典型环节的Bode图资料
典型环节的Bode图
控制系统的开环频率特性目的:掌握开环Bode 图的绘制根据Bode 图确定最小相位系统的传递函数 重点:开环Bode 图的绘制、根据Bode 图确定最小相位系统的传递函数1 开环伯德图手工作图的一般步骤:1)将开环传递函数表示为时间常数表达形式,计算各个典型环节的交接频率2)求20lgK 的值,并明确积分环节的个数ν 3)通过(1,20lgK )绘制斜率为-20vdB/dec 低频段 4)随着频率增加,每遇到一个典型环节的交接频率,就改变一次斜率最小相位系统定义: 递函数的零点、极点全部位于S 左半平面,同时又无纯滞后环节的系统称为最小相位系统。
否则就是非最小相位系统。
对数幅频特性与相频特性之间存在确定的对应关系。
对于一个最小相位系统,我们若知道了其幅频特性,它的相频特性也就唯一地确定了。
也就是说:只要知道其幅频特性,就能写出此最小相位系统所对应的传递函数,而无需再画出相频特性。
非最小相位系统高频时相角迟后大,起动性能差,响应缓慢。
对响应要求快的系统,不宜采用非最小相位元件。
2 典型环节的伯德图绘制曲线在MA TLAB 中实现,利用下述的程序段:num=[b2 b1 b0]; den=[1 a2 a1 a0]; H=tf(num,den); bode(H) margin(H) hold on2.1 比例环节传递函数:()G s K = 频率特性:()G j K ω=对数幅频特性:()20lg L j K ω= 对数相频特性:()0ϕω=程序段:num=[0 10]; den=[0 1]; H=tf(num,den); bode(H)margin(H) holdon结论:放大环节的对数幅频特性是一条幅值为20lgK 分贝,且平行于横轴的直线,相频特性是一条和横轴重合的直线。
K>1时,20lgK>0dB ;K<1时,20lgK<0dB 。
2.2 惯性环节(低通滤波特性)传递函数:1()1G s sτ=+频率特性:()()()j G j A e ϕωωω=对数幅频特性:21()20lg 1()L ωτω=+对数相频特性:()arctan ϕωτω=-绘制1()10.1G s s=+的Bode 图程序段:num=[0 1]; den=[0.1 1];H=tf(num,den); bode(H) margin(H) holdon结论:惯性环节的对数幅频特性可以用在1ωτ= 处相交于0分贝的两条渐近直线来近似表示:当1ωτ时,是一条0分贝的直线; 当1ωτ时,是一条斜率为-20dB/dec 的直线。
典型环节伯德图ppt课件
当有n个积分环节串联时,即: 其对数幅频特性为: 相频特性是一条与ω无关, 值为-n×900 且与ω轴平行 的直线。两个积分环节串联 的Bode图如图5-13所示。
是一条斜率为-n×20dB/dec, 且在ω=1(弧度/秒)处过零 分贝线(ω轴)的直线。
图5-13 两个积分环节串联的Bode图
7
2
一放大环节(比例环节)
放大环节的频率特性为:
其幅频特性是:
对数幅频特性为:
3
放大环节的对数幅频特性如图5-11所示,它是一条与角 频率ω无关且平行于横轴的直线,其纵坐标为20lgK。 当有n个放大环节串联时,即:
(5-62)
幅值的总分贝数为:
(5-63)
放大环节的相频特性是:
(5-64)
如图5-11所示,它是一条与角频率ω无 关且与ω轴重合的直线。
六二阶微分环节
二阶微分环节的频率特性是: 其对数幅频特性是:
相频特性是:
二阶微分环节与振荡节 的Bode图关于ω轴对称 ,如图5-21。渐近线的 转折频率为,相角变化 范围是00至+1800。 二阶微分环节的Bode图
19
七不稳定环节
不稳定环节的频率特性是:
其对数幅频特性和相频特性分别为:
不稳定惯性环节的Bode图
当 时, ,它是阻尼比 ξ的函数;当ξ=1时为-6(dB); 当ξ=0.5时为0(dB); 当ξ=0.25时为+6(dB);误差曲线如图5-18所示。
图5-17 振荡环节渐进线对数幅频特性
图5-18 振荡环节对数幅频特性误差修正曲线 15
由图知,振荡环节的误差可正可负,它们是阻尼比 ξ的函数,且以 的转折频率为对称,距离转折频率 愈远误差愈小。通常大于(或小于)十倍转折频率时, 误差可忽略不计。经过修正后的对数幅频特性曲线如图 5-19所示。
典型环节伯德图
其对数幅频特性与惯性环节相同;相频特性与惯性环 节相比是以 为对称,相角的变化范围是 至 。Bode如图5-22所示
八滞后环节
滞后环节的频率特性是: 其对数幅频特性和相频特性分别为:
滞后环节伯德图如图5-23 所示。其对数幅频特性与 ω无关,是一条与ω轴重 合的零分贝线。滞后相角 由式(5-92)计算,分别 与滞后时间常数τ和角频 率ω成正比。
当 时, ,它是阻尼比 ξ的函数;当ξ=1时为-6(dB); 当ξ=0.5时为0(dB); 当ξ=0.25时为+6(dB);误差曲线如图5-18所示。
图5-17 振荡环节渐进线பைடு நூலகம்数幅频特性
图5-18 振荡环节对数幅频特性误差修正曲线
由图知,振荡环节的误差可正可负,它们是阻尼比 ξ的函数,且以 的转折频率为对称,距离转折频率 愈远误差愈小。通常大于(或小于)十倍转折频率时, 误差可忽略不计。经过修正后的对数幅频特性曲线如图 5-19所示。
一阶微分环节的相频特性 如图5-16 所示,相角变化 范围是00至900,转折频率 1/T处的相角为450。
图5-16 一阶微分环节的Bode图
比较图5-16和5-14,可知 ,一阶微分环节与惯性环 节的对数幅频特性和相频 特性是以横轴(ω轴)为 对称的。
五振荡环节 振荡环节的频率特性是: 其对数幅频特性为:
惯性环节的相频特性为:
对应的相频特性曲线如图5-14所 示。它是一条由 至 范围内变 化的反正切函数曲线,且以 和 的交点为斜对称.
四一阶微分环节
一阶微分环节频率特性为:
其对数幅频特性是:
一阶微分环节的对数幅频特性如图5-16所示, 渐近线的转折频率为 ,转折频率处渐近特性与精 确特性的误差为 ,其误差均为正分贝数 ,误差范围与惯性环节类似。 相频特性是: 当 时,
绘制伯德图
幅频和相频特性为:
A( ) (1 T 2 2 )2 (2 T )2, ( ) tg 1
1 T 1 ,o ,称为转折频率或交换频率。 T
Monday, March 09, 2015
可以用这两段渐近线近似的表示惯性环节的对数幅频特性。
3
惯性环节的Bode图
10 渐近线 0 -10 -20 0° -45° -90° 1 20T
20dB / Dec
图中,红、绿线分别是低频、高频渐近线,蓝线是实际曲线。
T
( )
2.0
-63.4
3.0
-71.5
4.0
-76
5.0
-78.7
7.0
-81.9
10
-84.3
20
-87.1
50
-88.9
100
-89.4
1 1 当 0时, (0) 0;当 时, ( ) ;当 时, () 。 T T 4 2 由图不难看出相频特性曲线在半对数坐标系中对于(0, -45°) 点是斜对称的,这是对数相频特性的一个特点。
当时间常数T 变化时,对数幅频特性和对数相频特性的形状 都不变,仅仅是根据转折频率1/T 的大小整条曲线向左或向 右平移即可。而当增益改变时,相频特性不变,幅频特性上 下平移。
Monday, March 09, 2015 6
振荡环节的频率特性
K Kn 2 ⒋ 振荡环节的频率特性: G( s) 2 2 T s 2Ts 1 s 2 n s n 2
0 L( ) 20 lg K 0 0
K 1 K 1 0 K 1
( )
180
K 0
log
典型环节传递函数及伯德图
1 T
10 T
L( )(dB)
0 0.01
( ) G( j ) 90
0.1 1 10
20
20dB / dec
j
40
( )()
0 90 60 30 0 0.01 0.1 1 10
4.惯性环节 (一阶积分环节,是一个相位滞后环节)
惯性环节的特点:当输入量突变时,输出量不会突变,只能按指数 规律逐渐变化,即具有惯性。 惯性环节的微分方程:
比例环节功能框图
1.比例环节(放大环节)
G( j ) K , L( ) 20lg G( j ) 20lg K G( s) K G( j ) K G( j ) K 0 ( ) G( j ) 0
L( )(dB)
20lgK j 0 K 0 0.1 1 10
1
转折频率
1 T
渐近线 1
10 T
0
0 -20
实际幅相曲线
( )()
0 .1 1 T
20dB / dec
0.707
1 T
0 -45
1 T
10
1 T
5 一阶微分环节
特点:此环节的输出量不仅与输入量本身有关,而且与输 入量的变化率有关。
方块图为:
R( s )
τs + 1
C (s)
6.振荡环节
G jω 1 2 2 L ω 20lg 1 T ω 2 2 T jω 2ζ T jω 1
2ζ Tω
2
2
ω t g1
2ζ Tω 2 2 1 T ω
控制工程-典型环节的对数坐标图(Bode图)
(
j
)
arctan
1
2T T 2
2
南华大学
第四章 系统的频率响应分析
特点:
转折频率:
TT
=1,T
=1
T
=
n
。
低频段T<<1,→ 0dB线;
高频段T>>1,→-40dB/dec 线。
L() 20 0 -20 -40 () 0
-90
-180
-40dB/dec
T
T
100 ω(rad/s)
南华大学
典型环节的对数坐标图
(1) 比例环节
对数幅频特性为:
G( j) K
L() 20lg G( j) 20lg K
L(ω)为常数是平行于横轴的一条直线。
对数相频特性为(ω)=0 ,与横轴重合。
L(ω )
20lgK
0 ω
(ω)
0 ω
第四章 系统的频率响应分析
南华大学
第四章 系统的频率响应分析
(3) 积分环节
对数幅频特性:
G( j ) 1 j
dB 20lg G( j)
40
L( ) 20 lg G( j ) 20 lg 1 20 lg 20
-20dB/dec
对数相频特性:
0.1 1 10
( ) 90
180 G
南华大学
(2) 惯性环节
对数幅频特性为:
G( j) 1 jT 1
L( ) 20lg G( j ) 20lg
1
20lg 1 T 2 2
1 T 2 2
对数相频特性: ( ) G( j ) arctan T
《典型环节伯德图》课件
稳定性分析
稳定性定义:系统 在受到扰动后能够 恢复到其原始状态 的能力
稳定性分类:稳定、 不稳定、临界稳定
稳定性分析方法: 伯德图分析、奈奎 斯特图分析、根轨 迹分析等
伯德图分析:通过绘制 伯德图,观察系统在不 同频率下的增益和相位 变化,判断系统的稳定 性。
动态性能分析
伯德图:描述系统动态性能的图形工具 频率响应:系统对不同频率信号的响应 相位裕度:系统稳定性的指标 增益裕度:系统放大能力的指标 动态性能分析方法:如根轨迹法、频率响应法等
MATLAB还提供了丰富的函数库,可以方便地进行各种数学计算和仿真。
Simulink软件介绍
软件名称: Simulink
开发商: MathWorks
公司
软件功能:用 于建模、仿真 和分析动态系
统
应用领域:广 泛应用于控制 工程、信号处 理、通信等领
域
软件特点:图 形化界面,易 于操作,支持 多种编程语言
软件版本:最 新版本为 Simulink 2022a
其他绘制软件介绍
AutoCAD:一款专业的CAD软件,可以绘制 各种类型的伯德图
SolidWorks:一款三维设计软件,可以绘制 伯德图
Inventor:一款三维设计软件,可以绘制伯 德图
SketchUp:一款三维设计软件,可以绘制伯 德图
Blender:一款三维设计软件,可以绘制伯德 图
幅频特性的分析
幅频特性的定义:描述信号在频率域上的分布特性 幅频特性的表示方法:通常采用伯德图或奈奎斯特图 幅频特性的应用:用于分析信号的频率响应、滤波器设计等 幅频特性的测量方法:通过频谱分析仪或示波器等仪器进行测量
相频特性的分析
相频特性的定义:描述信号频率与相位之间的关系 相频特性的表示方法:通常用相频特性曲线表示 相频特性的应用:在信号处理、通信等领域有广泛应用 相频特性的测量方法:通过实验或仿真进行测量
考研复习题典型环节伯德图
相频特性是:
二阶微分环节与振荡节 的Bode图关于ω轴对称 ,如图5-21。渐近线的 转折频率为,相角变化 范围是00至+1800。 二阶微分环节的Bode图
七不稳定环节
不稳定环节的频率特性是:
其对数幅频特性和相频特性分别为:
不稳定惯性环节的Bode图
二积分环节
积分环节的频率特性是: 其幅频特性为: 对数幅频特性是:
设
,则有: (5-68)
可见,其对数幅频特性是一条 在ω=1(弧度/秒)处穿过零分贝 线(ω轴),且以每增加十倍频率 降低20分贝的速度(-20dB/dec) 变化的直线。 积分环节的相频特性是:
(5-69)
是一条与ω无关,值为-900 且平行于ω轴的直线。积分环 节的对数幅频特性和相频特性 如图5-12所示。
振荡环节的相频特性是:
除上面三种特殊情况外,振荡环节相频特性还是 阻尼比ξ的函数,随阻尼比ξ变化,相频特性在转折 频率 附近的变化速率也发生变化,阻尼比ξ越小, 变化速率越大,反之愈小。但这种变化不影响整个相 频特性的大致形状。不同阻尼比ξ的相频特性如图520 所示。
振荡环节对数相频特性图
六二阶微分环节
一放大环节(比例环节)
放大环节的频率特性为:
其幅频特性是:
对数幅频特性为:
放大环节的对数幅频特性如图5-11所示,它是一条与角 频率ω无关且平行于横轴的直线,其纵坐标为20lgK。 当有n个放大环节串联时,即:
(5-62)
幅值的总分贝数为:
(5-63)
放大环节的相频特性是:
(5-64)
如图5-11所示,它是一条与角频率ω无 关且与ω轴重合的直线。
第5章4——Bode图
2
1 2 n
2
n
2 arc tg n 2 1 2 n
0 0 ( ) 90 n 180
autocumt@ 22
振荡环节L()
L()dB 40 20 0dB -20
(rad / s)
10 -2
10 -1
1
10
0
2 3 4
10
1
autocumt@
自动控制原理
对数分度:
lg 2 0.301
lg 3 0.4771 lg 4 2lg 2 0.602 lg 5 0.699 lg 6 lg 3 lg 2 0.778
lg 7 0.845 lg 8 3 lg 2 0.903 lg 9 2 lg 3 0.954
()º
(rad / s)
10 -2
autocumt@
10 -1
3
100
10
1
20 10 0
自动控制原理
L() dB -10
-20 -30 -40 900 450
( )
00 0 -450 -900
-1350
完 整 图 二 合 一
-1800
10 -2
autocumt@
[-20] 0.1 0.2
1
2
10 20
[-20]
100
16
5-4 对数频率特性——Bode图
(5)一次微分环节
传递函数: G(S) TS+ 1 频率特性: G ( j ) Tj 1
0 0 1 相频特性 ( ) arctanT 45 T 90
第五章_开环伯德图
ω tg1ω T
11
L ( )
dB
20
20 0
( )
90
1 10T
1 T
10 T
45 0
1 10T
1 T
10 T
一阶微分环节高频渐近线的斜率是+20dB/dec,其 相位变化范围由0°(ω=0)经+45°至90°(ω=∞)
0.7
0.3 0.2
( )
180 90 0
0.7
0.3 0.2
1 10T
1 T
10 T
20
8.延迟环节
幅频特性 相频特性
( )
0 100 200 300 400
1 10T
e jω
T
Lω 20lgG jω 20lg1 0 dB
1 T 2ω 2
即二阶微分环节的幅频和相频特性分别与振 荡环节的相应特性是关于横轴对称。此时, 其对数幅频特性的高频渐近线的斜率为 +40dB/dec而相频由0°(对应ω=0)经 1 90°ω ω T ,最后趋于180°(ω→∞)。
n
19
L( )
40 20
0dBBiblioteka 409000.1
1
10
6
4. 惯性环节
惯性环节的幅频特性为
G jω 1 1 jω T
惯性环节的幅频特性
20 lg 1 1 20 lg 20 lg 1 2T 2 1 jT 1 2T 2
1 在 ω T 时(低频段):
20lg 1 ω2T 2 20lg1 0 dB
5.3 对数频率特性(Bode图)
(5-58)
式中, Li (ω) 和ϕi (ω ) 分别表示各典型环节的对数幅频特性和对数相频特性。 式(5-58)表明,只要能作出 G( jω ) 所包含的各典型环节的对数幅频和对数相频曲线,
将它们进行代数相加,就可以求得开环系统的 Bode 图。实际上,在熟悉了对数幅频特性的
性质后,可以采用更为简捷的办法直接画出开环系统的 Bode 图。具体步骤如下:
5.3 对数频率特性(Bode 图)
5.3.1 典型环节的 Bode 图
1.比例环节
比例环节 G( jω ) = K 的频率特性与频率无关,其对数幅
频特性和对数相频特性分别为
⎧L(ω) = 20 lg K ⎨⎩ϕ(ω) = 0o
(5-50)
相应 Bode 图如图 5-23 所示。
2.微分环节
微分环节 G( jω) = s 的对数幅频特性与对数相频特性
显然,当ω ωn = 1,即ω = ωn 时,是两条渐近线的相交点,所以,振荡环节的自然
频率ωn 就是其转折频率。
振荡环节的对数幅频特性不仅与ω ωn 有关,而且与阻尼比ξ 有关,因此在转折频率附
近一般不能简单地用渐近线近似代替,否则可能引起较大的误差。图 5-27 给出当ξ 取不同 值时对数幅频特性的准确曲线和渐近线,由图可见,当ξ < 0.707 时,曲线出现谐振峰值, ξ 值越小,谐振峰值越大,它与渐近线之间的误差越大。必要时,可以用图 5-28 所示的误
差修正曲线进行修正。
由式(5-55)可知,相角ϕ (ω ) 也是ω ωn 和ξ 的函数,当ω = 0 时,ϕ (ω ) = 0 ;当ω → ∞ 时,ϕ (ω ) = −180o ;当ω = ωn 时,不管ξ 值的大小,ωn 总是等于 − 90o ,而且相频特性 曲线关于 (ωn , − 90°) 点对称,如图 5-27 所示。
典型环节的Bode图
典型环节的B o d e图-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN控制系统的开环频率特性目的:掌握开环Bode图的绘制根据Bode图确定最小相位系统的传递函数重点:开环Bode图的绘制、根据Bode图确定最小相位系统的传递函数1 开环伯德图手工作图的一般步骤:1)将开环传递函数表示为时间常数表达形式,计算各个典型环节的交接频率2)求20lgK的值,并明确积分环节的个数ν3)通过(1,20lgK)绘制斜率为-20vdB/dec低频段4)随着频率增加,每遇到一个典型环节的交接频率,就改变一次斜率最小相位系统定义:递函数的零点、极点全部位于S 左半平面,同时又无纯滞后环节的系统称为最小相位系统。
否则就是非最小相位系统。
对数幅频特性与相频特性之间存在确定的对应关系。
对于一个最小相位系统,我们若知道了其幅频特性,它的相频特性也就唯一地确定了。
也就是说:只要知道其幅频特性,就能写出此最小相位系统所对应的传递函数,而无需再画出相频特性。
非最小相位系统高频时相角迟后大,起动性能差,响应缓慢。
对响应要求快的系统,不宜采用非最小相位元件。
2 典型环节的伯德图绘制曲线在MATLAB中实现,利用下述的程序段:num=[b2 b1 b0];den=[1 a2 a1 a0];H=tf(num,den);bode(H)margin(H)hold on比例环节传递函数:()G s K=频率特性:()G j Kω=对数幅频特性:()20lgL j Kω=对数相频特性:()0ϕω=程序段:num=[0 10]; den=[0 1]; H=tf(num,den);bode(H)margin(H) hold on结论:放大环节的对数幅频特性是一条幅值为20lgK分贝,且平行于横轴的直线,相频特性是一条和横轴重合的直线。
K>1时,20lgK>0dB;K<1时,20lgK<0dB。
控制工程-典型环节的对数坐标图(Bode图)
I 型系统的低频渐近线: L (ω )= 20lgK-20lgω 斜率为-20dB/dec的直线,且与0dB线(横轴)的交点为ω=K
II型系统的低频渐近线: L (ω )= 20lgK-40lg ω 斜率为-40dB/dec的直线,且与0dB线(横轴)的交点为= K
3. dec:十倍频,即频率增加10倍;
4. ±20dB/dec:频率每增加10倍,分贝值增加或下降20;
5. 坐标原点0只是纵坐标的0,横坐标没有0。
南华大学
第四章 系统的频率响应分析
对数相频特性曲线:
∠G(jω)
90° 45°
0
1
10
说明: 1. 横坐标仍然表示ω,仍然按对数均匀分度; 2. 纵坐标为(ω)=∠G(jω),均匀分度; 3.坐标原点0只是纵坐标的0,横坐标没有0。
南华大学
第四章 系统的频率响应分析
5. 用特殊点及趋势或者叠加画对数相频特性曲线。
90 ( )
45
一阶微分环节 2
0
ω1
ω2
-45 惯性环节 1
-90
③ω3
惯性环节
南华大学
第四章 系统的频率响应分析
频率特性的特征量
表征系统动态特性的频域性能指标
零频幅值A(0) 复现频率M与复现带宽0~M 谐振频率r及相对谐振峰值Mr 截止频率b和截止带宽0~b
G
() G( j)
0°
ω
南华大学
第四章 系统的频率响应分析
各典型环节Bode图特点总结:
比例环节 积分环节 微分环节 惯性环节 一阶微分环节 二阶振荡环节 二阶微分环节 延时环节
如何绘制伯德图
2 20 log
A( )
20 log
K
40
K 10
20log K 20log ,
20
当K 1时, 1, L() 0;
20 40
()
1 10 100 K 1
10,L() 20 可见斜率为-20dB/dec 当K 0时, 1, L() 20 log K;
1 10 100
T
2
可见,相角的变化范围从0~180度。
Wednesday, May 29, 2024
17
二阶微分环节的波德图
( )(deg)
180°
1.0
150° 0.7
120° 90°
0.5 0.3 0.2
60° 0.1
30°
0°
L( )(dB)
40dB / Dec
L( ) 20
(dB)
比例环节的bode图
二、典型环节的波德图
⒈ 比例环节:G(s) K, (K 0),G( j) K 幅频特性:A() K;相频特性:() 0
L() / dB
20log K
20log K
20log K
()
180
K 1
K 1 log
0 K 1
对数幅频特性:
0
L() 20lg K 0
0
K 0 log
相频特性:
() K 0
180
Wednesday, May 29, 2024
K 1 K 1 0 K 1
1
积分环节的Bode图
⒉ 积分环节的频率特性:G(s) K
s
频率特性:
G( j )
K
j
K
K
e2
典型环节的Bode图
控制系统的开环频率特性目的:掌握开环Bode图的绘制根据Bode图确定最小相位系统的传递函数重点:开环Bode图的绘制、根据Bode图确定最小相位系统的传递函数1 开环伯德图手工作图的一般步骤:1)将开环传递函数表示为时间常数表达形式,计算各个典型环节的交接频率2)求20lgK的值,并明确积分环节的个数ν3)通过(1,20lgK)绘制斜率为-20vdB/dec低频段4)随着频率增加,每遇到一个典型环节的交接频率,就改变一次斜率最小相位系统定义:递函数的零点、极点全部位于S 左半平面,同时又无纯滞后环节的系统称为最小相位系统。
否则就是非最小相位系统。
对数幅频特性与相频特性之间存在确定的对应关系。
对于一个最小相位系统,我们若知道了其幅频特性,它的相频特性也就唯一地确定了。
也就是说:只要知道其幅频特性,就能写出此最小相位系统所对应的传递函数,而无需再画出相频特性。
非最小相位系统高频时相角迟后大,起动性能差,响应缓慢。
对响应要求快的系统,不宜采用非最小相位元件。
2 典型环节的伯德图绘制曲线在MA TLAB中实现,利用下述的程序段:num=[b2 b1 b0];den=[1 a2 a1 a0];H=tf(num,den);bode(H)margin(H)hold on2.1 比例环节传递函数:()G s K=频率特性:()G j Kω=对数幅频特性:()20lgL j Kω=对数相频特性:()0ϕω=程序段:num=[0 10]; den=[0 1]; H=tf(num,den);bode(H)margin(H) hold on结论:放大环节的对数幅频特性是一条幅值为20lgK分贝,且平行于横轴的直线,相频特性是一条和横轴重合的直线。
K>1时,20lgK>0dB;K<1时,20lgK<0dB。
2.2 惯性环节(低通滤波特性)传递函数:1()1G ssτ=+频率特性:()()()jG j A eϕωωω=对数幅频特性:21()20lg1()Lωτω=+对数相频特性:()arctanϕωτω=-绘制1()10.1G ss=+的Bode图程序段:num=[0 1]; den=[0.1 1];H=tf(num,den);bode(H)margin(H)hold on结论:惯性环节的对数幅频特性可以用在1ωτ=处相交于0分贝的两条渐近直线来近似表示:当1ωτ时,是一条0分贝的直线;当1ωτ时,是一条斜率为-20dB/dec的直线。
自动控制原理3第三节典型环节的频率特性
30
40 50 60 80 100 一倍频程
一倍频程 十倍频程
lg
0
1
2
ω
1
2
3
4
5
6
7
8
9
10
lgω 0.000 0.301 0.477 0.602 0.699 0.778 0.845 0.903 0.954 1.000
Saturday, November 05, 2016
3
纵坐标分度:对数幅频特性曲线的纵坐标以 L( ) 20log A( ) 表 示。其单位为分贝(dB)。直接将 20log A( ) 值标注在纵坐标上。 相频特性曲线的纵坐标以度或弧度为单位进行线性分度。 一般将幅频特性和相频特性画在一张图上,使用同一个横 坐标(频率轴)。 当幅制特性值用分贝值表示时,通常将它称为增益。幅值 和增益的关系为:增益 20log(幅值)
Saturday, November 05, 2016
14
振荡环节的波德图
L( )(dB)
20
16 12
0.1 0.2 0.3 0.5 0.7 1 .0
10
8 4 0 -4 -8
1 10T 1 5T 1 2T 1 T 2 T
0
渐近线
-3 -1 -0.2 -0.04
max 20log 1 T 0 3(dB)
2
1 T
2 T
5 T
10 T
10
惯性环节的波德图
1 ( ) tg T ②相频特性:
作图时先用计算器计算几个特殊点:
T 0.01 0.02 0.05 0.1 0.2 0.3 0.5 0.7 1.0
波德(Bode)图
当=1 rad/s时,L()=20lgK,即最低频段 的对数幅频特性或其延长线在=1 rad/s时 的数值等于20lgK。
18
如果各环节的对数幅频特性用渐近线表示, 则对数幅频特性为一系列折线,折线的转 折点为各环节的转折频率。
对数幅频特性的渐近线每经过一个转折点, 其斜率相应发生变化,斜率变化量由当前 转折频率对应的环节决定。 对惯性环节,斜率下降 20dB/dec;振荡环 节,下降 40dB/dec;一阶微分环节,上升 20dB/dec;二阶微分环节,上升 40dB/dec。
1
= 0.5 = 0.7 = 1.0
/n
10
12
7、 二阶微分环节 传递函数: G(s) 2s 2 2s 1, 0 1 频率特性: G( j) 1 2 2 j 2 幅频特性: A( ) (1 2 2 ) 2 (2 ) 2
19
Bode图绘制步骤
将开环传递函数表示为典型环节的串联:
G( s) H ( s)
2 2 K ( 1s 1) L ( p s 1)( p s 2 p 1 p 1s 1) L 1
s v (T1s 1) L (Tq s 1)(Tq21s 2 2q 1Tq 1s 1) L
=输入幅值; 当L(w)>0时,输出幅 值>输入幅值(放大); 当L(w)<0时,输出幅 值<输入幅值(衰减)。 对数相频特性图 横坐标:与对数幅频特 性图相同。 纵坐标:线性分度, 频率特性的相角() 单位 — 度()
2
几点说明 在对数频率特性图中,由于横坐标采用了对数分度 ,因此=0 不可能在横坐标上表示出来,横坐标上表 示的最低频率由所感兴趣的频率范围确定; 此外,横 坐标一般只标注的自然数值; 在对数频率特性图中,角频率 变化的倍数往往比其 变化的数值更有意义。为此通常采用频率比的概念:频 率变化十倍的区间称为一个十倍频程,记为decade或简 写为 dec;频率变化两倍的区间称为一个二倍频程,记 为octave或简写为oct。它们也用作频率变化的单位。 可以注意到,频率变化10倍,在对数坐标上是等距 的,等于一个单位。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
典型环节的B o d e图控制系统的开环频率特性目的:掌握开环Bode图的绘制根据Bode图确定最小相位系统的传递函数重点:开环Bode图的绘制、根据Bode图确定最小相位系统的传递函数1 开环伯德图手工作图的一般步骤:1)将开环传递函数表示为时间常数表达形式,计算各个典型环节的交接频率2)求20lgK的值,并明确积分环节的个数ν3)通过(1,20lgK)绘制斜率为-20vdB/dec 低频段4)随着频率增加,每遇到一个典型环节的交接频率,就改变一次斜率最小相位系统定义:递函数的零点、极点全部位于S 左半平面,同时又无纯滞后环节的系统称为最小相位系统。
否则就是非最小相位系统。
对数幅频特性与相频特性之间存在确定的对应关系。
对于一个最小相位系统,我们若知道了其幅频特性,它的相频特性也就唯一地确定了。
也就是说:只要知道其幅频特性,就能写出此最小相位系统所对应的传递函数,而无需再画出相频特性。
非最小相位系统高频时相角迟后大,起动性能差,响应缓慢。
对响应要求快的系统,不宜采用非最小相位元件。
Tf函数用来建立实部或复数传递函数模型或将状态方程、或零级增益模型转化成传递函数形式。
sys = tf(num,den)命令可以建立一个传递函数,其中分子和分母分别为num和den。
输出sys是储存传递函数数据的传递函数目标。
单输入单输出情况下,num和den是s的递减幂级数构成的实数或复数行向量。
这两个向量并不要求维数相同。
如h = tf([1 0],1)就明确定义了纯导数形式h(s)=s。
若要构建多输入多输出传递函数,要分别定义每一个单输入单输出系统的端口的分子与分母。
2 典型环节的伯德图绘制曲线在MATLAB中实现,利用下述的程序段:num=[b2 b1 b0];den=[1 a2 a1 a0];H=tf(num,den);bode(H)margin(H)hold on2.1 比例环节传递函数:()G s K=频率特性:()G j Kω=对数幅频特性:()20lgL j Kω=对数相频特性:()0ϕω=程序段:num=[0 10]; den=[0 1]; H=tf(num,den);bode(H)margin(H) hold on结论:放大环节的对数幅频特性是一条幅值为20lgK分贝,且平行于横轴的直线,相频特性是一条和横轴重合的直线。
K>1时,20lgK>0dB;K<1时,20lgK<0dB。
2.2 惯性环节(低通滤波特性)传递函数:1()1G ssτ=+频率特性:()()()jG j A eϕωωω=对数幅频特性:2()1()Lωτω=+对数相频特性:()arctanϕωτω=-绘制1()10.1G ss=+的Bode图程序段:num=[0 1]; den=[0.1 1];H=tf(num,den);bode(H)margin(H)hold on结论:惯性环节的对数幅频特性可以用在1ωτ= 处相交于0分贝的两条渐近直线来近似表示:当1ωτ=时,是一条0分贝的直线; 当1ωτ?时,是一条斜率为-20dB/dec 的直线。
惯性环节具有低通特性,对低频输入能精确地复现,而对高频输入要衰减,且产生相位迟后。
因此,它只能复现定常或缓慢变化的信号。
2.3 积分环节传递函数:1()G s sτ=频率特性:()()()j G j A e ϕωωω=对数幅频特性:1()20lg L j ωτω=对数相频特性:()2πϕω=-在同一坐标中绘制1()G s s =、1()0.1G s s=和1()0.01G s s=的Bode 图 num1=[0 1];den1=[1 1];H1=tf(num1,den1); bode(H1)margin(H1)hold on num1=[0 1];den1=[0.11];H1=tf(num1,den1);bode(H1)margin(H1) hold onnum1=[0 1];den1=[0.01 1];H1=tf(num1,den1);bode(H1)margin(H1) hold on蓝色的线为:1()G s s=,红色的线为:1()0.1G s s=紫色的线为:1()0.01G s s=结论:积分环节的对数幅频曲线是一条经过横轴上ω=1这一点,且斜率为-20的直线;相频与ω无关,值为-90°且平行于横轴的直线, 2.4 微分环节传递函数:()G s s τ=频率特性:()()()j G j A e ϕωωω= 对数幅频特性:()20lg L j ωτω= 对数相频特性:()2πϕω=在同一坐标中绘制()G s s =、()0.01G s s =和()0.001G s s =的Bode 图num1=[1 0];den1=[0 1];H1=tf(num1,den1); bode(H1) margin(H1) hold onnum1=[0.1 0];den1=[0 1]; H1=tf(num1,den1); bode(H1) margin(H1) hold onnum1=[0.01 0];den1=[0 1]; H1=tf(num1,den1); bode(H1) margin(H1) hold on蓝色的线为:()G s s =,红色的线为:()0.01G s s =,紫色的线为:()0.001G s s =结论:微分环节是积分环节的倒数,它们的曲线斜率和相位移也正好相差一个负号。
2.5 一阶比例微分环节 传递函数:()1G s s τ=+频率特性:()()()j G j A e ϕωωω=对数幅频特性:2()20lg 1()L j ωτω=+ 对数相频特性:()arctan ϕωτω=在同一坐标系中,绘制()1G s s =+,()10.1G s s =+和()10.01G s s =+的Bode 图。
num1=[1 1];den1=[0 1];H1=tf(num1,den1); bode(H1) margin(H1) hold onnum1=[0.1 1];den1=[0 1]; H1=tf(num1,den1); bode(H1) margin(H1) hold onnum1=[0.01 1];den1=[0 1]; H1=tf(num1,den1); bode(H1) margin(H1) hold on2.6 二阶比例微分环节传递函数:22()12G s s s ξττ=++ 频率特性:()()()j G j A e ϕωωω= 对数幅频特性:2222()20lg (2)(1)L j ωξτωτω=+-对数相频特性:222()arctan1ξτωϕωτω=-绘制22()12G s s s ξττ=++的Bode 图。
1)取0.707ξ=,1τ=则2()12G s s s =++2)取1ξ=,1τ=则2()12G s s s =++3)取0.2ξ=,1τ=则2()10.4G s s s =++4)取0.5ξ=,1τ=则2()11G s s s=++5)取0.1ξ=,1τ=则2()10.2G s s s=++在同一个标系中绘制以上曲线num1=[1 1.414 1];den1=[0 1]; H1=tf(num1,den1);bode(H1)margin(H1)hold onnum1=[1 2 1];den1=[0 1];H1=tf(num1,den1);bode(H1) margin(H1)hold onnum1=[1 0.4 1];den1=[0 1];H1=tf(num1,den1);bode(H1)margin(H1)hold onnum1=[1 1 1];den1=[0 1];H1=tf(num1,den1);bode(H1)margin(H1)hold onnum1=[1 0.2 1];den1=[0 1];H1=tf(num1,den1);bode(H1)margin(H1)hold on二阶微分环节Bode2.7 振荡环节传递函数:222()2nn nG ss sωωξω=++令1nτω=则:221()12G ss sξττ=++频率特性:()221()()12jG j A ejϕωωωξτωτω==+-对数幅频特性:2222()(2)(1)L jωξτωτω=+-对数相频特性:22222arctan11()2arctan11ξτωτωτωϕωξτωπτωτω⎧-≤⎪⎪-=⎨⎪-->⎪-⎩绘制221()12G ss sξττ=++的Bode图。
1)1)取0.707ξ=,1τ=则2()12G ss s++2)取1ξ=,1τ=则21()12G s s s =++3)取0.2ξ=,1τ=则21()10.4G s s s =++4)取0.5ξ=,1τ=则21()11G s s s =++5)取0.1ξ=,1τ=则21()10.2G s s s=++ 在同一个标系中绘制以上曲线num1=[0 1];den1=[1 1.414 1]; H1=tf(num1,den1); bode(H1) margin(H1) hold onnum1=[0 1];den1=[1 2 1]; H1=tf(num1,den1); bode(H1) margin(H1) hold onnum1=[0 1];den1=[1 0.4 1]; H1=tf(num1,den1); bode(H1) margin(H1) hold onnum1=[0 1];den1=[1 1 1]; H1=tf(num1,den1); bode(H1) margin(H1) hold onnum1=[0 1];den1=[1 0.2 1]; H1=tf(num1,den1); bode(H1) margin(H1) hold on3 对控制系统的一般要求开环对数频率特性的一般要求或者说怎样的Bode 图才算是比较理想的频率特性?(1)中频段以-20dB/dec 的斜率穿越零分贝 线,而且这一斜率占有足够的频带宽度,则系统的稳定性好。
(2)截止频率c ω越高,则系统的快速性越好。
(3)低频段的斜率陡,增益高,表示系统的稳态精度好(即稳态误差小)。
(4)高频段衰减得越快,即高频特性负分贝值低,说明系统抗高频噪声干扰的能力越强。