空间几何体试题

合集下载

空间几何体的综合计算测试题

空间几何体的综合计算测试题

空间几何体的综合计算测试题1. 综合计算题求以下空间几何体的表面积和体积:1.1 直方体已知直方体的长、宽、高分别为10 cm、6 cm、8 cm,求其表面积和体积。

解答:该直方体的表面积可通过公式2*(长×宽 + 长×高 + 宽×高)计算,代入数值计算得:表面积 = 2*(10 × 6 + 10 × 8 + 6 × 8) = 2*(60 + 80 + 48) = 376 cm²。

该直方体的体积可通过公式长×宽×高计算,代入数值计算得:体积 = 10 × 6 × 8 = 480 cm³。

1.2 正方体已知正方体的边长为5 cm,求其表面积和体积。

解答:该正方体的表面积可通过公式6×边长²计算,代入数值计算得:表面积 = 6×5² = 6×25 = 150 cm²。

该正方体的体积可通过公式边长³计算,代入数值计算得:体积 = 5³ = 125 cm³。

1.3 圆柱体已知圆柱体的底面半径为4 cm,高为10 cm,求其表面积和体积(π取3.14)。

解答:该圆柱体的表面积可分为两部分计算:侧面积和底面积。

侧面积可通过公式2×π×半径×高计算,代入数值计算得:侧面积 = 2×3.14×4×10 = 251.2 cm²。

底面积为圆的面积,可通过公式π×半径²计算,代入数值计算得:底面积 = 3.14×4² = 50.24 cm²。

因此,该圆柱体的表面积为251.2 + 50.24 = 301.44 cm²。

该圆柱体的体积可通过公式π×半径²×高计算,代入数值计算得:体积 = 3.14×4²×10 = 502.4 cm³。

高三数学空间几何体试题答案及解析

高三数学空间几何体试题答案及解析

高三数学空间几何体试题答案及解析1.(3分)(2011•重庆)高为的四棱锥S﹣ABCD的底面是边长为1的正方形,点S,A,B,C,D均在半径为1的同一球面上,则底面ABCD的中心与顶点S之间的距离为()A.B.C.1D.【答案】C【解析】由题意可知ABCD所在的圆是小圆,对角线长为,四棱锥的高为,而球心到小圆圆心的距离为,则推出顶点S在球心距的垂直分的平面上,而顶点S到球心的距离为1,即可求出底面ABCD的中心与顶点S之间的距离.解:由题意可知ABCD所在的圆是小圆,对角线长为,四棱锥的高为,点S,A,B,C,D均在半径为1的同一球面上,球心到小圆圆心的距离为,顶点S在球心距的垂直分的平面上,而顶点S到球心O的距离为1,所以底面ABCD的中心O'与顶点S之间的距离为1故选C点评:本题是基础题,考查球的内接多面体的知识,考查逻辑推理能力,计算能力,转化与划归的思想.2.(2013•天津)已知下列三个命题:①若一个球的半径缩小到原来的,则其体积缩小到原来的;②若两组数据的平均数相等,则它们的标准差也相等;③直线x+y+1=0与圆相切.其中真命题的序号是()A.①②③B.①②C.①③D.②③【答案】C【解析】①由球的体积公式V=可知,若一个球的半径缩小到原来的,则其体积缩小到原来的;故①正确;②若两组数据的平均数相等,则它们的标准差不一定相等,如2,2,2和1,2,3;这两组数据的平均数相等,它们的标准差不相等,故②错;③圆的圆心到直线x+y+1=0的距离d==半径r,故直线x+y+1=0与圆相切,③正确.故选C.3.如果,正方体的底面与正四面体的底面在同一平面α上,且AB//CD,正方体的六个面所在的平面与直线CE,EF相交的平面个数分别记为m,n,那么m+n=()A .8B .9C .10D .11【答案】A【解析】因为过EF 做垂直于CD (AB )的平面垂直平分CD ,所以该平面与过AB 中点并与AB 垂直的平面平行,平面和正方体的4个侧面相交,由于EF 和正方体的侧棱不平行,所以它与正方体的六个面所在的平面相交的平面个数为4.同理与CE 相交的平面有4个,共8个,选A.【考点】该题主要考查空间点、线、面的位置关系,考查空间直线与平面的平行与相交,考查空间想象能力和逻辑思维能力.4. 如图,已知四棱锥,底面是等腰梯形,且∥,是中点,平面,,是中点.(1)证明:平面平面;(2)求点到平面的距离.【答案】(1)详见解析;(2)【解析】(1)根据中位线可得∥,从而可证得∥平面。

高中空间立体几何经典例题精选全文完整版

高中空间立体几何经典例题精选全文完整版

可编辑修改精选全文完整版立体几何一、选择题1.(20XX 年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))设,m n 是两条不同的直线,,αβ是两个不同的平面,下列命题中正确的是 ( )A .若αβ⊥,m α⊂,n β⊂,则m n ⊥B .若//αβ,m α⊂,n β⊂,则//m nC .若m n ⊥,m α⊂,n β⊂,则αβ⊥D .若m α⊥,//m n ,//n β,则αβ⊥【答案】D2 2.(20XX 年上海市春季高考数学试卷(含答案))若两个球的表面积之比为1:4,则这两个球的体积之比为( )A .1:2B .1:4C .1:8D .1:16【答案】C 【答案】A3 3.(20XX 年高考新课标1(理))某几何体的三视图如图所示,则该几何体的体积为( )A .168π+B .88π+C .1616π+D .816π+【答案】A4 4.(20XX 年高考湖南卷(理))已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能...等于 ( )A .1B .2C .2-12D .2+12【答案】C5.(20XX 年普通高等学校招生统一考试山东数学(理)试题(含答案))已知三棱柱111ABC A B C -的侧棱与底面垂直,体积为94,底面是边长为3.若P 为底面111A B C 的中心,则PA 与平面ABC 所成角的大小为( )A.512πB .3πC.4πD.6π【答案】B6.(20XX年普通高等学校招生统一考试重庆数学(理)试题(含答案))某几何体的三视图如题()5图所示,则该几何体的体积为()A.5603B.5803C.200D.240【答案】C7.(20XX年高考江西卷(理))如图,正方体的底面与正四面体的底面在同一平面α上,且AB CD,正方体的六个面所在的平面与直线CE,EF相交的平面个数分别记为,m n,那么m n+=()A.8 B.9 C.10 D.11【答案】A二、填空题8.(20XX年高考北京卷(理))如图,在棱长为2的正方体ABCD-A1B1C1D1中,E为BC的中点,点P在线段D1E上,点P到直线CC1的距离的最小值为__________.1D1BPD1CCEBA1A【答案】2559.(20XX 年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))如图,在三棱柱ABC C B A -111中,F E D ,,分别是1AA AC AB ,,的中点,设三棱锥ADE F -的体积为1V ,三棱柱ABC C B A -111的体积为2V ,则=21:V V ____________.【答案】1:2410.(20XX 年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))某几何体的三视图如图所示,则该几何体的体积是____________.【答案】1616π-11.(20XX 年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))已知某一多面体内接于球构成一个简单组合体,如果该组合体的正视图.测试图.俯视图均如图所示,且图中的四边形是边长为2的正方形,则该球的表面积是_______________【答案】12π12.(20XX 年上海市春季高考数学试卷(含答案))在如图所示的正方体1111ABCD A B C D -中,异面直线1A B 与1B C 所成角的大小为_______AB C1A D EF1B 1C【答案】3π三、解答题13.(20XX 年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))如图,AB是圆的直径,PA 垂直圆所在的平面,C 是圆上的点. (I)求证:PAC PBC ⊥平面平面;(II)2.AB AC PA C PB A ===--若,1,1,求证:二面角的余弦值D 1 C 1 B 1A 1D C AB14.(20XX 年上海市春季高考数学试卷(含答案))如图,在正三棱锥111ABC A B C -中,16AA =,异面直线1BC 与1AA 所成角的大小为6π,求该三棱柱的体积.【答案】[解]因为1CC 1AA .所以1BC C ∠为异面直线1BC 与1AA .所成的角,即1BC C ∠=6π. 在Rt 1BC C ∆中,113tan 6233BC CC BC C =⋅∠==从而2333ABC S BC ∆==因此该三棱柱的体积为1336183ABC V S AA ∆=⋅==15.(20XX 年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))B 1 A 1C 1ACB如图,在三棱锥ABC S -中,平面⊥SAB 平面SBC ,BC AB ⊥,AB AS =,过A 作SB AF ⊥,垂足为F ,点G E ,分别是棱SC SA ,的中点.求证:(1)平面//EFG 平面ABC ; (2)SA BC ⊥.【答案】证明:(1)∵AB AS =,SB AF ⊥∴F 分别是SB 的中点 ∵E.F 分别是SA.SB 的中点 ∴EF ∥AB又∵EF ⊄平面ABC, AB ⊆平面ABC ∴EF ∥平面ABC 同理:FG ∥平面ABC又∵EF FG=F, EF.FG ⊆平面ABC ∴平面//EFG 平面ABC (2)∵平面⊥SAB 平面SBC 平面SAB 平面SBC =BC AF ⊆平面SAB AF ⊥SB∴AF ⊥平面SBC 又∵BC ⊆平面SBC ∴AF ⊥BC又∵BC AB ⊥, AB AF=A, AB.AF ⊆平面SAB ∴BC ⊥平面SAB 又∵SA ⊆平面SAB ∴BC ⊥SA16.(20XX 年高考上海卷(理))如图,在长方体ABCD-A 1B 1C 1D 1中,AB=2,AD=1,A 1A=1,证明直线BC 1平行于平面DA 1C,并求直线BC 1到平面D 1AC 的距离.C 11A【答案】因为ABCD-A 1B 1C 1D 1为长方体,故1111//,AB C D AB C D =,故ABC 1D 1为平行四边形,故11//BC AD ,显然B 不在平面D 1AC 上,于是直线BC 1平行于平面DA 1C; 直线BC 1到平面D 1AC 的距离即为点B 到平面D 1AC 的距离设为h考虑三棱锥ABCD 1的体积,以ABC 为底面,可得111(12)1323V =⨯⨯⨯⨯=而1AD C ∆中,11AC DC AD ==故132AD C S ∆= AB CSGFE所以,13123233V h h =⨯⨯=⇒=,即直线BC 1到平面D 1AC 的距离为23.17.(20XX 年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))如图1,在等腰直角三角形ABC中,90A ∠=︒,6BC =,,D E 分别是,AC AB 上的点,CD BE =O 为BC 的中点.将ADE ∆沿DE 折起,得到如图2所示的四棱锥A BCDE '-,其中A O '(Ⅰ) 证明:A O '⊥平面BCDE ; (Ⅱ) 求二面角A CD B '--的平面角的余弦值.【答案】(Ⅰ) 在图1中,易得3,OC AC AD ===连结,OD OE,在OCD ∆中,由余弦定理可得OD=由翻折不变性可知A D '=,所以222A O OD A D ''+=,所以A O OD '⊥,理可证A O OE '⊥, 又OD OE O =,所以A O '⊥平面BCDE . (Ⅱ) 传统法:过O 作OH CD ⊥交CD 的延长线于H ,连结A H ', 因为A O '⊥平面BCDE ,所以A H CD '⊥, 所以A HO '∠为二面角A CD B '--的平面角. 结合图1可知,H 为AC 中点,故2OH =,从而2A H '== 所以cos OH A HO A H '∠=='所以二面角ACD B '--向量法:以O 点为原点,建立空间直角坐标系O -.CO BDEA CDOBE'A图1图2C DO BE'AH则(A ',()0,3,0C -,()1,2,0D -所以(CA '=,(1,DA '=- 设(),,n x y z =为平面A CD '的法向量,则00n CA n DA ⎧'⋅=⎪⎨'⋅=⎪⎩,即3020y x y ⎧+=⎪⎨-++=⎪⎩,解得y x z =-⎧⎪⎨=⎪⎩,令1x =,得(1,1,n =- 由(Ⅰ)知,(OA '=为平面CDB 的一个法向量,所以3cos ,3n OA n OA n OA'⋅'===',即二面角A CD B '--的平面角的余弦值为5.18.(20XX年普通高等学校招生统一考试天津数学(理)试题(含答案))如图, 四棱柱ABCD-A1B1C1D1中, 侧棱A1A⊥底面ABCD, AB//DC, AB⊥AD, AD = CD = 1, AA1 = AB = 2, E为棱AA1的中点.(Ⅰ) 证明B1C1⊥CE;(Ⅱ) 求二面角B1-CE-C1的正弦值.(Ⅲ) 设点M在线段C1E上, 且直线AM与平面ADD1A1所成角的正弦值为2, 求线段AM的长.6【答案】19.(20XX年高考陕西卷(理))如图, 四棱柱ABCD-A1B1C1D1的底面ABCD是正方形, O为底面中心, A1O⊥平面ABCD,12AB AA==(Ⅰ) 证明: A1C⊥平面BB1D1D;(Ⅱ) 求平面OCB1与平面BB1D1D的夹角θ的大小.1A【答案】解:(Ⅰ) BDOAABCDBDABCDOA⊥∴⊂⊥11,,面且面;又因为,在正方形AB CD 中,BDCAACACAACABDAACOABDAC⊥⊂⊥=⋂⊥11111,,故面且面所以;且.在正方形AB CD中,AO = 1 . .111=∆OAOAART中,在OECAOCEAEDB1111111⊥为正方形,所以,则四边形的中点为设.,所以由以上三点得且,面面又OOBDDDBBODDBBBD=⋂⊂⊂111111E.E,DDBBCA111面⊥.(证毕)(Ⅱ) 建立直角坐标系统,使用向量解题.以O为原点,以OC为X轴正方向,以OB为Y轴正方向.则)1,0,1()1,1,1(),10(),1(,0,1,0111-=⇒CABACB,,,,)(.由(Ⅰ)知, 平面BB1D1D的一个法向量.0,0,1),1,1,1(),1,0,1(111)(==-==OCOBCAn设平面OCB1的法向量为,则0,0,2122=⋅=⋅OCnOBnn).1-,1,0(法向量2=n为解得其中一个21221||||||,cos|cos212111=⋅=⋅=><=nnnnnnθ.所以,平面OCB1与平面BB1D1D的夹角θ为3π1A。

高中数学立体几何小题100题(含答案与解析)

高中数学立体几何小题100题(含答案与解析)

立体几何小题100例一、选择题1.如图,已知正方体1111ABCD A B C D -的棱长为4,点E ,F 分别是线段AB ,11C D 上的动点,点P 是上底面1111A B C D 内一动点,且满足点P 到点F 的距离等于点P 到平面11ABB A 的距离,则当点P 运动时,PE 的最小值是( )A .5B .4C .42.5【答案】D 【解析】试题分析:因为点P 是上底面1111A B C D 内一动点,且点P 到点F 的距离等于点P 到平面11ABB A 的距离,所以,点P 在连接1111,A D B C 中点的连线上.为使当点P 运动时,PE 最小,须PE 所在平面平行于平面11AA D D ,2244()52PE =+=选D考点:1.平行关系;2.垂直关系;3.几何体的特征.2.如图在一个二面角的棱上有两个点A ,B ,线段,AC BD 分别在这个二面角的两个面内,并且都垂直于棱AB ,=46,AB cm AC cm =, 8,217BD cm CD cm ==,则这个二面角的度数为( )A .30︒B .60︒C .90︒D .120︒ 【答案】B 【解析】试题分析:设所求二面角的大小为θ,则,BD AC θ<>=,因为CD DB BA AC =++,所以22222()222CD DB BA AC DB BA AC DB BA DB AC BA AC =++=+++⋅+⋅+⋅CA DB而依题意可知,BD AB AC AB ⊥⊥,所以20,20DB BA BA AC ⋅=⋅=所以2222||||||||2CD DB BA AC BD AC =++-⋅即222417468286cos θ⨯=++-⨯⨯所以1cos 2θ=,而[0,]θπ∈,所以60θ=︒,故选B. 考点:1.二面角的平面角;2.空间向量在解决空间角中的应用.3.已知某个几何体的三视图如图所示,根据图中标出的尺寸(单位:cm )可得这 个几何体的体积是( )112222侧视图俯视图主视图A .343cmB .383cmC .33cmD .34cm【答案】B . 【解析】试题分析:分析题意可知,该几何体为一四棱锥,∴体积382231312=⨯⨯==Sh V . 考点:空间几何体的体积计算.4.如图,P 是正方体1111ABCD A B C D -对角线1AC 上一动点,设AP 的长度为x ,若PBD ∆的面积为(x)f ,则(x)f 的图象大致是( )【答案】A 【解析】试题分析:设AC 与BD 交于点O ,连接OP .易证得BD ⊥面11ACC A ,从而可得BD OP ⊥.设正方体边长为1,在1Rt ACC ∆中126cos 33C AC ∠==.在AOP ∆中 22OA =,设(),03AP x x =≤≤,由余弦定理可得2222226231222362OP x x x x ⎛⎫=+-⋅⨯=-+ ⎪ ⎪⎝⎭,所以223162OP x x =-+.所以()22231262f x x x =-+.故选A. 考点:1线面垂直,线线垂直;2函数图象.5.如图所示,正方体ABCD A B C D ''''-的棱长为1, ,E F 分别是棱AA ',CC '的中点,过直线,E F 的平面分别与棱BB '、DD '交于,M N ,设 BM x =,[0,1]x ∈,给出以下四个命题:(1)平面MENF ⊥平面BDD B '';(2)当且仅当x=12时,四边形MENF 的面积最小;(3)四边形MENF 周长()L f x =,[0,1]x ∈是单调函数; (4)四棱锥C MENF '-的体积()V h x =为常函数; 以上命题中假命题...的序号为( ) A .(1)(4) B .(2) C .(3) D .(3)(4) 【答案】C 【解析】试题分析:(1)由于AC EF //,B B AC BD AC '⊥⊥,,则D D B B ''⊥平面AC ,则D D B B EF ''⊥平面,又因为EMFN EF 平面⊂,则平面MENF ⊥平面BDD B '';(2)由于四边形MENF 为菱形,MN EF S MENF ⋅=21,2=EF ,要使四边形MENF 的面积最小,只需MN 最小,则当且仅当21=x 时,四边形MENF 的面积最小;(3)因为1)21(2+-=x MF ,1)21(4)(2+-=x x f ,)(x f 在]1,0[上不是单调函数;(4)NE C F EC M F MENF C V V V '-'--'+=,ME C S '∆=41121=⋅'E C ,F 到平面ME C '的距离为1,1214131=⋅='-ME C F V ,又41121=⋅'⋅='∆E C S NE C ,1214131=⋅='-NE C F V ,61)(=x h 为常函数.故选(3)考点:1.面面垂直的判定定理;2.建立函数模型.6.已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 上的射影为BC 的中点,则异面直线AB 与1CC 所成的角的余弦值为( )(A)4 (B )4 (C )4 (D )34【答案】D. 【解析】试题分析:连接B A 1;11//CC AA ,AB A 1∠∴是异面直线AB 与1CC 所成的角或其补角;在1ADA Rt ∆中,设11=AA ,则21,231==D A AD ;在1BDA Rt ∆中,2121=B A ;在1ABA ∆中,431122111cos 1=⨯⨯-+=∠AB A ;即面直线AB 与1CC 所成的角的余弦值为34. 考点:异面直线所成的角.7.一个几何体的三视图如图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积为A .π312B .π12C .π34D .π3 【答案】D 【解析】试题分析:由三视图可知,该几何体为四棱锥,侧棱垂直底面,底面是正方形,将此四棱锥还原为正方体,则正方体的体对角线即外接球的直径,32=r ,23=∴r ,因此ππ342==r S 表面积,故答案为D. 考点:由三视图求外接球的表面积.8.如图,棱长为1的正方体ABCD-A 1B 1C 1D 1中,P 为线段A 1B 上的动点,则下列结论错误的是( )A .11DC D P ⊥B .平面11D A P ⊥平面1A APC .1APD ∠的最大值为90 D .1AP PD +22+ 【答案】C 【解析】试题分析:111DC D A ⊥ ,11DC B A ⊥,1111A B A D A = ,⊥∴1DC 平面11BCD A ,⊂P D 1平面11BCD A 因此P D DC 11⊥,A 正确;由于⊥11A D 平面11ABB A ,⊂11A D 平面P A D 11,故平面⊥P A D 11平面AP A 1 故B 正确,当2201<<P A 时,1APD ∠为钝角,C 错;将面B AA 1与面11BCD A 沿B A 1展成平面图形,正视图 侧视图俯视图线段1AD 即为1PD AP +的最小值,利用余弦定理解221+=AD ,故D 正确,故答案为C .考点:棱柱的结构特征. 9.下列命题中,错误的是( )A .一条直线与两个平行平面中的一个相交,则必与另一个平面相交B .平行于同一平面的两条直线不一定平行C .如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βD .若直线l 不平行于平面α,则在平面α内不存在与l 平行的直线 【答案】B 【解析】试题分析: 由直线与平面的位置关系右知A 正确;平行于同一个平面的两条直线可以相交、平行或异面,故B 错,所以选B.考点:直线、平面平行与垂直的判定与性质.10.已知如图所示的正方体ABCD ﹣A 1B 1C 1D 1,点P 、Q 分别在棱BB 1、DD 1上,且=,过点A 、P 、Q作截面截去该正方体的含点A 1的部分,则下列图形中不可能是截去后剩下几何体的主视图的是( )【答案】A【解析】试题分析:当P 、B 1重合时,主视图为选项B ;当P 到B 点的距离比B 1近时,主视图为选项C ;当P 到B 点的距离比B 1远时,主视图为选项D ,因此答案为A. 考点:组合体的三视图11.一个几何体的三视图及尺寸如图所示,则该几何体的外接球半径为 ( )A. B. C. D.【答案】C 【解析】试题分析:由三视图可知:该几何体是一个如图所示的三棱锥P-ABC ,它是一个正四棱锥P-ABCD 的一半,其中底面是一个两直角边都为6的直角三角形,高PE=4. 设其外接球的球心为O ,O 点必在高线PE 上,外接球半径为R , 则在直角三角形BOE 中,BO 2=OE 2+BE 2=(PE-EO )2+BE 2, 即R 2=(4-R )2+(32)2,解得:R=174,故选C.考点:三视图,球与多面体的切接问题,空间想象能力12.如右图,在长方体1111ABCD A B C D -中,AB =11,AD =7,1AA =12,一质点从顶点A 射向点()4312E ,,,遇长方体的面反射(反射服从光的反射原理),将1i -次到第i 次反射点之间的线段记为()2,3,4i L i =,1L AE =,将线段1234,,,L L L L 竖直放置在同一水平线上,则大致的图形是( )【答案】C 【解析】 试题分析:因为37411>,所以1A E 延长交11D C 于F ,过F 作FM 垂直DC 于.M 在矩形1AA FM 中分析反射情况:由于35105AM =>,第二次反射点为1E 在线段AM 上,此时153E M =,第三次反射点为2E 在线段FM 上,此时24E M =,第四次反射点为3E 在线段1AF 上,由图可知,选C.考点:空间想象能力13.一块石材表示的几何体的三视图如图所示,将该石材切削、打磨、加工成球,则能得到的最大球的半径等于( )A.1B.2C.3D.4【答案】B【解析】试题分析:由图可得该几何体为三棱柱,因为正视图,侧视图,俯视图的内切圆半径最小的是正视图(直角三角形)所对应的内切圆,所以最大球的半径为正视图直角三角形内切圆的半径r , 则2286862r r r -+-+⇒=,故选B. 考点:三视图 内切圆 球 三棱柱14.已知二面角l αβ--为60︒,AB α⊂,AB l ⊥,A 为垂足,CD β⊂,C l ∈,135ACD ∠=︒,则异面直线AB 与CD 所成角的余弦值为 A .14 B .24 C .34 D .12【答案】B. 【解析】试题分析:如图作BE β⊥于E ,连结AE ,过A 作AG ∥CD ,作EG AG ⊥于G ,连结BG ,则.BG AG ⊥设2AB a =.在ABE ∆中,60,90,2,.BAE AEB AB a AE a ∠=︒∠=︒=∴=在Rt AEG ∆中,29045,90,cos 45.2GAE CAG AGE AG a a ∠=︒-∠=︒∠=︒∴=︒=在Rt ABG∆中,222cos 24AG BAG AB a ∠===∴异面直线AB 与CD 所成角的余弦值为24,故选B .βαElBDACG考点:1.三垂线定理及其逆定理;2. 空间角(异面直线所成角)的计算.15.在空间直角坐标系Oxyz 中,已知(2,0,0)(2,2,0),(0,2,0),(1,1,2)A B C D .若123,,S S S 分别是三棱锥D ABC -在,,xOy yOz zOx 坐标平面上的正投影图形的面积,则( )A .123S S S ==B .21S S =且23S S ≠C .31S S =且32S S ≠D .32S S =且31S S ≠ 【答案】D 【解析】试题分析:三棱锥ABC D -在平面xoy 上的投影为ABC ∆,所以21=S ,设D 在平面yoz 、zox 平面上的投影分别为2D 、1D ,则ABC D -在平面yoz 、zox 上的投影分别为2OCD ∆、1OAD ∆,因为)2,1,0(1D ,)2,0,1(2D ,所以212=-S S ,故选D.考点:三棱锥的性质,空间中的投影,难度中等.16.正方形ABCD 的边长为2,点E 、F 分别在边AB 、BC 上,且1AE =,12BF =,将此正 方形沿DE 、DF 折起,使点A 、C 重合于点P ,则三棱锥P DEF -的体积是( ) A .13B 523 D .23【答案】B【解析】试题分析:解:因为90,DPE DPF ∠=∠=所以,DP PE DP PF ⊥⊥又因为PE ⊂平面PEF ,PF ⊂平面PEF ,且PE PF P =,所以DP ⊥平面PEF在PEF ∆中,22223151,,1222PE PF EF EB BF ⎛⎫===+=+= ⎪⎝⎭所以222351222cos 33212EPF ⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭∠==⨯⨯,225sin 133EPF ⎛⎫∠=-= ⎪⎝⎭ 所以11355sin 122234PEF S PE PF EPF ∆=⋅⋅∠=⨯⨯⨯= 115523346PEF P DEF D PEF V V DP S ∆--==⋅⋅=⨯⨯=三棱锥三棱锥 所以应选B.考点:1、直线与平面垂直的判定;2、正弦定理与余弦定理;3、棱锥的体积.17.高为的四棱锥S ﹣ABCD 的底面是边长为1的正方形,点S ,A ,B ,C ,D 均在半径为1的同一球面上,则底面ABCD 的中心与顶点S 之间的距离为( )A. B. C. D.【答案】A【解析】试题分析:由题意可知ABCD 是小圆,对角线长为,四棱锥的高为,推出高就是四棱锥的一条侧棱,最长的侧棱就是球的直径,然后利用勾股定理求出底面ABCD 的中心与顶点S 之间的距离.解:由题意可知ABCD 是小圆,对角线长为,四棱锥的高为,点S ,A ,B ,C ,D 均在半径为1的同一球面上,球的直径为2,所以四棱锥的一条侧棱垂直底面的一个顶点,最长的侧棱就是直径,所以底面ABCD 的中心与顶点S 之间的距离为:=故选A点评:本题是基础题,考查球的内接多面体的知识,能够正确推出四棱锥的一条侧棱垂直底面的一个顶点,最长的侧棱就是直径是本题的关键,考查逻辑推理能力,计算能力.18.二面角l αβ--为60°,A 、B 是棱l 上的两点,AC 、BD 分别在半平面,αβ内,AC l ⊥,BD l ⊥,且AB =AC =a ,BD =2a ,则CD 的长为( )A .2aB .5aC .aD .3a【答案】A【解析】试题分析:根据异面直线上两点间的距离公式2222cos EF d m n mn θ=++± ,对于本题中,d a =,m a =,2n =,60θ=,故()222222cos 602CD a a a a a a =++-⋅⋅⋅=.考点:异面直线上两点间距离,空间想象能力.19.长方体的表面积是24,所有棱长的和是24,则对角线的长是( ).A.14 B .4 C .32 D .23【答案】B【解析】试题分析:设出长方体的长、宽、高,表示出长方体的全面积,十二条棱长度之和,然后可得对角线的长度.考点:长方体的结构特征,面积和棱长的关系.20.已知棱长为l 的正方体1111ABCD A B C D -中,E ,F ,M 分别是AB 、AD 、1AA 的中点,又P 、Q 分别在线段11A B 11、A D 上,且11A P=A Q=x,0<x<1,设面MEF 面MPQ=l ,则下列结论中不成立的是( )A .//l 面ABCDB .l ⊥ACC .面MEF 与面MPQ 不垂直D .当x 变化时,l 不是定直线【答案】D【解析】试题分析:解:连结1111,,,AC BD AC B D ,,AC BD 交于点O 1111,AC B D 交于点1O由正方体的性质知,11111111////,,BD B D AC AC AC BD AC B D ⊥⊥,因为,E F 是,AD AB 的中点,所以//EF BD因为11A P A Q =,所以11//PQ B D所以//PQ EF ,所以//PQ 平面MEF ,//EF 平面MPQ , 由MEF 面MPQ=l ,EF ⊂ 平面MEF ,所以//EF l ,而EF ⊂平面ABCD ,l ⊂/平面ABCD , 所以,//l 面ABCD ,所以选项A 正确;由AC BD ⊥,//EF BD 得EF AC ⊥而//EF l ,所以l ⊥AC ,所以选项B 正确;连111,,MB MD O M ,则11//,O M AC 而1111,//,//AC A B AC BD BD EF A B MF ⊥⊥,所以,11,O M EF O M MF ⊥⊥,所以1O M ⊥平面MEF ,过直线l 与平面MEF 垂直的平面只能有一个,所以面MEF 与面MPQ 不垂直,所以选项C 是正确的;因为//EF l ,M 是定点,过直线外一点有且只有一条直线与已知直线平行,所以直线l 是唯一的,故选项D 不正确.考点:1、直线平面的位置关系;2、直线与直线,直线与平面,平面与平面的平行与垂直的判定及性质.21.如图,等边三角形ABC 的中线AF 与中位线DE 相交于G ,已知ED A '∆是△ADE 绕DE 旋转过程中的一个图形,下列命题中,错误的是( )A .动点A '在平面ABC 上的射影在线段AF 上B .恒有平面GF A '⊥平面BCDEC .三棱锥EFD A -'的体积有最大值D .异面直线E A '与BD 不可能垂直【答案】D【解析】试题分析:由于',A G DE FG DE ⊥⊥.所以DE ⊥平面'A FG .经过点'A 作平面ABC 的垂线垂足在AF上.所以A 选项正确.由A 可知B 选项正确.当平面'A DE 垂直于平面BCDE 时,三棱锥EFD A -'的体积最大,所以C 正确.因为BD EF ,设2AC a =.所以'EF A E a ==,当'2A F a =时,32'(')2a A G GF A G GF a <+==.所以异面直线E A '与BD 可能垂直.所以D 选项不正确.考点:1.线面位置关系.2.面面的位置关系.3.体积公式.4.异面直线所成的角.5.空间想象力.22.已知棱长为l 的正方体1111ABCD A B C D -中,E ,F ,M 分别是AB 、AD 、1AA 的中点,又P 、Q 分别在线段11A B 11、A D 上,且11A P=A Q=x,0<x<1,设面MEF 面MPQ=l ,则下列结论中不成立的是( )A .//l 面ABCDB .l ⊥ACC .面MEF 与面MPQ 不垂直D .当x 变化时,l 不是定直线【答案】D【解析】试题分析:解:连结1111,,,AC BD AC B D ,,AC BD 交于点O 1111,AC B D 交于点1O由正方体的性质知,11111111////,,BD B D AC AC AC BD AC B D ⊥⊥,因为,E F 是,AD AB 的中点,所以//EF BD因为11A P A Q =,所以11//PQ B D所以//PQ EF ,所以//PQ 平面MEF ,//EF 平面MPQ ,由MEF 面MPQ=l ,EF ⊂ 平面MEF ,所以//EF l ,而EF ⊂平面ABCD ,l ⊂/平面ABCD , 所以,//l 面ABCD ,所以选项A 正确;由AC BD ⊥,//EF BD 得EF AC ⊥而//EF l ,所以l ⊥AC ,所以选项B 正确;连111,,MB MD O M ,则11//,O M AC 而1111,//,//AC A B AC BD BD EF A B MF ⊥⊥,所以,11,O M EF O M MF ⊥⊥,所以1O M ⊥平面MEF ,过直线l 与平面MEF 垂直的平面只能有一个,所以面MEF与面MPQ不垂直,所以选项C是正确的;EF l,M是定点,过直线外一点有且只有一条直线与已知直线平行,所以直线l是唯一的,故选因为//项D不正确.考点:1、直线平面的位置关系;2、直线与直线,直线与平面,平面与平面的平行与垂直的判定及性质.23.把四个半径都是1的球中的三个放在桌面上,使它两两外切,然后在它们上面放上第四个球,使它与前三个都相切,求第四个球的最高点与桌面的距离()A.B.C.D.3【答案】A【解析】由题意,四球心组成棱长为2的正四面体的四个顶点,则正四面体的高.而第四个球的最高点到第四个球的球心距离为求的半径1,且三个球心到桌面的距离都为1,故第四个球的最高点与桌面的距离为,选A.24.如图所示,四边形ABCD为正方形,QA⊥平面ABCD,PD∥QA,QA=AB=PD.则棱锥Q-ABCD的体积与棱锥P-DCQ的体积的比值是()A. 2:1B. 1:1C. 1:2D. 1:3【答案】C。

高一数学空间几何体试题

高一数学空间几何体试题

高一数学空间几何体试题1.球内接正方体的表面积与球的表面积的比为()A. 2:B. 3:C. 4: D. 6:【答案】A【解析】若正方体的棱长为,则球的半径为,。

2.两个球的体积之比是,那么这两个球的表面积之比是()A.B.C.D.【答案】B【解析】设半径分别为r,R;则故选B3.如图,半球内有一内接正方体,则这个半球体积与正方体的体积之比为()A.B.C.D.【答案】B【解析】若正方体的棱长为,半球的半径为R,在直角三角形中,,。

4.在长方体,底面是边长为的正方形,高为,则点到截面的距离为( )A.B.C.D.【答案】C【解析】利用三棱锥的体积变换:,则5.与正方体各面都相切的球,它的表面积与正方体的表面积之比为()A.B.C.D.【答案】B【解析】设正方体棱长为a,球半径为r;由条件知则球表面积正方体的表面积之比为故选B6.球的表面积扩大为原来的4倍,则它的体积扩大为原来的___________倍【答案】8【解析】设球半径为扩大后球半径为则于是扩大后体积为所以它的体积扩大为原来的8倍.7.如图中斜二测直观图所示的平面图形是()A.直角梯形B.等腰梯形C.不可能是梯形D.平行四边形【答案】A【解析】在直观图中不与坐标轴平行;所以在平面图形中,不与坐标轴平行,则所以是直角梯形。

故选A 8.三视图均相同的几何体有()A.球B.正方体C.正四面体D.以上都对【答案】D【解析】此题考查空间几何体的三视图;球的三视图都是圆,正方体的三视图都是正方形,正四面体的三视图都是正三角形,所以选D9.图所示是一个几何体的三视图,画出它的直观图.【答案】三棱柱横放,直观图如图.【解析】根据几何体的三视图判断该几何体的形状:10.分别画一个三棱锥和一个四棱台.【答案】见解析【解析】解:画三棱锥可分三步完成第一步:画底面——画一个三角形;第二步:确定顶点——在底面外任一点;第三步:画侧棱——连结顶点与底面三角形各顶点.画四棱可分三步完成第一步:画一个四棱锥;第二步:在四棱锥一条侧棱上取一点,从这点开始,顺次在各个面内画与底面对应线段平行的线段;第三步:将多余线段擦去.。

高二数学空间几何体试题

高二数学空间几何体试题

高二数学空间几何体试题1.已知四棱锥的底面为直角梯形,,底面,且,,是的中点。

(Ⅰ)证明:面面;(Ⅱ)求与所成的角;(Ⅲ)求面与面所成二面角的大小。

【答案】(1)由题设知,且与是平面内的两条相交直线,由此得面.又在面上,故面⊥面(2)(3)【解析】证明:以为坐标原点长为单位长度,如图建立空间直角坐标系,则各点坐标为.(Ⅰ)证明:因由题设知,且与是平面内的两条相交直线,由此得面.又在面上,故面⊥面.(Ⅱ)解:因(Ⅲ)解:在上取一点,则存在使要使为所求二面角的平面角.【考点】线面角和二面角点评:主要是考查了线面角以及二面角的求解,属于基础题。

2.两个相交平面能把空间分成个部分【答案】4【解析】画出示意图即可得:两个相交平面能把空间分成2个部分【考点】本题考查了平面的基本性质及推论点评:解答本题,关键是了解两个平面的位置关系,根据模型分析即可3.下列说法正确的是()A.空间三个点确定一个平面B.两个平面一定将空间分成四部分C.梯形一定是平面图形D.两个平面有不在同一条直线上的三个交点【答案】C【解析】选项A中,只有不共线的三点可以确定一个平面。

选项B中,当两个平面平行的时候,将空间分为3部分。

选项C中,只有一组对边平行的四边形,符合公理2,能确定一个平面,故成立。

选项D中,两个平面相交,或者平行不会有不在同一直线三个交点,除非重合,因此错误。

故选C.【考点】本试题考查了确定平面的方法。

点评:解决该试题的关键是能准确运用平面的基本性质和公理来分析,同时考查了空间想象能力,属于基础题。

4.(文)如图,在棱长为4的正方体ABCD—A′B′C′D′中,E、F分别是AD、A′D′的中点,长为2的线段MN的一个端点M在线段EF上运动,另一个端点N在底面A′B′C′D′上运动,则线段MN的中点P的轨迹(曲面)与二面角A-A′D′-B′所围成的几何体的体积为()A. B. C. D.【答案】C【解析】因为点M在定长的线段EF上运动,那么另一个端点在底面A′B′C′D′上运动,因此可知,在运动中有一个不变量,就是点F到线段MN中点的距离始终为斜边的一半,也就是1,则可知中点的轨迹是四分之一个球面,那么与二面角所围城的体积为四分之一个球体的体积,因此半径为1,则根据球体的体积公式可知,故选C.【考点】本试题考查了轨迹方程与空间几何体的结合体的运用。

高一数学空间几何体试题答案及解析

高一数学空间几何体试题答案及解析

高一数学空间几何体试题答案及解析1.长方体的表面积是24,所有棱长的和是24,则对角线的长是().A. B.4 C.3D.2【答案】B【解析】设出长方体的长、宽、高,表示出长方体的全面积,十二条棱长度之和,然后可得对角线的长度.【考点】长方体的结构特征,面积和棱长的关系.2.如图是一平面图形的直观图,斜边,则这个平面图形的面积是()A.B.1C.D.【答案】D【解析】根据直观图可知,根据直观图与平面图的关系可知,平面图中, ,在轴上,且 ,所以.【考点】直观图与平面图的关系3.某工厂为了制造一个实心工件,先画出了这个工件的三视图(如图),其中正视图与侧视图为两个全等的等腰三角形,俯视图为一个圆,三视图尺寸如图所示(单位cm);(1)求出这个工件的体积;(2)工件做好后,要给表面喷漆,已知喷漆费用是每平方厘米1元,现要制作10个这样的工件,请计算喷漆总费用(精确到整数部分).【答案】(1) ;(2)314元【解析】(1)根据三视图可知该工件是一个圆锥的形状,其中圆的半径为2,母线长为3,所以圆锥的高 .又根据圆锥的体积公式 .可得 .故填 .(2)因为圆锥的表面积公式为.又因为,.所以.所以10个共要.所以共需要元.所以填314元.试题解析:(1)由三视图可知,几何体为圆锥,底面直径为4,母线长为3, 2分设圆锥高为,则 4分则 6分(2)圆锥的侧面积, 8分则表面积=侧面积+底面积=(平方厘米)喷漆总费用=元 11分【考点】1 三视图 2 圆锥的体积 3 圆锥的表面积4.已知一空间几何体的三视图如图所示,它的表面积是()A.B.C.D.3【答案】C【解析】该几何体是三棱柱,如下图,,其表面积为。

故选C。

【考点】柱体的表面积公式点评:由几何体的三视图来求出该几何体的表面积或者体积是一个考点,这类题目侧重考察学生的想象能力。

5.已知三棱柱,底面三角形为正三角形,侧棱底面,,为的中点,为中点.(Ⅰ)求证:直线平面;(Ⅱ)求点到平面的距离.【答案】(Ⅰ)取的中点为,连接,推出,,且,利用四边形为平行四边形,得到,所以直线平面.(Ⅱ)点到平面的距离为.【解析】(Ⅰ)取的中点为,连接,因为为的中点,为中点,所以,,且,所以四边形为平行四边形,所以,又因为,所以直线平面.(Ⅱ)由已知得,所以,因为底面三角形为正三角形,为中点,所以, 所以,由(Ⅰ)知,所以,因为,所以,,设点到平面的距离为,由等体积法得,所以,得,即点到平面的距离为.【考点】正三棱柱的几何特征,平行关系,垂直关系,体积计算,距离计算。

高一数学空间几何体试题答案及解析

高一数学空间几何体试题答案及解析

高一数学空间几何体试题答案及解析1.某三棱锥的三视图如图所示,该三棱锥的体积为()A.B.C.D.【答案】A【解析】由三视图知,几何体是一个三棱锥,底面是直角边长为的直角三角形,面积是,三棱锥的一条侧棱与底面垂直,且长度是,这是三棱锥的高,三棱锥的体积是.故选A.【考点】本题考查由三视图求面积、体积.2.已知一空间几何体的三视图如图所示,它的表面积是()A.B.C.D.3【答案】C【解析】该几何体是三棱柱,如下图,,其表面积为。

故选C。

【考点】柱体的表面积公式点评:由几何体的三视图来求出该几何体的表面积或者体积是一个考点,这类题目侧重考察学生的想象能力。

3.已知某一几何体的正(主)视图与侧(左)视图如图,则在下列图形中,可以是该几何体的俯视图的图形有()A.①②③⑤B.②③④⑤C.①③④⑤D.①②③④【答案】D【解析】俯视图为⑤的几何体的侧视图如下,这与题目不相符,而①②③④符合题意。

故选D。

【考点】三视图点评:本题考查简单空间图形的三视图,考查空间想象能力,是基础题.4.如图是某直三棱柱(侧棱与底面垂直)被削去上底后的直观图与三视图中的侧(左)视图、俯视图,在直观图中,是的中点,侧(左)视图是直角梯形,俯视图是等腰直角三角形,有关数据如图所示.(1)求出该几何体的体积;(2)若是的中点,求证:∥平面;(3)求证:平面⊥平面.【答案】(1)4 (2)主要证明∥ (3)主要证明平面【解析】解:(1)由题意可知,四棱锥中,平面平面,,所以,平面,又,,则四棱锥的体积为.(2)连接,则∥,∥,又,所以四边形为平行四边形,∴∥,∵平面,平面,所以,∥平面.(3)∵,是的中点,∴⊥,又在直三棱柱中可知,平面平面,∴平面,由(2)知,∥,∴平面,又平面,所以,平面平面.【考点】平面与平面垂直的判定;棱柱、棱锥、棱台的体积;直线与平面平行的判定.点评:本题考查的知识点是直线与平面平行的判定,棱锥的体积,平面与平面垂直的判定,其中(1)的关键是由面面垂直的性质定理可得AB⊥平面ACDE,(2)的关键是分析出四边形ANME为平行四边形,即AN∥EM,(3)的关键是熟练掌握空间线线垂直,线面垂直与面面垂直之间的相互转化.5.如图是长方体被一平面所截得到的几何体,四边形为截面,长方形为底面,则四边形的形状为( )A.梯形B.平行四边形C.可能是梯形也可能是平行四边形D.不确定【答案】B【解析】因为,长方体中相对的平面互相平行,所以,被平面截后,EF,GH平行且相等,GF,EH 平行且相等,故四边形的形状为平行四边形,选B。

高三数学空间几何体试题

高三数学空间几何体试题

高三数学空间几何体试题1.(3分)(2011•重庆)高为的四棱锥S﹣ABCD的底面是边长为1的正方形,点S,A,B,C,D均在半径为1的同一球面上,则底面ABCD的中心与顶点S之间的距离为()A.B.C.1D.【答案】C【解析】由题意可知ABCD所在的圆是小圆,对角线长为,四棱锥的高为,而球心到小圆圆心的距离为,则推出顶点S在球心距的垂直分的平面上,而顶点S到球心的距离为1,即可求出底面ABCD的中心与顶点S之间的距离.解:由题意可知ABCD所在的圆是小圆,对角线长为,四棱锥的高为,点S,A,B,C,D均在半径为1的同一球面上,球心到小圆圆心的距离为,顶点S在球心距的垂直分的平面上,而顶点S到球心O的距离为1,所以底面ABCD的中心O'与顶点S之间的距离为1故选C点评:本题是基础题,考查球的内接多面体的知识,考查逻辑推理能力,计算能力,转化与划归的思想.2.如图,三棱柱ABC—A1B1C1的侧面AA1B1B为正方形,侧面BB1C1C为菱形,∠CBB1=60°,AB⊥B1C.(1)求证:平面AA1B1B⊥平面BB1C1C;(2)若AB=2,求三棱柱ABC—A1B1C1的体积.【答案】(1)见解析(2)2【解析】(1)由侧面AA1B1B为正方形,知AB⊥BB1.又AB⊥B1C,BB1∩B1C=B1,所以AB⊥平面BB1C1C,又AB⊂平面AA1B1B,所以平面AA1B1B⊥平面BB1C1C.(2)由题意,CB=CB1,设O是BB1的中点,连接CO,则CO⊥BB1.由(1)知,CO⊥平面AA1B1B,且CO=BC=AB=.连结AB1,则VC—ABB1=S△ABB1·CO=AB2·CO=.因为VB1—ABC=VC—ABB1=VABC—A1B1C1=,故三棱柱ABC—A1B1C1的体积VABC—A1B1C1=2.3.已知四棱锥V-ABCD,底面ABCD是边长为3的正方形,VA⊥平面ABCD,且VA=4,则此四棱锥的侧面中,所有直角三角形的面积的和是________.【答案】27【解析】可证四个侧面都是直角三角形,其面积S=2××3×4+2××3×5=27.4.某几何体的三视图如图所示,则该几何体的体积为( )A.B.C.D.【答案】D【解析】由三视图还原图像,得原图是两个一样的圆锥底面对在一起了,所以.【考点】三视图.5.已知圆柱底面半径为1,高为,是圆柱的一个轴截面.动点从点出发沿着圆柱的侧面到达点,其距离最短时在侧面留下的曲线如图所示.现将轴截面绕着轴逆时针旋转后,边与曲线相交于点,设的长度为,则的图象大致为()【答案】A【解析】根据题意,由于圆柱底面半径为1,高为,是圆柱的一个轴截面.动点从点出发沿着圆柱的侧面到达点,其距离最短时在侧面留下的曲线,那么可知轴截面绕着轴逆时针旋转后,随着角的增大可知BP的变化时匀速增大的,因此选A.【考点】圆柱的展开图点评:主要是考查了圆柱体侧面展开图的运用,属于基础题。

高中数学立体几何小题100题(含答案与解析)

高中数学立体几何小题100题(含答案与解析)

立体几何小题100例一、选择题1.如图,已知正方体1111ABCD A B C D -的棱长为4,点E ,F 分别是线段AB ,11C D 上的动点,点P 是上底面1111A B C D 内一动点,且满足点P 到点F 的距离等于点P 到平面11ABB A 的距离,则当点P 运动时,PE 的最小值是( )A .5B .4C .42.5【答案】D 【解析】试题分析:因为点P 是上底面1111A B C D 内一动点,且点P 到点F 的距离等于点P 到平面11ABB A 的距离,所以,点P 在连接1111,A D B C 中点的连线上.为使当点P 运动时,PE 最小,须PE 所在平面平行于平面11AA D D ,2244()52PE =+=选D考点:1.平行关系;2.垂直关系;3.几何体的特征.2.如图在一个二面角的棱上有两个点A ,B ,线段,AC BD 分别在这个二面角的两个面内,并且都垂直于棱AB ,=46,AB cm AC cm =, 8,217BD cm CD cm ==,则这个二面角的度数为( )A .30︒B .60︒C .90︒D .120︒ 【答案】B 【解析】试题分析:设所求二面角的大小为θ,则,BD AC θ<>=,因为CD DB BA AC =++,所以22222()222CD DB BA AC DB BA AC DB BA DB AC BA AC =++=+++⋅+⋅+⋅CA DB而依题意可知,BD AB AC AB ⊥⊥,所以20,20DB BA BA AC ⋅=⋅=所以2222||||||||2CD DB BA AC BD AC =++-⋅即222417468286cos θ⨯=++-⨯⨯所以1cos 2θ=,而[0,]θπ∈,所以60θ=︒,故选B. 考点:1.二面角的平面角;2.空间向量在解决空间角中的应用.3.已知某个几何体的三视图如图所示,根据图中标出的尺寸(单位:cm )可得这 个几何体的体积是( )112222侧视图俯视图主视图A .343cmB .383cmC .33cmD .34cm【答案】B . 【解析】试题分析:分析题意可知,该几何体为一四棱锥,∴体积382231312=⨯⨯==Sh V . 考点:空间几何体的体积计算.4.如图,P 是正方体1111ABCD A B C D -对角线1AC 上一动点,设AP 的长度为x ,若PBD ∆的面积为(x)f ,则(x)f 的图象大致是( )【答案】A 【解析】试题分析:设AC 与BD 交于点O ,连接OP .易证得BD ⊥面11ACC A ,从而可得BD OP ⊥.设正方体边长为1,在1Rt ACC ∆中126cos 33C AC ∠==.在AOP ∆中 22OA =,设(),03AP x x =≤≤,由余弦定理可得2222226231222362OP x x x x ⎛⎫=+-⋅⨯=-+ ⎪ ⎪⎝⎭,所以223162OP x x =-+.所以()22231262f x x x =-+.故选A. 考点:1线面垂直,线线垂直;2函数图象.5.如图所示,正方体ABCD A B C D ''''-的棱长为1, ,E F 分别是棱AA ',CC '的中点,过直线,E F 的平面分别与棱BB '、DD '交于,M N ,设 BM x =,[0,1]x ∈,给出以下四个命题:(1)平面MENF ⊥平面BDD B '';(2)当且仅当x=12时,四边形MENF 的面积最小;(3)四边形MENF 周长()L f x =,[0,1]x ∈是单调函数; (4)四棱锥C MENF '-的体积()V h x =为常函数; 以上命题中假命题...的序号为( ) A .(1)(4) B .(2) C .(3) D .(3)(4) 【答案】C 【解析】试题分析:(1)由于AC EF //,B B AC BD AC '⊥⊥,,则D D B B ''⊥平面AC ,则D D B B EF ''⊥平面,又因为EMFN EF 平面⊂,则平面MENF ⊥平面BDD B '';(2)由于四边形MENF 为菱形,MN EF S MENF ⋅=21,2=EF ,要使四边形MENF 的面积最小,只需MN 最小,则当且仅当21=x 时,四边形MENF 的面积最小;(3)因为1)21(2+-=x MF ,1)21(4)(2+-=x x f ,)(x f 在]1,0[上不是单调函数;(4)NE C F EC M F MENF C V V V '-'--'+=,ME C S '∆=41121=⋅'E C ,F 到平面ME C '的距离为1,1214131=⋅='-ME C F V ,又41121=⋅'⋅='∆E C S NE C ,1214131=⋅='-NE C F V ,61)(=x h 为常函数.故选(3)考点:1.面面垂直的判定定理;2.建立函数模型.6.已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 上的射影为BC 的中点,则异面直线AB 与1CC 所成的角的余弦值为( )(A)4 (B )4 (C )4 (D )34【答案】D. 【解析】试题分析:连接B A 1;11//CC AA ,AB A 1∠∴是异面直线AB 与1CC 所成的角或其补角;在1ADA Rt ∆中,设11=AA ,则21,231==D A AD ;在1BDA Rt ∆中,2121=B A ;在1ABA ∆中,431122111cos 1=⨯⨯-+=∠AB A ;即面直线AB 与1CC 所成的角的余弦值为34. 考点:异面直线所成的角.7.一个几何体的三视图如图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积为A .π312B .π12C .π34D .π3 【答案】D 【解析】试题分析:由三视图可知,该几何体为四棱锥,侧棱垂直底面,底面是正方形,将此四棱锥还原为正方体,则正方体的体对角线即外接球的直径,32=r ,23=∴r ,因此ππ342==r S 表面积,故答案为D. 考点:由三视图求外接球的表面积.8.如图,棱长为1的正方体ABCD-A 1B 1C 1D 1中,P 为线段A 1B 上的动点,则下列结论错误的是( )A .11DC D P ⊥B .平面11D A P ⊥平面1A APC .1APD ∠的最大值为90 D .1AP PD +22+ 【答案】C 【解析】试题分析:111DC D A ⊥ ,11DC B A ⊥,1111A B A D A = ,⊥∴1DC 平面11BCD A ,⊂P D 1平面11BCD A 因此P D DC 11⊥,A 正确;由于⊥11A D 平面11ABB A ,⊂11A D 平面P A D 11,故平面⊥P A D 11平面AP A 1 故B 正确,当2201<<P A 时,1APD ∠为钝角,C 错;将面B AA 1与面11BCD A 沿B A 1展成平面图形,正视图 侧视图俯视图线段1AD 即为1PD AP +的最小值,利用余弦定理解221+=AD ,故D 正确,故答案为C .考点:棱柱的结构特征. 9.下列命题中,错误的是( )A .一条直线与两个平行平面中的一个相交,则必与另一个平面相交B .平行于同一平面的两条直线不一定平行C .如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βD .若直线l 不平行于平面α,则在平面α内不存在与l 平行的直线 【答案】B 【解析】试题分析: 由直线与平面的位置关系右知A 正确;平行于同一个平面的两条直线可以相交、平行或异面,故B 错,所以选B.考点:直线、平面平行与垂直的判定与性质.10.已知如图所示的正方体ABCD ﹣A 1B 1C 1D 1,点P 、Q 分别在棱BB 1、DD 1上,且=,过点A 、P 、Q作截面截去该正方体的含点A 1的部分,则下列图形中不可能是截去后剩下几何体的主视图的是( )【答案】A【解析】试题分析:当P 、B 1重合时,主视图为选项B ;当P 到B 点的距离比B 1近时,主视图为选项C ;当P 到B 点的距离比B 1远时,主视图为选项D ,因此答案为A. 考点:组合体的三视图11.一个几何体的三视图及尺寸如图所示,则该几何体的外接球半径为 ( )A. B. C. D.【答案】C 【解析】试题分析:由三视图可知:该几何体是一个如图所示的三棱锥P-ABC ,它是一个正四棱锥P-ABCD 的一半,其中底面是一个两直角边都为6的直角三角形,高PE=4. 设其外接球的球心为O ,O 点必在高线PE 上,外接球半径为R , 则在直角三角形BOE 中,BO 2=OE 2+BE 2=(PE-EO )2+BE 2, 即R 2=(4-R )2+(32)2,解得:R=174,故选C.考点:三视图,球与多面体的切接问题,空间想象能力12.如右图,在长方体1111ABCD A B C D -中,AB =11,AD =7,1AA =12,一质点从顶点A 射向点()4312E ,,,遇长方体的面反射(反射服从光的反射原理),将1i -次到第i 次反射点之间的线段记为()2,3,4i L i =,1L AE =,将线段1234,,,L L L L 竖直放置在同一水平线上,则大致的图形是( )【答案】C 【解析】 试题分析:因为37411>,所以1A E 延长交11D C 于F ,过F 作FM 垂直DC 于.M 在矩形1AA FM 中分析反射情况:由于35105AM =>,第二次反射点为1E 在线段AM 上,此时153E M =,第三次反射点为2E 在线段FM 上,此时24E M =,第四次反射点为3E 在线段1AF 上,由图可知,选C.考点:空间想象能力13.一块石材表示的几何体的三视图如图所示,将该石材切削、打磨、加工成球,则能得到的最大球的半径等于( )A.1B.2C.3D.4【答案】B【解析】试题分析:由图可得该几何体为三棱柱,因为正视图,侧视图,俯视图的内切圆半径最小的是正视图(直角三角形)所对应的内切圆,所以最大球的半径为正视图直角三角形内切圆的半径r , 则2286862r r r -+-+⇒=,故选B. 考点:三视图 内切圆 球 三棱柱14.已知二面角l αβ--为60︒,AB α⊂,AB l ⊥,A 为垂足,CD β⊂,C l ∈,135ACD ∠=︒,则异面直线AB 与CD 所成角的余弦值为 A .14 B .24 C .34 D .12【答案】B. 【解析】试题分析:如图作BE β⊥于E ,连结AE ,过A 作AG ∥CD ,作EG AG ⊥于G ,连结BG ,则.BG AG ⊥设2AB a =.在ABE ∆中,60,90,2,.BAE AEB AB a AE a ∠=︒∠=︒=∴=在Rt AEG ∆中,29045,90,cos 45.2GAE CAG AGE AG a a ∠=︒-∠=︒∠=︒∴=︒=在Rt ABG∆中,222cos 24AG BAG AB a ∠===∴异面直线AB 与CD 所成角的余弦值为24,故选B .βαElBDACG考点:1.三垂线定理及其逆定理;2. 空间角(异面直线所成角)的计算.15.在空间直角坐标系Oxyz 中,已知(2,0,0)(2,2,0),(0,2,0),(1,1,2)A B C D .若123,,S S S 分别是三棱锥D ABC -在,,xOy yOz zOx 坐标平面上的正投影图形的面积,则( )A .123S S S ==B .21S S =且23S S ≠C .31S S =且32S S ≠D .32S S =且31S S ≠ 【答案】D 【解析】试题分析:三棱锥ABC D -在平面xoy 上的投影为ABC ∆,所以21=S ,设D 在平面yoz 、zox 平面上的投影分别为2D 、1D ,则ABC D -在平面yoz 、zox 上的投影分别为2OCD ∆、1OAD ∆,因为)2,1,0(1D ,)2,0,1(2D ,所以212=-S S ,故选D.考点:三棱锥的性质,空间中的投影,难度中等.16.正方形ABCD 的边长为2,点E 、F 分别在边AB 、BC 上,且1AE =,12BF =,将此正 方形沿DE 、DF 折起,使点A 、C 重合于点P ,则三棱锥P DEF -的体积是( ) A .13B 523 D .23【答案】B【解析】试题分析:解:因为90,DPE DPF ∠=∠=所以,DP PE DP PF ⊥⊥又因为PE ⊂平面PEF ,PF ⊂平面PEF ,且PE PF P =,所以DP ⊥平面PEF在PEF ∆中,22223151,,1222PE PF EF EB BF ⎛⎫===+=+= ⎪⎝⎭所以222351222cos 33212EPF ⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭∠==⨯⨯,225sin 133EPF ⎛⎫∠=-= ⎪⎝⎭ 所以11355sin 122234PEF S PE PF EPF ∆=⋅⋅∠=⨯⨯⨯= 115523346PEF P DEF D PEF V V DP S ∆--==⋅⋅=⨯⨯=三棱锥三棱锥 所以应选B.考点:1、直线与平面垂直的判定;2、正弦定理与余弦定理;3、棱锥的体积.17.高为的四棱锥S ﹣ABCD 的底面是边长为1的正方形,点S ,A ,B ,C ,D 均在半径为1的同一球面上,则底面ABCD 的中心与顶点S 之间的距离为( )A. B. C. D.【答案】A【解析】试题分析:由题意可知ABCD 是小圆,对角线长为,四棱锥的高为,推出高就是四棱锥的一条侧棱,最长的侧棱就是球的直径,然后利用勾股定理求出底面ABCD 的中心与顶点S 之间的距离.解:由题意可知ABCD 是小圆,对角线长为,四棱锥的高为,点S ,A ,B ,C ,D 均在半径为1的同一球面上,球的直径为2,所以四棱锥的一条侧棱垂直底面的一个顶点,最长的侧棱就是直径,所以底面ABCD 的中心与顶点S 之间的距离为:=故选A点评:本题是基础题,考查球的内接多面体的知识,能够正确推出四棱锥的一条侧棱垂直底面的一个顶点,最长的侧棱就是直径是本题的关键,考查逻辑推理能力,计算能力.18.二面角l αβ--为60°,A 、B 是棱l 上的两点,AC 、BD 分别在半平面,αβ内,AC l ⊥,BD l ⊥,且AB =AC =a ,BD =2a ,则CD 的长为( )A .2aB .5aC .aD .3a【答案】A【解析】试题分析:根据异面直线上两点间的距离公式2222cos EF d m n mn θ=++± ,对于本题中,d a =,m a =,2n =,60θ=,故()222222cos 602CD a a a a a a =++-⋅⋅⋅=.考点:异面直线上两点间距离,空间想象能力.19.长方体的表面积是24,所有棱长的和是24,则对角线的长是( ).A.14 B .4 C .32 D .23【答案】B【解析】试题分析:设出长方体的长、宽、高,表示出长方体的全面积,十二条棱长度之和,然后可得对角线的长度.考点:长方体的结构特征,面积和棱长的关系.20.已知棱长为l 的正方体1111ABCD A B C D -中,E ,F ,M 分别是AB 、AD 、1AA 的中点,又P 、Q 分别在线段11A B 11、A D 上,且11A P=A Q=x,0<x<1,设面MEF 面MPQ=l ,则下列结论中不成立的是( )A .//l 面ABCDB .l ⊥ACC .面MEF 与面MPQ 不垂直D .当x 变化时,l 不是定直线【答案】D【解析】试题分析:解:连结1111,,,AC BD AC B D ,,AC BD 交于点O 1111,AC B D 交于点1O由正方体的性质知,11111111////,,BD B D AC AC AC BD AC B D ⊥⊥,因为,E F 是,AD AB 的中点,所以//EF BD因为11A P A Q =,所以11//PQ B D所以//PQ EF ,所以//PQ 平面MEF ,//EF 平面MPQ , 由MEF 面MPQ=l ,EF ⊂ 平面MEF ,所以//EF l ,而EF ⊂平面ABCD ,l ⊂/平面ABCD , 所以,//l 面ABCD ,所以选项A 正确;由AC BD ⊥,//EF BD 得EF AC ⊥而//EF l ,所以l ⊥AC ,所以选项B 正确;连111,,MB MD O M ,则11//,O M AC 而1111,//,//AC A B AC BD BD EF A B MF ⊥⊥,所以,11,O M EF O M MF ⊥⊥,所以1O M ⊥平面MEF ,过直线l 与平面MEF 垂直的平面只能有一个,所以面MEF 与面MPQ 不垂直,所以选项C 是正确的;因为//EF l ,M 是定点,过直线外一点有且只有一条直线与已知直线平行,所以直线l 是唯一的,故选项D 不正确.考点:1、直线平面的位置关系;2、直线与直线,直线与平面,平面与平面的平行与垂直的判定及性质.21.如图,等边三角形ABC 的中线AF 与中位线DE 相交于G ,已知ED A '∆是△ADE 绕DE 旋转过程中的一个图形,下列命题中,错误的是( )A .动点A '在平面ABC 上的射影在线段AF 上B .恒有平面GF A '⊥平面BCDEC .三棱锥EFD A -'的体积有最大值D .异面直线E A '与BD 不可能垂直【答案】D【解析】试题分析:由于',A G DE FG DE ⊥⊥.所以DE ⊥平面'A FG .经过点'A 作平面ABC 的垂线垂足在AF上.所以A 选项正确.由A 可知B 选项正确.当平面'A DE 垂直于平面BCDE 时,三棱锥EFD A -'的体积最大,所以C 正确.因为BD EF ,设2AC a =.所以'EF A E a ==,当'2A F a =时,32'(')2a A G GF A G GF a <+==.所以异面直线E A '与BD 可能垂直.所以D 选项不正确.考点:1.线面位置关系.2.面面的位置关系.3.体积公式.4.异面直线所成的角.5.空间想象力.22.已知棱长为l 的正方体1111ABCD A B C D -中,E ,F ,M 分别是AB 、AD 、1AA 的中点,又P 、Q 分别在线段11A B 11、A D 上,且11A P=A Q=x,0<x<1,设面MEF 面MPQ=l ,则下列结论中不成立的是( )A .//l 面ABCDB .l ⊥ACC .面MEF 与面MPQ 不垂直D .当x 变化时,l 不是定直线【答案】D【解析】试题分析:解:连结1111,,,AC BD AC B D ,,AC BD 交于点O 1111,AC B D 交于点1O由正方体的性质知,11111111////,,BD B D AC AC AC BD AC B D ⊥⊥,因为,E F 是,AD AB 的中点,所以//EF BD因为11A P A Q =,所以11//PQ B D所以//PQ EF ,所以//PQ 平面MEF ,//EF 平面MPQ ,由MEF 面MPQ=l ,EF ⊂ 平面MEF ,所以//EF l ,而EF ⊂平面ABCD ,l ⊂/平面ABCD , 所以,//l 面ABCD ,所以选项A 正确;由AC BD ⊥,//EF BD 得EF AC ⊥而//EF l ,所以l ⊥AC ,所以选项B 正确;连111,,MB MD O M ,则11//,O M AC 而1111,//,//AC A B AC BD BD EF A B MF ⊥⊥,所以,11,O M EF O M MF ⊥⊥,所以1O M ⊥平面MEF ,过直线l 与平面MEF 垂直的平面只能有一个,所以面MEF与面MPQ不垂直,所以选项C是正确的;EF l,M是定点,过直线外一点有且只有一条直线与已知直线平行,所以直线l是唯一的,故选因为//项D不正确.考点:1、直线平面的位置关系;2、直线与直线,直线与平面,平面与平面的平行与垂直的判定及性质.23.把四个半径都是1的球中的三个放在桌面上,使它两两外切,然后在它们上面放上第四个球,使它与前三个都相切,求第四个球的最高点与桌面的距离()A.B.C.D.3【答案】A【解析】由题意,四球心组成棱长为2的正四面体的四个顶点,则正四面体的高.而第四个球的最高点到第四个球的球心距离为求的半径1,且三个球心到桌面的距离都为1,故第四个球的最高点与桌面的距离为,选A.24.如图所示,四边形ABCD为正方形,QA⊥平面ABCD,PD∥QA,QA=AB=PD.则棱锥Q-ABCD的体积与棱锥P-DCQ的体积的比值是()A. 2:1B. 1:1C. 1:2D. 1:3【答案】C【解析】设AB =a.由题设知AQ 为棱锥Q -ABCD 的高,所以棱锥Q -ABCD 的体积V 1=.易证PQ ⊥面DCQ ,而PQ =,△DCQ 的面积为,所以棱锥P -DCQ 的体积V 2=.故棱锥Q -ABCD 的体积与棱锥P -DCQ 的体积的比值为1:1,选C.25.正四面体ABCD ,线段AB //平面α,E ,F 分别是线段AD 和BC 的中点,当正四面体绕以AB 为轴旋转时,则线段AB 与EF 在平面α上的射影所成角余弦值的范围是( )A . [0,22]B .[22,1]C .[21,1] D .[21,22] 【答案】B【解析】试题分析:如图,取AC 中点为G ,结合已知得GF //AB ,则线段AB 、EF 在平面α上的射影所成角等于GF 与EF 在平面α上的射影所成角,在正四面体中,AB ⊥CD ,又GE //CD ,所以GE ⊥GF,所以222GF GE EF +=,当四面体绕AB 转动时,因为GF //平面α,GE 与GF 的垂直性保持不变,显然,当CD 与平面α垂直时,GE 在平面上的射影长最短为0,此时EF 在平面α上的射影11F E 的长取得最小值21,当CD 与平面α平行时,GE 在平面上的射影长最长为21,11F E 取得最大值22,所以射影11F E 长的取值范围是 [21,22],而GF 在平面α上的射影长为定值21,所以AB 与EF 在平面α上的射影所成角余弦值的范围是[22,1].故选B 考点:1线面平行;2线面垂直。

数学测试题(必修2)第一章 空间几何体

数学测试题(必修2)第一章 空间几何体

第一章 空间几何体一、选择题1.有一个几何体的三视图如下图所示,这个几何体应是一个( )A .棱台B .棱锥C .棱柱D .都不对2.棱长都是1的三棱锥的表面积为( )A. B. C. D. 3.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是( )A .25πB .50πC .125πD .都不对4.正方体的内切球和外接球的半径之比为( )A. B2 C.D5.在△ABC 中,02, 1.5,120AB BC ABC ==∠=,若使绕直线BC 旋转一周,则所形成的几何体的体积是( ) A. 92π B. 72π C. 52π D. 32π 6.底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的对角线的长分别是9和15,则这个棱柱的侧面积是( )A .130B .140C .150D .1607.如果一个水平放置的图形的斜二测直观图是一个底面为045,腰和上底均为1的等腰梯形,那么原平面图形的面积是( )A . 22+B . 221+ C . 222+ D . 21+ 8.半径为R 的半圆卷成一个圆锥,则它的体积为( )A.3R B3R C3R D3R 9.一个正方体的顶点都在球面上,它的棱长为2cm ,则球的表面积是( )主视图 左视图 俯视图C A.28cm π B.212cm πC.216cm π D.220cm π10.圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的侧面积为84π,则圆台较小底面的半径为( )A .7 B.6 C.5 D.311.棱台上、下底面面积之比为1:9,则棱台的中截面分棱台成两部分的体积之比是( )A .1:7 B.2:7 C.7:19 D.5:1612.如图,在多面体ABCDEF 中,已知平面ABCD 是边长为3的正方形,//EF AB ,32EF =,且EF 与平面ABCD 的距离为2,则该多面体的体积为( )A .92B.5 C.6 D.15213.下图是由哪个平面图形旋转得到的( )A B C D14.过圆锥的高的三等分点作平行于底面的截面,它们把圆锥侧面分成的三部分的面积之比为( )A . 1:2:3B . 1:3:5C . 1:2:4D . 1:3:915.在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方形,则截去8个三棱锥后 ,剩下的几何体的体积是( )A. 23B. 76C. 45D. 5616.已知圆柱与圆锥的底面积相等,高也相等,它们的体积 分别为1V 和2V ,则12:V V =( )A . 1:3B . 1:1C . 2:1 D. 3:117.如果两个球的体积之比为8:27,那么两个球的表面积之比为( )A . 8:27B . 2:3C . 4:9D . 2:918.有一个几何体的三视图及其尺寸如下(单位cm ),则该几何体的表面积及体积为:A . 224cm π,212cm πB . 215cm π,212cm πC . 224cm π,236cm πD . 以上都不正确二、填空题1.一个棱柱至少有 _____个面,面数最少的一个棱锥有 ________个顶点,顶点最少的一个棱台有 ________条侧棱。

高三数学空间几何体试题

高三数学空间几何体试题

高三数学空间几何体试题1.如果,正方体的底面与正四面体的底面在同一平面α上,且AB//CD,正方体的六个面所在的平面与直线CE,EF相交的平面个数分别记为m,n,那么m+n=()A.8B.9C.10D.11【答案】A【解析】因为过EF做垂直于CD(AB)的平面垂直平分CD,所以该平面与过AB中点并与AB垂直的平面平行,平面和正方体的4个侧面相交,由于EF和正方体的侧棱不平行,所以它与正方体的六个面所在的平面相交的平面个数为4.同理与CE相交的平面有4个,共8个,选A.【考点】该题主要考查空间点、线、面的位置关系,考查空间直线与平面的平行与相交,考查空间想象能力和逻辑思维能力.2.如图,设为正四面体表面(含棱)上与顶点不重合的一点,由点到四个顶点的距离组成的集合记为,如果集合中有且只有个元素,那么符合条件的点有()A.个B.个C.个D.个【答案】C【解析】分以下两种情况讨论:(1)点到其中两个点的距离相等,到另外两点的距离分别相等,且这两个距离不等,此时点位于正四面体各棱的中点,符合条件的有个点;(2)点到其中三个点的距离相等,到另外一点的距离与它到其它三点的距离不相等,此时点在正四面体各侧面的中心点,符合条件的有个点,故选C.【考点】新定义3.如图所示,正方体ABCD A1B1C1D1中,AB=2,点E为AD的中点,点F在CD上.若EF∥平面AB1C,则线段EF的长度等于. 【答案】【解析】由于在正方体ABCD A1B1C1D1中,AB=2,∴AC=2.又E为AD中点,EF∥平面AB1C,EF⊂平面ADC,平面ADC∩平面AB1C=AC,∴EF∥AC.∴F为DC中点.∴EF=AC=.4.如图所示,在四面体OABC中,OA、OB、OC两两垂直,且OB=OC=3,OA=4.给出以下命题:①存在点D(O点除外),使得四面体DABC有三个面是直角三角形;②存在点D,使得点O在四面体DABC外接球的球面上;③存在唯一的点D使得四面体DABC是正棱锥;④存在无数个点D,使得AD与BC垂直且相等.其中正确命题的序号是(把你认为正确命题的序号填上).【答案】①②④【解析】①过O作平面ABC的垂线(O′为垂足),延长至D使O′D=OO′,连接AD,BD,CD,则四面体DABC有三个面是直角三角形,故①正确;②在以O、A、B、C确定的球上,显然存在点D满足条件,故②正确;③因为AB=AC=5,BC=3,所以当点D满足BC=BD=CD=3且AD=5,四面体是以△BCD为底面的正棱锥,这样的D点有两个,所以③不正确.④取BC的中点O1,在平面AOO1内以A为圆心,以BC为半径作圆,圆周上任一点满足条件,所以这样的点D有无数个,故④正确.5.如图,四棱锥P-ABCD的底面ABCD是边长为2的菱形,∠BAD=60°,已知PB=PD=2,PA=.(1)证明:PC⊥BD;(2)若E为PA的中点,求三棱锥P-BCE的体积.【答案】(1)见解析(2)【解析】(1)证明:连接AC,交BD于点O,连接PO.因为底面ABCD是菱形,所以AC⊥BD,BO=DO.由PB=PD知,PO⊥BD.又因为PO∩AC=O,所以BD⊥平面APC.又PC⊂平面APC,因此BD⊥PC.(2)因为E是PA的中点,所以V三棱锥P-BCE =V三棱锥C-PEB= V三棱锥C-PAB= V三棱锥B-APC.由PB=PD=AB=AD=2知,△ABD≌△PBD.因为∠BAD=60°,所以PO=AO=,AC=2 ,BO=1.又PA=,所以PO2+AO2=PA2,所以PO⊥AC,故S△APC= PO·AC=3.由(1)知,BO⊥平面APC,因此V三棱锥P-BCE= V三棱锥B-APC=··BO·S△APC=.6.一块边长为10 cm的正方形铁片按如图所示的阴影部分裁下,然后用余下的四个全等的等腰三角形作侧面,以它们的公共顶点P为顶点,加工成一个如图所示的正四棱锥形容器.当x=6 cm时,该容器的容积为________cm3.【答案】48【解析】由题意可知道,这个正四棱锥形容器的底面是以6 cm为边长的正方形,侧高为5 cm,高为4 cm,所以所求容积为48 cm3.7.如图,在三棱锥S -ABC中,平面EFGH分别与BC,CA,AS,SB交于点E,F,G,H,且SA⊥平面EFGH,SA⊥AB,EF⊥FG.求证:(1)AB∥平面EFGH;(2)GH∥EF;(3)GH⊥平面SAC.【答案】见解析【解析】证明(1)因为SA⊥平面EFGH,GH⊂平面EFGH,所以SA⊥GH.又因为SA⊥AB,SA,AB,GH都在平面SAB内,所以AB∥GH.因为AB⊄平面EFGH,GH⊂平面EFGH,所以AB∥平面EFGH.(2)因为AB∥平面EFGH,AB⊂平面ABC,平面ABC∩平面EFGH=EF,所以AB∥EF.又因为AB∥GH,所以GH∥EF.(3)因为SA⊥平面EFGH,SA⊂平面SAC,所以平面EFGH⊥平面SAC,交线为FG.因为GH∥EF,EF⊥FG,所以GH⊥FG.又因为GH⊂平面EFGH,所以GH⊥平面SAC.8.已知四棱锥V-ABCD,底面ABCD是边长为3的正方形,VA⊥平面ABCD,且VA=4,则此四棱锥的侧面中,所有直角三角形的面积的和是________.【答案】27【解析】可证四个侧面都是直角三角形,其面积S=2××3×4+2××3×5=27.9.已知三角形所在平面与矩形所在平面互相垂直,,,若点都在同一球面上,则此球的表面积等于( )A.B..C.D.【答案】C【解析】过外心(中点)作垂直于平面的直线,过外心作面,则与的交点为锥体的外接球,球心为,由条件,则,∴,∴.【考点】球的表面积.10.一个直三棱柱被一个平面截去一部分后所剩几何体的三视图如图所示,则该几何体的体积为()A.9B.10C.11D.【答案】C【解析】由三视图可知,该几何体为一个长方体截去一个三棱锥,三棱锥的体积为,长方体的体积为,所以该几何体的体积为11,故选.【考点】1.三视图;2.三棱锥的体积.11.如图,在正方体中,为对角线的三等分点,到各顶点的距离的不同取值有()A.个B.个C.个D.个【答案】B【解析】设正方体的棱长为3,计算得,,,,故到各顶点的距离的不同取值有4个.【考点】本小题考查了两点距离间的计算,考查了直线和平面的位置关系和空间想象能力.12.在半径为的球内放入大小相等的4个小球,则小球半径的最大值为()A.B.C.D.【答案】A【解析】当四个小球两两相切并且四个小球都与大球相切时,这些小球的半径最大。

高三数学空间几何体试题

高三数学空间几何体试题

高三数学空间几何体试题1.《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“盖”的术:置如其周,令相承也.又以高乘之,三十六成一.该术相当于给出了有圆锥的底面周长与高,计算其体积的近似公式它实际上是将圆锥体积公式中的圆周率近似取为3.那么近似公式相当于将圆锥体积公式中的近似取为()A.B.C.D.【答案】B【解析】设圆锥底面圆的半径为,高为,依题意,,,所以,即的近似值为,故选B.【考点】《算数书》中的近似计算,容易题.2.如图,设为正四面体表面(含棱)上与顶点不重合的一点,由点到四个顶点的距离组成的集合记为,如果集合中有且只有个元素,那么符合条件的点有()A.个B.个C.个D.个【答案】C【解析】分以下两种情况讨论:(1)点到其中两个点的距离相等,到另外两点的距离分别相等,且这两个距离不等,此时点位于正四面体各棱的中点,符合条件的有个点;(2)点到其中三个点的距离相等,到另外一点的距离与它到其它三点的距离不相等,此时点在正四面体各侧面的中心点,符合条件的有个点,故选C.【考点】新定义3.如图,正方体ABCD A1B1C1D1的棱长为1,P为BC的中点,Q为线段CC1上的动点,过点A,P,Q的平面截该正方体所得的截面记为S.则下列命题正确的是(写出所有正确命题的编号).①当0<CQ<时,S为四边形;②当CQ=时,S为等腰梯形;③当CQ=时,S与C1D1的交点R满足C1R=;④当<CQ<1时,S为六边形;⑤当CQ=1时,S的面积为.【答案】①②③⑤【解析】利用平面的基本性质结合特殊四边形的判定与性质求解.①当0<CQ<时,如图(1).在平面AA1D1D内,作AE∥PQ,显然E在棱DD1上,连接EQ, 则S是四边形APQE.②当CQ=时,如图(2).显然PQ∥BC1∥AD1,连接D1Q,则S是等腰梯形.③当CQ=时,如图(3).作BF∥PQ交CC1的延长线于点F,则C1F=.作AE∥BF,交DD1的延长线于点E,D1E=,AE∥PQ,连接EQ交C1D1于点R,由于Rt△RC1Q∽Rt△RD1E,∴C1Q∶D1E=C1R∶RD1=1∶2,∴C1R=.④当<CQ<1时,如图(3),连接RM(点M为AE与A1D1交点),显然S为五边形APQRM.⑤当CQ=1时,如图(4).同③可作AE∥PQ交DD1的延长线于点E,交A1D1于点M,显然点M为A1D1的中点,所以S为菱形APQM,其面积为MP×AQ=××=.4.如图是某个正方体的侧面展开图,l1,l2是两条侧面对角线,则在正方体中,l1与l2()A.互相平行B.异面且互相垂直C.异面且夹角为D.相交且夹角为【答案】D【解析】将侧面展开图还原成正方体如图所示,则B,C两点重合,故l1与l2相交.连接AD,△ABD为正三角形,所以l1与l2的夹角为.故选D.5.如图是正方体或四面体,P,Q,R,S分别是所在棱的中点,这四个点不共面的一个图是()【答案】D【解析】在A图中分别连接PS,QR,易证PS∥QR,∴P,S, R,Q共面.在B图中过P,Q,R,S可作一正六边形,如图,故P,Q,R,S四点共面.在C图中分别连接PQ,RS,易证PQ∥RS,∴P,Q,R,S共面.D图中PS与RQ为异面直线,∴P,Q,R,S四点不共面,故选D.6.正四面体ABCD的棱长为4,E为棱BC的中点,过E作其外接球的截面,则截面面积的最小值为 .【答案】【解析】将四面体ABCD补为正方体,如下图所示,则正方体的外接球就是正四面体的外接球.设球心为O,面积最小的截面就是与OE垂直的截面.由图可知,这个截面就是底面正方形的外接圆,其面积为:..【考点】空间几何体.7.已知球的半径为5,球面被互相垂直的两个平面所截,得到的两个圆的公共弦长为2,若其中一个圆的半径为4,则另一个圆的半径为()A.3B.C.D.2【答案】D【解析】由已知可得球心到半径为4的圆距离d==3,因此所求圆圆心到弦的距离为3,故所求圆半径R==2,故选D.8.某几何体的三视图如图所示,则它的侧面积为()A.B.C.24D.【答案】A【解析】由三视图得,这是一个正四棱台,由条件,侧面积.【考点】1.三视图;2.正棱台侧面积的求法.9.如图,在直四棱柱中,点分别在上,且,,点到的距离之比为,则三棱锥和的体积比 .【答案】【解析】点到的距离之比为,所以,又直四棱柱中,,,所以,于是.【考点】直棱柱的定义、棱锥体积公式.10.如图所示的几何体ABCDFE中,△ABC,△DFE都是等边三角形,且所在平面平行,四边形BCED为正方形,且所在平面垂直于平面ABC.(Ⅰ)证明:平面ADE∥平面BCF;(Ⅱ)求二面角D-AE-F的正切值.【答案】(Ⅰ)利用线线平行,则面面平行证明,即可得证;(Ⅱ).【解析】(Ⅰ)先证明四边形为平行四边形得,又,所以平面平面;(Ⅱ)建立空间直角坐标系,先求出平面的一个法向量,再求出平面的一个法向量,然后利用公式即可求出余弦值为,进而求出正切值.试题解析:(Ⅰ)取的中点,的中点,连接.则,又平面平面,所以平面,同理平面,所以又易得,所以四边形为平行四边形,所以,又,所以平面平面. (6分)(Ⅱ)建立如图所示的空间直角坐标系,设,则,,,,,.设平面的一个法向量是,则,令,得. (9分)设平面的一个法向量是,则令,得.所以,易知二面角为锐二面角,故其余弦值为,所以二面角的正切值为. (12分)【考点】1.平面与平面垂直的判定方法;2.二面角的求法.11.在空间几何体中,平面,平面平面,,.(I)求证:平面;(II)如果平面,求证:.【答案】(Ⅰ)详见解析;(Ⅱ)详见解析.【解析】(Ⅰ)利用平面平面得到平面内一条直线与平面垂直,然后利用直线与平面垂直的性质定理得到该直线与平行,进而证明平面;(Ⅱ)利用已知条件确定三棱锥和的高与底面积,及三棱锥和中相应的边长之间的等量关系,然后将三棱锥和的体积用对应的边长进行表示,两者进行比较从而得出.试题解析:(I)如图,取中点,连,由得,∵平面⊥平面,∴平面, 2分又∵⊥平面,∴∥, 4分又∵平面,∴∥平面. 6分(Ⅱ)连接,则.∵平面⊥平面,面∩面,∴⊥平面.又∵,∴∥. 8分又由(Ⅰ)知,四边形是矩形,∴,. 10分∴,而,则. 12分【考点】直线与平面平行、几何体的体积12.一只蚂蚁从正方体的顶点处出发,经正方体的表面,按最短路线爬行到达顶点位置,则下列图形中可以表示正方体及蚂蚁最短爬行路线的正视图是A.①②B.①③C.②④D.③④【答案】C【解析】根据题意,由于蚂蚁从正方体的顶点处出发,经正方体的表面,按最短路线爬行到达顶点位置,那么可知最短的距离即为相邻两个平面的展开图的面对角线的长度,那么展开平面和平面平面得到最短路线,那么正视图对应的为②④,故选C.【考点】侧面展开图点评:主要是考查了空间几何体的侧面展开图的运用,属于基础题。

必修2第一章空间几何体测试题

必修2第一章空间几何体测试题

空间几何体测试题姓名______班级________分数______________一.选择题1.向高为H的水瓶中匀速注水,注满为止,如果注水量V与水深h的函数关系如下面左图所示,那么水瓶的形状是()2. 棱长都是1的三棱锥的表面积为()A A. 3B 23C 33D 433.一个正三棱柱(底面是正三角形,侧棱与底面垂直的三棱柱)的侧棱长和底面边长相等,体积为32,它的三视图中的俯视图如右图所示,左视图是一个矩形,则这个矩形的面积是()A.4 B.22 C.32D.34. 如右图,某几何体的正视图与侧视图都是边长为1的正方形,且体积为12。

则该几何体的俯视图可以是( )5.正方体的内切球外接球的体积之比为( )A. 1∶3B. 1∶3C. 1∶33D. 1∶96.有一个几何体的三视图及其尺寸如下(单位cm),则该几何体的表面积及体积为:A. 224cmπ,212cmπ B. 215cmπ,212cmπC. 224cmπ,236cmπ D.以上都不正确7.一个几何体的三视图如图所示,则这个几何体的体积等于( )(A) 4 (B) 6 (C) 8 (D)128.已知一个几何体的三视图如图所示, 则这个几何体的体积为( )A.8/3B.4C.8D.169.一个三角形在其直观图中对应一个边长为1正三角形,原三角形的面积为()A.46B.43C.23D.2610.如图,已知三棱锥的底面是直角三角形,直角边长分别为3和4,过直角顶点的侧棱长为4,且垂直于底面,该三棱锥的主视图是()65题号 1 2 3 4 5 6 7 8 9 10 答案二.填空题11. 一球与棱长为2cm 的正方体的各棱相切,则球的体积是______12.若某几何体的三视图(单位:cm )如图所示,则此几何体的体积是_______3cm .(第13题)13.一个的空间几何体的三视图如图所示,则该几何体的体积为_______14.一个与球心距离为1的平面截球所得的圆面面积为π,则球的表面积为 _________ 15.正四棱台的两底边长分别为1cm,2cm,高是1cm,它的侧面积为______cm 2.16.圆柱形容器内盛有高度为3cm 的水,若放入三个相同的珠(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球(如右下图所示),则球的半径是____cm. 17.一个几何体的三视图及其尺寸如图所示,则该几何体的侧面积为_______cm 2.(第17题) (第16题)三.解答题18.画出下列空间几何体的三视图.19.一个圆台的母线长为12cm ,两底面面积分别是24cm π和225cm π,求: (1)圆台的高1OO 的长度;(2)截得此圆台的圆锥的母线长SA 的长度.20.一个正三棱柱的三视图如图所示,(1)做出该三棱柱的斜二测直观图(不要求叙述过程) (2)求这个三棱柱的表面积和体积.21.某高速公路收费站入口处的安全标识墩如图4所示,墩的上半部分是正四棱锥P -EFGH,下半部分是长方体ABCD -EFGH. 图5、图6分别是该标识墩的正(主)视图和俯视图.(1)请画出该安全标识墩的侧(左)视图;(2)求该安全标识墩的体积俯视图正(主)视图88侧(左)视8222正(主)视 2 2侧(左)视图 俯视图。

高中几何体试题及答案大全

高中几何体试题及答案大全

高中几何体试题及答案大全试题一:直线与平面的关系题目:在空间直角坐标系中,直线l过点A(1, 2, 3)且与向量(2, -1, 0)平行。

求证:直线l与平面x - 2y + z = 6平行。

答案:首先,直线l的参数方程可以表示为:\[ x = 1 + 2t, \quad y = 2 - t, \quad z = 3 \]其中\( t \)为参数。

接下来,将直线l的参数方程代入平面方程x - 2y + z = 6,得到:\[ (1 + 2t) - 2(2 - t) + 3 = 6 \]\[ 1 + 2t - 4 + 2t + 3 = 6 \]\[ 4t = 6 \]\[ t = \frac{3}{2} \]由于直线l的参数方程中,参数\( t \)可以取任意实数,而代入平面方程后,\( t \)有唯一解,这表明直线l与平面x - 2y + z = 6平行。

试题二:立体几何体积计算题目:一个正方体的边长为a,求其外接球的体积。

答案:正方体的外接球的直径等于正方体的对角线长度,即:\[ 2R = a\sqrt{3} \]其中\( R \)为外接球的半径。

由此可得外接球的半径为:\[ R = \frac{a\sqrt{3}}{2} \]球的体积公式为:\[ V = \frac{4}{3}\pi R^3 \]代入\( R \)的值,得到正方体外接球的体积为:\[ V = \frac{4}{3}\pi \left(\frac{a\sqrt{3}}{2}\right)^3 =\frac{\pi a^3\sqrt{3}}{2} \]试题三:圆锥曲线问题题目:已知椭圆的方程为\( \frac{x^2}{a^2} + \frac{y^2}{b^2} =1 \),其中a > b > 0。

求椭圆的焦点坐标。

答案:椭圆的焦点位于主轴上,根据椭圆的性质,焦点到椭圆中心的距离为c,满足以下关系:\[ c^2 = a^2 - b^2 \]假设焦点位于x轴上,焦点的坐标为\( (c, 0) \)和\( (-c, 0) \)。

高一数学空间几何体试题答案及解析

高一数学空间几何体试题答案及解析

高一数学空间几何体试题答案及解析1.两个球的体积之比是,那么这两个球的表面积之比是()A.B.C.D.【答案】B【解析】设半径分别为r,R;则故选B2.一个表面积为36π的球外切于一圆柱,则圆柱的表面积为()A.45πB.27πC.36πD.54π【答案】D【解析】因为球的表面积为36π,所以球的半径为3,因为该球外切于圆柱,所以圆柱的底面半径为3,高为6,所以圆柱的表面积.3.有6根细木棒,其中较长的两根分别为,,其余4根均为,用它们搭成三棱锥,则其中两条较长的棱所在的直线所成的角的余弦值为 .【答案】或0【解析】依题意可得,三棱锥中较长的两条棱长为,设这两条棱所在直线的所成角为。

若这两条棱相交,则这两条棱长所在面的第三条棱长为,由余弦定理可得。

若这两条棱异面,如图,不妨设,取中点,连接。

因为,所以有,从而有面,所以,则4.已知各顶点都在一个球面上的正四棱柱(其底面是正方形,且侧棱垂直于底面)高为,体积为,则这个球的表面积是()A.B.C.D.【答案】C【解析】正四棱柱的底面积为,正四棱柱的底面的边长为,正四棱柱的底面的对角线为,正四棱柱的对角线为,而球的直径等于正四棱柱的对角线,即,5.将一个边长为a的正方体,切成27个全等的小正方体,则表面积增加了()A.B.12a2C.18a2D.24a2【答案】B【解析】27个全等的小正方体的棱长为边长为a的正方体的表面积为27个全等的小正方体的表面积和为则表面积增加了。

故选B6.两个球体积之和为12π,且这两个球大圆周长之和为6π,那么这两球半径之差是()A.B.1C.2D.3【答案】B【解析】7.直径为10cm的一个大金属球,熔化后铸成若干个直径为2cm的小球,如果不计损耗,可铸成这样的小球的个数为()A.5B.15C.25D.125【答案】D【解析】设个数为则故选D8.与正方体各面都相切的球,它的表面积与正方体的表面积之比为()A.B.C.D.【答案】B【解析】设正方体棱长为a,球半径为r;由条件知则球表面积正方体的表面积之比为故选B9.球的表面积扩大为原来的4倍,则它的体积扩大为原来的___________倍【答案】8【解析】设球半径为扩大后球半径为则于是扩大后体积为所以它的体积扩大为原来的8倍.10.利用斜二测画法得到:①三角形的直观图是三角形;②平行四边形的直观图是平行四边形;③正方形的直观图是正方形;④菱形的直观图是菱形.以上结论,正确的是()A.①②B.①C.③④D.①②③④【答案】A【解析】由斜二测画法规则知:①正确;平行性不变,故②正确;正方形的直观图是平行四边形,③错误;因为平行于y′轴的线段长减半,平行于x′轴的线段长不变,故④错误.故选A11.下列说法中正确的是()A.互相垂直的两条直线的直观图仍然是互相垂直的两条直线B.梯形的直观图可能是平行四边形C.矩形的直观图可能是梯形D.正方形的直观图可能是平行四边形【答案】D【解析】坐标轴上的两条直线的直观图是成角的两条直线;梯形的直观图不可能是平行四边形,平行的一组对边长度不相等,它们的直观图的长度也不相等;矩形的直观图是平行四边形,不可能是梯形;正方形的直观图是平行四边形。

空间几何体测试题答案

空间几何体测试题答案

空间几何体测试题一、选择题( 10 小题,每小题 5 分) 1. 下列说法正确的个数是( A )①有两个面平行,其余各面都是平行四边形的几何体叫棱柱. ②有一个面是多边形,其余各面都是三角形的几何体叫棱锥. ③有两个面平行,其余各面都是等腰梯形的几何体叫棱台. ④一个圆绕其直径旋转一周得球A . 0个 B. 1个 C. 2个 D. 3个2. 如图1是一个直棱柱(侧棱与底面垂直)被一个平面所截剩下的部分,底面ABC V 为正三角形,'''::1:2:3AA BB CC =,,则多面体'''ABC A B C -的正视图是( D)3. 长方体的一个顶点上三条棱长分别是3、4、5,且它的8个顶点都在同一球面上,则这个球的表面积是 ( B )A 、25πB 、50πC 、125πD 、都不对4.. 过圆锥的高的三等分点作平行于底面的截面,它们把圆锥侧面分成的三部分的面积之比为( B )A.1:2:3B.1:3:5C.1:2:4 D 。

1:3:95. 圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的侧面积为84π,则圆台较小底面的半径为 ( A )A 、7B 、6C 、5D 、36. 已知正方体、球、底面直径与母线相等的圆柱,它们的表面积相等,则它们的体积的大小关系是(B ) (A )V正方体=V 圆柱=V 球 (B )V 正方体<V 圆柱<V 球(C )V 正方体>V 圆柱>V 球 (D )V 圆柱>V 正方体>V 球7. .用若干个棱长为1的正方体搭成一个几何体,其正视图、侧视图都是如右图形,对这个几何体,下列说法正确的是( D )A .这个几何体的体积一定是7B .这个几何体的体积一定是10C .这个几何体的体积的最小值是6,最大值是10D .这个几何体的体积的最小值是5,最大值是118.将一圆形纸片沿半径剪开为两个扇形,其圆心角之比为3∶ 4. 再将它们卷成两个圆锥侧面,则两圆锥体积之比为(D )A.3∶4 B.9∶16 C.27∶64 D.都不对9. 已知正三棱锥V-ABC(底面是正三角形,顶点在底面的射影是底面正三角形的中心)的正视图和俯视图如图所示,则其侧视图的面积是( A )AB、6 C、D10.某几何体的三视图如图所示,当a+b取最大值时,这个几何体的体积为(D)A.16B.13 C.23D.12二、填空题(10小题,每小题 5 分)11.已知某个几何体的三视图如图,根据图中标出的尺寸(单位:㎝),可得这个几何体体积是3。

高考数学空间几何高考真题

高考数学空间几何高考真题

高考数学空间几何高考真题一.选择题〔共9小题〕1.如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是〔〕A.B.C.D.2.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为〔〕A.πB.C.D.3.在正方体ABCD﹣A1B1C1D1中,E为棱CD的中点,则〔〕A.A1E⊥DC1 B.A1E⊥BD C.A1E⊥BC1 D.A1E⊥AC4.某三棱锥的三视图如图所示,则该三棱锥的体积为〔〕A.60 B.30 C.20 D.105.某几何体的三视图如图所示〔单位:cm〕,则该几何体的体积〔单位:cm2〕是〔〕A.+1 B.+3 C.+1 D.+36.如图,已知正四面体D﹣ABC〔所有棱长均相等的三棱锥〕,P、Q、R分别为AB、BC、CA上的点,AP=PB,==2,分别记二面角D﹣PR﹣Q,D﹣PQ﹣R,D﹣QR﹣P的平面角为α、β、γ,则〔〕A.γ<α<βB.α<γ<βC.α<β<γD.β<γ<α7.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为〔〕A.90πB.63πC.42πD.36π1.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为〔〕A.10 B.12 C.14 D.162.已知直三棱柱ABC﹣A1B1C1中,∠ABC=120°,AB=2,BC=CC1=1,则异面直线AB1与BC1所成角的余弦值为〔〕A.B.C.D.二.填空题〔共5小题〕8.已知三棱锥S﹣ABC的所有顶点都在球O的球面上,SC是球O的直径.若平面SCA⊥平面SCB,SA=AC,SB=BC,三棱锥S﹣ABC的体积为9,则球O的表面积为.9.长方体的长、宽、高分别为3,2,1,其顶点都在球O的球面上,则球O的表面积为.10.已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为.11.由一个长方体和两个圆柱体构成的几何体的三视图如图,则该几何体的体积为.12.如图,在圆柱O1O2内有一个球O,该球与圆柱的上、下底面及母线均相切,记圆柱O1O2的体积为V1,球O的体积为V2,则的值是.三.解答题〔共9小题〕13.如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.〔1〕证明:平面PAB⊥平面PAD;〔2〕若PA=PD=AB=DC,∠APD=90°,且四棱锥P﹣ABCD的体积为,求该四棱锥的侧面积.14.如图,四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°.〔1〕证明:直线BC∥平面PAD;〔2〕若△PCD面积为2,求四棱锥P﹣ABCD的体积.15.如图四面体ABCD中,△ABC是正三角形,AD=CD.〔1〕证明:AC⊥BD;〔2〕已知△ACD是直角三角形,AB=BD,若E为棱BD上与D不重合的点,且AE⊥EC,求四面体ABCE与四面体ACDE的体积比.16.如图,直三棱柱ABC﹣A1B1C1的底面为直角三角形,两直角边AB和AC的长分别为4和2,侧棱AA1的长为5.〔1〕求三棱柱ABC﹣A1B1C1的体积;〔2〕设M是BC中点,求直线A1M与平面ABC所成角的大小.17.如图,在三棱锥P﹣ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D为线段AC的中点,E为线段PC上一点.〔1〕求证:PA⊥BD;〔2〕求证:平面BDE⊥平面PAC;〔3〕当PA∥平面BDE时,求三棱锥E﹣BCD的体积.18.如图,在四棱锥P﹣ABCD中,AD⊥平面PDC,AD∥BC,PD⊥PB,AD=1,BC=3,CD=4,PD=2.〔Ⅰ〕求异面直线AP与BC所成角的余弦值;〔Ⅱ〕求证:PD⊥平面PBC;〔Ⅲ〕求直线AB与平面PBC所成角的正弦值.19.如图,已知四棱锥P﹣ABCD,△PAD是以AD为斜边的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E为PD的中点.〔Ⅰ〕证明:CE∥平面PAB;〔Ⅱ〕求直线CE与平面PBC所成角的正弦值.20.由四棱柱ABCD﹣A1B1C1D1截去三棱锥C1﹣B1CD1后得到的几何体如图所示,四边形ABCD为正方形,O为AC与BD 的交点,E为AD的中点,A1E⊥平面ABCD,〔Ⅰ〕证明:A1O∥平面B1CD1;〔Ⅱ〕设M是OD的中点,证明:平面A1EM⊥平面B1CD1.21.如图,在三棱锥A﹣BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E、F〔E与A、D不重合〕分别在棱AD,BD上,且EF⊥AD.求证:〔1〕EF∥平面ABC;〔2〕AD⊥AC.3.如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.〔1〕证明:平面PAB⊥平面PAD;〔2〕若PA=PD=AB=DC,∠APD=90°,求二面角A﹣PB﹣C的余弦值.4.如图,四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°,E是PD的中点.〔1〕证明:直线CE∥平面PAB;〔2〕点M在棱PC 上,且直线BM与底面ABCD所成角为45°,求二面角M﹣AB﹣D的余弦值.5.如图,四面体ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD.〔1〕证明:平面ACD⊥平面ABC;〔2〕过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角D﹣AE﹣C 的余弦值.6.如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M在线段PB上,PD∥平面MAC,PA=PD=,AB=4.〔1〕求证:M为PB的中点;〔2〕求二面角B﹣PD﹣A的大小;〔3〕求直线MC与平面BDP所成角的正弦值.7.如图,在三棱锥P﹣ABC中,PA⊥底面ABC,∠BAC=90°.点D,E,N分别为棱PA,PC,BC的中点,M是线段AD的中点,PA=AC=4,AB=2.〔Ⅰ〕求证:MN∥平面BDE;〔Ⅱ〕求二面角C﹣EM﹣N的正弦值;〔Ⅲ〕已知点H在棱PA上,且直线NH与直线BE所成角的余弦值为,求线段AH的长.8.如图,几何体是圆柱的一部分,它是由矩形ABCD〔及其内部〕以AB边所在直线为旋转轴旋转120°得到的,G是的中点.〔Ⅰ〕设P是上的一点,且AP⊥BE,求∠CBP的大小;〔Ⅱ〕当AB=3,AD=2时,求二面角E﹣AG﹣C的大小.2017年高考数学空间几何高考真题参考答案与试题解析一.选择题〔共7小题〕1.如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是〔〕A.B.C.D.【解答】解:对于选项B,由于AB∥MQ,结合线面平行判定定理可知B不满足题意;对于选项C,由于AB∥MQ,结合线面平行判定定理可知C不满足题意;对于选项D,由于AB∥NQ,结合线面平行判定定理可知D不满足题意;所以选项A满足题意,故选:A.2.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为〔〕A.πB.C.D.【解答】解:∵圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,∴该圆柱底面圆周半径r==,∴该圆柱的体积:V=Sh==.故选:B.3.在正方体ABCD﹣A1B1C1D1中,E为棱CD的中点,则〔〕A.A1E⊥DC1 B.A1E⊥BD C.A1E⊥BC1 D.A1E⊥AC【解答】解:法一:连B1C,由题意得BC1⊥B1C,∵A1B1⊥平面B1BCC1,且BC1⊂平面B1BCC1,∴A1B1⊥BC1,∵A1B1∩B1C=B1,∴BC1⊥平面A1ECB1,∵A1E⊂平面A1ECB1,∴A1E⊥BC1.故选:C.法二:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,设正方体ABCD﹣A1B1C1D1中棱长为2,则A1〔2,0,2〕,E〔0,1,0〕,B〔2,2,0〕,D〔0,0,0〕,C1〔0,2,2〕,A〔2,0,0〕,C 〔0,2,0〕,=〔﹣2,1,﹣2〕,=〔0,2,2〕,=〔﹣2,﹣2,0〕,=〔﹣2,0,2〕,=〔﹣2,2,0〕,∵•=﹣2,=2,=0,=6,∴A1E⊥BC1.故选:C.4.某三棱锥的三视图如图所示,则该三棱锥的体积为〔〕A.60 B.30 C.20 D.10【解答】解:由三视图可知:该几何体为三棱锥,该三棱锥的体积==10.故选:D.5.某几何体的三视图如图所示〔单位:cm〕,则该几何体的体积〔单位:cm2〕是〔〕A.+1 B.+3 C.+1 D.+3【解答】解:由几何的三视图可知,该几何体是圆锥的一半和一个三棱锥组成,圆锥的底面圆的半径为1,三棱锥的底面是底边长2的等腰直角三角形,圆锥的高和棱锥的高相等均为3,故该几何体的体积为××π×12×3+××××3=+1,故选:A6.如图,已知正四面体D﹣ABC〔所有棱长均相等的三棱锥〕,P、Q、R分别为AB、BC、CA上的点,AP=PB,==2,分别记二面角D﹣PR﹣Q,D﹣PQ﹣R,D﹣QR﹣P的平面角为α、β、γ,则〔〕A.γ<α<βB.α<γ<βC.α<β<γD.β<γ<α【解答】解法一:如图所示,建立空间直角坐标系.设底面△ABC的中心为O.不妨设OP=3.则O〔0,0,0〕,P〔0,﹣3,0〕,C〔0,﹣6,0〕,D〔0,0,6〕,Q,R,=,=〔0,3,6〕,=〔,5,0〕,=,=.设平面PDR的法向量为=〔x,y,z〕,则,可得,可得=,取平面ABC的法向量=〔0,0,1〕.则cos==,取α=arccos.同理可得:β=arccos.γ=arccos.∵>>.∴α<γ<β.解法二:如图所示,连接OP,OQ,OR,过点O分别作垂线:OE⊥PR,OF⊥PQ,OG⊥QR,垂足分别为E,F,G,连接DE,DF,DG.设OD=h.则tanα=.同理可得:tanβ=,tanγ=.由已知可得:OE>OG>OF.∴tanα<tanγ<tanβ,α,β,γ为锐角.∴α<γ<β.故选:B.7.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为〔〕A.90πB.63πC.42πD.36π【解答】解:由三视图可得,直观图为一个完整的圆柱减去一个高为6的圆柱的一半,V=π•32×10﹣•π•32×6=63π,故选:B.1.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为〔〕A.10 B.12 C.14 D.16【解答】解:由三视图可画出直观图,该立体图中只有两个相同的梯形的面,S梯形=×2×〔2+4〕=6,∴这些梯形的面积之和为6×2=12,故选:B2.已知直三棱柱ABC﹣A1B1C1中,∠ABC=120°,AB=2,BC=CC1=1,则异面直线AB1与BC1所成角的余弦值为〔〕A.B.C.D.【解答】解:【解法一】如图所示,设M、N、P分别为AB,BB1和B1C1的中点,则AB1、BC1夹角为MN和NP夹角或其补角〔因异面直线所成角为〔0,]〕,可知MN=AB1=,NP=BC1=;作BC中点Q,则△PQM为直角三角形;∵PQ=1,MQ=AC,△ABC中,由余弦定理得AC2=AB2+BC2﹣2AB•BC•cos∠ABC=4+1﹣2×2×1×〔﹣〕=7,∴AC=,∴MQ=;在△MQP中,MP==;在△PMN中,由余弦定理得cos∠MNP===﹣;又异面直线所成角的范围是〔0,],∴AB1与BC1所成角的余弦值为.【解法二】如图所示,补成四棱柱ABCD﹣A1B1C1D1,求∠BC1D即可;BC1=,BD==,C1D=,∴+BD2=,∴∠DBC1=90°,∴cos∠BC1D==.二.填空题〔共5小题〕8.已知三棱锥S﹣ABC的所有顶点都在球O的球面上,SC是球O的直径.若平面SCA⊥平面SCB,SA=AC,SB=BC,三棱锥S﹣ABC的体积为9,则球O的表面积为36π.【解答】解:三棱锥S﹣ABC的所有顶点都在球O的球面上,SC是球O的直径,若平面SCA⊥平面SCB,SA=AC,SB=BC,三棱锥S﹣ABC的体积为9,可知三角形SBC与三角形SAC都是等腰直角三角形,设球的半径为r,可得,解得r=3.球O的表面积为:4πr2=36π.故答案为:36π.9.长方体的长、宽、高分别为3,2,1,其顶点都在球O的球面上,则球O的表面积为14π.【解答】解:长方体的长、宽、高分别为3,2,1,其顶点都在球O的球面上,可知长方体的对角线的长就是球的直径,所以球的半径为:=.则球O的表面积为:4×=14π.故答案为:14π.10.已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为.【解答】解:设正方体的棱长为a,∵这个正方体的表面积为18,∴6a2=18,则a2=3,即a=,∵一个正方体的所有顶点在一个球面上,∴正方体的体对角线等于球的直径,即a=2R,即R=,则球的体积V=π•〔〕3=;故答案为:.11.由一个长方体和两个圆柱体构成的几何体的三视图如图,则该几何体的体积为2+.【解答】解:由长方体长为2,宽为1,高为1,则长方体的体积V1=2×1×1=2,圆柱的底面半径为1,高为1,则圆柱的体积V2=×π×12×1=,则该几何体的体积V=V1+2V1=2+,故答案为:2+.12.如图,在圆柱O1O2内有一个球O,该球与圆柱的上、下底面及母线均相切,记圆柱O1O2的体积为V1,球O的体积为V2,则的值是.【解答】解:设球的半径为R,则球的体积为:R3,圆柱的体积为:πR2•2R=2πR3.则==.故答案为:.三.解答题〔共9小题〕13.如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.〔1〕证明:平面PAB⊥平面PAD;〔2〕若PA=PD=AB=DC,∠APD=90°,且四棱锥P﹣ABCD的体积为,求该四棱锥的侧面积.【解答】证明:〔1〕∵在四棱锥P﹣ABCD中,∠BAP=∠CDP=90°,∴AB⊥PA,CD⊥PD,又AB∥CD,∴AB⊥PD,∵PA∩PD=P,∴AB⊥平面PAD,∵AB⊂平面PAB,∴平面PAB⊥平面PAD.解:〔2〕设PA=PD=AB=DC=a,取AD中点O,连结PO,∵PA=PD=AB=DC,∠APD=90°,平面PAB⊥平面PAD,∴PO⊥底面ABCD,且AD==,PO=,∵四棱锥P﹣ABCD的体积为,∴VP﹣ABCD=====,解得a=2,∴PA=PD=AB=DC=2,AD=BC=2,PO=,∴PB=PC==2,∴该四棱锥的侧面积:S侧=S△PAD+S△PAB+S△PDC+S△PBC=+++==6+2.14.如图,四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°.〔1〕证明:直线BC∥平面PAD;〔2〕若△PCD面积为2,求四棱锥P﹣ABCD的体积.【解答】〔1〕证明:四棱锥P﹣ABCD中,∵∠BAD=∠ABC=90°.∴BC∥AD,∵AD⊂平面PAD,BC⊄平面PAD,∴直线BC∥平面PAD;〔2〕解:四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°.设AD=2x,则AB=BC=x,CD=,O是AD的中点,连接PO,OC,CD的中点为:E,连接OE,则OE=,PO=,PE==,△PCD面积为2,可得:=2,即:,解得x=2,PE=2.则V P﹣ABCD=×〔BC+AD〕×AB×PO==4.15.如图四面体ABCD中,△ABC是正三角形,AD=CD.〔1〕证明:AC⊥BD;〔2〕已知△ACD是直角三角形,AB=BD,若E为棱BD上与D不重合的点,且AE⊥EC,求四面体ABCE与四面体ACDE的体积比.【解答】证明:〔1〕取AC中点O,连结DO、BO,∵△ABC是正三角形,AD=CD,∴DO⊥AC,BO⊥AC,∵DO∩BO=O,∴AC⊥平面BDO,∵BD⊂平面BDO,∴AC⊥BD.解:〔2〕法一:连结OE,由〔1〕知AC⊥平面OBD,∵OE⊂平面OBD,∴OE⊥AC,设AD=CD=,则OC=OA=1,∴E是线段AC垂直平分线上的点,∴EC=EA=CD=,由余弦定理得:cos∠CBD==,即,解得BE=1或BE=2,∵BE<<BD=2,∴BE=1,∴BE=ED,∵四面体ABCE与四面体ACDE的高都是点A到平面BCD的高h,∵BE=ED,∴S△DCE=S△BCE,∴四面体ABCE与四面体ACDE的体积比为1.法二:设AD=CD=,则AC=AB=BC=BD=2,AO=CO=DO=1,∴BO==,∴BO2+DO2=BD2,∴BO⊥DO,以O为原点,OA为x轴,OB为y轴,OD为z轴,建立空间直角坐标系,则C〔﹣1,0,0〕,D〔0,0,1〕,B〔0,,0〕,A〔1,0,0〕,设E〔a,b,c〕,,〔0≤λ≤1〕,则〔a,b,c﹣1〕=λ〔0,,﹣1〕,解得E〔0,,1﹣λ〕,∴=〔1,〕,=〔﹣1,〕,∵AE⊥EC,∴=﹣1+3λ2+〔1﹣λ〕2=0,由λ∈[0,1],解得,∴DE=BE,∵四面体ABCE与四面体ACDE的高都是点A到平面BCD的高h,∵DE=BE,∴S△DCE=S△BCE,∴四面体ABCE与四面体ACDE的体积比为1.16.如图,直三棱柱ABC﹣A1B1C1的底面为直角三角形,两直角边AB和AC的长分别为4和2,侧棱AA1的长为5.〔1〕求三棱柱ABC﹣A1B1C1的体积;〔2〕设M是BC中点,求直线A1M与平面ABC所成角的大小.【解答】解:〔1〕∵直三棱柱ABC﹣A1B1C1的底面为直角三角形,两直角边AB和AC的长分别为4和2,侧棱AA1的长为5.∴三棱柱ABC﹣A1B1C1的体积:V=S△ABC×AA1===20.〔2〕连结AM,∵直三棱柱ABC﹣A1B1C1的底面为直角三角形,两直角边AB和AC的长分别为4和2,侧棱AA1的长为5,M是BC中点,∴AA1⊥底面ABC,AM==,∴∠A1MA是直线A1M与平面ABC所成角,tan∠A1MA===,∴直线A1M与平面ABC所成角的大小为arctan.17.如图,在三棱锥P﹣ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D为线段AC的中点,E为线段PC上一点.〔1〕求证:PA⊥BD;〔2〕求证:平面BDE⊥平面PAC;〔3〕当PA∥平面BDE时,求三棱锥E﹣BCD的体积.【解答】解:〔1〕证明:由PA⊥AB,PA⊥BC,AB⊂平面ABC,BC⊂平面ABC,且AB∩BC=B,可得PA⊥平面ABC,由BD⊂平面ABC,可得PA⊥BD;〔2〕证明:由AB=BC,D为线段AC的中点,可得BD⊥AC,由PA⊥平面ABC,PA⊂平面PAC,可得平面PAC⊥平面ABC,又平面ABC∩平面ABC=AC,BD⊂平面ABC,且BD⊥AC,即有BD⊥平面PAC,BD⊂平面BDE,可得平面BDE⊥平面PAC;〔3〕PA∥平面BDE,PA⊂平面PAC,且平面PAC∩平面BDE=DE,可得PA∥DE,又D为AC的中点,可得E为PC的中点,且DE=PA=1,由PA⊥平面ABC,可得DE⊥平面ABC,可得S△BDC=S△ABC=××2×2=1,则三棱锥E﹣BCD的体积为DE•S△BDC=×1×1=.18.如图,在四棱锥P﹣ABCD中,AD⊥平面PDC,AD∥BC,PD⊥PB,AD=1,BC=3,CD=4,PD=2.〔Ⅰ〕求异面直线AP与BC所成角的余弦值;〔Ⅱ〕求证:PD⊥平面PBC;〔Ⅲ〕求直线AB与平面PBC所成角的正弦值.【解答】解:〔Ⅰ〕如图,由已知AD∥BC,故∠DAP或其补角即为异面直线AP与BC所成的角.因为AD⊥平面PDC,所以AD⊥PD.在Rt△PDA中,由已知,得,故.所以,异面直线AP与BC所成角的余弦值为.证明:〔Ⅱ〕因为AD⊥平面PDC,直线PD⊂平面PDC,所以AD⊥PD.又因为BC∥AD,所以PD⊥BC,又PD⊥PB,所以PD⊥平面PBC.解:〔Ⅲ〕过点D作AB的平行线交BC于点F,连结PF,则DF与平面PBC所成的角等于AB与平面PBC所成的角.因为PD⊥平面PBC,故PF为DF在平面PBC上的射影,所以∠DFP为直线DF和平面PBC所成的角.由于AD∥BC,DF∥AB,故BF=AD=1,由已知,得CF=BC﹣BF=2.又AD⊥DC,故BC⊥DC,在Rt△DCF中,可得.所以,直线AB与平面PBC所成角的正弦值为.19.如图,已知四棱锥P﹣ABCD,△PAD是以AD为斜边的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E为PD的中点.〔Ⅰ〕证明:CE∥平面PAB;〔Ⅱ〕求直线CE与平面PBC所成角的正弦值.【解答】证明:〔Ⅰ〕取AD的中点F,连结EF,CF,∵E为PD的中点,∴EF∥PA,在四边形ABCD中,BC∥AD,AD=2DC=2CB,F为中点,∴CF∥AB,∴平面EFC∥平面ABP,∵EC⊂平面EFC,∴EC∥平面PAB.解:〔Ⅱ〕连结BF,过F作FM⊥PB于M,连结PF,∵PA=PD,∴PF⊥AD,推导出四边形BCDF为矩形,∴BF⊥AD,∴AD⊥平面PBF,又AD∥BC,∴BC⊥平面PBF,∴BC⊥PB,设DC=CB=1,则AD=PC=2,∴PB=,BF=PF=1,∴MF=,又BC⊥平面PBF,∴BC⊥MF,∴MF⊥平面PBC,即点F到平面PBC的距离为,∵MF=,D到平面PBC的距离应该和MF平行且相等,为,E为PD中点,E到平面PBC的垂足也为垂足所在线段的中点,即中位线,∴E到平面PBC的距离为,在,由余弦定理得CE=,设直线CE与平面PBC所成角为θ,则sinθ==.20.由四棱柱ABCD﹣A1B1C1D1截去三棱锥C1﹣B1CD1后得到的几何体如图所示,四边形ABCD为正方形,O为AC与BD 的交点,E为AD的中点,A1E⊥平面ABCD,〔Ⅰ〕证明:A1O∥平面B1CD1;〔Ⅱ〕设M是OD的中点,证明:平面A1EM⊥平面B1CD1.【解答】证明:〔Ⅰ〕取B1D1中点G,连结A1G、CG,∵四边形ABCD为正方形,O为AC与BD 的交点,∴四棱柱ABCD﹣A1B1C1D1截去三棱锥C1﹣B1CD1后,A1GOC,∴四边形OCGA1是平行四边形,∴A1O∥CG,∵A1O⊄平面B1CD1,CG⊂平面B1CD1,∴A1O∥平面B1CD1.〔Ⅱ〕四棱柱ABCD﹣A1B1C1D1截去三棱锥C1﹣B1CD1后,BDB1D1,∵M是OD的中点,O为AC与BD 的交点,E为AD的中点,A1E⊥平面ABCD,又BD⊂平面ABCD,∴BD⊥A1E,∵四边形ABCD为正方形,O为AC与BD 的交点,∴AO⊥BD,∵M是OD的中点,E为AD的中点,∴EM⊥BD,∵A1E∩EM=E,∴BD⊥平面A1EM,∵BD∥B1D1,∴B1D1⊥平面A1EM,∵B1D1⊂平面B1CD1,∴平面A1EM⊥平面B1CD1.21.如图,在三棱锥A﹣BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E、F〔E与A、D不重合〕分别在棱AD,BD上,且EF⊥AD.求证:〔1〕EF∥平面ABC;〔2〕AD⊥AC.【解答】证明:〔1〕因为AB⊥AD,EF⊥AD,且A、B、E、F四点共面,所以AB∥EF,又因为EF⊊平面ABC,AB⊆平面ABC,所以由线面平行判定定理可知:EF∥平面ABC;〔2〕在线段CD上取点G,连结FG、EG使得FG∥BC,则EG∥AC,因为BC⊥BD,FG∥BC,所以FG⊥BD,又因为平面ABD⊥平面BCD,所以FG⊥平面ABD,所以FG⊥AD,又因为AD⊥EF,且EF∩FG=F,所以AD⊥平面EFG,所以AD⊥EG,故AD⊥AC.3.如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.〔1〕证明:平面PAB⊥平面PAD;〔2〕若PA=PD=AB=DC,∠APD=90°,求二面角A﹣PB﹣C的余弦值.【解答】〔1〕证明:∵∠BAP=∠CDP=90°,∴PA⊥AB,PD⊥CD,∵AB∥CD,∴AB⊥PD,又∵PA∩PD=P,且PA⊂平面PAD,PD⊂平面PAD,∴AB⊥平面PAD,又AB⊂平面PAB,∴平面PAB⊥平面PAD;〔2〕解:∵AB∥CD,AB=CD,∴四边形ABCD为平行四边形,由〔1〕知AB⊥平面PAD,∴AB⊥AD,则四边形ABCD为矩形,在△APD中,由PA=PD,∠APD=90°,可得△PAD为等腰直角三角形,设PA=AB=2a,则AD=.取AD中点O,BC中点E,连接PO、OE,。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(人教
A版《必修二》)2006年高考数学章节分类试题
第一章《空间几何体》
一、选择题
【06安徽•理】
体积为
表面积为2、、3的正八面体的各个顶点都在同一个球面上,则此球

A. B . 1
2
C. D .辽
3333
【06安徽•文】表面积为2.3的正八面体的各个顶点都在同一个球面上, 则此球的
体积为
A .
B .
1
—Jt
2
C.- D .辽
3333
1
.
2.
如图,在等腰梯形
中点,将△ ADE与厶BEC分别沿
P—DCE的外接球的体积为
3.【06山东•理】ABCD 中,AB=2DC=2,/ DAB=60°, E 为AB 的
EC向上折起,使A、B重合于点P,则三棱锥
ED、
473

(A)
27
(C)丘
8
(D) ^
24
4. 【06湖南•理】棱长为2的正四面体的四个顶点都在同一个球面上
截面如图1,则图中三角形(正四面体的截面)的面积是
,若过该球球心的一个
、.2
A. -
2
B.
2
C. 2
5.【06山东•文】已知集合A亠5, B 1, C =日,3,41,从这三个集合中各取一个元
素构成空间直角坐标系中点的坐标,则确定的不同点的个数为
(A) 33
6.【06山东•文】
(B) 34 (C) 35
正方体的内切球与其外接球的体积之比为
(D) 36
(A) 1: .3 (B) 1:3 (C) 1:3,3 (D) 1 : 9
7.【06四川•文】
个大圆上,点
(A) 4 二
如图,正四棱锥P—ABCD底面的四个顶点A、B、C、D在球O的同一P在
球面上,如果V P丄BC D = 16,则球O的表面积为
3
(C) 12 二
(B) 8 二(D) 16二
DBB i D i平行的直线共有
A . 4 条
B . 6 条
C . 8 条
D . 12 条
10. [06湖南•文】过半径为2的球O表面上一点A作球O的截面,若OA与该截面所成的角是
60°则该截面的面积是
A . n B.2 n C. 3 n D. 2、」3二
11. 【06江苏】两个相同的正四棱锥组成如图1所示的几何体,可放入棱长为1的正方体内,
使正四棱锥的底面ABCD与正方体的某一个面平行,且各顶点均在正方体的面上,则
这样的几何体体积的可能值有
如图,在四面体ABCD中,截面AEF经过四面体的内切球(与四个面都相切
的球)球心O,且与BC, DC分别截于E、F,如果截面将四面体分成体积相等的两部分,设四棱锥 A —BEFD与三棱锥A —EFC的表面积分别是0, S?,则必有
A. S1 ::S2
B. S1 S2
C. S1=S2
D. S1, S2 的大小关系不能确定
13 .【06全国I •理】已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球
的表面积是
二、填空题
2 .【06陕西•理】水平桌面a上放有4个半径均为2R的球,且相邻的球都相切(球心的连线
&【06福建•理】已知正方体外接球的体积是
32
——II
3
那么正方体的棱长等于
(A) 2・、2(B)
2 ”3
3
(C)佢
3
(D)
9.【06湖南•理】过平行六面体ABCD - A i B i C i D i任意两条棱的中点作直线,其中与平面
12 .【06江西•理】
A . 16
B . 20
C . 24-
D . 32
14 .【06全国n •理】过球的一条半径的中点,作垂直于该半径的平面,则所得截面的面积
与球的表面积的比为
(A)
3
16
(D)
9
32
1.【06广东】棱长为3的正方体的顶点都在同一球面上,则该球的表面积为
D .无穷多个
构成正方形
)•在这4个球的上面放1个半径为R的小球,它和下面4个球恰好都相切,则小
球的球心到水平桌面a的距离是__________________ 。

3. 【06湖南•文】过三棱柱ABC —A i B i C i的任意两条棱的中点作直线,其中与平面ABB1A1平行的直线共有______________ 条.
4. 【06江西•理】如图,在直三棱柱ABC —A i B i C i中,底面为直角三角形,ZACB = 90 ,
AC = 6, BC = CC i= J2 , P是BC i上一动点,则CP+ PA i的最小值是__________________
5. 【06江西•文】如图,已知正三棱柱ABC - A i B i C i的底面边长为I,高为8, —质点自
A点出发,沿着三棱柱的侧面绕行两周到达A i点的最短路线的长为_______________ 。

6. 【06辽宁•文】如图,半径为2的半球内有一内接正六棱锥P - ABCDEF,则此正六棱
锥的侧面积是____________ 。

7. 【06全国n •文】圆O i是以R为半径的球O的小圆,若圆O i的面积S i和球O的表面积
S的比为3 : S = 2: 9,则圆心O i到球心O的距离与球半径的比OO i:R_________ &【06浙江•文】如图,正四面体ABCD的棱长为I,平面a过棱AB,且CD // a ,则正
四面体上的所有点在平面a内的射影构成的图形面积是。

选择题与填空题答
、选择题
i. A2. A3. C4. C5. A6. C7. D
& D9. D i0. A ii. D i2. C i3. C i4. A 二、填空题
I. 27 2. 3R 4. 5-2
5. 10
6.7
32。

相关文档
最新文档