场效应管工作原理
场效应管工作原理及应用
场效应管工作原理(1)场效应晶体管(Field Effect Transistor缩写(FET))简称场效应管。
一般的晶体管是由两种极性的载流子,即多数载流子和反极性的少数载流子参与导电,因此称为双极型晶体管,而FET仅是由多数载流子参与导电,它与双极型相反,也称为单极型晶体管。
它属于电压控制型半导体器件,具有输入电阻高(108~109Ω)、噪声小、功耗低、动态范围大、易于集成、没有二次击穿现象、安全工作区域宽等优点,现已成为双极型晶体管和功率晶体管的强大竞争者。
一、场效应管的分类场效应管分结型、绝缘栅型两大类。
结型场效应管(JFET)因有两个PN结而得名,绝缘栅型场效应管(JGFET)则因栅极与其它电极完全绝缘而得名。
目前在绝缘栅型场效应管中,应用最为广泛的是MOS场效应管,简称MOS管(即金属-氧化物-半导体场效应管MOSFET);此外还有PMOS、NMOS和VMOS 功率场效应管,以及最近刚问世的πMOS场效应管、VMOS功率模块等。
按沟道半导体材料的不同,结型和绝缘栅型各分沟道和P沟道两种。
若按导电方式来划分,场效应管又可分成耗尽型与增强型。
结型场效应管均为耗尽型,绝缘栅型场效应管既有耗尽型的,也有增强型的。
场效应晶体管可分为结场效应晶体管和MOS场效应晶体管。
而MOS场效应晶体管又分为N沟耗尽型和增强型;P沟耗尽型和增强型四大类。
见下图。
二、场效应三极管的型号命名方法现行有两种命名方法。
第一种命名方法与双极型三极管相同,第三位字母J代表结型场效应管,O代表绝缘栅场效应管。
第二位字母代表材料,D是P型硅,反型层是N沟道;C是N型硅P沟道。
例如,3DJ6D是结型N沟道场效应三极管,3DO6C 是绝缘栅型N沟道场效应三极管。
第二种命名方法是CS××#,CS代表场效应管,××以数字代表型号的序号,#用字母代表同一型号中的不同规格。
例如CS14A、CS45G等。
场效应管 开关 原理
场效应管开关原理
场效应管(Field Effect Transistor,简称FET)是一种半导体
器件,具有电子控制的特性,常被用作开关。
其工作原理是通过控制栅极电压来改变漏极和源极之间的电流流动。
相比于另一种常见的功率管——双极型晶体管(BJT),场效应管具有
更高的输入阻抗和更低的功耗。
场效应管通常有三种类型:MOSFET(金属-氧化物-半导体场
效应管)、JFET(结型场效应管)和IGBT(绝缘栅双极型晶
体管)。
其中,MOSFET是最常见和最广泛使用的一种。
MOSFET由一块绝缘层(氧化层)分隔成的金属栅极和半导
体材料中的N型或P型区域组成。
当栅极上施加正向电压时,形成电场,改变了N型或P型区域中的电荷分布,形成了一
个导电通道,使得漏极和源极之间的电流流动。
栅极电压越高,导电通道越强,电流越大。
基于这种工作原理,MOSFET可以被用作电子开关。
当栅极
电压为0V时,不会有导电通道形成,MOSFET处于关断状态,没有电流流过。
而当栅极电压高于某个阈值电压时,导电通道形成,MOSFET处于导通状态,电流可以流过。
因此,通过
控制栅极电压的高低,可以实现对MOSFET的开关控制。
在实际应用中,MOSFET常常用于各种电子设备和电路中,
例如功率放大器、逆变器、电源开关等。
由于其优秀的性能和可靠性,MOSFET成为了现代电子技术中不可或缺的部分。
mos场效应管工作原理
mos场效应管工作原理
场效应管(又称为MOSFET, Metal-Oxide-Semiconductor Field-Effect Transistor)是一种三极管,它是由金属-氧化物-半导体结
构组成的。
MOS场效应管的工作原理基于其门电压对导电状态的控制。
它主要由四个部分组成:栅极(gate)、漏极(drain)、源极(source)和绝缘层(insulating layer)。
栅极和源极之间绝缘层两侧有一个
半导体通道。
当没有电压应用在栅极时,绝缘层将阻止电流在通道中的流动,MOSFET处于关断状态,导电性排斥。
但是,当正电压应用
在栅极上时,它会形成一个电场,这个电场会吸引并导致半导体通道中的载流子(电子或空穴)向栅极周围移动。
这将导致通
道处于导通状态,由源极到漏极流动的电流增加。
根据栅极与源极之间的电压,MOSFET可以操作在三个不同
的工作区域:截止区、线性区和饱和区。
- 截止区:当栅极电压低于门阈电压时,MOSFET处于截止状态,没有电流流过整个器件。
- 线性区:当栅极电压高于门阈电压时,MOSFET处于线性区,电流的大小与栅极电压的差值成正比。
- 饱和区:当栅极电压进一步增加,使得MOSFET工作在饱和区,此时电流基本保持不变。
通过调整栅极电压,可以控制MOSFET的导通和截止,从而
实现对电流的控制和放大功能。
因此,MOSFET被广泛应用于电子设备,如放大器、开关和逻辑电路等。
场效应管的基础知识
场效应管的基础知识:
场效应管(Field Effect Transistor,FET)是一种利用电场效应来控制半导体器件中的电流流动的半导体器件。
以下是场效应管的基础知识:
1.工作原理:场效应管利用电场效应原理,通过控制栅极电压来控制源极和漏极之间
的电流。
当栅极电压为零时,源极和漏极之间没有电流。
当栅极电压不为零时,电场效应使得半导体内的电子聚集在沟道的一侧,形成导电沟道,从而使得源极和漏极之间有电流流动。
2.结构:场效应管的结构包括源极(Source)、漏极(Drain)、栅极(Gate)三个电
极。
源极和漏极之间是半导体材料,称为沟道。
栅极位于源极和漏极之间,通过控制栅极电压来控制沟道的通断。
3.类型:场效应管有N沟道和P沟道两种类型。
N沟道场效应管的源极和漏极之间是
N型半导体,P沟道场效应管的源极和漏极之间是P型半导体。
4.特性曲线:场效应管的特性曲线包括转移特性曲线和输出特性曲线。
转移特性曲线
表示栅极电压对漏极电流的影响,输出特性曲线表示漏极电流与漏极电压之间的关系。
5.应用:场效应管广泛应用于电子设备中,如放大器、振荡器、开关等。
由于场效应
管具有体积小、重量轻、寿命长等优点,因此在便携式设备、移动通信等领域得到广泛应用。
什么是场效应管
什么是场效应管场效应管(Field Effect Transistor,简称FET)是一种用于电子设备中的半导体器件。
场效应管利用静电场控制电流流动,其工作原理与晶体管相似。
本文将介绍场效应管的定义、工作原理、类型以及应用领域。
定义:场效应管是一种三极管,由栅极(Gate)、源极(Source)和漏极(Drain)组成。
其中,栅极是控制电流的电极,源极是电流进入管子的电极,漏极是电流从管子流出的电极。
工作原理:场效应管的工作原理基于氧化物半导体场效应。
在FET内部,栅极和基底之间存在一层绝缘氧化物。
当栅极上施加电压时,电压在绝缘氧化物上产生电场,控制了栅极和基底之间的电流。
根据电压的极性和大小,场效应管可以分为两种类型:1. N沟道型场效应管(N-channel FET):N沟道型FET的基底为P型半导体,漏极和源极之间存在一个N型的沟道。
当栅极电压为正值时,电场将吸引阳极中电子,导致电子从源极流向漏极,形成电流。
2. P沟道型场效应管(P-channel FET):P沟道型FET的基底为N型半导体,漏极和源极之间存在一个P型的沟道。
当栅极电压为负值时,电场将吸引阴极中的空穴,导致空穴从源极流向漏极,形成电流。
应用领域:场效应管在电子设备中有广泛的应用,包括:1. 放大器:场效应管可以作为放大器,放大小信号电压或电流,用于音频放大、射频放大等应用。
2. 开关:场效应管可以作为开关,控制电流的通断。
例如,在数字逻辑电路中,场效应管可用于构建数字逻辑门电路。
3. 电源稳定器:场效应管可用于构建电源稳定器,保持电源输出的稳定性,用于电子设备的供电。
4. 数模转换器:场效应管可以将模拟信号转换为数字信号,用于模数转换器中的采样和保持电路。
总结:场效应管是一种重要的半导体器件,通过控制电场实现电流控制。
它具有放大器、开关、电源稳定器等多种应用,广泛用于电子设备和电路中。
了解场效应管的工作原理和应用,有助于理解电子技术中的基本原理和电路设计。
mosfet 与 jfet 的工作原理及应用场合
MOSFET 与 JFET 的工作原理及应用场合一、引言在现代电子领域中,场效应晶体管(F ET)是一种重要的半导体器件,具有优越的性能和广泛的应用。
其中,金属氧化物半导体场效应管(M OS FE T)和结型场效应管(J FE T)是两种常见的FE T。
本文将介绍M O SF ET和J FE T的工作原理及其在不同应用场合的应用。
二、M O S F E T(金属氧化物半导体场效应管)M O SF ET是由一层金属氧化物绝缘层隔离门极和半导体基片的晶体管。
其工作原理如下:1.栅极电压变化:当栅极电压变化时,M O SF ET内部的电场分布发生变化,进而改变了通道中的载流子浓度。
2.载流子控制:当正向偏置栅极,使得栅极与源极之间形成正向偏压时,可以控制通道中的正负载流子的浓度。
M O SF ET在数字电路、模拟电路和功率放大器等方面有着广泛的应用:-逻辑门电路:M OS FE T可用于构建与门、或门、非门等逻辑门电路。
-放大器电路:M OS FE T可以实现低噪声、高增益的放大器电路,常用于音频放大器等领域。
-电源开关:由于MOS F ET具有低导通电阻和高关断电阻的特点,适用于电源开关电路,如开关稳压器。
三、J F E T(结型场效应管)J F ET是由P型或N型半导体材料形成的通道,两侧有控制端和漏源端的晶体管。
其工作原理如下:1.控制电压:当控制端电压变化时,通过改变通道中的空间电荷区宽度,从而改变了导电性能。
2.漏源电压:调整漏源间的电压,使其达到最大或最小值,以控制导电。
J F ET在放大器、开关和稳流源等方面具有广泛的应用:-放大器电路:J FE T具有高输入阻抗和低输出阻抗的特点,适用于低频放大器、微弱信号放大器等。
-开关电路:JF ET由于其控制电压变化范围大,可用于开关电路中的信号开关。
-稳流源:通过合理选择JF ET工作状态和参数,可以将其应用于稳流源电路,如电流源。
四、M O S F E T与J F E T的优缺点对比-M OS FE T的优点:1.噪声低:MO SF ET具有较低的输入噪声。
场效应管工作原理(经典)
场效应管工作原理MOS场效应管电源开关电路。
这是该装置的核心,在介绍该部分工作原理之前,先简单解释一下MOS 场效应管的工作原理。
MOS 场效应管也被称为MOS FET,既Metal Oxide Semiconductor Field EffectTransistor(金属氧化物半导体场效应管)的缩写。
它一般有耗尽型和增强型两种。
本文使用的为增强型MOS场效应管,其内部结构见图5。
它可分为NPN型PNP型。
NPN型通常称为N沟道型,PNP型也叫P沟道型。
由图可看出,对于N沟道的场效应管其源极和漏极接在N型半导体上,同样对于P沟道的场效应管其源极和漏极则接在P型半导体上。
我们知道一般三极管是由输入的电流控制输出的电流。
但对于场效应管,其输出电流是由输入的电压(或称电场)控制,可以认为输入电流极小或没有输入电流,这使得该器件有很高的输入阻抗,同时这也是我们称之为场效应管的原因。
为解释MOS场效应管的工作原理,我们先了解一下仅含有一个P—N结的二极管的工作过程。
如图6所示,我们知道在二极管加上正向电压(P端接正极,N端接负极)时,二极管导通,其PN结有电流通过。
这是因为在P型半导体端为正电压时,N型半导体内的负电子被吸引而涌向加有正电压的P型半导体端,而P型半导体端内的正电子则朝N型半导体端运动,从而形成导通电流。
同理,当二极管加上反向电压(P端接负极,N端接正极)时,这时在P型半导体端为负电压,正电子被聚集在P型半导体端,负电子则聚集在N型半导体端,电子不移动,其PN结没有电流通过,二极管截止。
N沟道MOS FET的源极S接负,漏极接正,栅极接正,与NPN三极管接法相同!(发射极E、集电极C、基极B)MOSFET管内部两根线连载一起的是源极S图7 N沟道MOSFET场效应管在栅极没有电压时,由前面分析可知,在源极与漏极之间不会有电流流过,此时场效应管处与截止状态(图7a)。
当有一个正电压加在N沟道的MOS 场效应管栅极上时,由于电场的作用,此时N型半导体的源极和漏极的负电子被吸引出来而涌向栅极,但由于氧化膜的阻挡,使得电子聚集在两个N沟道之间的P型半导体中(见图7b),从而形成电流,使源极和漏极之间导通。
场效应管的工作原理和使用方法
场效应管的工作原理和使用方法
场效应管是一种由三个组成的电子器件,通常用于放大低电平信号。
它的原理是当受到一个电场时,它会产生一个电流,这个电流可以放大原始信号。
它由三个部分组成,即源极,漏极和控制极。
源极是电场的源,漏极是电场的接受者,而控制极则用来控制电场的强度。
使用场效应管的方法主要有两种:一种是直接放大信号,另一种是作为放大运算放大器。
直接放大信号的方法是将信号输入到源极,然后在控制极上设置一个电场,最后从漏极输出放大的信号。
在作为放大运算放大器的方式中,信号可以被放大,但是它们必须在控制极上施加电场,然后从漏极输出放大的信号。
使用场效应管时,需要注意一些事项。
首先,控制极上的电场必须设置得当,以便能够有效地放大信号。
其次,必须确保源极和漏极上的电压保持稳定,以免影响放大效果。
最后,在使用场效应管时,必须注意它的温度。
如果温度过高,则可能会影响场效应管的性能。
总的来说,场效应管是一种十分有效的放大工具,它可以有效地放大低电平信号,而且在操作上也比较容易。
但是,在使用场效应管时,必须注意控制极上的电场强度,以及源极和漏极上的电压稳定性,以及场效应管的温度。
只有这样,才能有效地放大信号。
场效应管工作原理
场效应管工作原理场效应晶体管〔Field Effect Transistor缩写(FET)〕简称场效应管。
一般的晶体管是由两种极性的载流子,即多数载流子和反极性的少数载流子参与导电,因此称为双极型晶体管,而FET仅是由多数载流子参与导电,它与双极型相反,也称为单极型晶体管。
它属于电压控制型半导体器件,具有输入电阻高〔108~109Ω〕、噪声小、功耗低、动态范围大、易于集成、没有二次击穿现象、安全工作区域宽等优点,现已成为双极型晶体管和功率晶体管的强大竞争者。
一、场效应管的分类场效应管分结型、绝缘栅型两大类。
结型场效应管〔JFET〕因有两个PN结而得名,绝缘栅型场效应管〔JGFET〕则因栅极与其它电极完全绝缘而得名。
目前在绝缘栅型场效应管中,应用最为广泛的是MOS场效应管,简称MOS管〔即金属-氧化物-半导体场效应管MOSFET〕;此外还有PMOS、NMOS和VMOS功率场效应管,以及最近刚问世的πMOS场效应管、VMOS功率模块等。
按沟道半导体材料的不同,结型和绝缘栅型各分沟道和P沟道两种。
假设按导电方式来划分,场效应管又可分成耗尽型与增强型。
结型场效应管均为耗尽型,绝缘栅型场效应管既有耗尽型的,也有增强型的。
场效应晶体管可分为结场效应晶体管和MOS场效应晶体管。
而MOS场效应晶体管又分为N沟耗尽型和增强型;P沟耗尽型和增强型四大类。
见下列图。
二、场效应三极管的型号命名方法现行有两种命名方法。
第一种命名方法与双极型三极管相同,第三位字母J代表结型场效应管,O代表绝缘栅场效应管。
第二位字母代表材料,D是P型硅,反型层是N沟道;C是N型硅P沟道。
例如,3DJ6D是结型N沟道场效应三极管,3DO6C 是绝缘栅型N沟道场效应三极管。
第二种命名方法是CS××#,CS代表场效应管,××以数字代表型号的序号,#用字母代表同一型号中的不同规格。
例如CS14A、CS45G等。
场效应晶体管工作原理
场效应晶体管工作原理
场效应晶体管是一种用于放大和开关电子信号的电子器件。
其工作原理是基于控制载流子浓度的变化来调节电流的流动。
场效应晶体管由源极、栅极和漏极三个电极构成。
栅极与源极之间的绝缘层形成一个电容,称为栅氧化层,用于隔离栅极和通道之间的电荷。
当栅极施加一个正电压时,栅氧化层下面的通道中没有自由载流子,导电能力很差。
这种状态称为截至。
当栅极施加一个负电压时,栅氧化层下面的通道中会积累自由载流子,导电能力增强。
这种状态称为导通。
当一个信号被加到栅极时,它会改变栅氧化层下面的电荷,从而控制通道中的电荷密度。
这样,信号就会放大,并在漏极上产生一个放大后的信号。
场效应晶体管的漏极和源极之间的电压差可以控制电流的流动。
当电压差很小时,晶体管处于截至状态,电流几乎为零。
当电压差逐渐增大时,晶体管进入导通状态,电流开始流动。
综上,场效应晶体管通过控制栅极电压来控制通道中载流子的浓度,从而控制电流的流动。
这种能力使得场效应晶体管在放大和开关电子信号方面具有广泛的应用。
场效应管(FET)的工作原理总结
结型场效应管的工作原理N 沟道和P 沟道结型场效应管的工作原理完全相同,现以N 沟道结型场效应管为例,分析其工作原理。
N 沟道结型场效应管工作时,需要外加如图1所示的偏置电压,即在栅-源极间加一负电压(v GS <0),使栅-源极间的P +N 结反偏,栅极电流i G ≈0,场效应管呈现很高的输入电阻(高达108Ω左右)。
在漏-源极间加一正电压(v DS >0),使N 沟道中的多数载流子电子在电场作用下由源极向漏极作漂移运动,形成漏极电流i D 。
i D 的大小主要受栅-源电压v GS 控制,同时也受漏-源电压v DS 的影响。
因此,讨论场效应管的工作原理就是讨论栅-源电压v GS 对沟道电阻及漏极电流i D 的控制作用,以及漏-源电压v DS 对漏极电流i D 的影响。
转移特性:在u DS 一定时, 漏极电流i D 与栅源电压u GS 之间的关系称为转移特性。
()|D gs ds u i f u ==常数在U GS(off)≤u GS ≤0的范围内, 漏极电流i D 与栅极电压u GS 的关系为2()(1)GSD DDS GS off u i I u =-2) 输出特性:输出特性是指栅源电压u GS 一定, 漏极电流i D 与漏极电压u DS 之间的关系。
()|D s gs d u i f u ==常数GS 0123451.v GS对沟道电阻及i D的控制作用图2所示电路说明了v GS对沟道电阻的控制作用。
为便于讨论,先假设漏-源极间所加的电压v DS=0。
当栅-源电压v GS=0时,沟道较宽,其电阻较小,如图2(a)所示。
当v GS<0,且其大小增加时,在这个反偏电压的作用下,两个P+N结耗尽层将加宽。
由于N区掺杂浓度小于P+区,因此,随着|v GS| 的增加,耗尽层将主要向N沟道中扩展,使沟道变窄,沟道电阻增大,如图2(b)所示。
当|v GS| 进一步增大到一定值|V P| 时,两侧的耗尽层将在沟道中央合拢,沟道全部被夹断,如图2(c)所示。
mos场效应管工作原理
mos场效应管工作原理
场效应管(FET)是一种半导体器件,常用于放大、开关和调
节信号。
它的工作原理基于电场效应,可以通过控制输入信号来控制输出电流。
场效应管的主要组成部分是导电层、栅极和源极/漏极。
导电
层通常是n型或p型的半导体材料。
栅极是由金属或多晶硅制成的,用来控制导电层中的电流。
源极和漏极是与导电层接触的金属引线,负责提供输入和输出电流。
当导电层和源极之间的电压为零时,导电层中的电流几乎为零,场效应管处于关闭状态。
当在栅极施加正电压时,导电层与栅极之间会形成电场,当电场强度超过临界值时,电荷会聚集在导电层的表面,并形成导电通道。
这个通道允许电流从源极流入漏极,导电层开始导电,场效应管处于开启状态。
在场效应管工作过程中,栅极与源极之间的电压决定了导电通道的大小和电流的大小。
当栅极与源极之间的电压增加时,导电通道变宽,电流增大;当电压降低时,导电通道变窄,电流减小。
因此,通过控制栅极与源极之间的电压,可以精确地控制输出电流的大小。
场效应管有许多不同类型,如MOSFET(金属-氧化物-半导体
场效应管),JFET(结型场效应管)和IGBT(绝缘栅双极晶
体管)。
它们在结构和工作原理上有所不同,但都基于电场效应,并具有类似的控制输出电流的特性。
总而言之,场效应管通过控制电场来控制电流,在电子设备中起着重要的作用。
它可以作为放大器、开关和调节器件,广泛应用于通信、计算机和电子设备中。
MOS_场效应管的工作原理及特点
MOS 场效应管的工作原理及特点场效应管是只有一种载流子参与导电,用输入电压控制输出电流的半导体器件。
有N沟道器件和P 沟道器件。
有结型场效应三极管JFET(Junction Field Effect Transister)和绝缘栅型场效应三极管IGFET( Insulated Gate Field Effect Transister) 之分。
IGFET也称金属-氧化物-半导体三极管MOSFET(Metal Oxide SemIConductor FET)。
MOS场效应管有增强型(Enhancement MOS 或EMOS)和耗尽型(Depletion)MOS或DMOS)两大类,每一类有N沟道和P沟道两种导电类型。
场效应管有三个电极:D(Drain) 称为漏极,相当双极型三极管的集电极;G(Gate) 称为栅极,相当于双极型三极管的基极;S(Source) 称为源极,相当于双极型三极管的发射极。
增强型MOS(EMOS)场效应管道增强型MOSFET基本上是一种左右对称的拓扑结构,它是在P型半导体上生成一层SiO2 薄膜绝缘层,然后用光刻工艺扩散两个高掺杂的N型区,从N型区引出电极,一个是漏极D,一个是源极S。
在源极和漏极之间的绝缘层上镀一层金属铝作为栅极G。
P型半导体称为衬底(substrat),用符号B表示。
一、工作原理1.沟道形成原理当Vgs=0 V时,漏源之间相当两个背靠背的二极管,在D、S之间加上电压,不会在D、S间形成电流。
当栅极加有电压时,若0<Vgs<Vgs(th)时(VGS(th) 称为开启电压),通过栅极和衬底间的电容作用,将靠近栅极下方的P型半导体中的空穴向下方排斥,出现了一薄层负离子的耗尽层。
耗尽层中的少子将向表层运动,但数量有限,不足以形成沟道,所以仍然不足以形成漏极电流ID。
进一步增加Vgs,当Vgs>Vgs(th)时,由于此时的栅极电压已经比较强,在靠近栅极下方的P型半导体表层中聚集较多的电子,可以形成沟道,将漏极和源极沟通。
场效应管的工作原理
场效应管的工作原理场效应管(Field Effect Transistor,简称FET)是一种半导体器件,它具有高输入阻抗、低噪声、低功耗等特点,在电子电路中有着广泛的应用。
它的工作原理主要是通过控制栅极电场来调节源极和漏极之间的电流,从而实现信号放大、开关控制等功能。
本文将从场效应管的结构、工作原理和特点等方面进行介绍。
1. 结构。
场效应管由栅极、源极和漏极组成。
栅极与源极之间的电场可以控制源极和漏极之间的电流,因此栅极相当于晶体管的控制极,而源极和漏极则相当于晶体管的发射极和集电极。
根据不同的结构和工作原理,场效应管可以分为MOSFET(金属-氧化物-半导体场效应管)和JFET(结型场效应管)两种类型。
2. 工作原理。
MOSFET的工作原理是基于金属-氧化物-半导体结构。
当栅极施加正电压时,在栅极和氧化物之间形成一个电场,这个电场会影响半导体中的载流子密度,从而控制源极和漏极之间的电流。
而JFET的工作原理是基于PN结的结型场效应。
当栅极施加正电压时,栅极与源极之间形成一个反型电场,这个电场会影响沟道中的载流子密度,从而控制源极和漏极之间的电流。
3. 特点。
场效应管具有许多优点,如高输入阻抗、低噪声、低功耗、频率响应好等。
由于栅极与源极之间的电场可以控制电流,因此场效应管的输入阻抗非常高,可以减小输入信号源对电路的影响。
同时,场效应管的噪声水平较低,适合用于放大弱信号。
此外,由于场效应管的控制电压较低,因此功耗也较小。
另外,场效应管的频率响应也很好,适合用于高频电路。
4. 应用。
场效应管在电子电路中有着广泛的应用,如放大器、开关、振荡器等。
在放大器中,场效应管可以用作信号放大器、运算放大器等;在开关电路中,场效应管可以用作数字开关、模拟开关等;在振荡器中,场效应管可以用作正弦波振荡器、方波振荡器等。
此外,场效应管还可以用于集成电路、功率放大器、射频电路等领域。
总结。
场效应管是一种重要的半导体器件,它具有高输入阻抗、低噪声、低功耗等特点,在电子电路中有着广泛的应用。
场效应管的工作原理详解
场效应管的工作原理详解场效应管(Field Effect Transistor,FET)是一种常用的半导体器件,具有广泛的应用领域,如放大器、开关、逆变等。
本文将详细介绍场效应管的工作原理。
一、场效应管的基本结构场效应管由栅极(Gate)、漏极(Drain)和源极(Source)三个部分组成。
其中栅极与源极之间的电压(Vgs)作用于栅极与源极之间的绝缘层,控制电流从漏极到源极的通断状态。
二、N沟道场效应管(N-Channel FET)1. 静态工作原理N沟道场效应管作为一种N型材料构成的器件,其栅极与源极之间的电压(Vgs)为负数时,使得栅极与沟道之间的电场均匀,形成一个浓度较高的N型沟道,使得漏极和源极之间的导通电阻减小。
当Vgs=0时,N沟道场效应管处于截止状态。
2. 动态工作原理当将正向电压(Vds)加到漏极和源极之间时,漏极端的电势较低,而源极端较高。
此时通过漏极和源极之间的电阻小,使得电流从漏极流向源极。
当电压Vds增大时,漏极电势继续下降,导致沟道中的电子浓度减小,电阻增加。
最终,当Vds达到一定值时,沟道中的电阻增大到一定程度,使得电流几乎不再增加,即处于饱和状态。
此时的电流为IDSS,对应的电压为Vp。
三、P沟道场效应管(P-Channel FET)1. 静态工作原理P沟道场效应管作为一种P型材料构成的器件,其栅极与源极之间的电压(Vgs)为正数时,使得栅极与沟道之间的电场均匀,形成一个浓度较高的P型沟道,使得漏极和源极之间的导通电阻减小。
当Vgs=0时,P沟道场效应管处于截止状态。
2. 动态工作原理当将负向电压(Vds)加到漏极和源极之间时,漏极端的电势较高,而源极端较低。
此时通过漏极和源极之间的电阻小,使得电流从源极流向漏极。
当电压Vds增大时,漏极电势继续上升,导致沟道中的空穴浓度减小,电阻增加。
最终,当Vds达到一定值时,沟道中的电阻增大到一定程度,使得电流几乎不再增加,即处于饱和状态。
场效应管 工作原理
场效应管工作原理
场效应管是一种电子器件,也称为晶体管。
它通过控制外部电场来改变电子的导电性能。
场效应管由P型或N型半导体材
料制成,其工作原理基于金属氧化物半导体场效应。
当场效应管的栅极电压为零时,通道中没有电子流动,管子处于截止状态。
当栅极电压增加时,形成了一个负电场,这使得
N型半导体通道中的自由电子向栅极靠拢。
由于栅极和通道之间的绝缘层,电子无法直接通过栅极流过,而是聚集在通道的表面,形成一个电子气体。
这个电子气体在栅极电场影响下导电。
当栅极电压增加到一定程度时,栅极电场将吸引足够多的电子,使得N型半导体通道完全形成,这时场效应管处于饱和状态。
此时,电子在通道中畅通无阻地流动,形成了一个电流路径。
与此相反,当栅极电压减小到截止电压以下时,场效应管重新进入截止状态,电子无法通过通道,电流被阻断。
总之,通过控制栅极电压,场效应管可以实现电流的开关控制。
这种工作原理使得场效应管在集成电路中被广泛应用,如放大器、开关和逻辑门等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
场效应管工作原理这是该装置的核心,在介绍该部分工作原理之前,先简单解释一下MOS 场效应管的工作原理。
MOS 场效应管也被称为MOS FET,既Metal Oxide Semiconductor Field Effect Transistor (金属氧化物半导体场效应管)的缩写。
它一般有耗尽型和增强型两种。
本文使用的为增强型MOS场效应管,其内部结构见图5。
它可分为NPN型PNP型。
NPN型通常称为N沟道型,PNP型也叫P 沟道型。
由图可看出,对于N沟道的场效应管其源极和漏极接在N 型半导体上,同样对于P沟道的场效应管其源极和漏极则接在P 型半导体上。
我们知道一般三极管是由输入的电流控制输出的电流。
但对于场效应管,其输出电流是由输入的电压(或称电场)控制,可以认为输入电流极小或没有输入电流,这使得该器件有很高的输入阻抗,同时这也是我们称之为场效应管的原因。
为解释MOS场效应管的工作原理,我们先了解一下仅含有一个P 饱和漏源电流。
是指结型或耗尽型绝缘栅场效应管中,栅极电压U GS=0时的漏源电流。
2、UP 开启电压。
是指增强型绝缘栅场效管中,使漏源间刚导通时的栅极电压。
4、gM 对漏极电流I D的控制能力,即漏极电流I D变化量与栅源电压UGS变化量的比值。
gM 是衡量场效应管放大能力的重要参数。
5、BUDS 最大耗散功率。
也是一项极限参数,是指场效应管性能不变坏时所允许的最大漏源耗散功率。
使用时,场效应管实际功耗应小于PDSM并留有一定余量。
7、IDSM UGS=0时的漏极电流。
UP —夹断电压,使ID=0对应的UGS的值。
P沟道场效应管的工作原理与N沟道类似。
我们不再讨论。
下面我们看一下各类绝缘栅场效应管(MOS场效应管)在电路中的符号。
§3 场效应管的主要参数场效应管主要参数包括直流参数、交流参数、极限参数三部分。
一、直流参数1、饱合漏极电流IDSSIDSS是耗尽型和结型场效应管的一个重要参数。
定义:当栅、源极之间的电压UGS=0,而漏、源极之间的电压UDS大于夹断电压UP时对应的漏极电流。
2、夹断电压UPUP也是耗尽型和结型场效应管的重要参数。
定义:当UDS一定时,使ID减小到某一个微小电流(如1μA,50μA)时所需UGS的值。
3、开启电压UTUT是增强型场效应管的重要参数。
定义:当UDS一定时,漏极电流ID达到某一数值(如10μA)时所需加的UGS 值。
4、直流输入电阻RGSRGS是栅、源之间所加电压与产生的栅极电流之比,由于栅极几乎不索取电流,因此输入电阻很高,结型为106Ω以上,MOS管可达1010Ω以上。
二、交流参数1、低频跨导gm此参数是描述栅、源电压UGS对漏极电流的控制作用,它的定义是当UDS一定时,ID与UGS的变化量之比,即跨导gm的单位是mA/V。
它的值可由转移特性或输出特性求得。
在转移特性上工作点Q外切线的斜率即是gm。
或由输出特性看,在工作点处作一条垂直横坐标的直线(表示UDS=常数),在Q点上下取一个较小的栅、源电压变化量ΔUGS,然后从纵坐标上找到相应的漏极电流的变化量ΔID/ΔUGS,则gm=ΔID/ΔUGS。
此外。
对结型场效应管,可由求得只要将工作点处的UGS值代入就可求得gm2、极间电容场效应管三个极间的电容。
包括CGS、CGD和CDS。
这些极间电容愈小,则管子的高频性能愈好。
一般为几个pF。
三、极限参数1、漏极最大允许耗散功率PDmPDm=IDUDS2、漏源间击穿电压BUDS在场效应管输出特性曲线上,当漏极电流ID急剧上升产生雪崩击穿时的UDS。
工作时,外加在漏极、源极之间的电压不得超过此值。
3、栅源间击穿电压BUGS结型场效应管正常工作时,栅、源之间的PN结处于反向偏置状态,若UGS过高,PN结将被击穿。
对于MOS管,栅源极击穿后不能恢复,因为栅极与沟道间的SiO2被击穿属破坏性击穿。
§4 场效应管的特点场效应管具有放大作用,可以组成各种放大电路,它与双极性三极管相比,具有以下几个特点:1、场效应管是一种电压控制器件通过UGS来控制ID。
而双极性三极管是电流控制器件,通过IB来控制IC。
2、场效应管输入端几乎没有电流场效应管工作时,栅、源极之间的PN结处于反向偏置状态,输入端几乎没有电流。
所以其直流输入电阻和交流输入电阻都非常高。
而双极性三极管,发射结始终处于正向偏置,总是存在输入电流,故b、e极间的输入电阻较小。
3、场效应管利用多子导电由于场效应管是利用多数载流子导电的,因此,与双极性三极管相比,具有噪声小、受幅射的影响小、热稳定性好而且存在零温度系数工作点等特性。
4、场效应管的源漏极有时可以互换使用由于场效应管的结构对称,有时漏极和源极可以互换使用,而各项指标基本上不受影响。
因此使用时比较方便、灵活对于有的绝缘栅场效应管,制造时源极已和衬底连在一起,则源极和漏极不能互换。
5、场效应管的制造工艺简单,便于大规模集成每个MOS场效应管在硅片上所占的面积只有双极性三极管的5%,因此集成度更高。
6、MOS管输入电阻高,栅源极容易被静电击穿MOS场效应管的输入电阻可高达1015Ω,因此,由外界静电感应所产生的电荷不易泄漏。
而栅极上的SiO2绝缘层双很薄,这将在栅极上产生很高的电场强度,以致引起绝缘层击穿而损坏管子。
7、场效应管的跨导较小组成放大电路时,在相同负载电阻下,电压放大倍数比双极性三极管低。
§5 场效应管放大电路根据前面讲的场效应管的结构和工作原理,和双极性三极管比较可知,场效应管具有放大作用,它的三个极和双极性三极管的三个极存在着对应关系即:G(栅极)→b(基极) S(源极)→e(发射极) D(漏极)→c(集电极)所以根据双极性三极管放大电路,可组成相应的场效应管放大电路。
但由于两种放大器件各自的特点,故不能将双极性三极管放大电路的三极管简单地用场效应管取代,组成场效应管放大电路。
双极性三极管是电流控制器件,组成放大电路时,应给双极性三极管设置偏置偏流,而场效应管是电压控制器件,故组成放大电路时,应给场效应管设置偏压,保证放大电路具有合适的工作点,避免输出波形产生严重的非线性失真。
一、静态工作点与偏置电路由于场效应管种类较多,故采用的偏置电路,其电压极性必须考虑。
下面以N沟道为例进行讨论。
N沟道的结型场效应管只能工作在UGS<0的区域,MOS管又分为耗尽型和增强型,增强型工作在UGS>0,而耗尽型工作在UGS<0。
1、1、自给偏压偏置电路右图给出的是一种称为自给偏压电路的偏置电路,它适用于结型场效应管或耗尽型场效应管。
它依靠漏极电流ID在Re上的电压降提供栅极偏压。
即UGS=–IDRS同样,在RS上要并联一个足够大的旁路电容。
由场效应管的工作原理我们知道ID是随UGS变化的,而现在UGS又取决于ID的大小,怎么确定静态工作点的ID和UGS的值呢?一般可采用两种方法:图解法和计算法。
⑴图解法首先,作直流负载线,由漏极回路写出方程UDS=UDD-ID(RD+RS)由此在输出特性曲线上做出直流负载线AB,将此直流负载线逐点转到uGS~iD坐标,得到对应直流负载线的转移特性曲线CD,再由UGS=–IDRS在转移特性坐标中作另一条直线,两线的交点即为Q点。
⑵计算法【例】电路如上页图,场效应管为3DJG,其输出特性曲线如下图所示,已知RD=2kΩ,RS=1、2kΩ,UDD=15V,试用图解法确定该放大器的静态工作点。
解:写出输出回路的电压电流方程,即直流负载线方程。
UDS=UDD-ID(RD+RS)设 UDS=0V时ID=0mA时在输出特性图上将上述两点相连得直流负载线。
再根据上述直流负载线与输出特性曲线簇的交点,转移到uGS~iD坐标系中,画出相应于该直流负载线的转移特性曲线。
在转移特性曲线上,做出UGS=–IDRS的曲线。
它在uGS~iD坐标系中是一条直线,找出两点即可。
令 ID=0 UGS=0ID=3mA UGS=3、6V连接这两点,在uGS~iD坐标系中得一直线,此直线与转移特性曲线的交点即为Q点,对应Q点的值为:ID=2、5mA UGS=–3V UDS=7V2、分压式偏置电路分压式偏置电路也是一种常用的偏置电路,该种电路适用于所有类型的场效应管,如下图所示,为了不使分压电阻R1、R2对放大电路的输入电阻影响太大,故通过RG与栅极相连。
该电路栅、源电压为:⑴图解法同上,不过ID=0,UGS不等于0,而为⑵计算法联立解下面方程组:【例】试计算上图的静态工作点。
已知R1=50kΩ,R2=150kΩ,RG=1MΩ,RD=RS=10kΩ,RL=1MΩ,CS=100μF,UDD=20V,场效应管为3DJF,其Up=–5V,IDSS=1mA。
解:即将UGS代入ID式得:漏极对地电压为:UD=UDD–IDRD=20–0、61×10=13、9V二、场效应管的微变等效电路由于场效应管输入端不取电流,输入电阻极大,故输入端可视为开路。
场效应管仅存在如下关系:rD很大,可以认为开路。
根据电路方程可画出等效电路如右上图所示。
三、共源极放大电路放大电路和微变等效电路如下图与示。
场效应管放大电路的动态分析同双极性三极管,也是求电压放大倍数Au、输入电阻ri和输出电阻ro。
1、电压放大倍数根据电压放大倍数的定义由等效电路可得:再找出Uo和Ui的关系,即Ugs和Ui的关系,从等效电路可得:Ui=Ugs所以:2、输入电阻3、输出电阻四、共漏极放大器(源极输出器)电路和等效电路如下图所示。
同样求电压放大倍数、输入电阻、输出电阻。
1、电压放大倍数根据电压放大倍数的定义从等效电路可得:又有 Ui=Ugs+Uo Ugs=Ui – Uo2、输入电阻ri=RG3、输出电阻根据求输出电阻的方法,令:Us=0,并在输出端加一信号U2如下图所示则:【例】计算下面电路的电压放大倍数、输入电阻、输出电阻。
电路参数为:R1=50kΩ,R2=150kΩ,RG=1MΩ,RD=RS=10kΩ,RL=1MΩ,CS=100μF,UDD=20V,场效应管为3DJF,其Up=–5V,IDSS=1mA,。