽△ACB,∴=,又∵AB=AD,∴=;(2)设AE=x,∵AE:EC=1:2,∴EC=2x,由(1)得:AB2=AE•AC,即AB2=x•3x∴AB=x,又∵BA⊥AC,∴BC=2x,∴∠ACB=30°,∵F是BC中点,∴BF=x,∴BF=AB=AD,连接AF,则AF=BF=CF,∠ACB=30°,∠ABC=60°,又∵∠ABD=∠ADB=30°,∴∠CBD=30°,∴∠ADB=∠CBD=∠ACB=30°,∴AD∥BF,∴四边形ABFD是平行四边形,又∵AD=AB,∴四边形ABFD是菱形.21.解:(1)设该种商品每次降价的百分率为x%,依题意得:600×(1﹣x%)2=486,解得:x=10,或x=190(舍去).答:该种商品每次降价的百分率为10%.(2)设第一次降价后售出该种商品m件,则第二次降价后售出该种商品(100﹣m)件,第一次降价后的单件利润为:600×(1﹣10%)﹣460=80(元/件);第二次降价后的单件利润为:486﹣460=26(元/件).依题意得:80m+26×(100﹣m)≥3788,解得:m≥22.答:为使两次降价销售的总利润不少于3788元,第一次降价后至少要售出该种商品22件.22.解:(1)如图,连接OA,作AH⊥OE于H.∵cos∠AOC===,∴OA=,∴AH==3,∴A(2,3),∵点A在y=上,∴k=6,∴,∴B(﹣1,﹣6),设直线AB的解析式为y=ax+b,则有,解得∴直线AB的解析式为:y=3x﹣3(2)如图,过点A作AQ⊥AB交OD于Q,连接BQ,设PB交y轴于T.由题意T(0,﹣3),C(1,0),CT==,AT==2,∵∠OTC=∠ATQ,∠TOC=∠TAQ=90°,∴△TOC∽△TAQ,∴=,∴=,∴TQ=,∴OQ=QT﹣OT=﹣3=,∴Q(0,),当BQ′⊥AB时,同法可得Q′(0,﹣)综上所述,满足条件的点Q坐标为(0,)或(0,).(3)∵P(s,t),PM∥x轴,PN∥y轴,∴M(,t),N(s,),∴PM=s﹣.PN=t﹣,∵PN∥OD,∴∠MNP=∠ODE,∴tan∠ODE=tan∠MNP,∴===,∵点P在直线y=3x﹣3上,∴t=3s﹣3,∴=﹣===1.23.解:(1)直线AD:y=x+3,则点A(﹣3,0),则抛物线的表达式为:y=a(x+3)(x﹣1)=a(x2+2x﹣3),故﹣3a=3,解得:a=﹣1,故抛物线的表达式为:y=﹣x2﹣2x+3…①;(2)设直线AD与CH交于点R(﹣1,2),S△ACD=CR×OA=2×3=S△MAB,=8=×AB×|y M|,解得:y M=±4,则S△MAB将y M=±4代入①并解得:x=﹣1±2或﹣1,故点M的坐标为:(﹣1+2,﹣4)或(﹣1﹣2,﹣4)或(﹣1,4);(3)①若点P在对称轴右侧(如图2),只能是△PCQ∽△CAH,得∠QCP=∠CAH,延长CP交x轴于M,∴AM=CM,∴AM2=CM2.设M(m,0),则(m+3)2=42+(m+1)2,∴m=2,即M(2,0),设直线CM的解析式为y=k1x+b1,∴直线CM的解析式y=﹣x+…②,联立①②并解得:x=或﹣1(舍去﹣1)故点P(,);②若点P在对称轴左侧(如图3),只能是△PCQ∽△ACH,得∠PCQ=∠ACH.过A作CA的垂线交PC于点F,作FN⊥x轴于点N,由△CFA∽△CAH得:=2,由△FNA∽△AHC得:,∴AN=2,FN=1,CH=4,HO=1,则AH=2,∴点F坐标为(﹣5,1).设直线CF的解析式为:y=x+…③,联立①③并解得:x=﹣或﹣1(舍去﹣1)∴P(﹣,),∴满足条件的点P坐标为(,)或(,).。

罗湖中学九年级(上)期末数学检测题

罗湖中学九年级(上)期末数学检测题

临川罗湖中学九年级(上)期末数学检测题一、选择题 1、 在316x 、32-、5.0-、x a 、325中,最简二次根式的个数是( )A.1B.2C.3D.4 2、已知x 、y 是实数,3x +4 +y 2-6y +9=0,则xy 的值是( )A .4B .-4C .94D .-943、方程25x x =的根是( )A.120,5x x ==B.120,5x x ==-C.0x =D.5x =4、一元二次方程2(1)210k x x ---=有两个不相等的实数根,则k 的取值范围是( ) A.k >2 B.k <2 C.k <2且k ≠1 D .k >2且k ≠1 5、半径分别为5cm 和2cm 的两圆相切,则两圆的圆心距为( )A.3cmB.7cmC.3cm 或7cmD.以上答案均不正确6、下列图案中是轴对称图形的是( )A. B. C. D. 7、如图,如果从半径为9cm 的圆形纸片剪去13圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高为( ) A .6cmB.cm C .8cm D.cm8、已知:如图4, ⊙O 的两条弦AE 、BC 相交于点D,连接AC 、BE.若∠ACB =60°,则下列结论中正确的是( )A .∠AOB =60° B . ∠ADB =60°C .∠AEB =60°D .∠AEB =30°2008年北京 2004年雅典 1988年汉城 1980年莫斯科9、正六边形的外接圆的半径与内切圆的半径之比为( )A .1:3B .3:2C .2:3D .3:1 10、有6张写有数字的卡片,它们的背面都相同,现将它们背面朝上(如图2),从中任意选一张是数字3的概率是( ) A.61 B.31 C.21 D.32二、填空题 1、在函数32--=x x y 中,自变量x 的取值范围是__________________。

罗湖区2020-2021学年九年级(上)期末数学试卷

罗湖区2020-2021学年九年级(上)期末数学试卷

2020-2021学年九年级(上)期末数学试卷一、选择题(本大题共10小题,每小题3分,共30分,每小题有4个选项,其中只有一个是正确的)1.(3分)在下列命题中,是真命题的是()A.两条对角线相等的四边形是矩形B.两条对角线互相垂直的四边形是菱形C.两条对角线互相平分的四边形是平行四边形D.两条对角线互相垂直且相等的四边形是正方形2.(3分)在Rt△ABC中,∠C=90°,sin A=,AC=6cm,则BC的长度为()A.6cm B.7cm C.8cm D.9cm3.(3分)如图,△ABC和△A1B1C1是以点O为位似中心的位似三角形,若C1为OC的中点,S =3,则△ABC的面积为()A.15B.12C.9D.64.(3分)设a,b是方程x2+x﹣2022=0的两个实数根,则a2+2a+b的值为()A.2019B.2020C.2021D.20225.(3分)关于函数y=,下列判断正确的是()A.点(1,﹣1)在该函数的图象上B.该函数的图象在第二、四象限C.若点(﹣2,y1)和(1,y2)在该函数图象上,则y2<y1D.若点(a,b)在该函数的图象上,则点(b,a)也在该函数的图象上6.(3分)如图,△ABC是⊙O的内接三角形,∠A=119°,过点C的圆的切线交BO于点P,则∠P的度数为()A.32°B.31°C.29°D.61°7.(3分)如图,丁轩同学在晚上由路灯AC走向路灯BD,当他走到点P时,发现身后他影子的顶部刚好接触到路灯AC的底部,当他向前再步行20m到达Q点时,发现身前他影子的顶部刚好接触到路灯BD的底部,已知丁轩同学的身高是1.5m,两个路灯的高度都是9m,则两路灯之间的距离是()A.24m B.25m C.28m D.30m8.(3分)已知反比例函数y=的图象如图所示,则二次函数y=ax2﹣2x和一次函数y=bx+a在同一平面直角坐标系中的图象可能是()A.B.C.D.9.(3分)已知菱形OABC在平面直角坐标系的位置如图所示,顶点A(5,0),OB=4,点P是对角线OB上的一个动点,D(0,1),当CP+DP最短时,点P的坐标为()A.(0,0)B.(1,)C.(,)D.(,)10.(3分)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(,0),与y轴的交点B在(0,0)和(0,﹣1)之间(不包括这两点),对称轴为直线x=.则下列结论:①x>3时,y<0;②4a+b<0;③﹣<a<0;④4ac+b2<4a.其中正确的是()A.②③④B.①②③C.①③④D.①②④二、填空题(本大题共5小题,每小题3分,共15分)11.(3分)方程x(x+3)=x+3的解是.12.(3分)云南省是我国花卉产业大省,一年四季都有大量鲜花销往全国各地,花卉产业已成为该省许多地区经济发展的重要项目.近年来某乡的花卉产值不断增加,2018年花卉的产值是640万元,2020年产值达到1000万元.若2021年花卉产值继续稳步增长(即年增长率与前两年的年增长率相同).那么请你估计2021年这个乡的花卉的产值将达到万元.13.(3分)如图,在Rt△ABC中,∠BAC=90°,AB=6,AC=8,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值是.14.(3分)如图,OA=OB=OC且∠ACB=30°,则∠AOB的大小是.15.(3分)如图,在平面直接坐标系中,将反比例函数的图象绕坐标原点O逆时针旋转45°得到的曲线l,过点的直线与曲线l相交于点C、D,则sin∠COD=.三、解答题(本大题共7小题,其中第16题6分,第17题6分,第18题7分,第19题8分,第20题8分,第21题10分,第22题10分,共55分)16.(6分)计算:(﹣)﹣1﹣(﹣1)2021+(3.14﹣π)0﹣|2cos30°﹣1|.17.(6分)先化简,再求值:已知x=2cos45°,y=2sin45°﹣tan30°,求(﹣)÷的值.18.(7分)在一个不透明的口袋里装有四个分别标有1、2、3、4的小球,它们的形状、大小等完全相同.小明先从口袋里随机不放回地取出一个小球,记下数字为x;小红在剩下的三个小球中随机取出一个小球,记下数字为y,点Q坐标记作(x,y).(1)画树状图或列表,写出Q点所有的坐标;(2)计算由x、y确定的点Q(x,y)在函数y=2x2图象上的概率;(3)小明、小红约定做一个游戏,其规则是:若x、y满足xy>6,则小明胜;若x、y满足xy<6,则小红胜.这个游戏公平吗?说明理由;若不公平,怎么修改规则才对双方公平?19.(8分)如图,矩形ABCD中,点E在边CD上,将△BCE沿BE折叠,点C落在AD边上的点F处,过点F作FG∥CD交BE于点G,连接CG.(1)求证:四边形CEFG是菱形;(2)若AB=6,AD=10,求四边形CEFG的面积.20.(8分)温州某企业安排65名工人生产甲、乙两种产品,每人每天生产2件甲或1件乙,甲产品每件可获利15元.根据市场需求和生产经验,乙产品每天产量不少于5件,当每天生产5件时,每件可获利120元,每增加1件,当天平均每件利润减少2元.设每天安排x人生产乙产品.(1)根据信息填表:产品种类每天工人数(人)每天产量(件)每件产品可获利润(元)甲15乙x x(2)若每天生产甲产品可获得的利润比生产乙产品可获得的利润多550元,求每件乙产品可获得的利润.(3)该企业在不增加工人的情况下,增加生产丙产品,要求每天甲、丙两种产品的产量相等.已知每人每天可生产1件丙(每人每天只能生产一件产品),丙产品每件可获利30元,求每天生产三种产品可获得的总利润W(元)的最大值及相应的x值.21.(10分)如图,在△ABC中,∠ACB=90°,AC=8,CB=6,点D在线段CB的延长线上,且BD=2,点P从点D出发沿着DC向终点C以每秒1个单位的速度运动,同时点Q从点C出发沿着折线C﹣B﹣A往终点A以每秒2个单位的速度运动.以PQ为直径构造⊙O,设运动的时间为t(t≥0)秒.(1)当0≤t<3时,用含t的代数式表示BQ和PQ的长度.BQ=,PQ=;(2)当点Q在线段CB上时,求⊙O和线段AB相切时t的值;(3)在整个运动过程中,点O是否会出现在△ABC的内角平分线上?若存在,请直接写出t的值;若不存在,请说明理由.22.(10分)如图1,抛物线y=mx2﹣3mx+n(m≠0)与x轴交于点(﹣1,0)与y轴交于点B(0,3),在线段OA上有一动点E(不与O、A重合),过点E作x轴的垂线交直线AB于点N,交抛物线于点P.(1)分别求出抛物线和直线AB的函数表达式;(2)连接P A、PB,求△P AB面积的最大值,并求出此时点P的坐标.(3)如图2,点E(2,0),将线段OE绕点O逆时针旋转的到OE′,旋转角为α(0°<α<90°),连接E′A、E′B,求E'A+E'B的最小值.。

广东省深圳市罗湖外语初中学校2022-2023学年九年级上学期期末考试数学试卷(解析版)

广东省深圳市罗湖外语初中学校2022-2023学年九年级上学期期末考试数学试卷(解析版)

深圳市罗湖外语初中学校九年级上学期期末测试卷一、选择题(每题3分,共30分)1. 如图所示的几何体的俯视图是( )A. B. C. D.【答案】C【解析】【分析】根据几何体的三视图可直接进行求解.【详解】解:该几何体的俯视图是 ;故选C .【点睛】本题主要考查三视图,熟练掌握几何体的三视图是解题的关键.2. 在直角ABC 中,90C ∠=°,3BC =,3sin 5A =,求tan B 为( ) A. 34 B. 35 C. 45 D. 43【答案】D【解析】【分析】根据锐角三角函数的概念和勾股定理求解,根据题中所给的条件,在直角三角形中解题,根据角的正弦值与三角形边的关系及勾股定理,然后再代入三角函数进行求解,最后求出面积及tan B 的值. 【详解】解:由3sin5BC A AB ==,3BC =, 得出:5AB =,由勾股定理得出:4AC ,4tan 3AC B BC ∴==. 故选:D .【点睛】本题考查了解直角三角形的能力,还考查解直角三角形的定义,由直角三角形已知元素求未知元素的过程,还考查了直角三角形的性质.3. 菱形不具备的性质是( )A. 四条边都相等B. 对角线一定相等C. 对角线平分对角D. 是中心对称图形 【答案】B【解析】【分析】根据菱形的性质逐一判断即可.【详解】解:A .菱形的四条边都相等,故本选项不合题意;B .菱形的对角线不相等,故本选项符合题意;C .菱形的对角线平分内角,故本选项不合题意;D .菱形是中心对称图形,故本选项不合题意;故选:B .【点睛】本题考查了菱形的性质以及中心对称图形,掌握菱形的性质是解答本题的关键.4. 如图,点P 是反比例函数k y x=图像上的一点,PF x ⊥轴于F 点,且Rt POF 面积为4.若点()2,B m −也是该图像上的一点,则m 的值为( )A. -2B. -4C. 2D. 4【答案】D【解析】 【分析】直接利用反比例函数的系数的几何意义得出k ,即可求出m . 详解】解:11422Rt POF S PF FO xy =⋅== , 8xy ∴=−,【8k ∴=−,B 在该图像上,842m −∴==− . 故选:D .【点睛】本题主要考查反比例函数系数的几何意义,正确表示出Rt POF S 时解题的关键.5. 我国于12月中旬开始放开新冠疫情管控,经专家推算,每轮传播过程中,1个人可以传播给x 个人,经过两轮传播后,共有81人被传染.则可列方程为( )A. ()1181x x ++=B. ()1181x x x +++=C. ()181x x +=D. ()181x x x ++=【答案】B【解析】 【分析】求得每轮传播的人数,再根据题意,列方程即可.【详解】解:第一轮传了x 个人,此时有()1x +个人被传染,第二轮传染了()1x x +,此时有()11x x x +++ 个人被传染,则()1181x x x +++=, 故选:B .【点睛】此题考查了一元二次方程的应用,解题的关键是理解题意,找到等量关系,正确列出方程. 6. 如图,在平面直角坐标系xOy 中,两个“E ”字是位似图形,位似中心点O ,①号“E ”与②号“E ”的位似比为2:1.点P (﹣6,9)在①号“E ”上,则点P 在②号“E ”上的对应点Q 的坐标为( )A. (﹣3,92) B. (﹣2,3) C. (﹣92,3) D. (﹣3,2)【答案】A【解析】【分析】根据位似变换的性质计算,得到答案.【详解】解:∵①号“E ”与②号“E ”是位似图形,位似比为2:1,点P (﹣6,9),∴点P 在②号“E ”上的对应点Q 的坐标为(﹣6×12,9×12),即(﹣3,92), 故选:A .【点睛】此题考查了位似变换的性质:如果两个图形位似,那么任意一对对应点到位似中心的距离之比都等于位似比,任意一组对应边都互相平行(或在一条直线上),熟记性质是解题的关键.7. 如图,关于抛物线2(1)2y x =−−,下列说法错误的是 ( )A. 顶点坐标为(1,2−)B. 对称轴是直线x=lC. 开口方向向上D. 当x>1时,y 随x 的增大而减小【答案】D【解析】【分析】根据抛物线的解析式得出顶点坐标是(1,-2),对称轴是直线x=1,根据a=1>0,得出开口向上,当x >1时,y 随x 的增大而增大,根据结论即可判断选项.【详解】解:∵抛物线y=(x-1)2-2,A 、因为顶点坐标是(1,-2),故说法正确;B 、因为对称轴是直线x=1,故说法正确;C 、因为a=1>0,开口向上,故说法正确;D 、当x >1时,y 随x 的增大而增大,故说法错误.故选D .8. 二次函数()20y ax bx c a ++≠的图象如图所示,对称轴是直线1x =,下列结论:①0ab <;②24b ac >;③0a b c −+>;④20a b +=.其中正确的是( )A. ①③④B. ②③④C. ①②③D. ①②③④【答案】D【解析】 【分析】根据二次函数的图象与性质即可求出答案.【详解】解:①由图象可知:02b a−>, 0ab ∴<,故①正确;②由抛物线与x 轴的图象可知:0∆>,24b ac ∴>,故②正确;③由图象可知:=1x −,0y >,0a b c ∴−+>,故③正确;④ 12b a−=, 2b a ∴=−,20a b ∴+=,故④正确,综上所述,正确的结论是①②③④.故选:D .【点睛】本题考查二次函数的图象与性质,解题的关键是熟练运用数形结合的思想,本题属于中等题型. 9. 如图,在ABC 中,AD 平分BAC ∠,按如下步骤作图:第一步,分别以点A 、D 为圆心,以大于12AD 的长为半径在AD 两侧作弧,交于两点M 、N ; 第二步,连接MN 分别交AB 、AC 于点E 、F ;第三步,连接DE 、DF .若6BD =,3CD =,2CF =,则AE 的长是( )A. 3B. 4C. 5D. 6【答案】B【解析】 【分析】根据已知得出MN 是线段AD 的垂直平分线,推出AE DE =,AF DF =,求出DE AC ∥,DF AE ∥,得出四边形AEDF 是菱形,根据菱形的性质得出AE DE =,通过BDE DCF ∽,得到BD DE CD CF=,代入求出即可. 【详解】解:∵根据作法可知:MN 是线段AD 的垂直平分线,∴AE DE =,AF DF =,∴EAD EDA ∠=∠,∵AD 平分BAC ∠,∴BAD CAD ∠=∠,∴EDA CAD ∠=∠,∴DE AC ∥,同理DF AE ∥,∴四边形AEDF 是菱形,∴AE DE =,∵DE AC ∥,DF AE ∥,∴FDC B ∠=∠,BED BAC DFC ∠=∠=∠,∴BDE DCF ∽, ∴BD DE CD CF =,即632DE = 解得4DE =,4AE DE ==故选:B .【点睛】本题考查了平行线的性质,菱形的性质和判定,相似三角形的判定与性质,垂直平分线的性质,能根据定理判四边形AEDF 是菱形是解此题的关键.10. 如图,正方形ABCD 的对角线,AC BD 相交于点O ,点F 是CD 上一点,OE OF ⊥交BC 于点E ,连接,AE BF 交于点P ,连接OP .则下列结论:①AE BF ⊥;②OAP EAC △∽△;③四边形OECF的面积是正方形ABCD 面积的14;④AP BP −;⑤若:2:3BE CE =,则4tan 7CAE ∠=.其中正确的结论有( )个.A. 2个B. 3个C. 4个D. 5个【答案】C【解析】 【分析】利用全等三角形的判定与性质,正方形的性质,圆周角定理,直角三角形的边角关系定理对每个选项的结论进行判断即可得出结论.【详解】解:在正方形ABCD 中,AB BC CD ==,AC BD ⊥,45ABD DBC ACD °∠=∠=∠=, ∴90BOE EOC ∠+∠=°,∵OE OF ⊥,∴90FOC EOC ∠+∠=°,∴FOC BOE ∠=∠,又∵OB OC =,∴()ASA BOE COF ≌∴BE CF =,又∵AB BC =,90ABC BCF ∠=∠=°,∴()SAS ABE BCF ≌△△,∵90ABP CBF ∠+∠=°,∴90ABP BAP ∠+∠=°,即AE BF ⊥,故①正确;∵90APB AOB ∠=∠=°,∴点A O P B 、、、四点共圆,∴45APO ABO ∠=∠=°,∴45APO ACE ∠=∠=°,又∵OAP EAC ∠=∠,∴OAP EAC △∽△,故②正确;在正方形ABCD 中,OA OB OC OD ===,90AOB BOC COD DOA ∠=∠=∠=∠=°,∴OAB OBC OCD ODA ≌≌≌, ∴14OBC ABCD S S = 正方形,即14OBE OCE ABCD S S S += 正方形, ∵BOE COF ≌,∴BOE COF S S = , ∴14OBE OCE ABCD OECF S S S S =+=四边形 正方形, 则四边形OECF 的面积是正方形ABCD 面积的14,故③正确; 过点O 作OH OP ⊥,交AE 于点H ,如下图:∵45OH APO OP =°∠,⊥,∴OH OP HP ==,即HP =, ∴OH OP ⊥,∴90POB HOB ∠+∠=°,∵90AOH BOH ∠+∠=°,∵OBP OBC CBF ∠=∠−∠,OAH OAB BAE ∠=∠−∠,∴OAH OBP ∠=∠,又∵OA OB =,∴()ASA OAH OBP ≌,∴AH BP =∴AP BP AP AH HP −=−==,故④正确; 由:2:3BE CE =,设2BE x =,则3CE x =5AB BC x ==,AE,AC =, 过点E 作EG AC ⊥,如下图:∵45ACB ∠=°,∴EG CG x ===,∴AG AC CG x =−=, 在Rt AEG △中,3tan 7E A G CAE G ∠==,故⑤错误; 综上,正确的个数为4,故选:C【点睛】本题主要考查了全等三角形的判定与性质,正方形的性质,圆周角定理,直角三角形的边角关系定理,等腰直角三角形的判定与性质,充分利用正方形的性质构造等腰直角三角形和全等三角形是解题的关键.二、填空题(每题3分,共15分)11. 已知35xy=,则2x yy−=___________.【答案】15##0.2【解析】【分析】由比例的基本性质得:35x y=,把x的代数式代入即可求得值.【详解】解:由条件得:35x y=,则322155y yx yy y×−−==,故答案:1 5.【点睛】本题考查了比例的基本性质及求代数式的值,运用比例的基本性质是关键.12. 若关于x的一元二次方程220x x m−+=有实数解,则m的取值范围是________.【答案】m≤1【解析】【分析】由一元二次方程有实数根,得到根的判别式大于等于0,列出关于m的不等式,求出不等式的解集即可得到m的取值范围.【详解】解:∵一元二次方程x2-2x+m=0有实数解,∴b2-4ac=22-4m≥0,解得:m≤1,则m的取值范围是m≤1.故答案为:m≤1.【点睛】此题考查了一元二次方程根的判别式,一元二次方程ax2+bx+c=0(a≠0)的解与b2-4ac有关,当b2-4ac>0时,方程有两个不相等的实数根;当b2-4ac=0时,方程有两个相等的实数根;当b2-4ac<0时,方程无解.13. 如图,四边形ABCD的菱形,其中对角线BD的长为2cm,则菱形ABCD的面积为_____cm2.为【答案】4【解析】【分析】首先根据菱形的性质可得BO=DO,AC⊥DB,AO=CO,然后再根据勾股定理计算出AO长,进而得到答案.【详解】解:∵四边形ABCD是菱形,∴BO=DO,AC⊥DB,AO=CO,∵BD=2cm,∴BO=1cm,∵AB cm,∴AO2(cm),∴AC=2AO=4cm.∴S菱形ABCD=1142422AC BD=××=(cm2).故答案为:4.【点睛】本题考查了菱形的性质以及勾股定理;解题的关键是熟悉菱形的面积公式和直角三角形三边之间的关系.14. 如图,在某校的2022年新年晚会中,舞台AB的长为20米,主持人站在点C处自然得体,已知点C 是线段AB上靠近点B的黄金分割点,则此时主持人与点A的距离为_____米.【答案】)101−【解析】【分析】根据黄金分割比例进行求解即可.【详解】解:∵C是线段AB靠近B的黄金分割点,∴)101AC AB =−米,故答案为:)101−. 【点睛】本题主要考查了黄金分割比例,熟知黄金分割比例是解题的关键.15. 如图,直线y =x ﹣2交双曲线y k x =(x >0)于点A ,交x 轴于点B ,直线y =3x 交双曲线y k x =(x >0)于点C ,若OA =OC ,则k 的值为 _____.【答案】3【解析】【分析】设C (m ,3m ),A (n ,n −2),根据勾股定理得到OC 2,OA 2,由OA =OC 及A ,C 在双曲线y k x=(x >0)上,推出103k =2k +4,即可得到结论. 【详解】解:设C (m ,3m ),A (n ,n −2),∴OC 2=m 2+(3m )2,OA 2=n 2+(n −2)2,∵OA =OC ,∴m 2+(3m )2=n 2+(n −2)2,即10m 2=2n 2−4n +4,∵A ,C 在双曲线y k x=(x >0)上, ∴m •3m =k ,n (n −2)=k ,即m 2=3k ,n 2-2n =k , ∴103k =2k +4, ∴k =3,故答案为:3.【点睛】本题考查了一次函数和反比例函数的交点问题,函数的图象,主要考查学生的理解能力和计算能力,难度适中.三、解答题16. 计算题(1)解方程260x x −−=;(2)解方程:()211x x x −=−. (3()1012cos 60tan 602π− −°+−−° . 【答案】(1)13x =,22x =−(2)11x =,212x =−(3)3【解析】【分析】(1)采用十字相乘法解此方程,即可解得;(2)采用因式分解法解此方程,即可解得;(3)首先根据特殊角的三角函数值,负整数指数幂及零指数幂的运算法则,进行运算,再进行有理数的加减运算,即可求得结果.【小问1详解】 解:由原方程得:()()320x x −+=, 故30x −=或20x +=, 解得13x =,22x =−,所以,原方程解为13x =,22x =−;【小问2详解】解:由原方程得:()2110x x x −+−=, 得()()1210x x −+=故10x −=或210x +=,解得11x =,212x =−, 所以,原方程的解为11x =,212x =−; 【小问3详解】 的()112cos60tan602π−−°+−−°132212=−×+−3121=−+−3=【点睛】本题考查了一元二次方程的解法,特殊角的三角函数值,负整数指数幂及零指数幂的运算法则,求一个数的算术平方根,有理数的加减运算,熟练掌握和运用各运算法则是解决本题的关键.17. 某中学全校学生参加了“交通法规”知识竞赛,为了解全校学生竞赛成绩的情况,随机抽取了一部分学生的成绩,分成四组:A:60≤x<70;B:70≤x<80;C:80≤x<90;D:90≤x≤100,并绘制出如图不完整的统计图.解答下列问题:(1)本次调查的学生共有人.(2)求被抽取的学生成绩在C:80≤x<90组的有多少人?并补齐条形统计图.(3)学校要将D组最优秀的4名学生分成两组,每组2人到不同的社区进行“交通法规”知识演讲.已知这4名学生1名来自七年级,1名来自八年级,2名来自九年级,请用列表或画树状图的方法,求九年级的2名学生恰好分在同一个组的概率.【答案】(1)80 (2)32人,图见解析(3)13【解析】【分析】(1)用学生成绩在B:70≤x<80组的人数除以20%,即可求解;(2)先求出学生成绩在C:80≤x<90组的人数,即可求解;(3)把1名来自七年级的学生记为甲,1名来自八年级的学生记为乙,2名九年级学生记为丙、丁,根据题意,画树状图可得共有12种得可能的结果,其中九年级的2名学生恰好分在同一个组的结果有4种,即可求解.【小问1详解】解:本次调查的学生共有:16÷20%=80(人),故答案为:80;【小问2详解】解:被抽取的学生成绩在C :80≤x <90组的有:80﹣8﹣16﹣24=32(人),补全的条形统计图如下所示:【小问3详解】把1名来自七年级的学生记为甲,1名来自八年级的学生记为乙,2名九年级学生记为丙、丁, 根据题意,画树状图如下:共有12种得可能的结果,其中九年级的2名学生恰好分在同一个组的结果有4种,∴九年级的2名学生恰好分在同一个组的概率为:41123=. 【点睛】本题主要考查了条形统计图和扇形统计图,用树状图或列表法求概率,明确题意,从统计图中准确获取信息是解题的关键.18. 如图,从楼层底部B 处测得旗杆CD 的顶端D 处的仰角是53°,从楼层顶部A 处测得旗杆CD 的顶端D 处的仰角是45°,已知楼层AB 的楼高为3米.求旗杆CD 的高度约为多少米?(参考数据:434sin 53cos53tan 53553°≈°≈°≈,,)【答案】旗杆CD 的高度约为12米.【解析】【分析】作AE CD ⊥于E 点.可得BC AE DE x ===,在Rt △BCD 中解直角三角形即可.【详解】解:作AE CD ⊥于E 点,由题意可知:45,53,3DAE DBC AB ∠=°∠=°=,设BC AE DE x ===,则3DC x =+,4533DC tan BC °=≈ , 即:343x x +≈, 9x ∴≈则3912DC ≈+≈,答:旗杆CD 的高度约为12米,【点睛】本题考查的是解直角三角形的应用-仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.19. 某商场将进货价为30元的台灯以40元售出,平均每月能售出600个,调查表明:售价在40元至60元范围内,这种台灯的售价每上涨1元,其销售量就将减少10个,设该商场决定把售价上涨()020x x ≤≤元.(1)售价上涨x 元后,该商场平均每月可售出______个台灯(用含x 的代数式表示);(2)为了实现平均每月10000元的销售利润,这种台灯的售价应定为多少元?这时应进台灯多少个?(3)台灯售价定为多少元时,每月销售利润最大?【答案】(1)()60010x −;(2)台灯的售价应定为50元,这时应进台灯500个;(3)售价为60元时,每月销售利润最大.【解析】【分析】(1)根据题意,列代数式即可;(2)根据题意,列一元二次方程,求解即可;(3)设销售利润为W 元,求得W 与x 的函数关系,再根据二次函数的性质,求解即可.【小问1详解】解:售价上涨x 元后,销售量减少10x 个,此时的销售量为()60010x −个故答案为:()60010x −;【小问2详解】解:由题意可得:()()40306001010000x x +−−=, 化简可得:2504000x x −+=,解得10x =或40x =,∵020x ≤≤,∴10x =,4050x +=,60010500x −=,即台灯的售价应定为50元,这时应进台灯500个;【小问3详解】解:设销售利润为W 元,由题意可得:()()()22403060010105006000102512250W x x x x x =+−−=−++=−−+ ∵100−<,开口向下,对称轴为25x =,∴25x <时,W 随x 的增大而增大又∵020x ≤≤,∴当20x =元时,每月销售利润W 最大,此时售价为60元.【点睛】此题考查了一元二次方程的应用,二次函数的应用,解题的关键是理解题意,找到等量关系,正确列出方程和函数关系.20. 如图,在 ABCD 中,对角线AC ,BD 交于点O ,过点B 作BE ⊥CD 于点E ,延长CD 到点F ,使DF=CE,连接AF.(1)求证:四边形ABEF是矩形;(2)连接OF,若AB=6,DE=2,∠ADF=45°,求OF的长度.【答案】(1)见解析;.【解析】【分析】(1)根据菱形的性质得到AD∥BC且AD=BC,等量代换得到BC=EF,推出四边形AEFD是平行四边形,根据矩形的判定定理即可得到结论;(2)根据直角三角形斜边中线可得:OF=12AC,利用勾股定理计算AC的长,可得结论.【详解】(1)证明:∵四边形ABCD是平行四边形∴AB=CD,AB∥CD.∵DF=CE,∴DF+DE=CE+ED,即:FE=CD.∵点F、E在直线CD上∴AB=FE,AB∥FE.∴四边形ABEF是平行四边形又∵BE⊥CD,垂足是E,∴∠BEF=90°.∴四边形ABEF是矩形.(2)解:∵四边形ABEF是矩形O,∴∠AFC=90°,AB=FE.∵AB=6,DE=2,∴FD=4.∵FD=CE,∴CE=4.∴FC=10.在Rt △AFD 中,∠AFD=90°.∵∠ADF=45°,∴AF=FD=4.在Rt △AFC 中,∠AFC=90°.∴AC =∵点O 是平行四边形ABCD 对角线的交点,∴O 为AC 中点在Rt △AFC 中,∠AFC=90°.O 为AC 中点.∴OF=12.【点睛】本题考查了矩形的判定和性质,平行四边形的性质,勾股定理,正确的识别图形是解题的关键. 21. 如图,一次函数1y k x b =+的图象与反比例函数k y x=的图象相交于点(4,1),(1,)A B n −两点.(1)分别求出一次函数和反比例函数的解析式:(2)根据图象,直接写出满足1k k x b x +…的x 的取值范围;(3)连接BO 并延长交双曲线于点C ,连接AC ,求 ABC 面积.【答案】(1)反比例函数解析式为4y x=,次函数解析式为3y x =− (2)x ≥4或-1≤x <0(3)15ABC S =△【解析】的【分析】(1)把A 的坐标代入反比例函数的解析式,即可求反比例函数的解析式,把B 的坐标代入求出B的坐标,把A 、B 的坐标代入一次函数1y k x b =+即可求出函数的解析式; (2)根据函数的图象和A 、B 的坐标即可得出答案;(3)过C 点作CD ∥y 轴,交直线AB 于D ,求出D 的坐标,即可求得CD ,然后根据ABCACD BCD S S S =+△△△ 即可求出答案. 【小问1详解】解:∵反比例函数y =k x 的图象经过点A (4,1), ∴414k =×= , ∴反比例函数解析式为4y x= , 又点B (﹣1,n )在反比例函数4y x =上, ∴441==−−n , ∴B 的坐标为(-1,-4),把A (4,1),B (﹣1,-4)代入1y k x b =+ , 得1141{4+=−+=−k b k b , 解得11{3==−k b , ∴一次函数解析式为3y x =− ;【小问2详解】解:由图象及交点坐标可知:当x ≥4或-1≤x <0时,k 1x +b ≥﹣k x ; 【小问3详解】解:过C 点作CD ∥y 轴,交直线AB 于D ,∵B (-1,-4),B 、C 关于原点对称,∴C (1,4),把x =1代入y =x -3,得y =-2,∴D (1,-2),CD =6, ∴1163621522=+=××+××= ABC ACD BCD S S S .【点睛】本题考查一次函数和反比例函数的交点问题,用待定系数法求一次函数的解析式,三角形的面积等知识点的综合运用,主要考查学生的计算能力和观察图形的能力,以及数形结合思想的运用. 22. 【推理】如图1,在正方形ABCD 中,点E 是CD 上一动点,将正方形沿着BE 折叠,点C 落在点F 处,连结BE ,CF ,延长CF 交AD 于点G .(1)求证:BCE CDG △△≌.【运用】(2)如图2,在【推理】条件下,延长BF 交AD 于点H .若45HD HF =,9CE =,求线段DE 的长. 【拓展】(3)将正方形改成矩形,同样沿着BE 折叠,连结CF ,延长CF ,BF 交直线AD 于G ,两点,若AB k BC =,45HD HF =,求DE EC 的值(用含k 的代数式表示).【答案】(1)见解析;(2)DE =;(3【解析】【分析】(1)根据ASA 证明BCE CDG △△≌;(2)由(1)得9CE DG ==,由折叠得BCF BFC ∠=∠,进一步证明HF HG =,由勾股定理得2222HF FE DH DE +=+,代入相关数据求解即可;(3)如图,连结HE ,分点H 在D 点左边和点H 在D 点右边两种情况,利用相似三角形的判定与性质得出DE 的长,再由勾股定理得2222HF FE DH DE +=+,代入相关数据求解即可.【详解】(1)如图,BFE △由BCE 折叠得到,BE CF ∴⊥,90ECF BEC ∴∠+∠=°.又 四边形ABCD 是正方形,90D BCE ∴∠=∠=°,90ECF CGD ∴∠+∠=°,BEC CGD ∴∠=∠,又 正方形,ABCD,BC CD ∴=,()BCE CDG AAS ∴△△≌.(2)如图,连接EH ,由(1)得BCE CDG △△≌,9CE DG ∴==,由折叠得BC BF =,9CE FE ==,BCF BFC ∴∠=∠.四边形ABCD 是正方形,//AD BC ∴,BCG HGF ∴∠=∠,又BFC HFG ∠=∠ ,HFG HGF ∴∠=∠,HF HG ∴=.45HD HF = ,9DG =, 4HD ∴=,5HFHG ==. 90D HFE ∠=∠=°2222HF FE DH DE ∴+=+,2222594DE ∴+=+,DE ∴(DE =−. (3)如图,连结HE ,由已知45HD HF =可设4DH m =,5HG m =,可令DE x EC =, ①当点H 在D 点左边时,如图,同(2)可得,HF HG =,9DG m ∴=,由折叠得BE CF ⊥,90ECF BEC ∴∠+∠=°,又90D ∠=° ,90ECF CGD ∴∠+∠=°,BEC CGD ∴∠=∠,又90BCE D ∠=∠=° ,CDG BCE ∴△∽△,DG CD CE BC ∴=, CD AB k BC BC == , 91m k CE ∴=, 9m CE FE k ∴==, 9mx DE k ∴=. 90D HFE ∠=∠=° ,2222HF FE DH DE ∴+=+,222299(5)(4)m mx m m k k ∴+=+ ,x ∴(x =舍去).DE EC ∴ ②当点H D 点右边时,如图,同理得HG HF =,DG m ∴=,同理可得BCE CDG △∽△, 可得m CE FE k ==,mx DE k∴=, 2222HF FE DH DE +=+ ,在2222(5)(4)m mx m m k k ∴+=+ ,x∴=x 舍去).DE EC ∴=【点睛】此题主要考查了正方形的性质,矩形的性质,折叠的性质,全等三角形的判定与性质,勾股定理,相似三角形的判定与性质,在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形..。

2022-2023学年广东省深圳市罗湖外语初中学校九年级(上)期末数学试卷及答案解析

2022-2023学年广东省深圳市罗湖外语初中学校九年级(上)期末数学试卷及答案解析

2022-2023学年深圳市罗湖外语初中学校九年级(上)期末数学试卷一、选择题(每题3分,共30分)1.(3分)如图所示的几何体的俯视图是()A.B.C.D.2.(3分)在直角△ABC中,∠C=90°,BC=3,sin A=,求tan B为()A.B.C.D.3.(3分)菱形不具备的性质是()A.四条边都相等B.对角线一定相等C.对角线平分对角D.是中心对称图形4.(3分)如图,点P是反比例函数图象上的一点,PF⊥x轴于F点,且Rt△POF面积为4.若点B(﹣2,m)也是该图象上的一点,则m的值为()A.﹣2B.﹣4C.2D.45.(3分)我国于12月中旬开始放开新冠疫情管控,经专家推算,每轮传播过程中,1个人可以传播给x个人,经过两轮传播后,共有81人被传染.则可列方程为()A.1+(1+x)x=81B.1+x+(1+x)x=81C.(1+x)x=81D.x+(1+x)x=816.(3分)如图,在平面直角坐标系xOy中,两个“E”字是位似图形,位似中心点O,①号“E”与②号“E”的位似比为2:1.点P(﹣6,9)在①号“E”上,则点P在②号“E”上的对应点Q的坐标为()A.(﹣3,)B.(﹣2,3)C.(﹣,3)D.(﹣3,2)7.(3分)关于抛物线y=(x﹣1)2﹣2,下列说法中错误的是()A.顶点坐标为(1,﹣2)B.对称轴是直线x=1C.当x>1时,y随x的增大而减小D.开口方向向上8.(3分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=1,下列结论:①ab<0;②b2>4ac;③a﹣b+c>0;④2a+b=0.其中正确的是()A.①③④B.②③④C.①②③D.①②③④9.(3分)如图,在△ABC中,AD平分∠BAC,按如下步骤作图:第一步,分别以点A、D为圆心,以大于的长为半径在AD两侧作弧,交于两点M、N;第二步,连接MN分别交AB、AC于点E、F;第三步,连接DE、DF.若BD=6,CD=3,CF=2,则AE的长是()A.3B.4C.5D.610.(3分)如图,正方形ABCD的对角线AC,BD相交于点O,点F是CD上一点,OE⊥OF交BC于点E,连接AE,BF交于点P,连接OP.则下列结论:①AE⊥BF;②△OAP ∽△EAC;③四边形OECF的面积是正方形ABCD面积的;④AP﹣BP=OP;⑤若BE:CE=2:3,则tan∠CAE=.其中正确的结论有()个.A.2个B.3个C.4个D.5个二、填空题(每题3分,共15分)11.(3分)已知,则=.12.(3分)已知关于x的一元二次方程x2﹣2x+m=0有实数根,则m的取值范围是.13.(3分)如图,四边形ABCD是边长为cm的菱形,其中对角线BD的长为2cm,则菱形ABCD的面积为cm2.14.(3分)如图,在某校的2022年新年晚会中,舞台AB的长为20米,主持人站在点C 处自然得体,已知点C是线段AB上靠近点B的黄金分割点,则此时主持人与点A的距离为米.15.(3分)如图,直线y=x﹣2交双曲线y=(x>0)于点A,交x轴于点B,直线y=3x交双曲线y=(x>0)于点C,若OA=OC,则k的值为.三、解答题16.(9分)计算题:(1)解方程x2﹣x﹣6=0;(2)解方程:2x(x﹣1)=1﹣x;(3)计算:.17.(6分)某中学全校学生参加了“交通法规”知识竞赛,为了解全校学生竞赛成绩的情况,随机抽取了一部分学生的成绩,分成四组:A:60≤x<70;B:70≤x<80;C:80≤x<90;D:90≤x≤100,并绘制出如图不完整的统计图.解答下列问题:(1)本次调查的学生共有人.(2)求被抽取的学生成绩在C:80≤x<90组的有多少人?并补齐条形统计图.(3)学校要将D组最优秀的4名学生分成两组,每组2人到不同的社区进行“交通法规”知识演讲.已知这4名学生1名来自七年级,1名来自八年级,2名来自九年级,请用列表或画树状图的方法,求九年级的2名学生恰好分在同一个组的概率.18.(6分)如图,从楼层底部B处测得旗杆CD的顶端D处的仰角是53°,从楼层顶部A 处测得旗杆CD的顶端D处的仰角是45°,已知楼层AB的楼高为3米.求旗杆CD的高度约为多少米?(参考数据:sin53°≈,cos53°≈,tan53°≈.)19.(8分)某商场将进货价为30元的台灯以40元售出,平均每月能售出600个,调查表明:售价在40元至60元范围内,这种台灯的售价每上涨1元,其销售量就将减少10个,设该商场决定把售价上涨x(0<x<20)元.(1)售价上涨x元后,该商场平均每月可售出个台灯(用含x的代数式表示);(2)为了实现平均每月10000元的销售利润,这种台灯的售价应定为多少元?这时应进台灯多少个?(3)台灯售价定为多少元时,每月销售利润最大?20.(8分)如图,在▱ABCD中,对角线AC,BD交于点O,过点B作BE⊥CD于点E,延长CD到点F,使DF=CE,连接AF.(1)求证:四边形ABEF是矩形;(2)连接OF,若AB=6,DE=2,∠ADF=45°,求OF的长度.21.(9分)如图,一次函数y=k1x+b的图象与反比例函数y=的图象相交于点A(3,1),B(﹣1,n)两点.(1)分别求出一次函数和反比例函数的解析式;(2)根据图象,直接写出满足k1x+b≥的x的取值范围;(3)连接BO并延长交双曲线于点C,连接AC,求△ABC的面积.22.(9分)【推理】如图1,在正方形ABCD中,点E是CD上一动点,将正方形沿着BE折叠,点C落在点F处,连结BE,CF,延长CF交AD于点G.(1)求证:△BCE≌△CDG.【运用】(2)如图2,在【推理】条件下,延长BF交AD于点H.若,CE=9,求线段DE的长.【拓展】(3)将正方形改成矩形,同样沿着BE折叠,连结CF,延长CF,BF交直线AD于G,H两点,若=k,=,求的值(用含k的代数式表示).2022-2023学年广东省深圳市罗湖外语初中学校九年级(上)期末数学试卷参考答案与试题解析一、选择题(每题3分,共30分)1.【分析】根据三视图的知识得出结论即可.【解答】解:根据题意得,该几何体的俯视图为,故选:C.【点评】本题主要考查简单几何体的三视图,熟练掌握简单几何体的三视图是解题的关键.2.【分析】根据锐角三角函数的定义以及勾股定理进行计算即可.【解答】解:在直角△ABC中,∠C=90°,BC=3,sin A==,∴AB=5,∴AC==4,∴tan B==,故选:D.【点评】本题考查锐角三角函数,勾股定理,掌握锐角三角函数的定义以及勾股定理是正确解答的前提.3.【分析】根据菱形的性质逐一判断即可.【解答】解:A.菱形的四条边都相等,故本选项不合题意;B.菱形的对角线不相等,故本选项符合题意;C.菱形的对角线平分内角,故本选项不合题意;D.菱形是中心对称图形,故本选项不合题意;故选:B.【点评】本题考查了菱形的性质以及中心对称图形,掌握菱形的性质是解答本题的关键.4.【分析】根据反比例函数系数k的几何意义求出k的值,再代入计算即可.【解答】解:由反比例函数系数k的几何意义可知,|k|=4,而k<0,∴k=﹣8,∴反比例函数的关系式为y=﹣,把点B(﹣2,m)代入得,m=﹣=4,故选:D.【点评】本题考查反比例函数系数k的几何意义,掌握反比例函数系数k的几何意义以及反比例函数图象上点的坐标的特征是正确解答的前提.5.【分析】由每轮传染中平均一个人传染了x个人,可得出第一轮传染中有x人被传染,第二轮传染中有x(1+x)人被传染,结合“某地某时段有一个人患了新冠肺炎,经过两轮传播后,共有81人被传染”,即可得出关于x的一元二次方程,此题得解.【解答】解:∵每轮传染中平均一个人传染了x个人,且开始时有一个人患了新冠肺炎,∴第一轮传染中有x人被传染,第二轮传染中有x(1+x)人被传染.根据题意得:1+x+x(1+x)=81.故选:B.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.6.【分析】根据位似变换的性质计算,得到答案.【解答】解:∵①号“E”与②号“E”是位似图形,位似比为2:1,点P(﹣6,9),∴点P在②号“E”上的对应点Q的坐标为(﹣6×,9×),即(﹣3,),故选:A.【点评】本题考查的是位似变换的性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k.7.【分析】由二次函数解析式可得抛物线开口方向及顶点坐标,进而求解.【解答】解:∵y=(x﹣1)2﹣2,∴抛物线开口向上,顶点坐标为(1,﹣2),对称轴为直线x=1,∴x>1时,y随x的增大而增大.故选:C.【点评】本题考查二次函数的性质,解题关键是掌握二次函数图象与系数的关系.8.【分析】由抛物线开口方向,对称轴位置可判断①④,由抛物线与x轴的交点个数可判断②,由x=﹣1时y>0可判断③.【解答】解:∵抛物线开口向上,∴a>0,∵抛物线对称轴为直线x=﹣=1,∴b=﹣2a<0,∴2a+b=0,④正确;∴ab<0,①正确;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,∴b2>4ac,②正确;由图象可得x=﹣1时,y=a﹣b+c>0,∴③正确.故选:D.【点评】本题考查二次函数的性质,解题关键是掌握二次函数图象与系数的关系,掌握二次函数与方程及不等式的关系.9.【分析】由基本作图得到EF垂直平分AD,则AE=DE,AF=DF,EF⊥AD,再根据等腰三角形三线合一得到AE=AF,则可判断四边形AEDF为菱形,所以DF∥AB,然后根据相似三角形的判定与性质可计算出AE.【解答】解:由作法得EF垂直平分AD,∴AE=DE,AF=DF,EF⊥AD,∵AD平分∠BAC,∴AE=AF,∴AE=AF=DE=DF,∴四边形AEDF为菱形,∴ED∥AC,∴△BED∽△BAC,∴=,∵BD=6,CD=3,CF=2,∴=,解得:ED=4,∴AE=4.故选:B.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了线段垂直平分线的性质、相似三角形的判定与性质.10.【分析】①可证明△COF≌△BOE,进而证明△ABE≌△BCF,进一步得出结论;②可证明△ABP∽△AEB,从而AB2=AP•AE,可证明△AOB∽△ABC,从而AB2=OA•AC,进而得出AP•AE=OA•AC,从而得出结论;③由四边形OECF的面积等于△COE的面积加△COF的面积可得四边形OECF的面积等于△COE的面积加△BOE的面积,从而四边形OECF的面积等于△BOC的面积,进而得出结论;④作∠POQ=90°,交AP于Q,可证得PQ=OP及△AOQ≌△BOP,进一步得出结论;⑤作FG⊥BD于G,设CF=2a,则CD=BC=5a,BD=BC=5a,可得出tan∠DBF=,可证得∠DBF=∠CAE,从而得出tan∠CAE=,从而得出结论.【解答】解:①,∵四边形ABCD是正方形,∴OB=OC,∠OCF=∠OBE=45°,∠BOC=90°,AB=BC,∠ABC=∠BCD=90°,∴∠BOC=∠EOF=90°,∴∠BOC﹣∠COE=∠EOF﹣∠COE,∴∠COF=∠BOE,∴△COF≌△BOE(AAS),∴CF=BE,∴△ABE≌△BCF(SAS),∴∠CBF=∠BAE,∵∠ABE+∠CBF=∠ABC=90°,∴∠ABE+∠BAE=90°,∴∠APB=90°,∴AE⊥BF,故①正确;②,由△ABP∽△AEB得,AB2=AP•AE,由△AOB∽△ABC得,AB2=OA•AC,∴AP•AE=OA•AC,∵∠POA=∠CAE,∴△AOP∽△AEC,故②正确;③,由①知:△COF≌△BOE,∵四边形OECF的面积等于△COE的面积加△COF的面积,∴四边形OECF的面积等于△COE的面积加△BOE的面积,∴四边形OECF的面积等于△BOC的面积,而△BOC的面积等于正方形ABCD的面积的,∴四边形OECF的面积是正方形ABCD面积的;故③正确;④,如图,作∠POQ=90°,交AP于Q,∵∠APO=45°,∴∠OQP=90°﹣∠APO=45°,∴OQ=OP,PQ=OP,∵∠AOB=∠POQ=90°,∴∠AOQ=∠BOP,∵OA=OB,∴△AOQ≌△BOP(SAS),∴AQ=BP,∵AP﹣AQ=PQ,∴AP﹣PQ=OP,故④正确;⑤,如图2,作FG⊥BD于G,∵BE:CE=2:3,∴BE:BC=2:5,∵CF=BE,∴CF:BC=2:5,设CF=2a,则CD=BC=5a,BD=BC=5a,∴DF=3a,∴FG=DG=DF=a,∴BG=BD﹣DG=5a﹣=a,∴tan∠DBF==,∵∠ABD=∠APO=45°,∴点A、B、P、O共圆,∴∠DBF=∠CAE,∴tan∠CAE=,故⑤不正确,∴①②③④正确,故选:C.【点评】本题考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,解直角三角形等知识,解决问题的关键是熟练掌握有关基础知识.二、填空题(每题3分,共15分)11.【分析】根据题意,设x=3k,y=5k,代入即可求得的值.【解答】解:由题意,设x=3k,y=5k,∴==.故答案为:【点评】已知几个量的比值时,常用的解法是:设一个未知数,把题目中的几个量用所设的未知数表示出来,实现消元.12.【分析】根据根的判别式即可求出答案.【解答】解:由题意可知:Δ=4﹣4m≥0,∴m≤1,故答案为:m≤1【点评】本题考查根的判别式,解题的关键是熟练运用根的判别式,本题属于基础题型.13.【分析】首先根据菱形的性质可得BO=DO,AC⊥DB,AO=CO,然后再根据勾股定理计算出AO长,进而得到答案.【解答】解:∵四边形ABCD是菱形,∴BO=DO,AC⊥DB,AO=CO,∵BD=2cm,∴BO=1cm,∵AB=cm,∴AO===2(cm),∴AC=2AO=4cm.∴S菱形ABCD=(cm2).故答案为:4.【点评】此题主要考查了菱形的性质,关键是掌握菱形的两条对角线互相垂直且平分.14.【分析】由黄金分割点的定义得AC=AB,再代入AB的长计算即可.【解答】解:∵点C是线段AB上靠近点B的黄金分割点,AB=20米,∴AC=AB=×20=(10﹣10)(米),故答案为:(10﹣10).【点评】本题考查了黄金分割,熟练掌握黄金分割点的定义是解题的关键.15.【分析】设C(m,3m),A(n,n﹣2),根据勾股定理得到OC2=m2+(3m)2,OA2=n2+(n﹣2)2,由于OA=OC,于是得到m2+(3m)2=n2+(n﹣2)2,由A,C在双曲线y=(x>0)上,推出m•3m=k,n(n﹣2)=k,代入上式得到k=2k+4,即可得到结论.【解答】解:设C(m,3m),A(n,n﹣2),∴OC2=m2+(3m)2,OA2=n2+(n﹣2)2,∵OA=OC,∴m2+(3m)2=n2+(n﹣2)2,∵A,C在双曲线y=(x>0)上,∴m•3m=k,n(n﹣2)=k,∴k=2k+4,∴k=3,故答案为3.【点评】本题考查了一次函数和反比例函数的交点问题,函数的图象,主要考查学生的理解能力和计算能力,难度适中.三、解答题16.【分析】(1)利用因式分解法解方程;(2)先移项,然后利用因式分解法解方程;(3)第一项化简二次根式,第二项把特殊角三角函数值代入,第三项计算负整数指数幂,第四项计算零指数幂再合并即可.【解答】解:(1)x2﹣x﹣6=0,(x﹣3)(x+2)=0,∴x﹣3=0或x+2=0,∴x1=3,x2=﹣2;(2)2x(x﹣1)=1﹣x,2x(x﹣1)+(x﹣1)=0,(x﹣1)(2x+1)=0,∴x﹣1=0或2x+1=0,∴x1=1,x2=﹣;(3)原式=3﹣2×+2﹣1=3﹣1+2﹣1=3.【点评】本题考查了解一元二次方程﹣因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.也考查了实数的运算.17.【分析】(1)根据B组人数和所占的百分比,可以计算出本次调查的学生人数;(2)根据本次调查的学生人数和条形统计图中的数据,即可计算出被抽取的学生成绩在C组的人数,从而可以将条形统计图补充完整;(3)画树状图,共有12种等可能的结果,其中九年级的2名学生恰好分在同一个组的结果有4种,再由概率公式求解即可.【解答】解:(1)本次调查的学生共有:16÷20%=80(人),故答案为:80;(2)被抽取的学生成绩在C:80≤x<90组的有:80﹣8﹣16﹣24=32(人),补全的条形统计图如下所示:(3)把1名来自七年级的学生记为甲,1名来自八年级的学生记为乙,2名九年级学生记为丙、丁,根据题意,画树状图如下:共有12种等可能的结果,其中九年级的2名学生恰好分在同一个组的结果有4种,∴九年级的2名学生恰好分在同一个组的概率为=.【点评】此题考查的是用树状图法求概率以及扇形统计图和条形统计图.树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.18.【分析】过A作AE⊥CD于E,则BC=AE,∠AED=90°,先证△ADE是等腰直角三角形,得AE=DE,设BC=AE=DE=x米,则CD=(x+3)米,再由锐角三角函数定义得出方程,解方程即可.【解答】解:过A作AE⊥CD于E,如图所示:则BC=AE,∠AED=90°,由题意得:∠DAE=45°,∠DBC=53°,AB=3米,∴△ADE是等腰直角三角形,∴AE=DE,设BC=AE=DE=x米,则CD=(x+3)米,∵tan∠DBC==tan53°≈,∴≈,解得:x≈9,∴CD=9+3=12(米),答:旗杆CD的高度约为12米.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.19.【分析】(1)根据原销售量结合售价每上涨1元销售量就将减少10个,即可得出售价上涨x元后的月销售量;(2)根据总利润=单台利润×月销售量,即可得出关于x的一元二次方程,解之取其较小值即可得出结论;(3)设每月的销售利润为w,根据总利润=单台利润×月销售量,即可得出关于x的二次函数,写成顶点式即可解答.【解答】解:(1)售价上涨x元后,该商场平均每月可售出(600﹣10x)个台灯.故答案为:(600﹣10x).(2)依题意,得:(40﹣30+x)(600﹣10x)=10000,整理,得:x2﹣50x+400=0,解得:x1=10,x2=40(不合题意,舍去),∴40+x=50,600﹣10x=500.答:这种台灯的售价应定为50元,这时应进台灯500个;(3)设每月的销售利润为w,根据题意得:w=(40﹣30+x)(600﹣10x)=﹣10(x﹣25)2+12250,∵0<x<20,当x=19时,w有最大值,最大值为11890,答:台灯售价定为19元时,每月销售利润最大.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.20.【分析】(1)根据平行四边形的性质得到AD∥BC且AD=BC,等量代换得到BC=EF,推出四边形AEFD是平行四边形,根据矩形的判定定理即可得到结论;(2)根据直角三角形斜边中线可得:OF=AC,利用勾股定理计算AC的长,可得结论.【解答】(1)证明:∵在▱ABCD中,∴AD∥BC且AD=BC,∴∠ADF=∠BCE,在△ADF和△BCE中,∵∴△ADF≌△BCE(SAS),∴AF=BE,∠AFD=∠BEC=90°,∴AF∥BE,∴四边形ABEF是矩形;(2)解:由(1)知:四边形ABEF是矩形,∴EF=AB=6,∵DE=2,∴DF=CE=4,∴CF=4+4+2=10,Rt△ADF中,∠ADF=45°,∴AF=DF=4,由勾股定理得:AC===2,∵四边形ABCD是平行四边形,∴OA=OC,∴OF=AC=.【点评】本题考查了矩形的判定和性质,平行四边形的性质,勾股定理,正确的识别图形是解题的关键.21.【分析】(1)把A的坐标代入反比例函数的解析式,即可求出反比例函数的解析式,把B的坐标代入求出B的坐标,把A、B的坐标代入一次函数y=k1x+b即可求出函数的解析式;(2)根据函数的图象和A、B的坐标即可得出答案;(3)过C点作CD∥y轴,交直线AB于D,求出D的坐标,即可求得CD,然后根据S=S ACD+S△BCD即可求出答案.△ABC【解答】解:(1)∵把A(3,1)代入y=得:k2=3×1=3,∴反比例函数的解析式是y=,∵B(﹣1,n)代入反比例函数y=得:n=﹣3,∴B的坐标是(﹣1,﹣3),把A、B的坐标代入一次函数y=k1x+b得:,解得:k1=1,b=﹣2,∴一次函数的解析式是y=x﹣2;(2)从图象可知:k1x+b≥的x的取值范围是当﹣1≤x<0或x≥3.(3)过C点作CD∥y轴,交直线AB于D,∵B(﹣1,﹣3),B、C关于原点对称,∴C(1,3),把x=1代入y=x﹣2得,y=﹣1,∴D(1,﹣1),∴CD=4,∴S△ABC=S△ACD+S△BCD=×4×(3+1)=8.【点评】本题考查一次函数和反比例函数的交点问题,用待定系数法求一次函数的解析式,三角形的面积等知识点的综合运用,主要考查学生的计算能力和观察图形的能力,以及数形结合思想的运用.22.【分析】(1)根据AAS证明三角形全等即可.(2)如图2中,连接EH.根据HF2+FE2=DH2+DE2,求出DE即可解决问题.(3)如图3中,连接HE.由题意=,可以假设DH=4m,HG=5m,设=x.分两种情形:①当点H在点D的左侧时,②当点H在点D的右侧时,如图4中,分别利用勾股定理构建方程求解即可.【解答】(1)证明:如图1中,∵△BFE是由△BCE折叠得到,∴BE⊥CF,∴∠ECF+∠BEC=90°,∵四边形ABCD是正方形,∴∠D=∠BCE=90°,∴∠ECF+∠CGD=90°,∴∠BEC=∠CGD,∵BC=CD,∴△BCE≌△CDG(AAS).(2)如图2中,连接EH.∵△BCE≌△CDG,∴CE=DG=9,由折叠可知BC=BF,CE=FE=9,∴∠BCF=∠BFC,∵四边形ABCD是正方形,∴AD∥BC,∴∠BCG=∠HGF,∵∠BFC=∠HFG,∴∠HFG=∠HGF,∴HF=HG,∵=,DG=9,∴HD=4,HF=HG=5,∵∠D=∠HFE=90°,∴HF2+FE2=DH2+DE2,∴52+92=42+DE2,∴DE=3或﹣3(舍弃),∴DE=3.(3)如图3中,连接HE.由题意=,可以假设DH=4m,HG=5m,设=x.①当点H在点D的左侧时,∵HF=HG,∴DG=9m,由折叠可知BE⊥CF,∴∠ECF+∠BEC=90°,∵∠D=90°,∴∠ECF+∠CGD=90°,∴∠BEC=∠CGD,∵∠BCE=∠D=90°,∴△CDG∽△BCE,∴=,∵==k,∴=,∴CE ==FE,∴DE =,∵∠D=∠HFE=90°∴HF2+FE2=DH2+DE2,∴(5m)2+()2=(4m)2+()2,∴x =或﹣(舍弃),∴=.②当点H在点D的右侧时,如图4中,同理HG=HF,△BCE∽△CDG,∴DG=m,CE ==FE,∴DE =,∵HF2+FE2=DH2+DE2,∴(5m)2+()2=(4m)2+()2,∴x =或﹣(舍弃),∴=.综上所述,=或.【点评】本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.第15页(共15页)。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

广东省深圳市罗湖区九年级(上)期末数学试卷
一、选择题(本题有12小题,每小题3分,共36分,在每小题给出的四个选
项中,其中只有一项是符合题目要求的,请将正确的选项用铅笔涂在答题卷上)
1.(3分)袋中有5 个白球,3 个黑球,除颜色外均相同,从中一次任摸出一个球,则摸到黑球的概率是()
A.B.C.D.
2.(3分)一位小朋友拿一个等边三角形木框在阳光下玩,等边三角形木框在地面上的影子不可能是()
A.B.
C.D.
3.(3分)下列图形中,既是轴对称图形又是中心对称图形的有()
A.4个B.3个C.2个D.1个
4.(3分)在Rt△ABC中,∠C=90°,若sin A=,则∠A的度数是()A.60°B.45°C.30°D.无法确定5.(3分)若关于x的一元二次方程x2﹣x﹣3m=0有两个不相等的实数根,则m的取值范围是()
A.m B.m C.m>﹣D.m
6.(3分)下列命题中,属于假命题的是()
A.有一个锐角相等的两个直角三角形一定相似
B.对角线相等的菱形是正方形
C.抛物线y=x2﹣20x+17的开口向上
D.在一次抛掷图钉的试验中,若钉尖朝上的频率为,则钉尖朝下的概率为
7.(3分)由下表估算一元二次方程x2+12x=15的一个根的范围,正确的是()x 1.0 1.1 1.2 1.3
x2+12x1314.4115.8417.29
A.1.0<x<1.1B.1.1<x<1.2
C.1.2<x<1.3D.14.41<x<15.84
8.(3分)如图,位似图形由三角尺与其在灯光照射下的中心投影组成,相似比为1:2,且三角尺一边长为5cm,则投影三角形的对应边长为()
A.8cm B.20cm C.3.2cm D.10cm
9.(3分)如图是二次函数y=ax2+bx+c的部分图象,由图象可知,满足不等式ax2+bx+c>0的x的取值范围是()
A.﹣1<x<5B.x>5C.x<﹣1且x>5D.x<﹣1或x>5 10.(3分)如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下四个结论:
①abc=0;②a+b+c>0;③b=3a;④4ac﹣b2<0;其中正确的结论有()
A.1个B.2个C.3个D.4个
11.(3分)如图,△AOB是直角三角形,∠AOB=90°,OB=2OA,点A在反比例函数y=的图象上.若点B在反比例函数y=的图象上,则k的值为()
A.﹣4B.4C.﹣2D.2
12.(3分)在边长为3的正方形ABCD中,点E、F、G、H分别在AB、BC、CD、DA边上,且满足EB=FC=GD=HA=1,BD分别与HG、HF、EF相交于M、O、N给出以下结论:
①HO=OF;②OF2=ON•OB;③HM=2MG;④S△HOM=,其中正确的个数
有()
A.1B.2C.3D.4
二、填空题(本题有4小题,每小题3分,共1分,把答案填在答题卷上)13.(3分)有两双完全相同的鞋,从中任取两只,恰好成为一双的概率为.14.(3分)如图,是一个长方体的主视图、左视图与俯视图(单位:cm),根据图中数据计算这个长方体的体积是.
15.(3分)随着数系不断扩大,我们引进新数i,新i满足交换率、结合律,并规定:i2=﹣1,那么(2+i)(2﹣i)=(结果用数字表示).16.(3分)如图,Rt△ABC中,∠BAC=90°,AB=6,sin C=,以点A为圆心,AB长为半径作弧交AC于M,分别以B、M为圆心,以大于BM长为半径作弧,两弧相交于点N,射线AN与BC相交于D,则AD的长为.
三、解答题(本题共7小题,其中第17题6分,第18题6分,第19题7分,
第20题7分,第21题8分,第22题8分,第23题10分,满52分)17.(6分)解方程:x2﹣2x﹣3=0.
18.(6分)小明和小亮玩一个游戏:取三张大小、质地都相同的卡片,上面分别标有数字2、3、4(背面完全相同),现将标有数字的一面朝下.小明从中任意抽取一张,记下数字后放回洗匀,然后小亮从中任意抽取一张,计算小明和小亮抽得的两个数字之和.
(1)请你用画树状图或列表的方法,求出这两数和为6的概率.
(2)如果和为奇数,则小明胜;若和为偶数,则小亮胜.你认为这个游戏规则对双方公平吗?做出判断,并说明理由.
19.(7分)如图,一次函数y=kx+b与反比例函数y=(x>0)的图象相交于A(2,3)、B(a,1)两点.
(1)求这两个函数的表达式;
(2)求证:AB=2BC.
20.(7分)某商场将每件进价为80元的某种商品按每件100元出售,一天可售出100件.后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件.
(1)若商场经营该商品一天要获利润2160元,则每件商品应降价多少元?(2)设后来该商品每件降价x元,商场一天可获利润y元.求出y与x之间的函数关系式,并求当x取何值时,商场获利润最大?
21.(8分)随着科技进步,无人机的应用越来越广,如图1,在某一时刻,无人机上的探测器显示,从无人机A处看一栋楼顶部B点的仰角和看与顶部B在同一铅垂线上高楼的底部C的俯角.
(1)如果上述仰角与俯角分别为30°与60°,且该楼的高度为30米,求该时刻无人机的竖直高度CD;
(2)如图2,如果上述仰角与俯角分别为α与β,且该楼的高度为m米.求用α、β、m表示该时刻无人机的竖直高度CD.
22.(8分)如图1,点P是菱形ABCD的对角线BD上的一动点,连接CP并延长交AD于E,交BA的延长线于点F.
(1)求证:△APD≌△CPD;
(2)如图2,当菱形ABCD变为正方形,且PC=2,tan∠PF A=时,求正方形ABCD的边长.
23.(10分)如图1已知抛物线y=ax2+bx﹣3与x轴相交于A(﹣1,0)、B(3,0),P为抛物线上第四象限上的点.
(1)求该抛物线的函数关系式;
(2)如图1,过点P作PD⊥x轴于点D,PD交BC于点E,当线段PE的长度最大时,求点P的坐标.
(3)如图2,当线段PE的长度最大时,作PF⊥BC于点F,连结DF.在射线PD上有一点Q,满足∠PQB=∠DFB,问在坐标轴上是否存在一点R,使得S△RBE=S△QBE?如果存在,直接写出R点的坐标;如果不存在,请说明理由.
广东省深圳市罗湖区九年级(上)期末数学试卷
参考答案
一、选择题(本题有12小题,每小题3分,共36分,在每小题给出的四个选
项中,其中只有一项是符合题目要求的,请将正确的选项用铅笔涂在答题卷上)
1.B;2.B;3.B;4.C;5.C;6.D;7.B;8.D;9.A;10.C;
11.A;12.D;
二、填空题(本题有4小题,每小题3分,共1分,把答案填在答题卷上)13.;14.24cm3;15.5;16.;
三、解答题(本题共7小题,其中第17题6分,第18题6分,第19题7分,
第20题7分,第21题8分,第22题8分,第23题10分,满52分)17.;18.;19.;20.;21.;22.;
23.;。

相关文档
最新文档