场效应管工作原理

合集下载

场效应管工作原理及应用

场效应管工作原理及应用

场效应管工作原理(1)场效应晶体管(Field Effect Transistor缩写(FET))简称场效应管。

一般的晶体管是由两种极性的载流子,即多数载流子和反极性的少数载流子参与导电,因此称为双极型晶体管,而FET仅是由多数载流子参与导电,它与双极型相反,也称为单极型晶体管。

它属于电压控制型半导体器件,具有输入电阻高(108~109Ω)、噪声小、功耗低、动态范围大、易于集成、没有二次击穿现象、安全工作区域宽等优点,现已成为双极型晶体管和功率晶体管的强大竞争者。

一、场效应管的分类场效应管分结型、绝缘栅型两大类。

结型场效应管(JFET)因有两个PN结而得名,绝缘栅型场效应管(JGFET)则因栅极与其它电极完全绝缘而得名。

目前在绝缘栅型场效应管中,应用最为广泛的是MOS场效应管,简称MOS管(即金属-氧化物-半导体场效应管MOSFET);此外还有PMOS、NMOS和VMOS 功率场效应管,以及最近刚问世的πMOS场效应管、VMOS功率模块等。

按沟道半导体材料的不同,结型和绝缘栅型各分沟道和P沟道两种。

若按导电方式来划分,场效应管又可分成耗尽型与增强型。

结型场效应管均为耗尽型,绝缘栅型场效应管既有耗尽型的,也有增强型的。

场效应晶体管可分为结场效应晶体管和MOS场效应晶体管。

而MOS场效应晶体管又分为N沟耗尽型和增强型;P沟耗尽型和增强型四大类。

见下图。

二、场效应三极管的型号命名方法现行有两种命名方法。

第一种命名方法与双极型三极管相同,第三位字母J代表结型场效应管,O代表绝缘栅场效应管。

第二位字母代表材料,D是P型硅,反型层是N沟道;C是N型硅P沟道。

例如,3DJ6D是结型N沟道场效应三极管,3DO6C 是绝缘栅型N沟道场效应三极管。

第二种命名方法是CS××#,CS代表场效应管,××以数字代表型号的序号,#用字母代表同一型号中的不同规格。

例如CS14A、CS45G等。

mos场效应管工作原理

mos场效应管工作原理

mos场效应管工作原理
场效应管(又称为MOSFET, Metal-Oxide-Semiconductor Field-Effect Transistor)是一种三极管,它是由金属-氧化物-半导体结
构组成的。

MOS场效应管的工作原理基于其门电压对导电状态的控制。

它主要由四个部分组成:栅极(gate)、漏极(drain)、源极(source)和绝缘层(insulating layer)。

栅极和源极之间绝缘层两侧有一个
半导体通道。

当没有电压应用在栅极时,绝缘层将阻止电流在通道中的流动,MOSFET处于关断状态,导电性排斥。

但是,当正电压应用
在栅极上时,它会形成一个电场,这个电场会吸引并导致半导体通道中的载流子(电子或空穴)向栅极周围移动。

这将导致通
道处于导通状态,由源极到漏极流动的电流增加。

根据栅极与源极之间的电压,MOSFET可以操作在三个不同
的工作区域:截止区、线性区和饱和区。

- 截止区:当栅极电压低于门阈电压时,MOSFET处于截止状态,没有电流流过整个器件。

- 线性区:当栅极电压高于门阈电压时,MOSFET处于线性区,电流的大小与栅极电压的差值成正比。

- 饱和区:当栅极电压进一步增加,使得MOSFET工作在饱和区,此时电流基本保持不变。

通过调整栅极电压,可以控制MOSFET的导通和截止,从而
实现对电流的控制和放大功能。

因此,MOSFET被广泛应用于电子设备,如放大器、开关和逻辑电路等。

场效应管的基础知识

场效应管的基础知识

场效应管的基础知识:
场效应管(Field Effect Transistor,FET)是一种利用电场效应来控制半导体器件中的电流流动的半导体器件。

以下是场效应管的基础知识:
1.工作原理:场效应管利用电场效应原理,通过控制栅极电压来控制源极和漏极之间
的电流。

当栅极电压为零时,源极和漏极之间没有电流。

当栅极电压不为零时,电场效应使得半导体内的电子聚集在沟道的一侧,形成导电沟道,从而使得源极和漏极之间有电流流动。

2.结构:场效应管的结构包括源极(Source)、漏极(Drain)、栅极(Gate)三个电
极。

源极和漏极之间是半导体材料,称为沟道。

栅极位于源极和漏极之间,通过控制栅极电压来控制沟道的通断。

3.类型:场效应管有N沟道和P沟道两种类型。

N沟道场效应管的源极和漏极之间是
N型半导体,P沟道场效应管的源极和漏极之间是P型半导体。

4.特性曲线:场效应管的特性曲线包括转移特性曲线和输出特性曲线。

转移特性曲线
表示栅极电压对漏极电流的影响,输出特性曲线表示漏极电流与漏极电压之间的关系。

5.应用:场效应管广泛应用于电子设备中,如放大器、振荡器、开关等。

由于场效应
管具有体积小、重量轻、寿命长等优点,因此在便携式设备、移动通信等领域得到广泛应用。

场效应管工作原理

场效应管工作原理

场效应管⼯作原理场效应管⼯作原理MOS场效应管电源开关电路。

这是该装置的核⼼,在介绍该部分⼯作原理之前,先简单解释⼀下MOS 场效应管的⼯作原理。

MOS 场效应管也被称为MOS FET,既Metal Oxide Semiconductor Field EffectTransistor(⾦属氧化物半导体场效应管)的缩写。

它⼀般有耗尽型和增强型两种。

本⽂使⽤的为增强型MOS场效应管,其内部结构见图5。

它可分为NPN型PNP型。

NPN型通常称为N沟道型,PNP型也叫P沟道型。

由图可看出,对于N沟道的场效应管其源极和漏极接在N型半导体上,同样对于P沟道的场效应管其源极和漏极则接在P型半导体上。

我们知道⼀般三极管是由输⼊的电流控制输出的电流。

但对于场效应管,其输出电流是由输⼊的电压(或称电场)控制,可以认为输⼊电流极⼩或没有输⼊电流,这使得该器件有很⾼的输⼊阻抗,同时这也是我们称之为场效应管的原因。

为解释MOS场效应管的⼯作原理,我们先了解⼀下仅含有⼀个P—N结的⼆极管的⼯作过程。

如图6所⽰,我们知道在⼆极管加上正向电压(P端接正极,N端接负极)时,⼆极管导通,其PN结有电流通过。

这是因为在P型半导体端为正电压时,N型半导体内的负电⼦被吸引⽽涌向加有正电压的P型半导体端,⽽P型半导体端内的正电⼦则朝N型半导体端运动,从⽽形成导通电流。

同理,当⼆极管加上反向电压(P端接负极,N端接正极)时,这时在P型半导体端为负电压,正电⼦被聚集在P型半导体端,负电⼦则聚集在N型半导体端,电⼦不移动,其PN结没有电流通过,⼆极管截⽌。

对于场效应管(见图7),在栅极没有电压时,由前⾯分析可知,在源极与漏极之间不会有电流流过,此时场效应管处与截⽌状态(图7a)。

当有⼀个正电压加在N沟道的MOS 场效应管栅极上时,由于电场的作⽤,此时N型半导体的源极和漏极的负电⼦被吸引出来⽽涌向栅极,但由于氧化膜的阻挡,使得电⼦聚集在两个N沟道之间的P型半导体中(见图7b),从⽽形成电流,使源极和漏极之间导通。

什么是场效应管

什么是场效应管

什么是场效应管场效应管(Field Effect Transistor,简称FET)是一种用于电子设备中的半导体器件。

场效应管利用静电场控制电流流动,其工作原理与晶体管相似。

本文将介绍场效应管的定义、工作原理、类型以及应用领域。

定义:场效应管是一种三极管,由栅极(Gate)、源极(Source)和漏极(Drain)组成。

其中,栅极是控制电流的电极,源极是电流进入管子的电极,漏极是电流从管子流出的电极。

工作原理:场效应管的工作原理基于氧化物半导体场效应。

在FET内部,栅极和基底之间存在一层绝缘氧化物。

当栅极上施加电压时,电压在绝缘氧化物上产生电场,控制了栅极和基底之间的电流。

根据电压的极性和大小,场效应管可以分为两种类型:1. N沟道型场效应管(N-channel FET):N沟道型FET的基底为P型半导体,漏极和源极之间存在一个N型的沟道。

当栅极电压为正值时,电场将吸引阳极中电子,导致电子从源极流向漏极,形成电流。

2. P沟道型场效应管(P-channel FET):P沟道型FET的基底为N型半导体,漏极和源极之间存在一个P型的沟道。

当栅极电压为负值时,电场将吸引阴极中的空穴,导致空穴从源极流向漏极,形成电流。

应用领域:场效应管在电子设备中有广泛的应用,包括:1. 放大器:场效应管可以作为放大器,放大小信号电压或电流,用于音频放大、射频放大等应用。

2. 开关:场效应管可以作为开关,控制电流的通断。

例如,在数字逻辑电路中,场效应管可用于构建数字逻辑门电路。

3. 电源稳定器:场效应管可用于构建电源稳定器,保持电源输出的稳定性,用于电子设备的供电。

4. 数模转换器:场效应管可以将模拟信号转换为数字信号,用于模数转换器中的采样和保持电路。

总结:场效应管是一种重要的半导体器件,通过控制电场实现电流控制。

它具有放大器、开关、电源稳定器等多种应用,广泛用于电子设备和电路中。

了解场效应管的工作原理和应用,有助于理解电子技术中的基本原理和电路设计。

场效应管工作原理(经典)

场效应管工作原理(经典)

场效应管工作原理MOS场效应管电源开关电路。

这是该装置的核心,在介绍该部分工作原理之前,先简单解释一下MOS 场效应管的工作原理。

MOS 场效应管也被称为MOS FET,既Metal Oxide Semiconductor Field EffectTransistor(金属氧化物半导体场效应管)的缩写。

它一般有耗尽型和增强型两种。

本文使用的为增强型MOS场效应管,其内部结构见图5。

它可分为NPN型PNP型。

NPN型通常称为N沟道型,PNP型也叫P沟道型。

由图可看出,对于N沟道的场效应管其源极和漏极接在N型半导体上,同样对于P沟道的场效应管其源极和漏极则接在P型半导体上。

我们知道一般三极管是由输入的电流控制输出的电流。

但对于场效应管,其输出电流是由输入的电压(或称电场)控制,可以认为输入电流极小或没有输入电流,这使得该器件有很高的输入阻抗,同时这也是我们称之为场效应管的原因。

为解释MOS场效应管的工作原理,我们先了解一下仅含有一个P—N结的二极管的工作过程。

如图6所示,我们知道在二极管加上正向电压(P端接正极,N端接负极)时,二极管导通,其PN结有电流通过。

这是因为在P型半导体端为正电压时,N型半导体内的负电子被吸引而涌向加有正电压的P型半导体端,而P型半导体端内的正电子则朝N型半导体端运动,从而形成导通电流。

同理,当二极管加上反向电压(P端接负极,N端接正极)时,这时在P型半导体端为负电压,正电子被聚集在P型半导体端,负电子则聚集在N型半导体端,电子不移动,其PN结没有电流通过,二极管截止。

N沟道MOS FET的源极S接负,漏极接正,栅极接正,与NPN三极管接法相同!(发射极E、集电极C、基极B)MOSFET管内部两根线连载一起的是源极S图7 N沟道MOSFET场效应管在栅极没有电压时,由前面分析可知,在源极与漏极之间不会有电流流过,此时场效应管处与截止状态(图7a)。

当有一个正电压加在N沟道的MOS 场效应管栅极上时,由于电场的作用,此时N型半导体的源极和漏极的负电子被吸引出来而涌向栅极,但由于氧化膜的阻挡,使得电子聚集在两个N沟道之间的P型半导体中(见图7b),从而形成电流,使源极和漏极之间导通。

场效应管的结构及工作原理 和应用例题讲解

场效应管的结构及工作原理 和应用例题讲解

场效应管的结构及工作原理和应用例题讲解嘿呀!今天咱们来好好聊聊场效应管的结构及工作原理和应用例题讲解。

首先呢,咱们来瞅瞅场效应管的结构哇!场效应管分成好几种类型,像结型场效应管和绝缘栅型场效应管等等。

就拿绝缘栅型场效应管来说吧,它里面又有增强型和耗尽型之分呢。

哎呀呀,这结构可复杂又精细!
再说说它的工作原理呀!简单来讲,场效应管是通过电场来控制电流的。

比如说,在栅极上加不同的电压,就能改变导电沟道的宽窄,从而控制源极和漏极之间的电流。

哇塞,是不是很神奇!
接下来咱们看看它的应用,这可太广泛啦!在电子电路中,场效应管可以用来做放大器,增强信号的强度呢。

还有哦,在数字电路里,它能当开关使用,控制电路的通断。

哎呀呀,这可真是太重要啦!
给您举个应用例题讲解讲解哈。

比如说,在一个音频放大电路中,咱们就用场效应管来放大声音信号。

首先,根据输入信号的大小和频率,选择合适的场效应管型号。

然后呢,设计好电路的参数,像偏置电压、负载电阻啥的。

哇!通过合理的调试和优化,就能让声音变得更加清晰、响亮。

还有在电源管理方面,场效应管也大有用处呀!比如说,在直流-直流转换器中,它可以高效地控制电流的流动,提高电源的转换效率。

哎呀,这可不得了!
在通信领域呢,场效应管也是不可或缺的哟!比如在手机的射频
放大器中,它能让信号传输更加稳定和可靠。

哇哦!
总之呀,场效应管的结构、工作原理以及应用真是太重要、太广泛啦!咱们可得好好掌握,才能在电子电路的世界里畅游无阻呢!您说是不是呀?。

场效应管工作原理

场效应管工作原理

场效应管工作原理场效应晶体管〔Field Effect Transistor缩写(FET)〕简称场效应管。

一般的晶体管是由两种极性的载流子,即多数载流子和反极性的少数载流子参与导电,因此称为双极型晶体管,而FET仅是由多数载流子参与导电,它与双极型相反,也称为单极型晶体管。

它属于电压控制型半导体器件,具有输入电阻高〔108~109Ω〕、噪声小、功耗低、动态范围大、易于集成、没有二次击穿现象、安全工作区域宽等优点,现已成为双极型晶体管和功率晶体管的强大竞争者。

一、场效应管的分类场效应管分结型、绝缘栅型两大类。

结型场效应管〔JFET〕因有两个PN结而得名,绝缘栅型场效应管〔JGFET〕则因栅极与其它电极完全绝缘而得名。

目前在绝缘栅型场效应管中,应用最为广泛的是MOS场效应管,简称MOS管〔即金属-氧化物-半导体场效应管MOSFET〕;此外还有PMOS、NMOS和VMOS功率场效应管,以及最近刚问世的πMOS场效应管、VMOS功率模块等。

按沟道半导体材料的不同,结型和绝缘栅型各分沟道和P沟道两种。

假设按导电方式来划分,场效应管又可分成耗尽型与增强型。

结型场效应管均为耗尽型,绝缘栅型场效应管既有耗尽型的,也有增强型的。

场效应晶体管可分为结场效应晶体管和MOS场效应晶体管。

而MOS场效应晶体管又分为N沟耗尽型和增强型;P沟耗尽型和增强型四大类。

见下列图。

二、场效应三极管的型号命名方法现行有两种命名方法。

第一种命名方法与双极型三极管相同,第三位字母J代表结型场效应管,O代表绝缘栅场效应管。

第二位字母代表材料,D是P型硅,反型层是N沟道;C是N型硅P沟道。

例如,3DJ6D是结型N沟道场效应三极管,3DO6C 是绝缘栅型N沟道场效应三极管。

第二种命名方法是CS××#,CS代表场效应管,××以数字代表型号的序号,#用字母代表同一型号中的不同规格。

例如CS14A、CS45G等。

场效应晶体管工作原理

场效应晶体管工作原理

场效应晶体管工作原理
场效应晶体管是一种用于放大和开关电子信号的电子器件。

其工作原理是基于控制载流子浓度的变化来调节电流的流动。

场效应晶体管由源极、栅极和漏极三个电极构成。

栅极与源极之间的绝缘层形成一个电容,称为栅氧化层,用于隔离栅极和通道之间的电荷。

当栅极施加一个正电压时,栅氧化层下面的通道中没有自由载流子,导电能力很差。

这种状态称为截至。

当栅极施加一个负电压时,栅氧化层下面的通道中会积累自由载流子,导电能力增强。

这种状态称为导通。

当一个信号被加到栅极时,它会改变栅氧化层下面的电荷,从而控制通道中的电荷密度。

这样,信号就会放大,并在漏极上产生一个放大后的信号。

场效应晶体管的漏极和源极之间的电压差可以控制电流的流动。

当电压差很小时,晶体管处于截至状态,电流几乎为零。

当电压差逐渐增大时,晶体管进入导通状态,电流开始流动。

综上,场效应晶体管通过控制栅极电压来控制通道中载流子的浓度,从而控制电流的流动。

这种能力使得场效应晶体管在放大和开关电子信号方面具有广泛的应用。

场效应管(FET)的工作原理总结

场效应管(FET)的工作原理总结

结型场效应管的工作原理N 沟道和P 沟道结型场效应管的工作原理完全相同,现以N 沟道结型场效应管为例,分析其工作原理。

N 沟道结型场效应管工作时,需要外加如图1所示的偏置电压,即在栅-源极间加一负电压(v GS <0),使栅-源极间的P +N 结反偏,栅极电流i G ≈0,场效应管呈现很高的输入电阻(高达108Ω左右)。

在漏-源极间加一正电压(v DS >0),使N 沟道中的多数载流子电子在电场作用下由源极向漏极作漂移运动,形成漏极电流i D 。

i D 的大小主要受栅-源电压v GS 控制,同时也受漏-源电压v DS 的影响。

因此,讨论场效应管的工作原理就是讨论栅-源电压v GS 对沟道电阻及漏极电流i D 的控制作用,以及漏-源电压v DS 对漏极电流i D 的影响。

转移特性:在u DS 一定时, 漏极电流i D 与栅源电压u GS 之间的关系称为转移特性。

()|D gs ds u i f u ==常数在U GS(off)≤u GS ≤0的范围内, 漏极电流i D 与栅极电压u GS 的关系为2()(1)GSD DDS GS off u i I u =-2) 输出特性:输出特性是指栅源电压u GS 一定, 漏极电流i D 与漏极电压u DS 之间的关系。

()|D s gs d u i f u ==常数GS 0123451.v GS对沟道电阻及i D的控制作用图2所示电路说明了v GS对沟道电阻的控制作用。

为便于讨论,先假设漏-源极间所加的电压v DS=0。

当栅-源电压v GS=0时,沟道较宽,其电阻较小,如图2(a)所示。

当v GS<0,且其大小增加时,在这个反偏电压的作用下,两个P+N结耗尽层将加宽。

由于N区掺杂浓度小于P+区,因此,随着|v GS| 的增加,耗尽层将主要向N沟道中扩展,使沟道变窄,沟道电阻增大,如图2(b)所示。

当|v GS| 进一步增大到一定值|V P| 时,两侧的耗尽层将在沟道中央合拢,沟道全部被夹断,如图2(c)所示。

场效应管的工作原理和使用方法

场效应管的工作原理和使用方法

场效应管的工作原理和使用方法
微波场效应管是一种微波技术,它利用微波的作用原理,使用电子设
备实现信号的放大、控制和测量。

微波场效应管的工作原理如下:首先,
将信号送入射频输入端,发射微波;然后,当微波传输到射频输出端时,
射频输出端会根据输入端的信号发出相应的信号。

当微波发射到射频输入
端时,它会与场效应管本身的内部结构交互作用,产生电子晶体管的动作
效应以及其它特定的电晶体效应。

最后,当微波发射到射频输入端时,电
子晶体管会产生电荷并改变电平,从而使得射频输出端发出相应的信号。

使用微波场效应管的方法:
1、在实验的准备阶段,首先要确定实验中使用的微波场效应管类型;
2、安装微波场效应管,通常是将其放置在特定的支架上;
3、使用射频电缆将射频连接到微波场效应管;
4、调节微波场效应管的参数,使其能够达到最佳的操作性能;
5、进行实验,根据实验要求使用相应的信号源和测量仪器,以获得
准确的测量结果。

场效应管的工作原理是什么

场效应管的工作原理是什么

场效应管的工作原理是什么场效应管(Field-Effect Transistor,简称FET)是一种常用的电子元器件,广泛应用于电子电路中。

它以其独特的工作原理和优异的性能,在现代电子技术中扮演着重要的角色。

本文将详细介绍场效应管的工作原理。

一、引言场效应管是一种三端器件,包括源极(Source)、栅极(Gate)和漏极(Drain)。

它通过向栅极施加不同的电压,控制了导电道内电荷的流动,从而实现电流的放大和开关控制。

二、MOS型场效应管的工作原理MOS型场效应管(Metal Oxide Semiconductor Field-Effect Transistor)是广泛应用的一类场效应管。

其工作原理可以分为以下几个步骤:1. 空穴注入:当给MOS型场效应管的栅极施加正电压时,栅极下方的绝缘层上会形成电场。

该电场会吸引P型半导体中的空穴,使空穴注入到栅极下面的绝缘层中。

2.电子输运:在空穴注入后,绝缘层中的电子会被栅极下方的电场推入N型半导体中的导电道。

电子在道内的运动形成了电流。

3.漏极电流:当在MOS型场效应管的源极和漏极之间施加电压时,由于导电道上存在电子,电子会从漏极流向源极,形成漏极电流。

通过控制栅极电压的大小,可以改变导电道内电子的数量和流动情况,从而控制漏极电流的大小和开关状态。

三、JFET型场效应管的工作原理JFET型场效应管(Junction Field-Effect Transistor)是场效应管的另一种常见类型。

其工作原理相对于MOS型场效应管来说略有不同。

1. 空间电荷层:在JFET型场效应管的P-N结附近存在一层空间电荷层。

当施加反向偏置电压时,空间电荷层从漏极一直延伸到源极。

该空间电荷层的形成会控制漏极和源极之间的电流。

2. 漏极电流:当在JFET型场效应管的源极和漏极之间施加正向电压时,空间电荷层向后抑制,电流能够从漏极流向源极,形成漏极电流。

通过改变栅极处施加的电压,可以改变JFET型场效应管中空间电荷层的宽度,进而控制漏极电流的大小和开关状态。

mos场效应管工作原理

mos场效应管工作原理

mos场效应管工作原理
场效应管(FET)是一种半导体器件,常用于放大、开关和调
节信号。

它的工作原理基于电场效应,可以通过控制输入信号来控制输出电流。

场效应管的主要组成部分是导电层、栅极和源极/漏极。

导电
层通常是n型或p型的半导体材料。

栅极是由金属或多晶硅制成的,用来控制导电层中的电流。

源极和漏极是与导电层接触的金属引线,负责提供输入和输出电流。

当导电层和源极之间的电压为零时,导电层中的电流几乎为零,场效应管处于关闭状态。

当在栅极施加正电压时,导电层与栅极之间会形成电场,当电场强度超过临界值时,电荷会聚集在导电层的表面,并形成导电通道。

这个通道允许电流从源极流入漏极,导电层开始导电,场效应管处于开启状态。

在场效应管工作过程中,栅极与源极之间的电压决定了导电通道的大小和电流的大小。

当栅极与源极之间的电压增加时,导电通道变宽,电流增大;当电压降低时,导电通道变窄,电流减小。

因此,通过控制栅极与源极之间的电压,可以精确地控制输出电流的大小。

场效应管有许多不同类型,如MOSFET(金属-氧化物-半导体
场效应管),JFET(结型场效应管)和IGBT(绝缘栅双极晶
体管)。

它们在结构和工作原理上有所不同,但都基于电场效应,并具有类似的控制输出电流的特性。

总而言之,场效应管通过控制电场来控制电流,在电子设备中起着重要的作用。

它可以作为放大器、开关和调节器件,广泛应用于通信、计算机和电子设备中。

场效应管的工作原理

场效应管的工作原理

场效应管的工作原理场效应管(Field Effect Transistor,简称FET)是一种半导体器件,它具有高输入阻抗、低噪声、低功耗等特点,在电子电路中有着广泛的应用。

它的工作原理主要是通过控制栅极电场来调节源极和漏极之间的电流,从而实现信号放大、开关控制等功能。

本文将从场效应管的结构、工作原理和特点等方面进行介绍。

1. 结构。

场效应管由栅极、源极和漏极组成。

栅极与源极之间的电场可以控制源极和漏极之间的电流,因此栅极相当于晶体管的控制极,而源极和漏极则相当于晶体管的发射极和集电极。

根据不同的结构和工作原理,场效应管可以分为MOSFET(金属-氧化物-半导体场效应管)和JFET(结型场效应管)两种类型。

2. 工作原理。

MOSFET的工作原理是基于金属-氧化物-半导体结构。

当栅极施加正电压时,在栅极和氧化物之间形成一个电场,这个电场会影响半导体中的载流子密度,从而控制源极和漏极之间的电流。

而JFET的工作原理是基于PN结的结型场效应。

当栅极施加正电压时,栅极与源极之间形成一个反型电场,这个电场会影响沟道中的载流子密度,从而控制源极和漏极之间的电流。

3. 特点。

场效应管具有许多优点,如高输入阻抗、低噪声、低功耗、频率响应好等。

由于栅极与源极之间的电场可以控制电流,因此场效应管的输入阻抗非常高,可以减小输入信号源对电路的影响。

同时,场效应管的噪声水平较低,适合用于放大弱信号。

此外,由于场效应管的控制电压较低,因此功耗也较小。

另外,场效应管的频率响应也很好,适合用于高频电路。

4. 应用。

场效应管在电子电路中有着广泛的应用,如放大器、开关、振荡器等。

在放大器中,场效应管可以用作信号放大器、运算放大器等;在开关电路中,场效应管可以用作数字开关、模拟开关等;在振荡器中,场效应管可以用作正弦波振荡器、方波振荡器等。

此外,场效应管还可以用于集成电路、功率放大器、射频电路等领域。

总结。

场效应管是一种重要的半导体器件,它具有高输入阻抗、低噪声、低功耗等特点,在电子电路中有着广泛的应用。

场效应管的工作原理详解

场效应管的工作原理详解

场效应管的工作原理详解场效应管(Field Effect Transistor,FET)是一种常用的半导体器件,具有广泛的应用领域,如放大器、开关、逆变等。

本文将详细介绍场效应管的工作原理。

一、场效应管的基本结构场效应管由栅极(Gate)、漏极(Drain)和源极(Source)三个部分组成。

其中栅极与源极之间的电压(Vgs)作用于栅极与源极之间的绝缘层,控制电流从漏极到源极的通断状态。

二、N沟道场效应管(N-Channel FET)1. 静态工作原理N沟道场效应管作为一种N型材料构成的器件,其栅极与源极之间的电压(Vgs)为负数时,使得栅极与沟道之间的电场均匀,形成一个浓度较高的N型沟道,使得漏极和源极之间的导通电阻减小。

当Vgs=0时,N沟道场效应管处于截止状态。

2. 动态工作原理当将正向电压(Vds)加到漏极和源极之间时,漏极端的电势较低,而源极端较高。

此时通过漏极和源极之间的电阻小,使得电流从漏极流向源极。

当电压Vds增大时,漏极电势继续下降,导致沟道中的电子浓度减小,电阻增加。

最终,当Vds达到一定值时,沟道中的电阻增大到一定程度,使得电流几乎不再增加,即处于饱和状态。

此时的电流为IDSS,对应的电压为Vp。

三、P沟道场效应管(P-Channel FET)1. 静态工作原理P沟道场效应管作为一种P型材料构成的器件,其栅极与源极之间的电压(Vgs)为正数时,使得栅极与沟道之间的电场均匀,形成一个浓度较高的P型沟道,使得漏极和源极之间的导通电阻减小。

当Vgs=0时,P沟道场效应管处于截止状态。

2. 动态工作原理当将负向电压(Vds)加到漏极和源极之间时,漏极端的电势较高,而源极端较低。

此时通过漏极和源极之间的电阻小,使得电流从源极流向漏极。

当电压Vds增大时,漏极电势继续上升,导致沟道中的空穴浓度减小,电阻增加。

最终,当Vds达到一定值时,沟道中的电阻增大到一定程度,使得电流几乎不再增加,即处于饱和状态。

场效应管 工作原理

场效应管 工作原理

场效应管工作原理
场效应管是一种电子器件,也称为晶体管。

它通过控制外部电场来改变电子的导电性能。

场效应管由P型或N型半导体材
料制成,其工作原理基于金属氧化物半导体场效应。

当场效应管的栅极电压为零时,通道中没有电子流动,管子处于截止状态。

当栅极电压增加时,形成了一个负电场,这使得
N型半导体通道中的自由电子向栅极靠拢。

由于栅极和通道之间的绝缘层,电子无法直接通过栅极流过,而是聚集在通道的表面,形成一个电子气体。

这个电子气体在栅极电场影响下导电。

当栅极电压增加到一定程度时,栅极电场将吸引足够多的电子,使得N型半导体通道完全形成,这时场效应管处于饱和状态。

此时,电子在通道中畅通无阻地流动,形成了一个电流路径。

与此相反,当栅极电压减小到截止电压以下时,场效应管重新进入截止状态,电子无法通过通道,电流被阻断。

总之,通过控制栅极电压,场效应管可以实现电流的开关控制。

这种工作原理使得场效应管在集成电路中被广泛应用,如放大器、开关和逻辑门等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
场效应管放大器
1 场效应管
绝缘栅场效应管

结型场效应管
2 场效应管放大电路


效应管放大器的静态偏置
效应管放大器的交流小信号模型 效应管放大电路
1 场效应管
BJT是一种电流控制元件(iB~ iC),工作时,多数载流 子和少数载流子都参与运行,所以被称为双极型器件。 场效应管(Field Effect Transistor简称FET)是一种 电压控制器件(uGS~ iD) ,工作时,只有一种载流子参与 导电,因此它是单极型器件。 FET因其制造工艺简单,功耗小,温度特性好,输入 电阻极高等优点,得到了广泛应用。 绝缘栅场效应管
较小 易受静电影响
制造工艺
不宜大规模集成
适宜大规模和超大 规模集成
2 场效应管放大电路
一. 直流偏置电路 保证管子工作在饱和区,输出信 号不失真 1.自偏压电路
+ V DD Rd
d
计算Q点:UGS 、 ID 、UDS
已知UP ,由
+ uo C

C1 + ui

g
T
s
C2
UGS =
- IDR
U GS UP )
4. MOS管的主要参数
(1)开启电压UT
(2)夹断电压UP (3)跨导gm :gm=iD/uGS uDS=const (4)直流输入电阻RGS ——栅源间的等效 电阻。由于MOS管栅源间有sio2绝缘层, 输入电阻可达109~1015。
二. 结型场效应管
1. 结型场效应管的结构(以N沟为例): 两个PN结夹着一个N型沟道。 三个电极: g:栅极 d:漏极 s:源极 符号:
g
漏极d
-
栅 极g
-
p+
p+
s
d
g
s
d
N
-
源极
-
s
N沟道
P沟道
2. 结型场效应管的工作原理
(1)栅源电压对沟道的控制作用 在栅源间加负电压uGS ,令 uDS =0
①当uGS=0时,为平衡PN结,导电 沟道最宽。
d d d
②当│uGS│↑时,PN结反偏,耗尽层 变宽,导电沟道变窄,沟道电阻 增大。
Ro
u i

R //
1 gm
gm
g

d
Rg3 RS ui
-
u gs
+ s
g mu g s
i
+
+
Rg1
Rg2
R Ro Ro
u -
本章小结
1.FET分为JFET和MOSFET两种,工作时只有一种
载流子参与导电,因此称为单极性型晶体管。FET是一种
压控电流型器件,改变其栅源电压就可以改变其漏极电流。 2.FET放大器的偏置电路与BJT放大器不同,主要有自 偏压式和分压式两种。 3. FET放大电路也有三种组态:共源、共漏和共栅。 电路的动态分析需首先利用FET的交流模型建立电路的交 流等效电路,然后再进行计算,求出电压放大倍数、输入 电阻、输出电阻等量。
计算Q点:
已知UP ,由
+ V DD
U GS R g2 R g1 R g2 V DD I D R
Rd Rg1 C1 + ui Rg2

d g
I D I DSS ( 1
U GS UP
)
2
T
s
C2
+ uo
可解出Q点的UGS 、 ID 再求: UDS =VDD- ID (Rd + R ) 该电路产生的栅源电压可正 可负,所以适用于所有的场 效应管电路。
s
VG G
s
VD D VD D
g -
g -
-d d id
二氧化硅 二氧化硅
→将P区少子电子聚集到
P区表面→形成导电沟道, 如果此时加有漏源电压, 就可以形成漏极电流id。
N+ N+
N+ + N
P衬 底 P衬 底
b
b
定义:
开启电压( UT)——刚刚产生沟道所需的
栅源电压UGS。
N沟道增强型MOS管的基本特性: uGS < UT,管子截止, uGS >UT,管子导通。
uGS 越大,沟道越宽,在相同的漏源电压uDS作
用下,漏极电流ID越大。
②转移特性曲线:
iD=f(uGS)u
DS
=const
可根据输出特性曲线作出移特性曲线。 例:作uDS=10V的一条转移特性曲线:
i
D
(m A)
i
D
(m A)
4 3
u G S =6 V u G S =5 V
4 3
2 1
u G S =4 V u G S =3 V
恒流区的特点: △ iD /△ uGS = gm ≈常数 即: △ iD = gm △ uGS (放大原理) (c)夹断区(截止区)。
截止区
(d)击穿区。
(2)转移特性曲线: iD=f( uGS )│uDS=常数
可根据输出特性曲线作出移特性曲线。 例:作uDS=10V的一条转移特性曲线:
i
D
(m A)
uo ui
g m ( R d // R L )
g d
(3)求输入电阻
R i R g3 ( R g1 // R g2 )
+ Rg3 ui Rg1 Rg2

+ +
(4)求输出电阻
Ro Rd
u gs S
RL
g mu g s
uo -
Rd
Ri
RO
2.共漏放大电路
分析:
(1)画交流小信号等效电路。 (2)电压放大倍数
RS
+ +
g
d
Rg3 ui
-
u gs

+
g mu g s
+
1
(3)输入电阻
R i R g3 ( R g1 // R g2 )
uS -
s
Hale Waihona Puke +Rg1Rg2
R
RL
uo -
Ri
(4)输出电阻
由图有 i i R g m u gs
u gs u o
u R
1 1 R
+
g m u gs
所以
(6) 最大漏极功耗PDM PDM= UDS ID,与双极型三极管的PCM相当。
5 .双极型和场效应型三极管的比较
双极型三极管 载流子 多子扩散少子漂移 单极型场效应管 少子漂移
输入量 控制 输入电阻
噪声 静电影响
电流输入 电流控制电流源 几十到几千欧
较大 不受静电影响
电压输入 电压控制电流源 几兆欧以上
u
DS
2 1
(V ) u
GS
(V )
1 0V
2
4
6
UT
一个重要参数——跨导gm:
gm=iD/uGS u
DS=const
(单位mS)
gm的大小反映了栅源电压对漏极电流的控制作用。 在转移特性曲线上, gm为的曲线的斜率。 在输出特性曲线上也可求出gm。
i
D
(m A)
i
D
(m A)
4 3
u G S= 6 V
增强型
耗尽型
FET分类:
结型场效应管
N沟道 P沟道
N沟道 P沟道 N沟道 P沟道
一. 绝缘栅场效应管
绝缘栅型场效应管 ( Metal Oxide Semiconductor FET), 简称MOSFET。分为:
源极
增强型 N沟道、P沟道 耗尽型 N沟道、P沟道 1.N沟道增强型MOS管 (1)结构 4个电极:漏极D, 源极S,栅极G和 衬底B。
u G S =- 2 V u G S =- 3 V
VG G
s
u
DS
设:UT= -3V
四个区:
(a)可变电阻区
可变电阻区
i
D
恒流区
u G S =0 V
(m A)
(预夹断前)。
(b)恒流区也称饱和
击穿区
u G S =- 1 V u G S =- 2 V u G S =- 3 V
u
DS
区(预夹断 后)。
源极
s
g 栅 极-
漏极d
+ + ++ + + + + ++ + +
N+ N
g d
P衬 底
s
b
衬底
b
夹断电压( UP)——沟道刚刚消失所需的栅源电压uGS。
3、P沟道耗尽型MOSFET
P沟道MOSFET的工作原理与N沟道
MOSFET完全相同,只不过导电的载流 子不同,供电电压极性不同而已。这如 同双极型三极管有NPN型和PNP型一样。
2
Rg
ID
R
I D I DSS ( 1
可解出Q点的UGS 、 ID
UGS =- IDR
再求: UDS =VDD- ID (Rd + R )
注意:该电路产生负的栅源电压,所以只能用于需要负栅源电压的电路。
2.分压式自偏压电路
U GS U G U S
R g2 R g1 R g2 V DD I D R
g
s
g 栅 极-
漏极d
-
-
N+
N+
P衬 底
- d
-
符号:
-
相关文档
最新文档