数字信号处理实验答案完整版
(完整版)数字信号处理课后答案_史林版_科学出版社
第一章 作业题 答案############################################################################### 1.2一个采样周期为T 的采样器,开关导通时间为()0T ττ<<,若采样器的输入信号为()a x t ,求采样器的输出信号()()()a a x t x t p t ∧=的频谱结构。
式中()()01,()0,n p t r t n t r t ττ∞=-∞=-≤≤⎧=⎨⎩∑其他解:实际的采样脉冲信号为:()()n p t r t n τ∞=-∞=-∑其傅里叶级数表达式为:()000()jk tn p t Sa k T eTωωτω∞=-∞=∑采样后的信号可以表示为:()()()ˆa a xt x t p t δ= 因此,对采样后的信号频谱有如下推导:()()()()()()()()()()()()()0000000000000ˆˆsin 1j t a a jk t j t a n jk t j t a k j k ta k ak a k X j x t e dtx t Sa k T e e dtTSa k T x t e e dtTSa k T x t edtTSa k T X j jk Tk T X j jk T kωωωωωωωωτωωτωωτωωτωωωωωω∞--∞∞∞--∞=-∞∞∞--∞=-∞∞∞---∞=-∞∞=-∞∞=-∞Ω=====-=-⎰∑⎰∑⎰∑⎰∑∑%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 1.5有一个理想采样系统,对连续时间信号()a x t 进行等间隔T 采样,采样频率8s πΩ=rad/s ,采样后所得采样信号()a x t ∧经理想低通滤波器()G j Ω进行恢复,已知()41/4,,4G j ππ⎧Ω≤⎪Ω=⎨Ω>⎪⎩今有两个输入信号12()cos(2)()cos(5)a a x t t x t t ππ==和,对应的输出信号分别为12()()a a y t y t 和,如题1.5图所示,问12()()a a y t y t 、有没有失真,为什么?题1.5图 理想采样系统与恢复理想低通滤波器解:因为是理想采样系统,因此采样后的信号频谱可以表示为:()()1ˆa a s k X j X j jk T ∞=-∞Ω=Ω-Ω∑8s πΩ=,12πΩ=,25πΩ=,折叠频率为2s Ω,而滤波器对4πΩ≤的信号通过,因此有如下图:结论:1)1()a y t 不失真、2()a y t 失真。
数字信号处理上机实验答案(全)1
第十章上机实验数字信号处理是一门理论和实际密切结合的课程,为深入掌握课程内容,最好在学习理论的同时,做习题和上机实验。
上机实验不仅可以帮助读者深入的理解和消化基本理论,而且能锻炼初学者的独立解决问题的能力。
本章在第二版的基础上编写了六个实验,前五个实验属基础理论实验,第六个属应用综合实验。
实验一 系统响应及系统稳定性。
实验二 时域采样与频域采样。
实验三 用FFT 对信号作频谱分析。
实验四 IIR 数字滤波器设计及软件实现。
实验五 FIR 数字滤波器设计与软件实现实验六 应用实验——数字信号处理在双音多频拨号系统中的应用任课教师根据教学进度,安排学生上机进行实验。
建议自学的读者在学习完第一章后作实验一;在学习完第三、四章后作实验二和实验三;实验四IIR 数字滤波器设计及软件实现在。
学习完第六章进行;实验五在学习完第七章后进行。
实验六综合实验在学习完第七章或者再后些进行;实验六为综合实验,在学习完本课程后再进行。
10.1 实验一: 系统响应及系统稳定性1.实验目的(1)掌握 求系统响应的方法。
(2)掌握时域离散系统的时域特性。
(3)分析、观察及检验系统的稳定性。
2.实验原理与方法在时域中,描写系统特性的方法是差分方程和单位脉冲响应,在频域可以用系统函数描述系统特性。
已知输入信号可以由差分方程、单位脉冲响应或系统函数求出系统对于该输入信号的响应,本实验仅在时域求解。
在计算机上适合用递推法求差分方程的解,最简单的方法是采用MA TLAB 语言的工具箱函数filter 函数。
也可以用MATLAB 语言的工具箱函数conv 函数计算输入信号和系统的单位脉冲响应的线性卷积,求出系统的响应。
系统的时域特性指的是系统的线性时不变性质、因果性和稳定性。
重点分析实验系统的稳定性,包括观察系统的暂态响应和稳定响应。
系统的稳定性是指对任意有界的输入信号,系统都能得到有界的系统响应。
或者系统的单位脉冲响应满足绝对可和的条件。
数字信号处理课后习题答案(全)1-7章
第 1 章 时域离散信号和时域离散系统
(3) 这是一个延时器, 延时器是线性非时变系统, 下面证明。 令输入为
输出为
x(n-n1)
y′(n)=x(n-n1-n0) y(n-n1)=x(n-n1-n0)=y′(n) 故延时器是非时变系统。 由于
T[ax1(n)+bx2(n)]=ax1(n-n0)+bx2(n-n0) =aT[x1(n)]+bT[x2(n)]
(5)y(n)=x2(n)
(6)y(n)=x(n2)
(7)y(n)=
n
(8)y(n)=x(n)sin(ωxn(m) )
m0
解: (1) 令输入为
输出为
x(n-n0)
y′(n)=x(n-n0)+2x(n-n0-1)+3x(n-n0-2) y(n-n0)=x(n-n0)+2x(n—n0—1)+3(n-n0-2)
第 1 章 时域离散信号和时域离散系统
题8解图(一)
第 1 章 时域离散信号和时域离散系统
(5) 画x3(n)时, 先画x(-n)的波形(即将x(n)的波形以纵轴为中心翻转180°), 然后再右移2位, x3(n)波形如题2解图(四)所示。
第 1 章 时域离散信号和时域离散系统
题2解图(一)
第 1 章 时域离散信号和时域离散系统
题2解图(二)
第 1 章 时域离散信号和时域离散系统
题2解图(三)
分别求出输出y(n)。
(1) h(n)=R4(n), x(n)=R5(n) (2) h(n)=2R4(n), x(n)=δ(n)-δ(n-2) (3) h(n)=0.5nu(n), xn=R5(n)
解: (1) y(n)=x(n)*h(n)=
数字信号处理及答案
1.(P80.作业题16)已知: 1132()11212X z z z --=+-- 求出对应()X z 的各种可能的序列的表达式,及因果性和稳定性。
解:有两个极点,因为收敛域总是以极点为界,因此收敛域有以下三种情况:三种收敛域对应三种不同的原序列。
(1)当收敛域0.5z <时,11()()2n c x n X Z z dz j π-=⎰ 令111115757()()(10.5)(12)(0.5)(2)n n n z z F z X z z z z z z z z -------===---- 0n ≥,因为c 内无极点,x(n)=0;1n ≤-,C 内有极点0,但z=0是一个n 阶极点,改为求圆外极点留数,圆外极点有120.5,2z z ==,那么0.52()Re [(),0.5]Re [(),2](57)(57) (0.5)(2)(0.5)(2)(0.5)(2)1 [3()22](1)2n nz z n n x n s F z s F z z z z z z z z z z z u n ===----=-------=-+--(2)当收敛域0.52z <<时,(57)()(0.5)(2)nz z F z z z -=-- 0n ≥,C 内有极点0.5; 1()Re [(),0.5]3()2n x n s F z == 0n <,C 内有极点0.5,0,但0是一个n 阶极点,改成求c 外极点留数,c 外极点只有一个,即2,()Re [(),2]22(1)n x n s F z u n =-=---最后得到1()3()()22(1)2n n x n u n u n =--- (3)当收敛域2z <时,(57)()(0.5)(2)nz z F z z z -=--0n ≥,C 内有极点0.5,2; 1()Re [(),0.5]Re [(),2]3()222n n x n s F z s F z =+=+ n<0,由收敛域判断,这是一个因果序列,因此x(n)=0。
数字信号处理课后习题答案完整版
数字信号处理课后习题答案HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】数字信号处理(姚天任江太辉)第三版课后习题答案第二章判断下列序列是否是周期序列。
若是,请确定它的最小周期。
(1)x(n)=Acos(685ππ+n )(2)x(n)=)8(π-ne j(3)x(n)=Asin(343ππ+n )解 (1)对照正弦型序列的一般公式x(n)=Acos(ϕω+n ),得出=ω85π。
因此5162=ωπ是有理数,所以是周期序列。
最小周期等于N=)5(16516取k k =。
(2)对照复指数序列的一般公式x(n)=exp[ωσj +]n,得出81=ω。
因此πωπ162=是无理数,所以不是周期序列。
(3)对照正弦型序列的一般公式x(n)=Acos(ϕω+n ),又x(n)=Asin(343ππ+n )=Acos(-2π343ππ-n )=Acos(6143-n π),得出=ω43π。
因此382=ωπ是有理数,所以是周期序列。
最小周期等于N=)3(838取k k =在图中,x(n)和h(n)分别是线性非移变系统的输入和单位取样响应。
计算并列的x(n)和h(n)的线性卷积以得到系统的输出y(n),并画出y(n)的图形。
解 利用线性卷积公式y(n)=∑∞-∞=-k k n h k x )()(按照折叠、移位、相乘、相加、的作图方法,计算y(n)的每一个取样值。
(a) y(0)=x(O)h(0)=1y(l)=x(O)h(1)+x(1)h(O)=3y(n)=x(O)h(n)+x(1)h(n-1)+x(2)h(n-2)=4,n ≥2 (b) x(n)=2δ(n)-δ(n-1)h(n)=-δ(n)+2δ(n-1)+ δ(n-2)y(n)=-2δ(n)+5δ(n-1)= δ(n-3) (c) y(n)=∑∞-∞=--k kn k n u k u a)()(=∑∞-∞=-k kn a=aa n --+111u(n) 计算线性线性卷积 (1) y(n)=u(n)*u(n) (2) y(n)=λn u(n)*u(n)解:(1) y(n)=∑∞-∞=-k k n u k u )()(=∑∞=-0)()(k k n u k u =(n+1),n ≥0即y(n)=(n+1)u(n) (2) y(n)=∑∞-∞=-k k k n u k u )()(λ=∑∞=-0)()(k kk n u k u λ=λλ--+111n ,n ≥0即y(n)=λλ--+111n u(n)图所示的是单位取样响应分别为h 1(n)和h 2(n)的两个线性非移变系统的级联,已知x(n)=u(n), h 1(n)=δ(n)-δ(n-4), h 2(n)=a n u(n),|a|<1,求系统的输出y(n). 解 ω(n)=x(n)*h 1(n) =∑∞-∞=k k u )([δ(n-k)-δ(n-k-4)]=u(n)-u(n-4)y(n)=ω(n)*h 2(n) =∑∞-∞=k kk u a )([u(n-k)-u(n-k-4)]=∑∞-=3n k ka,n ≥3已知一个线性非移变系统的单位取样响应为h(n)=a n -u(-n),0<a<1 用直接计算线性卷积的方法,求系统的单位阶跃响应。
(完整word版)数字信号处理习题及答案
==============================绪论==============================1。
A/D 8bit 5V 00000000 0V 00000001 20mV 00000010 40mV 00011101 29mV==================第一章 时域离散时间信号与系统==================1。
①写出图示序列的表达式答:3)1.5δ(n 2)2δ(n 1)δ(n 2δ(n)1)δ(n x(n)-+---+++= ②用(n ) 表示y (n )={2,7,19,28,29,15}2. ①求下列周期)54sin()8sin()4()51cos()3()54sin()2()8sin()1(n n n n n ππππ-②判断下面的序列是否是周期的; 若是周期的, 确定其周期。
(1)A是常数 8ππn 73Acos x(n)⎪⎪⎭⎫ ⎝⎛-= (2))81(j e )(π-=n n x 解: (1) 因为ω=73π, 所以314π2=ω, 这是有理数, 因此是周期序列, 周期T =14。
(2) 因为ω=81, 所以ωπ2=16π, 这是无理数, 因此是非周期序列。
③序列)Acos(nw x(n)0ϕ+=是周期序列的条件是是有理数2π/w 0。
3.加法 乘法序列{2,3,2,1}与序列{2,3,5,2,1}相加为__{4,6,7,3,1}__,相乘为___{4,9,10,2} 。
移位翻转:①已知x(n)波形,画出x(—n )的波形图。
②尺度变换:已知x(n)波形,画出x (2n )及x(n/2)波形图.卷积和:①h(n)*求x(n),其他2n 0n 3,h(n)其他3n 0n/2设x(n) 例、⎩⎨⎧≤≤-=⎩⎨⎧≤≤=}23,4,7,4,23{0,h(n)*答案:x(n)=②已知x (n )={1,2,4,3},h (n )={2,3,5}, 求y (n )=x (n )*h (n )x (m )={1,2,4,3},h (m )={2,3,5},则h (—m )={5,3,2}(Step1:翻转)解得y (n )={2,7,19,28,29,15}③(n)x *(n)x 3),求x(n)u(n u(n)x 2),2δ(n 1)3δ(n δ(n)2、已知x 2121=--=-+-+=}{1,4,6,5,2答案:x(n)=4. 如果输入信号为,求下述系统的输出信号。
数字信号处理实验(吴镇扬)答案-2
(1) 观察高斯序列的时域和幅频特性,固定信号)(n x a 中参数p=8,改变q 的值,使q 分别等于2、4、8,观察他们的时域和幅频特性,了解当q 取不同值时,对信号序列的时域和幅频特性的影响;固定q=8,改变p,使p 分别等于8、13、14,观察参数p 变化对信号序列的时域和幅频特性的影响,注意p 等于多少时会发生明显的泄漏现象,混叠是否也随之出现?记录实验中观察到的现象,绘出相应的时域序列和幅频特性曲线。
()()⎪⎩⎪⎨⎧≤≤=-其他0150,2n e n x q p n a解:程序见附录程序一:P=8,q 变化时:t/T x a (n )k X a (k )t/T x a (n )p=8 q=4k X a (k )p=8 q=4t/Tx a (n )p=8 q=8kX a (k )p=8 q=8幅频特性时域特性t/T x a (n )p=8 q=8k X a (k )p=8 q=8t/T x a (n )51015k X a (k )p=13 q=8t/Tx a (n )p=14 q=851015kX a (k )p=14 q=8时域特性幅频特性分析:由高斯序列表达式知n=p 为期对称轴; 当p 取固定值时,时域图都关于n=8对称截取长度为周期的整数倍,没有发生明显的泄漏现象;但存在混叠,当q 由2增加至8过程中,时域图形变化越来越平缓,中间包络越来越大,可能函数周期开始增加,频率降低,渐渐小于fs/2,混叠减弱;当q 值固定不变,p 变化时,时域对称中轴右移,截取的时域长度渐渐地不再是周期的整数倍,开始无法代表一个周期,泄漏现象也来越明显,因而图形越来越偏离真实值,p=14时的泄漏现象最为明显,混叠可能也随之出现;(2) 观察衰减正弦序列 的时域和幅频特性,a=0.1,f=0.0625,检查谱峰出现的位置是否正确,注意频谱的形状,绘出幅频特性曲线,改变f ,使f 分别等于0.4375和0.5625,观察这两种情况下,频谱的形状和谱峰出现的位置,有无混叠和泄漏现象?说明产生现象的原因。
数字信号处理习题解答
y(5)=2*1+1*2=4;y(6)=2*3+1*1+3*2=13 y(7)=1*3+3*1=6;y(8)=3*3=9
y(9)=0;
• N=10圆卷积的结果
10 13 9
6
4
4
1
2
n
0
补充作业
x(n)
22
1
1
n
0
求: (1)x(n)*x(n)的线卷积。
,N=4(不加长)
,N=6(补零加长)
,N=7(补零加长)
作业解答
lfhuang
第一次作业: P104页,3题
...
...
0
n
0
n
第一次作业: P104页,3题
第一次作业: P104页,3题
4
...
1
.k .
0
第二次作业: P104页,4题
第二次作业: P104页,4题
... ... ...
... 图a
n
...
图b n
...
图c n
第二次作业: P104页,4题
3
2
1
1
n
0
周期化
3
2
1
1
n
0
3
3
3
1
2 1
12 1
1
2 1
0
0
n
反折、取主值区间。
3 2
11
0
右平移、相乘、相加 y(0)=1*1+2*1+1*2=5 y(1)=2*3+1*1+3*2=13 y(2)=1*2+2*1+1*3+3*3=16
数字信号处理参考答案
数字信号处理参考答案《解答题及分析题》一、解释下列名词:(1)DSP: 数字信号处理或者数字信号处理芯片;(2)MIPS: 每秒执行百万条指令 ;(3)MOPS: 每秒执行百万条操作 ;(4)FFT: 快速傅里叶变换 ;(5)MAC 时间: 完成一次乘法和一次加法的时间 ;(6)指令周期:执行一条指令所需要的时间,单位通常为(ns );(7)BOPS:每秒执行十亿次操作;(8)MFLOPS :每秒执行百万次浮点操作;(9)TMS320C54X :TI 公司的54系列定点DSP 芯片;(10)ADSP21XX:AD :公司的21系列定点DSP 芯片;二、已知)()()]([n x n g n x T =判断系统是否为:① 因果系统;② 稳定系统;③ 线性系统;④ 移不变系统解:(1)求解系统的单位取样响应)(n h令)()(n n x δ=,则系统的单位取样响应)()()(n n g n h δ=① 当0<n 时,0)(=n h ,系统为因果系统;②0)(=∑+∞-∞=n n h ,是稳定系统; ③ 设)()()(),()()(2211n g n x n y n g n x n y ==由于)()()()([)(2121n by n ay n bx n ax T n y +=+=,④ 由于)()]([),()()(k n y k n X T k n g k n x k n y -≠---=-而, 因此,系统为移变系统。
其余几个题的判断方法与这个相同,略。
三、画方框图说明DSP 系统的设计步骤。
设计步骤:(1)根据实际问题的要求写出任务书确定设计目标;(2)算法研究并确定系统的性能指标;(3)选择DSP 芯片和外围芯片;(4)完成系统的硬件设计和软件设计;(5)完成系统的硬件仿真和软件调试;(6)系统集成和测试。
四、以TMS320C5402为例,说明一个典型的DSP 实时数字信号处理系统通常有哪些部分组成?画出系统组成的方框图。
数字信号处理实验(吴镇扬)答案4
实验四 有限长单位脉冲响应滤波器设计朱方方 03 通信四班(1) 设计一个线性相位FIR 高通滤波器,通带边界频率为π,阻带边界频率为π,阻带衰减不小于40dB 。
要求给出h(n)的解析式,并用MATLAB 绘出时域波形和幅频特性。
解:(1)求数字边界频率:0.6 , 0.4c r ωπωπ== (2)求理想滤波器的边界频率:0.5n ωπ=(3)求理想单位脉冲响应:[]d sin ()sin[()]()()1n n n n n n h n n παωααπαωαπ⎧---≠⎪⎪-=⎨⎪-=⎪⎩(4) 选择窗函数。
阻带最小衰减为-40dB ,因此选择海明窗(其阻带最小衰减为-44dB);滤波器的过渡带宽为ππ=π,因此6.210.231 , 152N N N ππα-=⇒=== (5) 求FIR 滤波器的单位脉冲响应h(n):[]31d sin (15)sin[0.5(15)]1cos ()15()()()15(15)115n n n R n n h n w n h n n n ππππ⎧---⎡⎤⎛⎫-⋅⋅≠⎪ ⎪⎢⎥==-⎝⎭⎨⎣⎦⎪=⎩程序:clear;N=31; n=0:N-1;hd=(sin(pi*(n-15))-sin*pi*(n-15)))./(pi*(n-15)); hd(16)=; win=hanning(N); h=win'.*hd;figure; stem(n,h);xlabel('n'); ylabel('h(n)'); grid;title('FIR 高通滤波单位脉冲响应h(n)'); [H,w]=freqz(h,1); H=20*log10(abs(H)); figure;3plot(w/pi,H);axis([0 1 -100 10]);xlabel('\omega/\pi'); ylabel('幅度/dB');grid;title('FIR 高通滤波器,hanning 窗,N=31');51015202530nh (n )FIR 高通滤波器的单位脉冲响应h(n)0.10.20.30.40.50.60.70.80.91-100-90-80-70-60-50-40-30-20-10010ω/π幅度/d BFIR 高通滤波器,hanning 窗,N=31分析:由图知阻带衰减最小值大于40,满足要求。
数字信号处理上机实验答案解析(全]
第十章上机实验数字信号处理是一门理论和实际密切结合的课程,为深入掌握课程内容,最好在学习理论的同时,做习题和上机实验。
上机实验不仅可以帮助读者深入的理解和消化基本理论,而且能锻炼初学者的独立解决问题的能力。
本章在第二版的基础上编写了六个实验,前五个实验属基础理论实验,第六个属应用综合实验。
实验一 系统响应及系统稳定性。
实验二 时域采样与频域采样。
实验三 用FFT 对信号作频谱分析。
实验四 IIR 数字滤波器设计及软件实现。
实验五 FIR 数字滤波器设计与软件实现实验六 应用实验——数字信号处理在双音多频拨号系统中的应用任课教师根据教学进度,安排学生上机进行实验。
建议自学的读者在学习完第一章后作实验一;在学习完第三、四章后作实验二和实验三;实验四IIR 数字滤波器设计及软件实现在。
学习完第六章进行;实验五在学习完第七章后进行。
实验六综合实验在学习完第七章或者再后些进行;实验六为综合实验,在学习完本课程后再进行。
10.1 实验一: 系统响应及系统稳定性1.实验目的 (1)掌握 求系统响应的方法。
(2)掌握时域离散系统的时域特性。
(3)分析、观察及检验系统的稳定性。
2.实验原理与方法在时域中,描写系统特性的方法是差分方程和单位脉冲响应,在频域可以用系统函数描述系统特性。
已知输入信号可以由差分方程、单位脉冲响应或系统函数求出系统对于该输入信号的响应,本实验仅在时域求解。
在计算机上适合用递推法求差分方程的解,最简单的方法是采用MATLAB 语言的工具箱函数filter 函数。
也可以用MATLAB 语言的工具箱函数conv 函数计算输入信号和系统的单位脉冲响应的线性卷积,求出系统的响应。
系统的时域特性指的是系统的线性时不变性质、因果性和稳定性。
重点分析实验系统的稳定性,包括观察系统的暂态响应和稳定响应。
系统的稳定性是指对任意有界的输入信号,系统都能得到有界的系统响应。
或者系统的单位脉冲响应满足绝对可和的条件。
数字信号处理上机实验答案(第三版)
实验1:系统响应及系统稳定性实验程序清单:close all;clear all%======内容1:调用filter解差分方程,由系统对u(n)的响应判断稳定性====== A=[1,-0.9];B=[0.05,0.05]; %系统差分方程系数向量B和Ax1n=[1 1 1 1 1 1 1 1 zeros(1,50)]; %产生信号x1(n)=R8(n)x2n=ones(1,128); %产生信号x2(n)=u(n)hn=impz(B,A,58); %求系统单位脉冲响应h(n)subplot(2,2,1);y='h(n)';stem(hn, 'y'); %调用函数tstem绘图title('(a) 系统单位脉冲响应h(n)');y1n=filter(B,A,x1n); %求系统对x1(n)的响应y1(n)subplot(2,2,2);y='y1(n)';stem(y1n,'y');title('(b) 系统对R8(n)的响应y1(n)');y2n=filter(B,A,x2n); %求系统对x2(n)的响应y2(n)subplot(2,2,4);y='y2(n)';stem(y2n,'y');title('(c) 系统对u(n)的响应y2(n)');%===内容2:调用conv函数计算卷积============================x1n=[1 1 1 1 1 1 1 1 ]; %产生信号x1(n)=R8(n)h1n=[ones(1,10) zeros(1,10)];h2n=[1 2.5 2.5 1 zeros(1,10)];y21n=conv(h1n,x1n);y22n=conv(h2n,x1n);figure(2)subplot(2,2,1);y='h1(n)';stem(h1n,'y'); %调用函数tstem绘图title('(d) 系统单位脉冲响应h1(n)');subplot(2,2,2);y='y21(n)'; stem(y21n,'y');title('(e) h1(n)与R8(n)的卷积y21(n)');subplot(2,2,3);y='h2(n)'; stem(h2n, 'y'); %调用函数tstem绘图title('(f) 系统单位脉冲响应h2(n)');subplot(2,2,4);y='y22(n)';stem(y22n,'y');title('(g) h2(n)与R8(n)的卷积y22(n)');%=========内容3:谐振器分析========================un=ones(1,256); %产生信号u(n)n=0:255;xsin=sin(0.014*n)+sin(0.4*n); %产生正弦信号A=[1,-1.8237,0.9801];B=[1/100.49,0,-1/100.49]; %系统差分方程系数向量B和Ay31n=filter(B,A,un); %谐振器对u(n)的响应y31(n)y32n=filter(B,A,xsin); %谐振器对u(n)的响应y31(n)figure(3)subplot(2,1,1);y='y31(n)';stem(y31n,'y');title('(h) 谐振器对u(n)的响应y31(n)');subplot(2,1,2);y='y32(n)';stem(y32n,'y');title('(i) 谐振器对正弦信号的响应y32(n)');实验程序运行结果及分析讨论程序运行结果如图10.1.1所示。
《数字信号处理》第三版答案(非常详细完整)
答案很详细,考试前或者平时作业的时候可以好好研究,祝各位考试成功!!电子科技大学微电子与固体电子学陈钢教授著数字信号处理课后答案1.2 教材第一章习题解答1. 用单位脉冲序列()n δ及其加权和表示题1图所示的序列。
解:()(4)2(2)(1)2()(1)2(2)4(3) 0.5(4)2(6)x n n n n n n n n n n δδδδδδδδδ=+++-+++-+-+-+-+-2. 给定信号:25,41()6,040,n n x n n +-≤≤-⎧⎪=≤≤⎨⎪⎩其它(1)画出()x n 序列的波形,标上各序列的值;(2)试用延迟单位脉冲序列及其加权和表示()x n 序列; (3)令1()2(2)x n x n =-,试画出1()x n 波形; (4)令2()2(2)x n x n =+,试画出2()x n 波形; (5)令3()2(2)x n x n =-,试画出3()x n 波形。
解:(1)x(n)的波形如题2解图(一)所示。
(2)()3(4)(3)(2)3(1)6() 6(1)6(2)6(3)6(4)x n n n n n n n n n n δδδδδδδδδ=-+-+++++++-+-+-+-(3)1()x n 的波形是x(n)的波形右移2位,在乘以2,画出图形如题2解图(二)所示。
(4)2()x n 的波形是x(n)的波形左移2位,在乘以2,画出图形如题2解图(三)所示。
(5)画3()x n 时,先画x(-n)的波形,然后再右移2位,3()x n 波形如 5. 设系统分别用下面的差分方程描述,()x n 与()y n 分别表示系统输入和输出,判断系统是否是线性非时变的。
(1)()()2(1)3(2)y n x n x n x n =+-+-; (3)0()()y n x n n =-,0n 为整常数; (5)2()()y n x n =; (7)0()()nm y n x m ==∑。
数字信号处理习题答案及matlab实验详解.pdf
(2) 由 H(z)的表达式,不难求出, 当 w=0 时, H (e j0 ) 1/ 0.51 2;
当 w=π时, H (e j ) 1/ 2.77 0.36;
当
w=±π/4
时,
H
(e
j
4
)
1/ 0.256
4 ,峰值。
B=1; A=[1,-1.13,0.64]; [H,w]=freqz(B,A,256,'whole',1); figure(1); subplot(2,1,1); plot(w,abs(H)) subplot(2,1,2); plot(w,angle(H))
12
实验 2-3 离散系统的频率响应分析和零、极点分布 实验目的:加深对离散系统的频率响应分析和零、极点分布的概念理解。
在 MATLAB 中,可以用函数[z,p,K]=tf2zp(num,den)求得有理分式形式的 系统转移函数的零、极点,用函数 zplane(z,p)绘出零、极点分布图;也可以 用函数 zplane(num,den)直接绘出有理分式形式的系统转移函数的零、极点分 布图。
m
m0
即 y(0) 1, y(1) 0.75, y(2) 0.4375, y(3) 0.2344, y(4) 0.1211,......
利用函数 h=impz(b,a,N)和 y=filter(b,a,x)分别绘出冲激和阶跃响应: b=[1,-1]; a=[1,0.75,0.125]; x=ones(1,100); h=impz(b,a,100); y1=filter(b,a,x); figure(1) subplot(2,1,1); plot(h); subplot(2,1,2); plot(y1);
z 2
数字信号处理(三版)课后习题答案全(原题 答案 图)
m n4
最后结果为
0
y(n)=
n<0或n>7
0≤n≤3
n+1
8-n 4≤n≤7
y(n)的波形如题8解图(一)所示。
(2) y(n) =2R4(n)*[δ(n)-δ(n-2)]=2R4(n)-2R4(n-2)
=2[δ(n)+δ(n-1)-δ(n+4)-δ(n+5)
y(n)的波形如题8解图(二)所示
1 2
y(n)=x(n)*h(n)
=x(n)*[2δ(n)+δ(n-1)+
δ(n-2)
=2x(n)+x(n-1)+
x(n-2)
1 2
将x(n)的表示式代入上式, 得到
1 y(n)=-2δ(n+2)-δ(n+1)-0.5δ(n 2 )+2δ(n-1)+δ(n-2)
+4.5δ(n-3)+2δ(n-4)+δ(n-5)
(3) 这是一个延时器, 延时器是线性非时变系统, 下面证明。 令输入为
x(n-n1) 输出为 y′(n)=x(n-n1-n0) y(n-n1)=x(n-n1-n0)=y′(n) 故延时器是非时变系统。 由于 T[ax1(n)+bx2(n)]=ax1(n-n0)+bx2(n-n0) =aT[x1(n)]+bT[x2(n)] 故延时器是线性系统。
(4) y(n)=x(-n)
令输入为 x(n-n0) 输出为 y′(n)=x(-n+n0) y(n-n0)=x(-n+n0)=y′(n) 因此系统是(n)]=ax1(-n)+bx2(-n)
=aT[x1(n)]+bT[x2(n)] 因此系统是非时变系统。
数字信号处理习题及答案完整版
数字信号处理习题及答案HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】==============================绪论============================== 1. A/D 8bit 5V 00000000 0V 00000001 20mV 00000010 40mV 00011101 29mV==================第一章 时域离散时间信号与系统================== 1.①写出图示序列的表达式答:3)1.5δ(n 2)2δ(n 1)δ(n 2δ(n)1)δ(n x(n)-+---+++= ②用(n) 表示y (n )={2,7,19,28,29,15} 2. ①求下列周期②判断下面的序列是否是周期的; 若是周期的, 确定其周期。
(1)A是常数 8ππn 73Acos x(n)⎪⎪⎭⎫ ⎝⎛-= (2))81(j e )(π-=n n x 解: (1) 因为ω=73π, 所以314π2=ω, 这是有理数, 因此是周期序列, 周期T =14。
(2) 因为ω=81, 所以ωπ2=16π, 这是无理数, 因此是非周期序列。
③序列)Acos(nw x(n)0ϕ+=是周期序列的条件是是有理数2π/w 0。
3.加法乘法序列{2,3,2,1}与序列{2,3,5,2,1}相加为__{4,6,7,3,1}__,相乘为___{4,9,10,2} 。
移位翻转:①已知x(n)波形,画出x(-n)的波形图。
②尺度变换:已知x(n)波形,画出x(2n)及x(n/2)波形图。
卷积和:①h(n)*求x(n),其他2n 0n 3,h(n)其他3n 0n/2设x(n) 例、⎩⎨⎧≤≤-=⎩⎨⎧≤≤=②已知x (n )={1,2,4,3},h (n )={2,3,5}, 求y (n )=x (n )*h (n )x (m )={1,2,4,3},h (m )={2,3,5},则h (-m )={5,3,2}(Step1:翻转)解得y (n )={2,7,19,28,29,15} ③(n)x *(n)x 3),求x(n)u(n u(n)x 2),2δ(n 1)3δ(n δ(n)2、已知x 2121=--=-+-+=4. 如果输入信号为,求下述系统的输出信号。
数字信号处理课后习题答案 全全全
1
1 >
. . z
z
(3) , | | 0.5
1 0.5
1
1 <
. . z
z
(4)
, | | 0
1 0.5
1 (0.5 )
1
1 10
>
.
.
.
.
z
z
z
1.8 (1) ) , 0
1
( ) (1 2
1 3 3
3.014 2.91 1.755 0.3195
0.3318 0.9954 0.9954 0.3318
1 0.9658 0.5827 0.1060
z z z
z z z
z z z
z z z
. . .
. . .
. . .
. . .
. + .
=
= . . +
= . . . +
..
.
..
. π
2.13
0,1,2, , 1
( ) ( )
= .
=
k N
Y rk X k
..
2.14
Y(k) = X ((k)) R (k) k = 0,1, ,rN .1 N rN ..
2.15 (1) x(n) a R (n) N
= n y(n) b R (n) N
= n
(2) x(n) =δ (n) y(n) = Nδ (n)
2.16 ( )
1
1 a R N
a N
n
. N
数字信号处理上机实验及答案(第三版,第十章)
第十章 上机实验数字信号处理是一门理论和实际密切结合的课程,为深入掌握课程内容,最好在学习理论的同时,做习题和上机实验。
上机实验不仅可以帮助读者深入的理解和消化基本理论,而且能锻炼初学者的独立解决问题的能力。
本章在第二版的基础上编写了六个实验,前五个实验属基础理论实验,第六个属应用综合实验。
实验一 系统响应及系统稳定性。
实验二 时域采样与频域采样。
实验三 用FFT 对信号作频谱分析。
实验四 IIR 数字滤波器设计及软件实现。
实验五 FIR 数字滤波器设计与软件实现实验六 应用实验——数字信号处理在双音多频拨号系统中的应用任课教师根据教学进度,安排学生上机进行实验。
建议自学的读者在学习完第一章后作实验一;在学习完第三、四章后作实验二和实验三;实验四IIR 数字滤波器设计及软件实现在。
学习完第六章进行;实验五在学习完第七章后进行。
实验六综合实验在学习完第七章或者再后些进行;实验六为综合实验,在学习完本课程后再进行。
10.1 实验一: 系统响应及系统稳定性1.实验目的(1)掌握 求系统响应的方法。
(2)掌握时域离散系统的时域特性。
(3)分析、观察及检验系统的稳定性。
2.实验原理与方法在时域中,描写系统特性的方法是差分方程和单位脉冲响应,在频域可以用系统函数描述系统特性。
已知输入信号可以由差分方程、单位脉冲响应或系统函数求出系统对于该输入信号的响应,本实验仅在时域求解。
在计算机上适合用递推法求差分方程的解,最简单的方法是采用MA TLAB 语言的工具箱函数filter 函数。
也可以用MATLAB 语言的工具箱函数conv 函数计算输入信号和系统的单位脉冲响应的线性卷积,求出系统的响应。
系统的时域特性指的是系统的线性时不变性质、因果性和稳定性。
重点分析实验系统的稳定性,包括观察系统的暂态响应和稳定响应。
系统的稳定性是指对任意有界的输入信号,系统都能得到有界的系统响应。
或者系统的单位脉冲响应满足绝对可和的条件。
数字信号处理答案
数字信号处理答案1-1画出下列序列的示意图(1)(2)(3)(1)(2)(3)1-2已知序列x(n)的图形如图1.41,试画出下列序列的示意图。
图1.41信号x(n)的波形(1)(2)(3)(4)(5)(6)(修正:n=4处的值为0,不是3)(修正:应该再向右移4个采样点)1-3判断下列序列是否满足周期性,若满足求其基本周期(1)解:非周期序列;(2)解:为周期序列,基本周期N=5;(3)解:,,取为周期序列,基本周期。
(4)解:其中,为常数,取,,取则为周期序列,基本周期N=40。
1-4判断下列系统是否为线性的?是否为移不变的?(1)非线性移不变系统(2)非线性移变系统(修正:线性移变系统)(3)非线性移不变系统(4)线性移不变系统(5)线性移不变系统(修正:线性移变系统)1-5判断下列系统是否为因果的?是否为稳定的?(1),其中因果非稳定系统(2)非因果稳定系统(3)非因果稳定系统(4)非因果非稳定系统(5)因果稳定系统1-6已知线性移不变系统的输入为x(n),系统的单位脉冲响应为h(n),试求系统的输出y(n)及其示意图(1)(2)(3)解:(1)(2)(3)1-7若采样信号m(t)的采样频率fs=1500Hz,下列信号经m(t)采样后哪些信号不失真?(1)(2)(3)解:(1)采样不失真(2)采样不失真(3),采样失真1-8已知,采样信号的采样周期为。
(1)的截止模拟角频率是多少?(2)将进行A/D采样后,的数字角频率与的模拟角频率的关系如何?(3)若,求的数字截止角频率。
解:(1)(2)(3)1-9计算下列序列的Z变换,并标明收敛域。
(1)(2)(3)(4)(5)解:(1)(2)(3)(4),,收敛域不存在(5)1-10利用Z变换性质求下列序列的Z变换。
(1)(2)(3)(4)解:(1) ,(2) ,(3),(4),1-11利用Z变换性质求下列序列的卷积和。
(1)(2)(3)(4)(5)(6)解:(1),,,,(2),,,(3), ,,(4),,(5),,,(6),,,1-12利用的自相关序列定义为,试用的Z变换来表示的Z变换。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字信号处理实验答案 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】实验一熟悉Matlab环境一、实验目的1.熟悉MATLAB的主要操作命令。
2.学会简单的矩阵输入和数据读写。
3.掌握简单的绘图命令。
4.用MATLAB编程并学会创建函数。
5.观察离散系统的频率响应。
二、实验内容认真阅读本章附录,在MATLAB环境下重新做一遍附录中的例子,体会各条命令的含义。
在熟悉了MATLAB基本命令的基础上,完成以下实验。
上机实验内容:(1)数组的加、减、乘、除和乘方运算。
输入A=[1 2 3 4],B=[3 4 5 6],求C=A+B,D=A-B,E=A.*B,F=A./B,G=A.^B并用stem语句画出A、B、C、D、E、F、G。
clear all;a=[1 2 3 4];b=[3 4 5 6];c=a+b;d=a-b;e=a.*b;f=a./b;g=a.^b;n=1:4;subplot(4,2,1);stem(n,a);xlabel('n');xlim([0 5]);ylabel('A');subplot(4,2,2);stem(n,b);xlabel('n');xlim([0 5]);ylabel('B');subplot(4,2,3);stem(n,c);xlabel('n');xlim([0 5]);ylabel('C');subplot(4,2,4);stem(n,d);xlabel('n');xlim([0 5]);ylabel('D');subplot(4,2,5);stem(n,e);xlabel('n');xlim([0 5]);ylabel('E');subplot(4,2,6);stem(n,f);xlabel('n');xlim([0 5]);ylabel('F');subplot(4,2,7);stem(n,g);xlabel('n');xlim([0 5]);ylabel('G');(2)用MATLAB实现下列序列:a) x(n)= 0≤n≤15b) x(n)=e+3j)n 0≤n≤15c) x(n)=3cosπn+π)+2sinπn+π) 0≤n≤15(n)=x(n+16),绘出四个周期。
d) 将c)中的x(n)扩展为以16为周期的函数x16e) 将c)中的x(n)扩展为以10为周期的函数x 10(n)=x(n+10),绘出四个周期。
clear all;N=0:15;% a) x(n)= 0≤n ≤15xa=.^N;figure;subplot(2,1,1);stem(N,xa); xlabel('n');xlim([016]);ylabel('xa');% b) x(n)=e+3j)n 0≤n ≤15xb=exp(+3*j)*N);subplot(2,1,2);stem(N,xb);xlabel('n');xlim([0 16]);ylabel('xb');figure;% c) x(n)=3cos πn+π)+2sin πn+π) 0≤n ≤15xc=3*cos*pi*N+*pi)+2*sin*pi*N+*pi);subplot(3,1,1);stem(N,xc);xlabel('n');xlim([0 16]);ylabel('xc');% d) 将c)中的x(n)扩展为以16为周期的函数x16(n)=x(n+16),绘出四个周期。
k=0:3;m=0;for i=1:4for j=1:16m=m+1;n(m)=N(j)+16*k(i);x16(m)=3*cos*pi*n(m)+*pi)+2*sin*pi*n(m)+*pi);endendsubplot(3,1,2);stem(n,x16);xlabel('n');ylabel('x16');% e) 将c)中的x(n)扩展为以10为周期的函数x10(n)=x(n+10),绘出四个周期。
for j=1:10x10(j)=x16(j);endfor i=1:3for m=1:10x10(i*10+m)=x10(m);endendn=1:40;subplot(3,1,3);stem(n,x10); xlabel('n');ylabel('x10');(3)x(n)=[1,-1,3,5],产生并绘出下列序列的样本:a) x 1(n)=2x(n+2)-x(n-1)-2x(n)b) ∑=-=51k 2)k n (nx (n) xclear alln=1:4;T=4;x=[1 -1 3 5];x(5:8)=x(1:4);subplot(2,1,1);stem(1:8,x);grid;for i=1:4if i-1<0x1(i)=2*x(i+2)-x(i-1)-2*x(i);elsex1(i)=2*x(i+2)-x(i-1+T)-2*x(i);endendx1(5:8)=x1(1:4);subplot(2,1,2);stem(1:8,x1);grid;(4)绘出下列时间函数的图形,对x 轴、y 轴以及图形上方均须加上适当的标注:a) x(t)=sin(2πt) 0≤t ≤10sb) x(t)=cos(100πt)sin(πt) 0≤t ≤4sta=0::10;xa=sin(2*pi*ta);subplot(2,1,1);plot(ta,xa);xlabel('t');ylabel('幅度');tb=0::4;xb=cos(100*pi*tb).*sin(pi*tb);subplot(2,1,2);plot(tb,xb);xlabel('t');ylabel('幅度');(5)编写函数stepshift(n0,n1,n2)实现u(n-n0),n1<n0<n2,绘出该函数的图形,起点为n1,终点为n2。
n0=5;ns=1;nf=10;%ns 为起点;nf 为终点;在=n=n0处生成单位阶跃序列n=[ns:nf];x=[(n-n0)>=0];stem(n,x);(6)给一定因果系统)0.9z 0.67z -1)/(1z 2(1H(z)-2-1-1+++=求出并绘制H(z)的幅频响应与相频响应。
clear all;b=[1,sqrt(2),1];a=[1,,];[h,w]=freqz(b,a);am=20*log10(abs(h));subplot(2,1,1);plot(w,am);ph=angle(h);subplot(2,1,2);plot(w,ph);(7)计算序列{8 -2 -1 2 3}和序列{2 3 -1 -3}的离散卷积,并作图表示卷积结果。
clear all;a=[8 -2 -1 2 3];b=[2 3 -1 -3];c=conv(a,b); %计算卷积M=length(c)-1;n=0:1:M;stem(n,c);xlabel('n');ylabel('幅度');(8)求以下差分方程所描述系统的单位脉冲响应h(n),0≤n≤50 y(n)+(n-1)(n-2)=x(n)-2x(n-1)clear all;N=50;a=[1 -2];b=[1 ];x=[1 zeros(1,N-1)];k=0:1:N-1;y=filter(a,b,x);stem(k,y);xlabel('n');ylabel('幅度 ');实验二信号的采样与重建一,实验目的(1)通过观察采样信号的混叠现象,进一步理解奈奎斯特采样频率的意义。
(2)通过实验,了解数字信号采样转换过程中的频率特征。
(3)对实际的音频文件作内插和抽取操作,体会低通滤波器在内插和抽取中的作用。
二,实验内容(1)采样混叠,对一个模拟信号Va(t)进行等间采样,采样频率为200HZ,得到离散时间信号V(n).Va(t)由频率为30Hz,150Hz,170Hz,250Hz,330Hz的5个正弦信号的加权和构成。
Va(t)=6cos(60pi*t)+3sin(300pi*t)+2cos(340pi*t)+4cos(500pi*t)+10sin(6 60pi*t)观察采样后信号的混叠效应。
程序:clear,close all,t=0::20;Ts=1/2;n=0:Ts:20;V=8*cos*pi*t)+5*cos*pi*t+-10*sin*pi*t);Vn=8*cos*pi*n)+5*cos*pi*n+-10*sin*pi*n);subplot(221)plot(t,V),grid on,subplot(222)stem(n,Vn,'.'),grid on,-40 -200 20 40(2)输入信号X(n)为归一化频率f1=,f2=的两个正弦信号相加而成,N=100,按因子M=2作抽取:(1)不适用低通滤波器;(2)使用低通滤波器。
分别显示输入输出序列在时域和频域中的特性。
程序:clear;N=100;M=2;f1=;f2=;n=0:N-1;x=sin(2*pi*f1*n)+sin(2*pi*f2*n);y1=x(1:2:100);y2=decimate(x,M,'fir');figure(1);stem(n,x(1:N));title('input sequence');xlabel('n');ylabel('fudu');figure(2);n=0:N/2-1;stem(n,y1);title('output sequence without LP');xlabel('n');ylabel('fudu');figure(3);m=0:N/M-1;stem(m,y2(1:N/M));title('output sequence with LP');xlabel('n');ylabel('fudu');figure(4);[h,w]=freqz(x);plot(w(1:512),abs(h(1:512)));title('frequency spectrum of the input sequence');xlabel('w');ylabel('fudu');figure(5);[h,w]=freqz(y1);plot(w(1:512),abs(h(1:512)));title('frequency spectrum of the output sequence without LP');xlabel('w');ylabel('fudu');figure(6);[h,w]=freqz(y2);plot(w(1:512),abs(h(1:512)));title('frequency spectrum of the output sequence without LP');xlabel('w');ylabel('fudu');(3)输入信号X(n)为归一化频率f1=,f2=的两个正弦信号相加而成,长度N=50,内插因子为2.(1)不适用低通滤波器;(2)使用低通滤波器。