结型场效应管

合集下载

结型场效应管符号

结型场效应管符号

结型场效应管符号一、引言结型场效应管(junction field-effect transistor,简称JFET)是一种广泛应用于电子电路中的重要器件。

在电子工程领域,常用一些符号来表示结型场效应管,本文将详细介绍这些符号的含义。

二、结型场效应管的基本结构结型场效应管是一种三层结构的半导体器件,通常由N型或P型半导体材料组成。

它包含了一个控制端、一个漏极和一个源极。

其基本结构如下所示:__ __ __| |D --|- || P ||__ __ __||控制端•控制端:控制端是结型场效应管的重要组成部分,它决定了管子的导电性能。

可以通过给控制端施加电压来控制管子的导通和截止。

•漏极:漏极是JFET的输出端,也是电流的主要流出部分。

•源极:源极则是JFET的输入端,也是电流的主要流入部分。

三、主要的JFET符号在表达JFET结构图时,有一些常见的符号被广泛使用。

下面将介绍这些符号的含义及特点。

1. N沟道JFET符号N沟道JFET(n-channel JFET)是由N型材料制作的结型场效应管。

它的符号如下所示:D | || |S |__|其中D表示漏极(Drain),S表示源极(Source)。

2. P沟道JFET符号P沟道JFET(p-channel JFET)是由P型材料制作的结型场效应管。

它的符号如下所示:__D | || |S |__|其中D表示漏极(Drain),S表示源极(Source)。

3. 双极性JFET符号双极性JFET(bipolar JFET)结构中既包含了N沟道JFET,又包含了P沟道JFET。

它的符号如下所示:__ __D | || |S|_ _|其中D表示漏极(Drain),S表示源极(Source)。

四、JFET符号的应用场景结型场效应管广泛应用于电子电路中,具有很多重要的应用场景。

下面将介绍一些常见的应用场景。

1. 放大器JFET可以用作放大器的核心部件。

当输入信号施加在控制端时,控制端电压的变化会导致漏极和源极之间的电流变化,从而实现电压放大的功能。

结型场效应管及其放大电路

结型场效应管及其放大电路


UGG +
ID
D

G -P
N
P UDS
UGS

S

+ UDD

二、结型场效应管
1)UGS对导电沟道的影响
( 1 ) 当 UGS = 0 时 , 场 效 应 管 两 侧 的 PN 结均处于零偏置, 形成两个耗尽层,如 图(a)所示。此 时耗尽层最薄,导 电沟道最宽,沟道 电阻最小。
二、结型场效应管
二、结型场效应管
3)UDS和UGS 共同作用的情况:
设漏源间加有电压UDS: 当UGS变化时,电流ID将随沟道电阻的变化而变化。
(1)当UGS=0时,沟道电阻最小,电流ID最大。
(2)当|UGS|值增大时,耗尽层变宽,沟道变窄, 沟道电阻变大,电流ID减小, 直至沟道被耗尽层夹断,ID=0。
( 3 ) 当 0<UGS<UGS(off) 时 , 电流ID在 零和最 大值之间 变化。改变栅源电压UGS的 大小,能引起管内耗尽层 宽度的变化,从而控制了 电流ID的 大小 。 场效应管 和三极管一样,可看作是 受控电流源,但它是一种 电压控制的电流源。
(2)恒流区(或线性放大区)。图 3.29中间部分是恒流区,在此区域ID不 随UDS的增加而增加,而是随着UGS的 增大而增大,输出特性曲线近似平行
于UDS轴,ID受UGS的控制,表现出
ID /

mA
预夹断轨迹

电 5阻
4区
恒流区
3
UGS= 0 -1 V
2
-2 V
1
- 3 .4V
0
10
20
夹断区
UDS / V
一、场效应管概述
2、符号:

结型场效应管(JFET)的结构和工作原理

结型场效应管(JFET)的结构和工作原理

结型场效应管(JFET)得结构与工作原理1、JFET得结构与符号N沟道JFETP沟道JFET2、工作原理(以N沟道JFET为例)N沟道JFET工作时,必须在栅极与源极之间加一个负电压-—VGS<0,在D-S间加一个正电压——V DS>0、栅极—沟道间得PN结反偏,栅极电流iG≈0,栅极输入电阻很高(高达107Ω以上).N沟道中得多子(电子)由S向D运动,形成漏极电流iD。

i D得大小取决于VDS得大小与沟道电阻。

改变VGS可改变沟道电阻,从而改变i D。

主要讨论V GS对i D得控制作用以及VDS对iD得影响。

①栅源电压VGS对i D得控制作用当VGS〈0时,PN结反偏,耗尽层变宽,沟道变窄,沟道电阻变大,ID减小;VGS更负时,沟道更窄,I D更小;直至沟道被耗尽层全部覆盖,沟道被夹断,ID≈0。

这时所对应得栅源电压V GS称为夹断电压VP。

②漏源电压VDS对i D得影响在栅源间加电压V GS<0,漏源间加正电压VDS > 0。

则因漏端耗尽层所受得反偏电压为V GD=V GS-V DS,比源端耗尽层所受得反偏电压V GS大,(如:VGS=-2V, V DS =3V,V P=-9V,则漏端耗尽层受反偏电压为V GD=—5V,源端耗尽层受反偏电压为-2V),使靠近漏端得耗尽层比源端宽,沟道比源端窄,故V DS对沟道得影响就是不均匀得,使沟道呈楔形。

当V DS增加到使VGD=VGS-VDS=V P时,耗尽层在漏端靠拢,称为预夹断。

当V DS继续增加时,预夹断点下移,夹断区向源极方向延伸。

由于夹断处电阻很大,使VDS主要降落在该区,产生强电场力把未夹断区得载流子都拉至漏极,形成漏极电流ID.预夹断后I D基本不随VDS增大而变化。

①V GS对沟道得控制作用当V GS<0时,PN结反偏→耗尽层加厚→沟道变窄。

VGS继续减小,沟道继续变窄.当沟道夹断时,对应得栅源电压V GS称为夹断电压V P(或VGS(off) ).对于N沟道得JFET,VP〈0.②V DS对沟道得控制作用当VGS=0时,V DS→ID., G、D间PN结得反向电压增加,使靠近漏极处得耗尽层加宽,沟道变窄,从上至下呈楔形分布。

结型场效应管

结型场效应管

结型场效应管结型场效应晶体管(JunctionField—EffectTransistor,JFET)JFET是在同一块N形半导体上制作两个高掺杂的P区,并将它们连接在一起,所引出的电极称为栅极g,N型半导体两端分别引出两个电极,分别称为漏极d,源极s。

结型场效应晶体管是一种具有放大功能的三端有源器件,是单极场效应管中最简单的一种,它可以分N沟道或者P沟道两种。

目录器件特点工作特性基本概念器件特点JFET的特点是:①是电压掌控器件,则不需要大的信号功率。

②是多数载流子导电的器件,是所谓单极晶体管,则无少子存储与扩散问题,速度高,噪音系数低;而且漏极电流Ids的温度关系决议于载流子迁移率的温度关系,则电流具有负的温度系数,器件具有自我保护的功能。

③输入端是反偏的p—n结,则输入阻抗大,便于匹配。

④输出阻抗也很大,呈现为恒流源,这与BJT大致相同。

⑤JFET一般是耗尽型的,但若采纳高阻衬底,也可得到加强型JFET(加强型JFET在高速、低功耗电路中很有应用价值);但是一般只有短沟道的JFET才是能很好工作的加强型器件。

实际上,静电感应晶体管也就是一种短沟道的JFET。

⑥沟道是处在半导体内部,则沟道中的载流子不受半导体表面的影响,因此迁移率较高、噪声较低。

工作特性对于耗尽型的JFET,在平衡时(不加电压)时,沟道电阻最小;电压Vds和Vgs都可更改栅p—n结势垒的宽度,并因此更改沟道的长度和厚度(栅极电压使沟道厚度均匀变化,源漏电压使沟道厚度不均匀变化),使沟道电阻变化,从而导致Ids变化,以实现对输入信号的放大。

当Vds较低时,JFET的沟道呈现为电阻特性,是所谓电阻工作区,这时漏极电流基本上随着电压Vds的增大而线性上升,但漏极电流随着栅极电压Vgs的增大而平方式增大;进一步增大Vds时,沟道即首先在漏极一端被夹断,则漏极电流达到而饱和(饱和电流搜大小决议于没有被夹断的沟道的电阻),这就是JFET的饱和放大区,这时JFET呈现为一个恒流源。

结型场效应管 原理

结型场效应管 原理

结型场效应管原理
场效应管是一种半导体器件,常用于放大、开关电路等应用。

结型场效应管(JFET)是其中一种常见的结构。

JFET的主要原理是利用PN结形成的场效应。

它由三个区域组成:中间是一个P型或N型的半导体材料,两侧分别是控制电极(Gate)和输出电极(Drain与Source)。

控制电极之间形成的PN结—反向偏置结(Reverse biased junction),形成一个可控制的电场区域,这个电场区域控制了从Source到Drain的电流。

在工作时,当Gate和Source之间的电压增加时,PN结的电导性减小,电场区域增宽。

这会导致Source到Drain的电流减小,即输出电流被控制。

这种控制过程是通过改变电场区域宽度而实现的,因此称为场效应。

JFET有两种常见的结构:N型JFET和P型JFET。

N型JFET 是由P型材料夹在两个N型材料之间形成的,而P型JFET则是由N型材料夹在两个P型材料之间形成的。

两者的工作原理基本相同,只是电流流动方向相反。

在实际应用中,JFET具有很多优点,比如体积小,可以工作在较高的频率范围内,具有较低的噪声,以及可以工作在宽温度范围内等。

因此,JFET被广泛应用于放大器、开关和稳压器等电路中。

什么是结型场效应管

什么是结型场效应管

什么是结型场效应管场效应管是通过改变外加电压产生的电场强度来控制其导电能力的半导体器件。

它不仅具有双极型三极管的体积小,重量轻,耗电少,寿命长等优点,而且还具有输入电阻高,热稳定性好,抗辐射能力强,噪声低,制造工艺简单,便于集成等特点.因而,在大规模及超大规模集成电路中得到了广泛的应用.根据结构和工作原理不同,场效应管可分为两大类: 结型场效应管(JFET)和绝缘栅型场效应管(IGFET)。

在两个高掺杂的P区中间,夹着一层低掺杂的N区(N区一般做得很薄),形成了两个PN结。

在N区的两端各做一个欧姆接触电极,在两个P区上也做上欧姆电极,并把这两个P 区连起来,就构成了一个场效应管。

从N型区引出的两个电极分别为源极S和漏极D,从两个P区引出的电极叫栅极G,很薄的N区称为导电沟道。

结型场效应管分类:N沟道和P沟道两种。

如下图所示为N沟道管的结构和符号。

如右图所示为N沟道结型场效应管的结构示意图。

N沟道结型场效应管正常工作时,在漏-源之间加正向电压,形成漏极电流。

<0,耗尽层承受反向电压,既保证栅-源之间内阻很高,又实现对沟道电流的控制。

★=0时,对导电沟道的控制作用,如下图所示。

◆=0时,=0,耗尽层很窄,导电沟道很宽。

◆│增大时,耗尽层加宽,沟道变窄,沟道电阻增大。

◆│增大到某一数值时,耗尽层闭合,沟道消失,沟道电阻趋于无穷大,称此时的值为夹断电压。

★为~0中某一固定值时,对漏极电流的影响▲=0,由所确定的一定宽的导电沟道,但由于d-s间电压为零,多子不会产生定向移动,=0。

▲>0,有电流从漏极流向源极,从而使沟道各点与栅极间的电压不再相等,沿沟道从源极到漏极逐渐增大,造成靠近漏极一边的耗尽层比靠近源极一边的宽。

如下图(a)所示。

▲从零逐渐增大时,=- 逐渐减小,靠近漏极一边的导电沟道随之变窄。

电流随线性增大。

▲增大,使=,漏极一边耗尽层出现夹断区,称=为预夹断。

▲继续增大,<,夹断区加长。

结型场效应管

结型场效应管

结型场效应管结型场效应管(JFET)是一种常用的场效应管。

它是由一对PN结构组成的,可以分为N型JFET和P型JFET两种类型。

JFET通常用作信号放大器或开关,具有高输入阻抗和低输出电阻等优点,在电子设备中得到广泛应用。

结构和工作原理JFET的结构包括了沟道和栅极,通常由半导体材料构成。

当增加栅极电压时,栅极和沟道之间的势垒宽度会发生变化,从而调节沟道中的载流子数量。

当栅极电压增加时,势垒减小,使得沟道中的载流子数量增加,从而增大导通电流;相反,当栅极电压减小时,势垒增加,导致导通电流减小。

因此,通过调节栅极电压,可以实现对JFET的控制。

N型JFETN型JFET的沟道是由N型半导体材料构成,栅极电压使沟道中的电荷密度发生变化。

当栅极与源极之间的电压为负值时,JFET处于截止状态,沟道截断,导通电流几乎为零;当栅极与源极之间的电压为正值时,JFET处于放大状态,沟道导通,导通电流增加。

P型JFETP型JFET的沟道是由P型半导体材料构成,与N型JFET相反,当栅极与源极之间的电压为负值时,P型JFET处于放大状态,沟道导通;当栅极与源极之间的电压为正值时,P型JFET处于截止状态,导通电流几乎为零。

应用领域JFET广泛应用于各种电子设备中,例如放大器、滤波器、振荡器和电压控制器等。

由于JFET具有高输入电阻和低输出电阻的特性,适合用作信号放大器。

此外,JFET还可以作为电子开关,用于控制电路的通断或信号的调节。

结型场效应管是一种重要的场效应管,在电子技术领域具有重要的应用价值。

通过对JFET的结构和工作原理进行深入了解,可以更好地应用它在电子设备中,实现各种功能的设计和控制。

结型场效应管p沟道的工作原理

结型场效应管p沟道的工作原理

结型场效应管p沟道的工作原理结型场效应管(p沟道)是一种常见的电子器件,具有重要的工作原理和应用。

在本文中,我们将详细讨论结型场效应管(p沟道)的工作原理,并探索其在电子领域的广泛应用。

1. 介绍和背景知识结型场效应管(p沟道)是一种半导体器件,由掺杂有正电荷的p型材料和负电荷的n型材料组成。

它属于一类双极性器件,既可以用作放大器,也可以用作开关。

2. 结型场效应管(p沟道)的结构结型场效应管(p沟道)的结构包括栅极、漏极和源极。

栅极与漏极之间通过氧化层隔开,形成一个电容。

当施加在栅极和源极之间的电压改变时,场效应管的导电性也会发生变化。

3. 工作原理在结型场效应管(p沟道)正常工作时,当施加一个正电压到栅极上时,栅极与源极之间的电势差增大。

这将产生一个电场,使得p型材料中的电子被吸引到栅极接近的地方,从而形成一个导电通道。

这个导电通道使得电流能够流经源极和漏极之间。

4. 控制电流结型场效应管(p沟道)的工作原理是通过改变栅极与源极之间的电压来控制漏极和源极之间的电流。

当栅极和源极之间的电压较低时,导电通道的电阻较高,电流几乎不会流过。

然而,当栅极和源极之间的电压增加时,电阻减小,电流开始流过。

5. 优点和应用结型场效应管(p沟道)具有许多优点。

它具有高输入阻抗和低输出阻抗,能够在低功率条件下工作,从而减少能量消耗。

它还具有较小的尺寸和重量,适合集成电路的应用。

结型场效应管(p沟道)在电子领域有广泛的应用。

它可以用作放大器,将小信号放大到较大的信号,用于音频放大器和无线电传输。

它还可以用作数字开关,将输入信号转换为高电平和低电平,用于计算机和通信系统。

总结与回顾:结型场效应管(p沟道)是一种常见的电子器件,其工作原理基于通过改变栅极与源极之间的电压来控制电流。

它具有高输入阻抗、低输出阻抗和能耗低的特点,适用于放大器和开关应用。

这种器件在音频放大器、无线电传输、计算机和通信系统等领域得到广泛应用。

六种场效应管

六种场效应管

六种场效应管一、结型场效应管结型场效应管是一种单极场效应管,其工作原理是基于栅极电压改变二氧化硅(SiO2)层中电荷分布来实现对漏极电流的控制。

它的工作特点是在工作过程中不需要很大的功耗,并且具有良好的噪声特性。

在电子设备中,结型场效应管通常用于放大、振荡、开关等电路中。

二、绝缘栅型场效应管绝缘栅型场效应管是一种单极场效应管,其工作原理是通过在二氧化硅(SiO2)绝缘层上覆盖金属薄膜来实现对源极和漏极之间的控制。

由于没有栅极氧化层与半导体之间的电容,因此其输入电阻非常高,并且具有低噪声特性。

在电子设备中,绝缘栅型场效应管通常用于放大、振荡、开关等电路中。

三、MOS型场效应管MOS型场效应管是一种单极场效应管,其工作原理是通过在金属-氧化物-半导体(MOS)结构上施加电压来改变电荷分布实现对漏极电流的控制。

它的优点是输入电阻高、驱动电流小、功耗低、易于集成等。

在电子设备中,MOS型场效应管通常用于放大、振荡、开关等电路中。

四、高电子饱和迁移率型场效应管高电子饱和迁移率型场效应管是一种具有高电子饱和迁移率的单极场效应管。

它的工作原理是通过改变栅极电压来改变半导体内部的电子饱和迁移率实现对漏极电流的控制。

它的优点是具有高速响应和低功耗特性,适用于高速数字电路和模拟电路中。

五、高电子饱和迁移率型场效应管高电子饱和迁移率型场效应管是一种具有高电子饱和迁移率的双极场效应管。

它的工作原理是通过改变栅极电压来改变半导体内部的电子饱和迁移率实现对漏极电流的控制。

它的优点是具有高速响应和低功耗特性,适用于高速数字电路和模拟电路中。

六、结型双极型场效应管结型双极型场效应管是一种双极场效应管,其工作原理是基于栅极电压改变半导体内部的电子和空穴浓度实现对漏极电流的控制。

它的优点是具有高速响应和低功耗特性,适用于高速数字电路和模拟电路中。

同时,它还具有较好的噪声特性和稳定性,适用于各种复杂的电子设备中。

结型场效应管的实验报告

结型场效应管的实验报告

一、实验目的1. 了解结型场效应管(JFET)的结构、原理及工作特性;2. 掌握结型场效应管的基本放大电路设计、搭建和调试方法;3. 学习结型场效应管放大电路动态参数的测试方法。

二、实验原理1. 结型场效应管(JFET)是一种单极型场效应管,其基本结构由p-n结栅极、源极和漏极组成。

JFET有n沟道和p沟道两种类型,其中n沟道JFET以N型半导体为衬底,p沟道JFET以P型半导体为衬底。

2. JFET的工作原理是:当栅极电压为负值时,p-n结反向偏置,形成导电沟道;当栅极电压为正值时,p-n结正偏置,导电沟道被夹断。

通过改变栅极电压,可以控制源极与漏极之间的电流。

3. JFET放大电路主要采用共源极放大电路,其特点是输入阻抗高、输出阻抗低、电压增益高。

JFET放大电路的动态参数包括:输入电阻、输出电阻、电压增益、输入电容、输出电容等。

三、实验仪器与设备1. 实验电路板:包括JFET、电阻、电容、电源、信号发生器、示波器等;2. 信号发生器:提供输入信号;3. 示波器:观察输出波形;4. 数字万用表:测量电压、电流等参数;5. 实验电源:提供稳定电压。

四、实验内容及步骤1. 搭建JFET共源极放大电路,如图所示。

2. 调整电路参数,使JFET工作在放大状态。

3. 测量电路的静态工作点,包括栅极电压VGS、漏极电压VDS和漏极电流ID。

4. 输入信号,调整信号幅度和频率,观察输出波形。

5. 测量电路的动态参数,包括输入电阻、输出电阻、电压增益、输入电容、输出电容等。

6. 分析实验结果,验证JFET放大电路的性能。

五、实验结果与分析1. 静态工作点测量结果:VGS = -2VVDS = 10VID = 2mA2. 动态参数测量结果:输入电阻Ri = 1.5kΩ输出电阻Ro = 5kΩ电压增益AV = 20输入电容Ci = 100pF输出电容Co = 500pF3. 分析:(1)JFET共源极放大电路在静态工作点附近具有良好的线性放大特性;(2)输入电阻较高,有利于信号源负载;(3)电压增益较高,适用于信号放大;(4)输入电容和输出电容较小,有利于高频信号放大。

什么是结型场效应管

什么是结型场效应管

什么是结型场效应管场效应管是通过改变外加电压产生的电场强度来控制其导电能力的半导体器件。

它不仅具有双极型三极管的体积小,重量轻,耗电少,寿命长等优点,而且还具有输入电阻高,热稳定性好,抗辐射能力强,噪声低,制造工艺简单,便于集成等特点•因而,在大规模及超大规模集成电路中得到了广泛的应用•根据结构和工作原理不同,场效应管可分为两大类:结型场效应管(JFET)和绝缘栅型场效应管(IGFET)。

在两个高掺杂的P区中间,夹着一层低掺杂的N区(N区一般做得很薄),形成了两个PN结。

在N 区的两端各做一个欧姆接触电极,在两个P区上也做上欧姆电极,并把这两个P区连起来,就构成了一个场效应管。

从N型区引出的两个电极分别为源极S和漏极D,从两个P区引出的电极叫栅极G,很薄的N区称为导电沟道。

结型场效应管分类:N沟道和P沟道两种。

如下图所示为N沟道管的结构和符号。

结型场效应管的结构和符号如右图所示为N沟道结型场效应管的结构示意图。

N沟道结型场效应管正常工作时,在漏-源之间加正向电压%,形成漏极电流。

卒<0,耗尽层承受反向电压,既保证栅-源之间内阻很高,又实现%对沟道电流的控制。

★=0时,% 对导电沟道的控制作用,如下图所示。

♦"二.1 =0时,“二=0,耗尽层很窄,导电沟道很宽。

他)结初N沟道管FW道管(b)«号♦"U I增大时,耗尽层加宽,沟道变窄,沟道电阻增大。

♦"U I增大到某一数值时,耗尽层闭合,沟道消失,沟道电阻趋于无穷大,称此时"上的值为夹断电压■■1J1。

励尸0时Lte时导电沟道的控制作用★叫芒为%如~0中某一固定值时,仏对漏极电流5的影响▲氏=0,由%所确定的一定宽的导电沟道,但由于d-s间电压为零,多子不会产生定向移动,山=0。

▲^氏>0,有电流从漏极流向源极,从而使沟道各点与栅极间的电压不再相等,沿沟道从源极到漏极逐渐增大,造成靠近漏极一边的耗尽层比靠近源极一边的宽。

结型场效应管导通条件

结型场效应管导通条件

结型场效应管导通条件结型场效应管(JFET)这东西,听起来是不是有点高大上?别担心,咱们就用最简单的方式来聊聊它的导通条件。

说到导通,很多朋友可能想起开关,一按就亮。

JFET也有它的“开关”功能,不过它是通过电压来控制的。

想象一下,你在晚上回家,打开灯,瞬间房间明亮无比,这就是导通的魅力所在。

要让JFET导通,得有个合适的栅极电压。

这个电压就像是你喝咖啡前需要的那一口,太多或者太少都不行。

一般情况下,栅极电压得低于某个特定值,才能让它顺利打开。

想象一下,你的朋友约你出去玩,你得先确认他不迟到,要不然你就不想开门了。

所以,栅极电压得适中,才能让JFET乖乖的“开门”!而这个合适的电压,就是我们说的“阈值电压”。

再说说源极和漏极的事。

源极就像是水龙头,漏极就像是水槽。

想让水流出去,得先把水龙头打开。

JFET也是这样,源极和漏极之间得有个电压差。

这个电压差就像是水龙头和水槽之间的高度差,有了它,水才能顺利流动。

而如果电压差不够,JFET就像是堵塞的水管,根本不可能导通。

你想想,要是水管堵了,真是让人抓狂。

然后,还有一个要注意的点,就是饱和状态。

JFET进入饱和状态后,导通性能就变得非常优秀。

想象一下,当你吃到一块超好吃的蛋糕时,简直停不下来!而这时候,如果你一味追求更高的电流,就可能让JFET受不了,导致它过热,最后“罢工”。

所以说,适可而止,才是王道。

环境温度也会对JFET的表现产生影响。

天气太冷,JFET可能会表现得不那么灵活,就像你早上起床时,感觉身体僵硬。

相反,温度过高,JFET就可能变得过于兴奋,导致失控。

所以,找到一个合适的工作温度,是让JFET保持健康的关键。

话说回来,JFET的应用可真不少。

在放大器、开关电路、信号调节器等领域,它的身影无处不在。

就像在朋友聚会上,总有一个人能让大家都开心。

它帮助我们把微弱的信号放大,让声音更加洪亮。

试想一下,如果没有JFET,音响效果可能会变得平平无奇,那可真是让人失望。

结型场效应管

结型场效应管

结型场效应管场效应管场效应管(FjeldEffect Transistor简称FET )是利用电场效应来控制半导体中电流的一种半导体器件,故因此而得名。

场效应管是一种电压控制器件,只依靠一种载流子参与导电,故又称为单极型晶体管。

与双极型晶体三极管相比,它具有输入阻抗高、噪声低、热稳定性好、抗辐射能力强、功耗小、制造工艺简单和便于集成化等优点。

场效应管有两大类,结型场效应管JFET和绝缘栅型场效应管IGFET,后者性能更为优越,发展迅速,应用广泛。

图Z0121 为场效应管的类型及图形、符号。

一、结构与分类图Z0122为N沟道结型场效应管结构示意图和它的图形、符号。

它是在同一块N型硅片的两侧分别制作掺杂浓度较高的P型区(用P+表示),形成两个对称的PN结,将两个P区的引出线连在一起作为一个电极,称为栅极(g),在N型硅片两端各引出一个电极,分别称为源极(s)和漏极(d)。

在形成PN结过程中,由于P+区是重掺杂区,所以N一区侧的空间电荷层宽度远大二、工作原理N沟道和P沟道结型场效应管的工作原理完全相同,只是偏置电压的极性和载流子的类型不同而已。

下面以N沟道结型场效应管为例来分析其工作原理。

电路如图Z0123所示。

由于栅源间加反向电压,所以两侧PN结均处于反向偏置,栅源电流几乎为零。

漏源之间加正向电压使N型半导体中的多数载流子-电子由源极出发,经过沟道到达漏极形成漏极电流I D。

1.栅源电压U GS对导电沟道的影响(设U DS=0)在图Z0123所示电路中,U GS<0,两个PN结处于反向偏置,耗尽层有一定宽度,I D=0。

若|U GS| 增大,耗尽层变宽,沟道被压缩,截面积减小,沟道电阻增大;若|U GS| 减小,耗尽层变窄,沟道变宽,电阻减小。

这表明U GS控制着漏源之间的导电沟道。

当U GS负值增加到某一数值V P时,两边耗尽层合拢,整个沟道被耗尽层完全夹断。

(V P称为夹断电压)此时,漏源之间的电阻趋于无穷大。

结型场效应管及其放大电路 ppt课件

结型场效应管及其放大电路  ppt课件
(2)取出的MOS器件不能在塑料板上滑动,应用金属盘来盛放待用器件。 (3)焊接用的电烙铁必须良好接地。 (4)在焊接前应把电路板的电源线与地线短接,再MOS器件焊接完成后 在分开。
(5)MOS器件各引脚的焊接顺序是漏极、源极、栅极。拆机时顺序相反。 (6)电路板在装机之前,要用接地的线夹子去碰一下机器的各接线端子, 再把电路板接上去。
1
- 3 .4V
ppt课件
0
10
20
夹断区
UDS1/8V
( 1 ) 可 变 电 阻 区 。 当 UGS 不 变 , UDS由零逐渐增加且较小时,ID随UDS 的增加而线性上升,场效应管导电沟 道畅通。漏源之间可视为一个线性电 阻RDS,这个电阻在UDS较小时,主要 由UGS决定,所以此时沟道电阻值近似 不变。而对于不同的栅源电压UGS,则 有不同的电阻值RDS,故称为可变电阻 区。
道最宽;靠近漏极端的电位
最高,且与栅极电位差最大,
因而耗尽层最宽,沟道最窄。
由图可知,UDS的主要作用
是形成漏极电流ID。
ppt课件
13
二、结型场效应管
3)UDS和UGS 共同作用的情况:
设漏源间加有电压UDS: 当UGS变化时,电流ID将随沟道电阻的变化而变化。 (1)当UGS=0时,沟道电阻最小,电流ID最大。
① 输出特性 iD f (v ) DS vGSconst. ②转移特性 iD f (v ) GS vDS const.
iD

IDSS (1
vGS )2 VP
(VP vGS 0)
夹断区
VP
ppt课件
21
二、结型场效应管
5.场效应管的主要参数
ppt课件
22

中功率结型场效应管-概述说明以及解释

中功率结型场效应管-概述说明以及解释

中功率结型场效应管-概述说明以及解释1.引言概述:中功率结型场效应管是一种具有较高性能和功率特性的半导体器件,广泛应用于各种电子设备中。

它具有结型场效应管的特性,在中功率范围内具有良好的电流驱动能力和低开关损耗。

本文将介绍中功率结型场效应管的定义、工作原理以及应用领域,旨在深入探讨其在电子领域中的重要性和潜在应用。

.3 展望": {}}}}请编写文章1.1 概述部分的内容1.2 文章结构本文主要分为引言、正文和结论三部分。

引言部分将介绍中功率结型场效应管的背景和意义,包括概述中功率结型场效应管的基本概念,文章的研究背景以及研究目的。

正文部分将从三个方面介绍中功率结型场效应管,包括定义、工作原理和应用领域。

通过对中功率结型场效应管的深入分析,读者将更加全面地了解该器件的特点和优势。

结论部分将总结本文的研究内容,并重点强调中功率结型场效应管的优势和潜在应用前景。

通过对该器件的展望,读者将更好地认识到中功率结型场效应管在未来的发展方向和应用领域。

1.3 目的本文旨在深入探讨中功率结型场效应管的特性及其在电子领域中的重要性和应用。

通过对中功率结型场效应管的定义、工作原理和应用领域进行详细分析,旨在帮助读者更好地了解这一技术,并为相关领域的研究和应用提供参考。

同时,通过对中功率结型场效应管优势的总结和展望,也旨在引领读者对这一技术的未来发展趋势有更深入的了解和认识。

通过本文的阐述,希望可以为相关领域的科研工作者和工程技术人员提供一定的启发和帮助,推动中功率结型场效应管技术的进一步发展和应用。

2.正文2.1 中功率结型场效应管的定义中功率结型场效应管是一种半导体器件,通过控制门电压来控制电流流动,从而实现功率放大或开关控制的功能。

它主要由栅极、漏极和源极组成,其中栅极用于控制电流流动,漏极和源极用于承载电流。

结型场效应管的特点是其导电能力主要依靠正向导电层的形成和消除,因此在导通和截止状态之间的反应速度很快,适合高频率应用。

结型场效应管特殊接法

结型场效应管特殊接法

结型场效应管特殊接法结型场效应管(JFET)是一种电压控制器件,其工作原理是通过改变栅极电压来控制漏极电流。

在实际应用中,为了满足不同的电路需求,常常需要采用一些特殊的接法。

本文将介绍结型场效应管的9种特殊接法:自举电路接法、串联接法、并联接法、反馈接法、互补接法、差分接法、源极接地接法、漏极接地接法和交叉导电接法。

1. 自举电路接法自举电路接法是通过提高栅极电压来增加漏极电流的。

这种接法通常用于提高放大器的输出幅度。

在自举电路中,通常需要一个自举电容和一个自举电阻。

自举电容用于存储电荷,而自举电阻则用于限制电流。

2. 串联接法串联接法是将两个或多个场效应管串联起来,以增加输出电压或降低输出电流。

在串联接法中,各场效应管的源极和漏极分别连接在一起,栅极和源极之间的电压等于各管栅极和源极之间的电压之和。

3. 并联接法并联接法是将两个或多个场效应管并联起来,以增加输出电流或降低输出电压。

在并联接法中,各场效应管的源极和漏极分别连接在一起,栅极和源极之间的电压等于各管栅极和源极之间的电压。

4. 反馈接法反馈接法是将场效应管的输出端反馈到输入端,以实现放大倍数的控制。

反馈接法可以改变放大器的增益和带宽,提高放大器的稳定性。

5. 互补接法互补接法是将两个场效应管反相串联起来,以实现电压控制、高输入阻抗和低输出阻抗等特点。

互补接法常用于音频功率放大器和开关电源等电路中。

6. 差分接法差分接法是将两个场效应管反相并联起来,以实现信号的差分传输。

差分信号可以减小共模干扰和电磁干扰的影响,提高信号的抗干扰能力。

7. 源极接地接法源极接地接法是将场效应管的源极接地,以实现高输入阻抗和低输出阻抗等特点。

这种接法常用于信号放大和开关电路中。

8. 漏极接地接法漏极接地接法是将场效应管的漏极接地,以实现低输入阻抗和高输出阻抗等特点。

这种接法常用于信号放大和驱动电路中。

9. 交叉导电接法交叉导电接法是将两个场效应管交叉连接起来,以实现电流的控制。

结型场效应管

结型场效应管
-2V -4V
P
O
VGS /V
若| VUS | 阻挡层宽度 耗尽层中负离子数
因VGS不变(G极正电荷量不变) 表面层中电子数 ID
根据衬底电压对ID的控制作用,又称U极为背栅极。
P沟道EMOS管
+VDS -
S +VGS- G
D
U
N+
P+
P+
D ID
U G
N
S
N沟道EMOS管与P沟道EMOS管工作原理相似。 不同之处:电路符号中的箭头方向相反。
VDS /V
转移特性曲线中,ID =0 时对应的VGS值,即开启电 压VGS(th) 。
衬底效应
集成电路中,许多MOS管做在同一衬底上,为保证U与S、D
之间PN结反偏,衬底应接电路最低电位(N沟道)或最高电
位(P沟道)。
- VD+S
U -VU+S S -VG+S G
D
P+
N+
N+
ID/mA VUS = 0
3.1 MOS场效应管
MOSFET
增强型(EMOS) N沟道(NMOS) P沟道(PMOS) N沟道(NMOS)
耗尽型(DMOS) P沟道(PMOS)
N沟道MOS管与P沟道MOS管工作原理相似,不 同之处仅在于它们形成电流的载流子性质不同,因 此导致加在各极上的电压极性相反。
3.1.1 增强型MOS场效应管
➢ NEMOS管输出特性曲线
非饱和区
ID/mA
沟道预夹断前对应的工作区。
VDS = VGS –VGS(th)
条件: VGS > VGS(th) V DS < VGS–VGS(th)

结型场效应管工作原理

结型场效应管工作原理

结型场效应管工作原理场效应管(FET)是一种三端器件,由栅极、漏极和源极组成。

它是一种电压控制型的晶体管,通过调节栅极和源极之间的电压来控制漏极和源极之间的电流。

结型场效应管(JFET)是一种常见的场效应管,它的工作原理与普通的场效应管有所不同。

本文将围绕结型场效应管的工作原理展开详细介绍。

结型场效应管是一种基于PN结的半导体器件。

它的主要结构包括N型半导体和P型半导体构成的结,通过改变栅极与源极之间的电压,可以调节PN结的电场分布,从而控制漏极与源极之间的电流。

当栅极与源极之间的电压为零时,PN结之间的电场分布均匀,漏极与源极之间的电流达到最大值,此时处于导通状态。

而当栅极与源极之间的电压增大时,PN结之间的电场分布逐渐改变,导致漏极与源极之间的电流逐渐减小,最终达到截止状态。

结型场效应管的工作原理可以用一个水龙头的比喻来解释。

当水龙头关闭时,水流畅通无阻,这时可以看作是结型场效应管处于导通状态。

而当水龙头打开时,水流受到阻碍,水流减小,这时可以看作是结型场效应管处于截止状态。

通过调节水龙头的开关,可以控制水流的大小,同样地,通过调节栅极与源极之间的电压,可以控制结型场效应管的导通状态和截止状态。

结型场效应管具有许多优点,例如输入电阻高、噪声小、体积小等,因此在各种电子设备中得到了广泛的应用。

在放大、开关、电压控制等方面都有着重要的作用。

但是在实际应用中,也需要注意一些问题,例如静态电流过大、温度稳定性差等,需要合理设计和使用。

总之,结型场效应管是一种重要的半导体器件,它通过调节栅极与源极之间的电压来控制漏极与源极之间的电流,具有许多优点和广泛的应用。

通过深入理解其工作原理,可以更好地应用于实际电路中,发挥其作用。

希望本文对结型场效应管的工作原理有所帮助。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
场效应管放大电路
晶体管工作在放大区时,输入回路 PN 结正偏,输入阻抗小, 且是一个电流控制的有源器件。
场效应管也是一种具有 PN 结的正向受控作用的有源器件, 它是利用电场效应来控制输出电流的大小,其输入端 PN 结一 般工作于反偏状态或绝缘状态。输入电阻很高。
场效应管根据结型场效应管 (JFET) 输入阻抗
沟道电阻 ID基本不变
4.1结型 场效应管
综上分析可知
• 沟道中只有一种类型的多数载流子参与导电, 所以场效应管也称为单极型三极管。
• JFET栅极与沟道间的PN结是反向偏置的,因 此iG0,输入电阻很高。 • JFET是电压控制电流器件,iD受vGS控制 • 预夹断前iD与vDS呈近似线性关系;预夹断后, iD趋于饱和。 P沟道JFET工作时,其电源极性与N沟道JFET 的电源极性相反。
4.1结型 场效应管
二、 JFET的特性曲线及参数
iD f ( vGS ) vD Sconst.
1. 转移特性
VP
vGS 2 iD I DSS (1 ) VP
(VP vGS 0)
2. 输出特性
iD f ( vDS ) vGSconst.
4.1结型 场效应管
输出特性
输出特性曲线表达以UGS为参变 量时iD与uDS的关系。根据特性曲线 的各部分特征,分为四个区域: 1)饱和区 饱和区区相当于双极型晶体管
的放大区。其主要特征为: uGS对iD的控制能力很强 ,uDS的变化对iD影响很小。 2)可变电阻区 与双极型晶体管不同,在JFET中,栅源电压uGS对iD上升的斜 率影响较大,随着|UGS|增大,曲线斜率变小,说明JFET的输出电 阻变大。 3) 截止区 当|UGS|>|UP|时,沟道被全部夹断,iD=0,故此区为截止区。
场效应管放大电路
分类:
JFET 结型 MOSFET (IGFET) 绝缘栅型 N沟道
(耗尽型) N沟道
FET 场效应管
P沟道 增强型
P沟道 N沟道 P沟道
耗尽型
4.1结型 场效应管
结型场效应管
一、 JFET的结构和工作原理
结构 工作原理
二、 JFET的特性曲线及参数
输出特性 转移特性 主要参数
一、JFET的结构和工作原理 1.结构:
N沟道管:电子导电,导电沟道为N型半导体
P沟道管:空穴导电,导电沟道为P型半导体
结型场效应管的结构示意图及其表示符号
(a)N沟道JFET;(b)P沟道JFET
2.工作原理
当VGS<0时
(以N沟道JFET为例)
① VGS对沟道的控制作用
PN结反偏 耗尽层加厚 沟道变窄。
绝缘栅场效应管 (IGFET)
输入阻抗10
12
~ 1014
在 IGFET 中又有多种类型,目前应用最广泛的是以二氧 化硅 Si O2 为绝缘层的场效应管,称为金属-氧化物-半导体场
效应管(MOSFET,Metal-Oxide-Semiconductor Field Effect Transistor) 。
VGS继续减小,沟道 继续变窄
当沟道夹断时,对应
的栅源电压VGS称为夹断 电压VP ( 或VGS(off) )。
对于N沟道的JFET,VP <0。
4.1结型 场效应管
2.工作原理
(以N沟道JFET为例)
② ③V V 对沟道的控制作用 和VDS同时作用时 DS GS
当VGS=0时, VDS ID G、 D 间 PN结的反向电 导电沟 当VP <V <0 时, GS 压增加,使靠近漏极处的 道更容易夹断, 对于同样 耗尽层加宽,沟道变窄, 的VDS , ID的值比VGS=0时 从上至下呈楔形分布。 的值要小。 当VDS增加到使VGD=VP 时,在紧靠漏极处出现预 在预夹断处 夹断。 VGD=VGS-VDS =VP 此时VDS 夹断区延长
若利用JFET作为开关,则工作在截止区,即相当于开关打开。 4)击穿区 随着uDS增大,靠近漏区的PN结反偏电压uDG也随之增大。
相关文档
最新文档