量子力学知识点总结

合集下载

量子力学最全名词解释及知识点整理

量子力学最全名词解释及知识点整理
两电子自旋相互反平行的态是单一的,这种态称为单态;两电子自旋相互平行的能级
是三重简并的,对应于这些能级的态称为三重态( | 1,1⟩, | 1, − 1⟩, | 1,0⟩)
29. 正氦与仲氦p206
处于三重态的氦称为正氦,处于单态的氦称为仲氦,或者说基态的氦是仲氦
一些结论
1. 谐振子能量本征函数及其性质


为动量,λ为波⻓。
4. 态叠加原理(Superposition principle):p17
对 于 一 般 的 情 况 , 如 果 ψ1 和 ψ2 是 体 系 的 可 能 状 态 , 那 么 它 们 的 线 性 叠 加
ψ = c1ψ1 + c2ψ2也是这个体系的一个可能状态,其中c1和c2为复常数。
20. 偶极跃迁、偶极近似(Electric Dipole Approximation): p146
由于电磁波中电场对电子能量的影响远大于磁场,忽略光波中的磁场作用和原子的尺
寸,把电场近似地用Ex = E0 cos ωt(沿z轴传播的平面单色偏振光的电场)表示后得到的
结果,这样讨论的跃迁称为偶极跃迁,这种近似叫做偶极近似。
22. 简单塞曼效应、复杂塞曼效应(Zeeman e ect):p181
在外磁场较强的情况下,没有外磁场时的一条谱线在外磁场中将分裂为三条,这就是 简单塞曼效应。
在外磁场较弱时,电子自旋与轨道相互作用不能够忽略,光谱线分裂成偶数条,这称 为复杂塞曼效应。
23. 好量子数:p187
守恒量的特点:测量值的几率分布不随时间变化,守恒量的量子数称为好量子数。

谐振子能量的本征函数为:ψn(x)
=
Nne−
1 2
α2 x2Hn(α

量子力学基础 知识点

量子力学基础 知识点

量子物理知识点小结一、普朗克能量子假说1、黑体辐射的实验定律2、普朗克能量子假说2)维恩位移定律:T λm = b1)斯特藩-玻耳兹曼定律: M (T ) = σT 4对频率为ν 的谐振子, 最小能量 ε 为: ⋅⋅⋅⋅⋅⋅,,,3,2,εεεεn νh =ε谐振子的能量不能取任意值,只能是某一最小能量ε 的整数倍,二、爱因斯坦光量子假说1、光量子假说 W m h νm+=221v 2、光电效应方程: 光具有“波粒二象性”光子的动量: λhp =光子的能量: h ν=ε碰撞过程中能量守恒: 2200mc h νc m h ν+=+v m e h e h n +=λλ00碰撞过程中动量守恒:波长的偏移量:)cos 1(0θλλλλ-=-=∆c nm 00243.0m 10432120=⨯⋅≈=-cm h c λ康普顿波长: 三、康普顿效应(X 射线光子与自由电子碰撞)四、玻尔氢原子理论一切实物粒子都具有波粒二象性 2)角动量量子化条件假设; 1)定态假设; 3)频率条件假设h νmc E ==2λh m p ==v ⎪⎪⎪⎩⎪⎪⎪⎨⎧≥∆⋅∆≥∆⋅∆≥∆⋅∆222 z y x p z p y p x 2≥∆⋅∆t Ε五、德布罗意假说六、不确定性关系:七、波函数2、波函数满足的条件1、波函数的统计意义1)归一化条件t 时刻,粒子在空间r 处的单位体积中出现的概率, 与波函数模的平方成正比。

*2),(ΨΨt r ΨdVdW w === 概率密度: 12=⎰⎰⎰dV Ψ粒子在整个空间出现的总概率等于 1 , 即: 2)标准化条件:单值、连续、有限一维情况: 1)(2=⎰+∞∞-dx x Ψ八、定态薛定谔方程1、定态:若粒子的势能 E P (x ) 与 t 无关,仅是坐标的函数, 微观粒子在各处出现的概率与时间无关2、一维定态薛定谔方程: 0)()()(=-+x E E 2m dx x d P 222ψψ九、氢原子,3,2,1,1)8(22204=⋅-=n nh me E n ε1、能量量子化和主量子数n 2、角动量量子化和角量子数l)1(2)1(+=+=l l h l l L π1,,3,2,1,0-=n l 3、角动量空间量子化和磁量子数m ll m m L l l z ±±±==,,2,1,0, 4、自旋角动量和自旋量子数 21,)1(=+=s s s S 21,±==s s z m m S十、原子的电子壳层结构1、原子中电子状态由四个量子数(n 、l 、m l 、 m s )决定用 K , L , M , N , O , P , …. 表示 2、原子的壳层结构主量子数 n 相同的电子属于同一壳层壳层n = 1 , 2 , 3 , 4 , 5 , 6 , …. 同一壳层中( n 相同),l 相同的电子组成同一分壳层 支壳层 用 s , p , d , f , … , 表示l = 0, 1 , 2 , 3 , … , n -13、原子的壳层结构中电子的填充原则1) 泡利不相容原理2) 能量最小原理。

量子力学知识点总结

量子力学知识点总结

从第一激发态转变到基态所放出的能量为:
n=3
E2 E1 13.21013 3.31013[J]
n=2
9.91013[J] 6.2[MeV]
n=1
讨论:实验中观察到的核的两定态之间的能量差一般 就是几MeV,上述估算和此事实大致相符。
3. 设粒子处于由下面波函数描述的状态:
Uc[V]
(2) 由图求得直线的斜率为 0.5
K 3.911015[V s]

1 2
mv
2 m

eUc

eKv

eU0

对比上式与
1 2
mv
2 m

hv

A
0.0
4.0
5.0
6.0
1014Hz
图 Uc和 的关系曲线
有 h eK 6.261034[J s]
~ 1 Eh El c hc
~

1 R( n2

1 m2 )
里德伯常数:
R

mee4
8
2 0
h3c

1.097373

107
m
1
3、 四个量子数:描述原子中电子的量子态。
(1) 主量子数 n 1,2,3,4, ,它大体上决定原子
中电子的能量。
En


me4
(4 0 )2
pn2 2m

22 2ma 2
n2
n= 1,2,3…
(2) 由上式,质子的基态能量为(n=1):
E1

π 22 2m pa2

π2 1.051034 2 21.67 1027 1.01014

量子力学知识点

量子力学知识点

量子力学知识点量子力学是20世纪初发展起来的一种物理学理论,它主要描述微观粒子如原子、电子等的行为。

量子力学的核心概念包括波函数、量子态、不确定性原理、量子纠缠等。

以下是量子力学的一些主要知识点总结:1. 波函数:量子力学中,一个粒子的状态由波函数描述,波函数是一个复数函数,其模的平方给出了粒子在某个位置被发现的概率密度。

2. 薛定谔方程:这是量子力学中描述粒子波函数随时间演化的基本方程。

薛定谔方程是量子力学的核心,它是一个偏微分方程,能够预测粒子的行为。

3. 量子态:量子系统的状态可以由波函数表示,这些状态是离散的,并且遵循一定的量子数规则。

4. 量子叠加原理:量子系统可以同时处于多个可能的状态,这些状态的叠加构成了系统的总状态。

5. 不确定性原理:由海森堡提出,指出无法同时精确测量粒子的位置和动量。

这是量子力学与经典力学的一个根本区别。

6. 量子纠缠:两个或多个粒子可以处于一种特殊的相关状态,即使它们相隔很远,一个粒子的状态改变也会立即影响到另一个粒子的状态。

7. 量子隧道效应:粒子有可能穿过一个经典力学中不可能穿越的势垒,这是量子力学中的一个非直观现象。

8. 波粒二象性:量子力学中的粒子既表现出波动性也表现出粒子性,这种性质由德布罗意提出。

9. 量子力学的诠释:包括哥本哈根诠释、多世界诠释等,不同的诠释试图解释量子力学中观察到的现象。

10. 量子计算:利用量子力学原理进行信息处理的技术,量子计算机能够执行某些特定类型的计算任务,速度远超传统计算机。

11. 量子纠缠与量子通信:量子纠缠是量子通信的基础,可以实现安全的信息传输。

12. 量子退相干:量子系统与环境相互作用,导致量子态的相干性丧失,是量子系统向经典系统过渡的过程。

13. 量子场论:将量子力学与相对论结合起来,描述粒子的产生和湮灭过程。

14. 量子信息:研究量子系统在信息处理中的应用,包括量子密码学、量子通信等。

15. 量子测量:量子力学中的测量问题涉及到波函数的坍缩,即测量过程会导致量子态的不确定性减少。

博士生物理学量子力学知识点归纳总结

博士生物理学量子力学知识点归纳总结

博士生物理学量子力学知识点归纳总结量子力学是现代物理学的重要分支,涉及到微观世界的粒子行为和物质性质的研究。

作为博士生物理学领域的学生,对于量子力学的掌握和理解至关重要。

本文将对博士生物理学中的一些重要的量子力学知识点进行归纳和总结,帮助读者更好地了解和学习量子力学。

一、波粒二象性量子力学最基本的概念之一就是波粒二象性。

根据波粒二象性原理,微观粒子既可以表现出粒子的粒状特性,又可以表现出波的波动特性。

这一概念对于解释诸如光的行为、物质的波动等现象起到了重要作用。

二、量子态与波函数在量子力学中,我们使用量子态和波函数来描述微观粒子的状态。

量子态是描述粒子的状态的数学概念,波函数则是量子态的数学表示。

波函数包含了粒子的位置、动量、自旋等信息。

通过对波函数的测量,我们可以了解粒子在不同态下的性质。

三、不确定性原理不确定性原理是量子力学中的一项重要原理,由海森堡提出。

该原理指出,在量子力学中,无法同时准确测量粒子的位置和动量,测量结果的精度有一个不可克服的限度。

这一原理限制了我们对粒子的准确观测。

四、量子力学算符算符在量子力学中起到了重要的作用,它们用于描述物理量的测量和量子系统的演化。

常见的量子力学算符包括哈密顿算符、动量算符、角动量算符等。

通过对这些算符的研究,我们可以得到量子系统的一些重要性质。

五、薛定谔方程薛定谔方程是量子力学的核心方程之一,描述了量子系统的时间演化。

它是一个包含波函数及其导数的偏微分方程,通过求解薛定谔方程,我们可以得到量子系统的波函数随时间的变化规律。

六、量子力学中的测量在量子力学中,测量是一个重要的概念。

与经典物理学中不同,量子力学中的测量是概率性的,通过测量可以得到一系列可能的结果。

测量结果的概率由波函数的模方给出,这被称为波函数坍缩。

七、量子力学中的叠加态与纠缠态量子力学中的叠加态和纠缠态是一些重要概念。

叠加态指的是量子系统处于多个可能状态的叠加状态,如双缝实验中的干涉现象。

量子力学知识点

量子力学知识点

量子力学知识点量子力学是描述微观世界中物质和能量行为的理论框架,是现代物理学中最重要的分支之一。

早在20世纪初,物理学家们就开始探索微观世界的奥秘,并提出了量子力学的理论基础。

本文将为您介绍一些关于量子力学的基本知识点。

一、光的粒子性和波动性在经典物理学中,光被视为电磁波,具有波动性质。

然而,在实验中发现光也具有粒子性,即光子。

根据光的粒子性和波动性,量子力学引入了波粒二象性的概念。

二、波函数和不确定原理波函数是量子力学中用来描述粒子行为的数学函数。

它包含了粒子的位置、动量、能量等信息。

根据不确定原理,无法同时准确确定粒子的位置和动量,这是量子力学中的基本原理之一。

三、叠加原理和量子纠缠量子力学中的叠加原理指出,处于未观测状态的粒子可以同时存在于多个可能状态之中。

当进行观测时,波函数会坍缩为某一确定状态。

这种现象被称为量子纠缠,即两个或多个粒子之间的状态相互依赖,无论它们之间有多远。

四、量子力学的定态和非定态在量子力学中,定态表示粒子处于稳定状态,其波函数不随时间变化。

非定态则表示粒子的状态会随时间演化。

通过薛定谔方程,我们可以描述粒子在不同状态下的演化过程。

五、测量和观测量子力学中的测量和观测与经典物理学中有所不同。

测量过程会导致波函数坍缩,粒子的状态被确定下来。

而在观测之前,粒子处于叠加态,可能处于多个不同状态。

六、量子力学的应用量子力学的应用涉及到许多领域。

在材料科学中,量子力学可以解释材料的电子结构和导电性质。

在计算机科学中,量子计算机的发展有望在处理复杂问题上实现超高速计算。

此外,量子力学还在量子通信、量子密码等领域有重要应用。

七、量子纠缠和量子隐形传态量子纠缠是量子力学中的一个重要概念,也是量子计算和量子通信的基础。

量子隐形传态则指通过纠缠态将信息传递到另一个位置,实现“隐形传输”。

结语量子力学作为一门复杂而深奥的学科,对我们理解微观世界的本质和开展科学研究具有重要意义。

本文对量子力学的一些基本知识点进行了梳理和介绍,希望能对读者理解量子力学产生帮助,并引发对这一领域更深入的探索与思考。

量子力学知识点总结

量子力学知识点总结

量子力学期末复习完美总结一、 填空题1.玻尔-索末菲的量子化条件为:pdq nh =⎰,(n=1,2,3,....),2.德布罗意关系为:hE h p k γωλ====; 。

3.用来解释光电效应的爱因斯坦公式为:212mV h A υ=-, 4.波函数的统计解释:()2r t ψ,代表t 时刻,粒子在空间r 处单位体积中出现的概率,又称为概率密度。

这是量子力学的基本原理之一。

波函数在某一时刻在空间的强度,即其振幅绝对值的平方与在这一点找到粒子的几率成正比,和粒子联系的波是概率波。

5.波函数的标准条件为:连续性,有限性,单值性 。

6.,为单位矩阵,则算符的本征值为:1± 。

7.力学量算符应满足的两个性质是 实数性和正交完备性 。

8.厄密算符的本征函数具有: 正交性,它们可以组成正交归一性。

即()m n mn d d λλφφτδφφτδλλ**''==-⎰⎰或。

9.设 为归一化的动量表象下的波函数,则 的物理意义为:表示在()r t ψ,所描写的态中测量粒子动量所得结果在p p dp →+范围内的几率。

10.i ;ˆxi L ;0。

11.如两力学量算符有共同本征函数完全系,则_0__。

12.坐标和动量的测不准关系是: ()()2224x x p ∆∆≥。

自由粒子体系,_动量_守恒;中心力场中运动的粒子__角动量__守恒13.量子力学中的守恒量A 是指:ˆA不显含时间而且与ˆH 对易,守恒量在一切状态中的平均值和概率分布都不随时间改变。

14.隧道效应是指:量子力学中粒子在能量E 小于势垒高度时仍能贯穿势垒的现象称为隧道效应。

15. 为氢原子的波函数, 的取值范围分别为:n=1,2,3,… ;l=0,1,…,n -1;m=-l,-l+1,…,0,1,…l 。

16.对氢原子,不考虑电子的自旋,能级的简并为: 2n ,考虑自旋但不考虑自旋与轨道角动量的耦合时,能级的简并度为 22n ,如再考虑自旋与轨道角动量的耦合,能级的简并度为 12+j 。

高等量子力学考试知识点

高等量子力学考试知识点

1、 黑体辐射:任何物体总在吸收投射在它身上的辐射。

物体吸收的辐射能量与投射到物体 上的辐射能之比称为该物体的吸收系数。

如果一个物体能吸收投射到它表面上的 全部辐射,即吸收系数为 1 时,则称这个物体为黑体。

光子可以被物质发射和吸收。

黑体向辐射场发射或吸收能量 hv 的过程就是 发射或吸收光子的过程。

2、 光电效应(条件):当光子照射到金属的表面上时,能量为 hv 的光子被电子吸收。

12临界频率 v 0 满足2 = ℎ −0 = 0⁄ℎ(1)存在临界频率 v 0,当入射光的频率 v<v 0 时,无论光的强度多大,都无光电 子逸出。

只有在 v≥v 0 时,即使光的强度较弱,但只要光照到金属表面上,几乎 在 10-9s 的极短时间内,就能观测到光电子;(2)出射的光电子的能量只与入射光的频率 v 有关,而与入射光的强度无关; (3)入射光的强度只影响光电流的强弱,即只影响在单位时间内由单位面积上 逸出的光电子的数目。

3、由于光子以光速运动,根据狭义相对论的质能关系式有2 = 2 4 + 2 2C 是光速, m 0 是光子的静质量,为零,因此得到光子的能量和动量的关系是=4、康普顿效应的推导( P7):康普顿效应还证实: 在微观的单个碰撞事件中, 能量守恒定律和动量守恒定律仍然成立。

5、薛定谔方程:6、概率流守恒定律概率流密度 7、一维无限深势阱(P31)0 2= − ( ∗ − ∗ )+ ∇ ∙ =ℎ22 +ℎ0 −=2ℎ8、束缚态:粒子只能束缚在空间的有限区域,在无穷远处波函数为零的状态。

一维无限深势阱给出的波函数全部是束缚态波函数。

从(2.4.6)式还可证明,当 n 分别是奇数和偶数时,满足{( −) = ( ) (n 为奇数)( −) = −( ) (n 为偶数)即n是奇数时,波函数是x的偶函数,我们称这时的波函数具有偶宇称;当n是偶数时,波函数是 x 的奇函数,我们称这时的波函数具有奇宇称。

物理学的量子力学知识点总结

物理学的量子力学知识点总结

物理学的量子力学知识点总结量子力学是现代物理学的重要分支,它探讨了微观领域中物质和能量的行为规律。

在本文中,我们将对量子力学的一些基本知识点进行总结。

1. 波粒二象性量子力学的一个核心概念是波粒二象性。

根据波粒二象性,微观粒子既可以表现出波动性质,也可以表现出粒子性质。

例如,光既可以被视为波动的电磁波,也可以被视为由光子组成的粒子流。

2. 不确定性原理不确定性原理是量子力学的另一个重要概念,由海森堡提出。

它表明,在测量某个量(如位置和动量)时,我们无法同时精确地知道这两个量的值。

这意味着,精确测量一个粒子的位置将导致动量的不确定性增大,反之亦然。

3. 波函数和量子态波函数是量子力学中描述微观粒子状态的数学函数。

它包含了关于粒子位置、动量和能量等信息。

根据波函数的模的平方,我们可以计算出粒子在某个位置上的概率分布。

量子态则是描述粒子整体状态的概念,可以用波函数来表示。

4. 叠加原理和干涉叠加原理指出,当存在多个可能的量子态时,系统可以同时处于这些态的叠加态。

这意味着,微观粒子可以同时处于多个位置或状态。

干涉现象是叠加原理的重要应用,它描述了波动性质导致的波的叠加和相消的现象。

5. 测量和观测量子力学中的测量过程是一个重要的概念。

测量会导致系统从叠加态坍缩到一个确定的态,这被称为量子态的坍缩。

观测结果是测量的物理量的一个确定值,它是通过与系统相互作用来得到的。

6. 量子纠缠量子纠缠是一种特殊的量子态,其中两个或多个粒子之间的状态是相互关联的。

当两个纠缠粒子之一发生测量时,另一个粒子的状态会立即坍缩,无论它们之间的距离有多远。

这种纠缠关系被广泛应用于量子通信和量子计算领域。

7. 施特恩-盖拉赫实验施特恩-盖拉赫实验是对量子力学基本原理的重要验证。

该实验通过将束缚电子通过磁场进行分离,观察到了电子的自旋量子态分裂成两个不同方向的束缚束缚态,从而证明了电子具有自旋的概念。

8. 薛定谔方程薛定谔方程是量子力学的基本方程之一,描述了量子态随时间演化的规律。

量子力学知识点小结

量子力学知识点小结

量子力学知识总结认真、努力、坚持、反思、总结…物理111 杨涛量子力学知识点小结一、绪论1.光的粒子性是由黑体辐射、光电效应和康普顿效应(散射)三个实验最终确定的。

2.德布罗意假设是任何物质都具有波粒二象性,其德布罗意关系为E h ν=和h p n κλ==v v h3.波尔的三个基本假设是定态条件假设、n mE E h ν-=频率条件假设、化条件)(索末菲等推广的量子21或量子化条件假设⎰⎰+==h n pdq nh pdq )(4.自由粒子的波函数()i p r Et Aeψ⋅-=v vh5.戴维孙革末的电子在晶体上衍射实验证明了电子具有波动性。

二、波函数及薛定谔方程(一)波函数的统计解释(物理意义)A.波函数(,)r t ψv 的统计解释2(,)r t d t r ψτv v 表示时刻在点位置处单位体积内找2sin d r drd d τθϕθ=到粒子的几率(注:)。

B. 波函数(,,,)x y z t ψ的统计解释2(,,,),,x y z t dxdydz t x y z ψ表示时刻在点()位置处单位体积没找到粒子的几率。

例:已知体系处于波函数(,,)x y z ψ所描写的状态,则在区间[,]x x dx +内找到粒子的概率是2(,,)x y z dydz dx ψ+∞+∞-∞-∞⎡⎤⎢⎥⎣⎦⎰⎰.已知体系处于波函数(,,)r ψθϕ所描写的状态,则在球壳r r dr →+内找到粒子的概率是22200(,,)sin r d d r dr ππψθϕθϕθ⎡⎤⎢⎥⎣⎦⎰⎰,在立体角d Ω内找到粒子的概率是220(,,)r r dr d ψθϕ∞⎡⎤Ω⎢⎥⎣⎦⎰.(注:sin d d d θϕθΩ=) (二)态叠加原理: 如果1ψ和2ψ是体系的可能状态,那么它们的线性叠加1122c c ψψψ=+(12c c 、为复数)也是这个体系可能的状态。

含义:当体系处于1ψ和2ψ的线性叠加态1122c c ψψψ=+(12c c 、为复数)时,体系既处于1ψ态又处于态2ψ,对应的概率为21c 和22c .(三)概率密度(分布)函数2()()x x x ψωψ=若波函数为,则其概率密度函数为()(四)薛定谔方程:22()2i U r t m∂ψ=-∇ψ+ψ∂h vh 22222222222222222()21cos 1 ()sin sin x y zr r r r r θθθθθϕ∂∂∂∇=+∂∂∂⎛⎫∂∂∂∂∂∇=+++ ⎪∂∂∂∂∂⎝⎭拉普拉斯算符直角坐标球坐标问题:1.描写粒子(如电子)运动状态的波函数对粒子(如电子)的描述是统计性的.2. 薛定谔方程是量子力学的一个基本假设,不是通过严格的数学推导而来的(五)连续性方程:()**0( )2J ti J mω∂+∇⋅=∂≡ψ∇ψ-ψ∇ψv v h 注:问题:波函数的标准条件单值、连续、有界。

量子力学知识点总结

量子力学知识点总结

1、光子的能量和动量是:E=ℎ v=ћw、p=ℎvn/c=ℎn/λ=ћk2、量子现象:由以上两个公式可以看出,在宏观现象中,h和其他物理量相比较可以略去,因而辐射的能量可以连续变化,因此凡是h在其中起重要作用的现象都可以称为量子现象。

3、量子化条件:在量子理论中,角动量必须是h的整数倍4、量子化条件的推广:∮pdq=(n+1/2)ℎ, n是0和正整数,称为量子数。

5、德布罗意公式:E=ℎv=ћw、p=ℎ/λn=ћk6、波函数的统计解释:波函数在空间中某一点的强度(振幅绝对值的平方)和在该点找到粒子的概率成比例。

dw(x,y,z,t)= C∣Φ(x,y,z,t)∣²dτ7、态叠加原理:对于一般的情况,如果Ψ1和Ψ2是体系的可能状态,那么它们的线性叠加Ψ=c1Ψ1+c2Ψ2(c1,c2是复数),也是这个体系的一个可能状态,这就是量子力学中的态叠加原理。

态叠加原理还有一个含义:当粒子处于态Ψ1和态Ψ2的线性叠加态Ψ时,粒子时既处在态Ψ1又处在态Ψ2.注意:态叠加原理指的是波函数(概率幅)的线性叠加,而不是概率的叠加8、波函数的标准条件:有限性、连续性、导致可测量的单值性9、什么是定态定态:体系处于Ψ(r,t)=ψ(r)e~-iEt/ћ所描写的状态时,能量具有确定性,这种状态称为定态。

Ψ(r,t)=ψ(r)e~-iEt/ћ称为定态波函数10、定态薛定谔方程:−ћ²/2m▽²ψ+U(r)ψ=Eψ11、本征值方程:ĤΨ=EΨ,E称为算符Ĥ的本征值,Ψ称为算符Ĥ属于本征值E的本征函数12、薛定谔波动方程的一般解可以写为这些定态波函数的线性叠加:13、束缚态:通常把在无限远处为零的波函数所描写的状态称为束缚态14、隧道效应:粒子在能量E小于势垒高度时仍能贯穿势垒的现象15、厄米算符:量子力学中表示力学量的算符都是厄米算符。

算符F̂满足下列等式:∫ψ∗F̂φdx=∫(F̂ψ)∗φdx16、力学量与算符的关系的一个基本假设:量子力学中,表示力学量的算符都是厄米算符,它们的本征函数组成完全系当体系处于波函数ψ(x)所描写的状态时,测量力学F所得的数值,必定是算符F^的本征值之一,测得λn的概率是|Cn∣²17、对易与不对易的关系:如果两个算符F̂和Ĝ,有一组共同本征函数φn而且φn组成完全系,则算符F̂和Ĝ对易。

量子力学复习资料

量子力学复习资料

量⼦⼒学复习资料第⼀章知识点:1. ⿊体:能吸收射到其上的全部辐射的物体,这种物体就称为绝对⿊体,简称⿊体.2. 处于某⼀温度 T 下的腔壁,单位⾯积所发射出的辐射能量和它所吸收的辐射能量相等时,辐射达到热平衡状态。

3. 实验发现:热平衡时,空腔辐射的能量密度,与辐射的波长的分布曲线,其形状和位置只与⿊体的绝对温度 T 有关⽽与⿊体的形状和材料⽆关。

4. 光电效应---光照射到⾦属上,有电⼦从⾦属上逸出的现5. 光电效应特点:1.临界频率ν0 只有当光的频率⼤于某⼀定值ν0时,才有光电⼦发射出来.若光频率⼩于该值时,则不论光强度多⼤,照射时间多长,都没有电⼦产⽣.光的这⼀频率ν0称为临界频率。

2.光电⼦的能量只是与照射光的频率有关,与光强⽆关,光强只决定电⼦数⽬的多少(爱因斯坦对光电效应的解释)3. 当⼊射光的频率⼤于ν0时,不管光有多么的微弱,只要光⼀照上,⽴即观察到光电⼦(10-9s )6. 光的波粒⼆象性:普朗克假定a.原⼦的性能和谐振⼦⼀样,以给定的频率ν振荡;b.⿊体只能以 E = h ν为能量单位不连续的发射和吸收能量,⽽不是象经典理论所要求的那样可以连续的发射和吸收能量.7. 总结光⼦能量、动量关系式如下:把光⼦的波动性和粒⼦性联系了起来8.波长增量 Δλ=λ′–λ随散射⾓增⼤⽽增⼤.这⼀现象称为康普顿效应.散射波的波长λ′总是⽐⼊射波波长长(λ′ >λ)且随散射⾓θ增⼤⽽增⼤。

9.波尔假定:1.原⼦具有能量不连续的定态的概念. 2.量⼦跃迁的概念. 10.德布罗意:假定:与⼀定能量 E 和动量 p 的实物粒⼦相联系的波(他称之为“物质波”)的频率和波长分别为:E = h ν ? ν= E/h ? P = h/λ ? λ= h/p ? 该关系称为de. Broglie 关系.德布罗意波:ψde Broglie 关系:ν= E/h ?ω = 2πν= 2πE/h = E/ λ= h/p ?k = 1/ = 2π /λ = p/n k h k n n h n C h n C E p h E ==========πλπλνων22其中波长。

量子力学主要知识点复习资料

量子力学主要知识点复习资料

大学量子力学主要知识点复习1能量量子化辐射黑体中分子和原子的振动可视为线性谐振子,这些线性谐振子可以发射和吸收辐射能。

这些谐振子只能处于某些分立的状态,在这些状态下,谐振子的能量不能取任意值,只能是某一最小能量ε 的整数倍 对频率为ν 的谐振子, 最小能量ε为: 2.波粒二象性波粒二象性(wave-particle duality )是指某物质同时具备波的特质及粒子的特质。

波粒二象性是量子力学中的一个重要概念。

在经典力学中,研究对象总是被明确区分为两类:波和粒子。

前者的典型例子是光,后者则组成了我们常说的“物质”。

1905年,爱因斯坦提出了光电效应的光量子解释,人们开始意识到光波同时具有波和粒子的双重性质。

1924年,德布罗意提出“物质波”假说,认为和光一样,一切物质都具有波粒二象性。

根据这一假说,电子也会具有干涉和衍射等波动现象,这被后来的电子衍射试验所证实。

德布罗意公式3.波函数及其物理意义在量子力学中,引入一个物理量:波函数 ,来描述粒子所具εεεεεn ,,4,3,2,⋅⋅⋅νh =εh νmc E ==2λh m p ==v有的波粒二象性。

波函数满足薛定格波动方程粒子的波动性可以用波函数来表示,其中,振幅表示波动在空间一点(x ,y,z )上的强弱。

所以,应该表示 粒子出现在点(x,y,z )附件的概率大小的一个量。

从这个意义出发,可将粒子的波函数称为概率波。

自由粒子的波函数波函数的性质:可积性,归一化,单值性,连续性 4. 波函数的归一化及其物理意义常数因子不确定性设C 是一个常数,则 和 对粒子在点(x,y,z )附件出现概率的描述是相同的。

相位不定性如果常数 ,则 和 对粒子在点(x,y,z )附件出现概率的描述是相同的。

表示粒子出现在点(x,y,z )附近的概率。

表示点(x,y,z )处的体积元中找到粒子的概率。

这就是波函数的统计诠释。

自然要求该粒子在空间各点概率之总和为1 必然有以下归一化条件 5. 力学量的平均值既然 表示 粒子出现在点 0),()](2[),(22=-∇+∂∂t r r V mt r t i ψψ)](exp[Et r p i A k -⋅=ψ=ψ2|(,,)|x y z ψ2|(,,)|x y z x y z ψ∆∆∆x y zτ∆=∆∆∆2|(,,)|1x y z dxdydz ψ∞=⎰(,,)x y z ψ(,,)c x y z ψαi e C =(,,)i e x y z αψ(,,)x y z ψ22|()||(,,)|r x y z ψψ=),,(z y x r =23*3|()|()(),x r xd r r x r d r ψψψ+∞+∞-∞-∞==⎰⎰附件的概率,那么粒子坐标的平均值,例如x 的平均值x __,由概率论,有 又如,势能V是 的函数:,其平均值由概率论,可表示为 再如,动量 的平均值为: 为什么不能写成因为x 完全确定时p 完全不确定,x 点处的动量没有意义。

研究生量子力学知识点归纳总结

研究生量子力学知识点归纳总结

研究生量子力学知识点归纳总结量子力学是现代物理学的基石之一,其研究对象为微观世界中的微粒。

作为研究生学子,掌握量子力学的关键知识点对于进一步深入研究和应用具有重要意义。

本文将对研究生量子力学的知识点进行归纳总结,以便学子们能够更好地理解和运用量子力学的基本概念和理论。

一、波粒二象性1. 波动性与粒子性的基本概念波粒二象性是指微观粒子既表现出波动性又表现出粒子性的特点。

波动性体现为粒子的波函数,而粒子性则表现为粒子的位置和动量等可测量的物理量。

2. 德布罗意假设德布罗意假设指出,所有物质粒子,无论是宏观还是微观,都具有波动性。

其核心思想是将物质粒子的动量与波长相联系,可以通过波动性来解释一系列的实验现象。

二、量子力学的数学基础1. 薛定谔方程薛定谔方程是量子力学的核心方程,描述了物质粒子的波函数随时间的变化规律。

薛定谔方程是一个协调波动性与粒子性的方程,体现了波函数在空间中的传播和演化。

2. 波函数与概率解释波函数是描述微观粒子状态的数学函数,含有物质的波动性信息。

通过波函数的模的平方,可以得到微观粒子在空间中出现的概率密度分布。

三、量子力学的基本原理1. 粒子的定态与态矢量量子力学中,粒子的波函数可以表示为多个定态的叠加,每个定态都对应着一个特定的能量。

态矢量是描述粒子状态的数学工具,用于表示粒子处于某一定态下的状态信息。

2. 不确定性原理不确定性原理是量子力学的基本原理之一,指出了测量一个粒子的位置和动量的不确定度之间的关系。

简而言之,通过测量粒子的位置,其动量的确定性将降低,而通过测量动量,其位置的确定性将降低。

四、量子力学的应用1. 简谐振子简谐振子是量子力学中的一个重要模型,可以用于描述原子中的电子、光子的运动状态等。

其基态和激发态能级之间的能量差与频率有关,为量子力学应用提供了基础。

2. 粒子的相互作用量子力学可以描述粒子之间的相互作用,并具备解释分子结构、原子核稳定性等问题的能力。

它通过研究波函数的变化,揭示了微观粒子的交互规律。

量子力学考试知识点

量子力学考试知识点

《量子力学》考试知识点第一章:绪论―经典物理学的困难考核知识点:(一)、经典物理学困难的实例(二)、微观粒子波-粒二象性考核要求:(一)、经典物理困难的实例1.识记:紫外灾难、能量子、光电效应、康普顿效应。

2.领会:微观粒子的波-粒二象性、德布罗意波。

第二章:波函数和薛定谔方程考核知识点:(一)、波函数及波函数的统计解释(二)、含时薛定谔方程(三)、不含时薛定谔方程考核要求:(一)、波函数及波函数的统计解释1.识记:波函数、波函数的自然条件、自由粒子平面波2.领会:微观粒子状态的描述、Born几率解释、几率波、态叠加原理(二)、含时薛定谔方程1.领会:薛定谔方程的建立、几率流密度,粒子数守恒定理2.简明应用:量子力学的初值问题(三)、不含时薛定谔方程1. 领会:定态、定态性质2.简明应用:定态薛定谔方程3.fdfgfdgdfg第三章:一维定态问题一、考核知识点:(一)、一维定态的一般性质(二)、实例二、考核要求:1.领会:一维定态问题的一般性质、束缚态、波函数的连续性条件、反射系数、透射系数、完全透射、势垒贯穿、共振2.简明应用:定态薛定谔方程的求解、无限深方势阱、线性谐振子第四章量子力学中的力学量一、考核知识点:(一)、表示力学量算符的性质(二)、厄密算符的本征值和本征函数(三)、连续谱本征函数“归一化”(四)、算符的共同本征函数(五)、力学量的平均值随时间的变化二、考核要求:(一)、表示力学量算符的性质1.识记:算符、力学量算符、对易关系2.领会:算符的运算规则、算符的厄密共厄、厄密算符、厄密算符的性质、基本力学量算符的对易关系(二)、厄密算符的本征值和本征函数1.识记:本征方程、本征值、本征函数、正交归一完备性2.领会:厄密算符的本征值和本征函数性质、坐标算符和动量算符的本征值问题、力学量可取值及测量几率、几率振幅。

(三)、连续谱本征函数“归一化”1.领会:连续谱的归一化、箱归一化、本征函数的封闭性关系(四)、力学量的平均值随时间的变化1.识记:好量子数、能量-时间测不准关系2.简明应用:力学量平均值随时间变化第五章态和力学量的表象一、考核知识点:(一)、表象变换,幺正变换(二)、平均值,本征方程和Schrodinger equation的矩阵形式(三)、量子态的不同描述二、考核要求:(一)、表象变换,幺正变换1.领会:幺正变换及其性质2.简明应用:表象变换(二)、平均值,本征方程和Schrodinger equation的矩阵形式1.简明应用:平均值、本征方程和Schrodinger equation的矩阵形式2.综合应用:利用算符矩阵表示求本征值和本征函数(三)、量子态的不同描述第六章:微扰理论一、考核知识点:(一)、定态微扰论(二)、变分法(三)、量子跃迁二、考核要求:(一)、定态微扰论1.识记:微扰2.领会:微扰论的思想3.简明应用:简并态能级的一级,二级修正及零级近似波函数4.综合应用:非简并定态能级的一级,二级修正、波函数的一级修正。

生僻知识点总结

生僻知识点总结

生僻知识点总结量子力学是20世纪最重要的科学理论之一,在物理学、化学、材料科学和信息技术等领域取得了巨大的成就。

本文将对量子力学的基本概念、发展历程以及应用进行系统的总结。

一、量子力学的基本概念1. 波粒二象性20世纪早期,科学家们发现了微粒在一些实验中表现出波动性质,而在另一些实验中表现出粒子性质。

经典力学无法解释这种现象,因此量子力学提出了波粒二象性概念,即微粒既可以表现为粒子,也可以表现为波动。

2. 不确定性原理根据量子力学的不确定性原理,无法准确测定微观粒子的位置和动量。

即使在完美的实验条件下,我们也无法同时准确测定一个粒子的位置和动量,这是量子世界的固有特性。

3. 波函数在量子力学中,波函数是描述微观粒子状态的数学工具。

波函数的平方代表了粒子出现在某一位置的概率,而波函数本身则包含了粒子的全部信息。

波函数的演化遵循薛定谔方程,描述了粒子在外势场中的运动规律。

4. 波粒对应量子力学中,波动方程和粒子方程之间存在着对应关系,即波动方程描述了粒子的波动性质,而粒子方程描述了粒子的运动规律。

薛定谔方程就是典型的波动方程,描述了微观粒子的波动性质;而德布罗意方程则是粒子方程,描述了波粒二象性中粒子的动力学特性。

二、量子力学的发展历程1. 量子力学的萌芽量子力学的开始可以追溯到19世纪末的黑体辐射问题。

玻尔基于普朗克的量子假设对黑体辐射的能量分布进行了解释,提出了能级分立的概念,为量子力学的诞生奠定了基础。

2. 波恩和海森堡的矩阵力学1925年,波恩和海森堡分别提出了矩阵力学和矩阵力学的基本原理。

他们认为运动的粒子是不能同时具有确定的位置和动量的,而是以一种非常规的方式运动。

这两种力学的理论形式不同,但给出的结果是等价的,进一步推动了量子力学的发展。

3. 薛定谔的波动力学1926年,薛定谔提出了波动力学,这被认为是现代量子力学的基石。

他通过薛定谔方程描述了微观粒子的波动性质,成功解释了原子的能级结构和光谱现象,为量子力学的发展奠定了坚实的理论基础。

量子力学知识点总结

量子力学知识点总结

量子力学知识点总结量子力学是20世纪初建立的一种物理学理论,它描述了微观世界中粒子的行为,对于理解原子和分子的结构和性质至关重要。

量子力学的提出不仅改变了我们对自然规律的认识,更为科技的发展和应用带来了深远的影响。

本文将对量子力学的基本概念、发展历程、重要实验和应用进行总结。

1. 基本概念量子力学的建立是对经典物理学的一次革命性挑战。

在经典物理学中,粒子被认为是具有确定位置和动量的点状物质,在运动过程中遵循牛顿的经典力学定律。

然而,20世纪初的实验结果却显示了微观世界中粒子的行为与经典物理学的预期有所不同。

最典型的例子是黑体辐射实验和光电效应实验,它们无法用经典物理学的理论解释。

为了解决这些实验结果的困扰,物理学家们提出了一系列新的概念和理论。

其中最重要的是惠尔的波粒二象性。

根据波粒二象性,微观粒子既可以表现为粒子,又可以表现为波,具有双重性质。

这一概念的提出为理解微观世界的行为提供了新的思路。

另一个重要概念是量子化。

根据量子化理论,微观粒子的能量和动量是量子化的,即只能取一系列特定的值,而不能连续取值。

这一概念的提出进一步解释了一些实验结果,如光谱线的离散性。

2. 发展历程量子力学的发展历程可以分为几个阶段。

最早的是波动力学的提出,它是基于波动方程来描述微观粒子的行为。

波动力学最早应用于原子结构的研究,成功地解释了氢原子的光谱线。

另一个重要的发展是矩阵力学的建立,矩阵力学是基于算符代数而不是波函数的形式,它提供了一种不同的描述微观粒子行为的视角。

最终,波动力学和矩阵力学被统一为量子力学,由狄拉克和薛定谔等人提出了薛定谔方程,成为现代量子力学的基础。

3. 重要实验量子力学的建立离不开一系列重要的实验。

其中最具代表性的实验之一是双缝实验。

在双缝实验中,粒子通过两个狭缝后在屏幕上形成干涉条纹,类似于光的干涉现象。

这一实验结果表明微观粒子也具有波动性质,支持了波粒二象性的假设。

其次是光电效应实验,它表明光子的能量具有量子化的特性,与经典物理学的预期不同。

量子力学知识点归纳

量子力学知识点归纳

量子力学知识点归纳
粒子性质
- 波粒二象性:微观粒子既具有波动性质又具有粒子性质。

- 粒子的量子态:用波函数描述粒子的状态。

- 粒子的叠加态:在量子力学中,粒子可以同时处于多个不同状态的叠加态。

波函数与测量
- 波函数的基本性质:波函数必须满足归一化和连续性条件。

- 算符与期望值:量子力学中的物理量用算符表示,其期望值对应其在该态下的平均值。

- 不确定性原理:海森堡不确定性原理表明,无法同时准确知道粒子的位置和动量。

Schrödinger 方程
- 定态和非定态:物理系统可以处于定态或非定态,定态由定
态方程描述,非定态由非定态方程描述。

- 离散能级和连续能谱:不同物理系统的能级结构可以是离散
的也可以是连续的。

- 波函数的时间演化:波函数随时间的演化由薛定谔方程描述。

量子力学中的操作
- 叠加和干涉:量子力学中的粒子可以叠加在一起,并在经典
中无法解释的方式上产生干涉效应。

- 量子纠缠:两个或多个粒子之间的纠缠状态是量子力学的独
特现象,纠缠态可以表现出非常特殊的相关性。

- 测量与波函数坍缩:测量一个物理量会导致波函数坍缩到一
个确定的状态,而非叠加态。

以上是量子力学知识点的一个完整归纳,展示了该领域的基本
概念和特性。

深入研究这些知识点可以更好地理解和应用量子力学。

总结量子力学知识点

总结量子力学知识点

总结量子力学知识点量子力学的基本概念量子力学的基本概念包括量子化、波粒二象性、不确定性原理等。

量子化是指在量子力学中,能量不是连续的,而是呈现为离散的能级。

在经典力学中,能量是连续的,可以取任意值,而在量子力学中,能量是量子化的,只能取特定的离散值。

这一现象对于原子、分子等微观粒子的行为有着重要影响,如玻尔模型中的电子能级。

波粒二象性是指微观粒子既具有粒子性质又具有波动性质。

根据德布罗意假设,所有物质都具有波动性质,且波长和动量之间存在着一种关系。

实验表明,电子、中子等微观粒子都可以表现出干涉、衍射等波动现象,这证实了它们具有波动性质。

而在实验中,这些微观粒子又具有粒子性质,如能够具有确定的位置和动量。

不确定性原理是由海森堡在1927年提出的,它指出对于某一微观粒子,无论是位置还是动量,都无法同时确定其精确数值,只能得到它们的概率分布。

这一原理揭示了微观世界的一种本质特征,也为量子力学的发展打下了基础。

量子力学的发展历程量子力学的发展历程可以分为早期量子力学、矩阵力学和波动力学、量子力学的标准理论等阶段。

早期量子力学是在20世纪初由普朗克、爱因斯坦、玻尔等人提出的,他们试图解决原子光谱、黑体辐射等实验事实所暴露出的问题。

其中,普朗克提出了能量量子化的假设,爱因斯坦用光的波粒二象性解释了光电效应,而玻尔运用量子条件解释了氢原子光谱。

这些理论为量子力学的建立提供了坚实的基础。

矩阵力学和波动力学是量子力学的两大分支,分别由海森堡和薛定谔于1925-1926年提出。

在矩阵力学中,物理量用矩阵来描述,而波动力学则是用波函数描述各种物理量。

这两者虽然表述方式不同,但实质上是等价的。

这一阶段的成果进一步完善了量子力学的理论框架。

量子力学的标准理论是在1926-1927年由海森堡、薛定谔等人提出的,这一时期形成了量子力学的标准形式。

其中,海森堡提出了量子力学的基本原理,即不确定性原理,而薛定谔提出了薛定谔方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

量子力学期末复习完美总结一、 填空题1.玻尔-索末菲的量子化条件为:pdq nh =⎰,(n=1,2,3,....),2.德布罗意关系为:hE h p k γωλ====; 。

3.用来解释光电效应的爱因斯坦公式为:212mV h A υ=-, 4.波函数的统计解释:()2r t ψ,代表t 时刻,粒子在空间r 处单位体积中出现的概率,又称为概率密度。

这是量子力学的基本原理之一。

波函数在某一时刻在空间的强度,即其振幅绝对值的平方与在这一点找到粒子的几率成正比,和粒子联系的波是概率波。

5.波函数的标准条件为:连续性,有限性,单值性 。

6.,为单位矩阵,则算符的本征值为:1± 。

7.力学量算符应满足的两个性质是 实数性和正交完备性 。

8.厄密算符的本征函数具有: 正交性,它们可以组成正交归一性。

即()m n mn d d λλφφτδφφτδλλ**''==-⎰⎰或。

9.设 为归一化的动量表象下的波函数,则 的物理意义为:表示在()r t ψ,所描写的态中测量粒子动量所得结果在p p dp →+范围内的几率。

10.i ;ˆxi L ;0。

11.如两力学量算符有共同本征函数完全系,则_0__。

12.坐标和动量的测不准关系是: ()()2224x x p ∆∆≥。

自由粒子体系,_动量_守恒;中心力场中运动的粒子__角动量__守恒13.量子力学中的守恒量A 是指:ˆA不显含时间而且与ˆH 对易,守恒量在一切状态中的平均值和概率分布都不随时间改变。

14.隧道效应是指:量子力学中粒子在能量E 小于势垒高度时仍能贯穿势垒的现象称为隧道效应。

15. 为氢原子的波函数, 的取值范围分别为:n=1,2,3,… ;l=0,1,…,n -1;m=-l,-l+1,…,0,1,…l 。

16.对氢原子,不考虑电子的自旋,能级的简并为: 2n ,考虑自旋但不考虑自旋与轨道角动量的耦合时,能级的简并度为 22n ,如再考虑自旋与轨道角动量的耦合,能级的简并度为 12+j 。

17.设体系的状态波函数为 ,如在该状态下测量力学量有确定的值,则力学量算符与态矢量的关系为:ˆFψλψ=。

18.力学量算符 在态 下的平均值可写为的条件为:力学量算符的本征值组成分立谱,并且()r ψ是归一化波函数。

19.希尔伯特空间:量子力学中Q 的本质函数有无限多个,所以态矢量所在的空间是无限维的函数空间。

20.设粒子处于态,为归一化波函数, 为球谐函数,则系数c 的取值为:16, 的可能值为:13,本征值为 出现的几率为:12。

21.原子跃迁的选择定则为:101l m ∆=±∆=±;, 。

22.自旋角动量与自旋磁矩的关系为:S e M S μ=-;式中S M 是自旋磁矩,S 是自旋角动量,e -是电子的电荷,μ是电子的质量。

23.为泡利算符,则=2ˆσ30 ,ˆ2z i σ。

24. 为自旋算符,则234,0 ,ˆzi S 。

25.乌伦贝克和哥德斯密脱关于自旋的两个基本假设是:(1)每个电子具有自旋角动量ˆS,它在空间任何方向上的投影只能是两个数值:12z s =±;(2)每个电子具有自旋磁矩S M ,它和它的自旋角动量S 的关系式是:S eM S μ=-,式中e -是电子的电荷,μ是电子的质量。

S M 在空间任意方向上的投影只能取两个数值:2z S B eM M μ=±=±。

26.轨道磁矩与轨道角动量的关系是:2L eM L μ=-。

27.证明电子具有自旋的实验有:斯特恩-革拉赫实验。

28.费米子所组成的全同粒子体系的波函数具有_反对称性__,玻色子所组成的全同粒子体系的波函数具有____对称性_____。

29. 考虑自旋后,波函数在自旋空间表示为(已归一化),则在态 下,自旋算符对自旋的平均可表示为:()111211221222ˆG G G G G G ψψψψψψ+**⎛⎫⎛⎫== ⎪⎪⎝⎭⎝⎭,,,;对坐标和自旋同时求平均的结果可表示为:ˆG G d ψψτ+=⎰。

30. 考虑自旋后,波函数在自旋空间表示为(已归一化),则 的意义为:表示在t 时刻,在(x,y,z )点周围单位体积内找到自旋12z s =的电子的几率。

_1__。

31.量子力学中的态是希尔伯特空间的__矢量__;算符是希尔伯特空间的__算符__。

力学量算符在自身表象中的矩阵是 对角的32、2),,,(t z y x ψ的物理意义: 发现粒子的几率密度与之成正比 。

33、dr r r 22),,(⎰ϕθψ表示 在r —r+dr 单位立体角的球壳内发现粒子的几率 。

34、在量子力学中,微观体系的状态被一个 波函数 完全描述;力学量用 厄密算符 表示。

二、 问答题1. 你认为Bohr 的量子理论有哪些成功之处?有哪些不成功的地方?试举一例说明。

(简述波尔的原子理论,为什么说玻尔的原子理论是半经典半量子的?)答:Bohr 理论中核心的思想有两条:一是原子具有能量不连续的定态的概念;二是两个定态之间的量子跃迁的概念及频率条件。

首先,Bohr 的量子理论虽然能成功的说明氢原子光谱的规律性,但对于复杂原子光谱,甚至对于氦原子光谱,Bohr 理论就遇到了极大的困难(这里有些困难是人们尚未认识到电子的自旋问题),对于光谱学中的谱线的相对强度这个问题,在Bohr 理论中虽然借助于对应原理得到了一些有价值的结果,但不能提供系统解决它的办法;其次,Bohr 理论只能处理简单的周期运动,而不能处理非束缚态问题,例如:散射;再其次,从理论体系上来看,Bohr 理论提出的原子能量不连续概念和角动量量子化条件等,与经典力学不相容的,多少带有人为的性质,并未从根本上解决不连续性的本质。

2. 什么是光电效应?光电效应有什么规律?爱因斯坦是如何解释光电效应的?答:当一定频率的光照射到金属上时,有大量电子从金属表面逸出的现象称为光电效应;光电效应的规律:a.对于一定的金属材料做成的电极,有一个确定的临界频率0υ,当照射光频率0υυ<时,无论光的强度有多大,不会观测到光电子从电极上逸出;b.每个光电子的能量只与照射光的频率有关,而与光强无关;c.当入射光频率0υυ>时,不管光多微弱,只要光一照,几乎立刻910s-≈观测到光电子。

爱因斯坦认为:(1)电磁波能量被集中在光子身上,而不是象波那样散布在空间中,所以电子可以集中地、一次性地吸收光子能量,所以对应弛豫时间应很短,是瞬间完成的。

(2)所有同频率光子具有相同能量,光强则对应于光子的数目,光强越大,光子数目越多,所以遏止电压与光强无关,饱和电流与光强成正比。

(3)光子能量与其频率成正比,频率越高,对应光子能量越大,所以光电效应也容易发生,光子能量小于逸出功时,则无法激发光电子。

3.简述量子力学中的态叠加原理,它反映了什么? 答:对于一般情况,如果1ψ和2ψ是体系的可能状态,那么它们的线性叠加:1122c c ψψψ=+(12c c ,是复数)也是这个体系的一个可能状态。

这就是量子力学中的态叠加原理。

态叠加原理的含义表示当粒子处于态1ψ和2ψ的线性叠加态ψ时,粒子是既处于态1ψ,又处于态2ψ。

它反映了微观粒子的波粒二象性矛盾的统一。

量子力学中这种态的叠加导致在叠加态下观测结果的不确定性。

4. 什么是定态?定态有什么性质?答:体系处于某个波函数()()[]exp r t r iEtψψ=-,所描写的状态时,能量具有确定值。

这种状态称为定态。

定态的性质:(1)粒子在空间中的概率密度及概率流密度不随时间变化;(2)任何力学量(不显含时间)的平均值不随时间变化;(3)任何力学量(不显含时间)取各种可能测量值的概率分布也不随时间变化。

6.经典波和量子力学中的几率波有什么本质区别? 答:1)经典波描述某物理量在空间分布的周期性变化,而几率波描述微观粒子某力学量的几率分布;(2)经典波的波幅增大一倍,相应波动能量为原来的四倍,变成另一状态,而微观粒子在空间出现的几率只决定于波函数在空间各点的相对强度,几率波的波幅增大一倍不影响粒子在空间出现的几率,即将波函数乘上一个常数,所描述的粒子状态并不改变;7. 能量的本征态的叠加一定还是能量本征态。

答:不一定,如果1ψ,2ψ对应的能量本征值相等,则2211ψψψc c +=还是能量的本征态,否则,如果1ψ,2ψ对应的能量本征值不相等,则2211ψψψc c +=不是能量的本征态8.什么是表象?不同表象之间的变换是一种什么变换?在不同表象中不变的量有哪些?答:量子力学中态和力学量的具体表示方式称为表象。

不同表象之间的变换是一种幺正变换。

在不同表象中不变的量有:算符的本征值,矩阵的迹即矩阵对角元素的和。

9. 简述量子力学的五个基本假设。

答:(1)微观体系的状态被一个波函数完全描述,从这个波函数可以得出体系的所有性质。

波函数一般应满足连续性、有限性和单值性三个条件;(2)力学量用厄密算符表示。

如果在经典力学中有相应的力学量,则在量子力学中表示这个力学量的算符,由经典表示中的将动量p 换为算符i -∇得出。

表示力学量的算符具有组成完全系的本征函数。

(3)将体系的状态波函数ψ用算符ˆF 的本征函数展开ˆˆm m m F F λλϕλϕϕλϕ==(,):m m mc cd λλψϕϕλ=+∑⎰,则在ψ态中测量力学量F得到结果为m λ的几率为2m c ,得到结果在d λλλ+范围内的几率是2c d λλ;(4)体系的状态波函数满足薛定谔方程:ˆiHtψψ∂=∂,ˆH 是体系的哈密顿算符。

(5)在全同粒子组成的体系中,两全同粒子相互调换不改变体系的状态(全同性原理)。

10.波函数归一化的含义是什么?归一化随时间变化吗?答:粒子既不产生也不湮灭。

根据波函数的统计解释,在任何时刻,粒子一定在空间出现,所以在整个空间中发现粒子是必然事件,概率论中认为必然事件的概率等于1。

因而粒子在整个空间中出现的概率即2ψ对整个空间的积分应该等于1.即()2,,,1x y z t d ψτ=⎰式中积分表示对整个空间积分。

这个条件我们称为归一化条件。

满足归一化条件的波函数称为归一化波函数。

波函数一旦归一化,归一化常数将不随时间变化。

11.量子化是不是量子力学特有的效应?经典物理中是否有量子化现象?答: 所谓量子化,就是指某个力学量可取数值具有离散谱。

一般来说,这不是量子力学的特有效应。

经典物理中,例如声音中的泛音,无线电中的谐波都是频率具有离散谱。

经典波在束缚态形成驻波时,频率也是量子化的,但经典波的频率量子化并不对应能量量子化。

有时量子化用了专指能量量子化,在这种意义上它就是量子力学特有的效应。

12.什么是算符的本征值和本征函数?它们有什么物理意义?答:含有算符ˆF 的方程ˆm m m F F ϕϕ=称为ˆF 的本质方程,m F 为ˆF 的一个本质值。

相关文档
最新文档