如何将循环小数化为分数

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浅谈如何将循环小数化为分数

我们知道,有限小数是十进分数的另一种表现形式,因此,任何一个有限小数都可以直接写成十分之几、百分之几……等形式的数。那么无限小数能否化成分数呢?

我们可以将无限小数按照小数部分是否循环分成两类:即无限循环小数和无限不循环小数。无限不循环小数不能化成分数,而无限循环小数是可以化成分数的。那么,无限循环小数又是如何化分数的呢?由于它的小数部分位数是无限的,显然不可能写成十分之几、百分之几、千分之几……的数。其实,循环小数化分数难就难在无限的小数位数。所以我就从这里入手,想办法去掉无限循环小数的循环的部分。策略就是用扩大倍数的方法,把无限循环小数扩大十倍、百倍或千倍……使扩大后的无限循环小数与原无限循环小数循环的部分完全相同,然后这两个数相减,这样就把循化的部分去掉了,我们的目的就达到了,我们来看两个例子:

例1 把0.4747……和0.33……化成分数。

解法1:0.4747……×100=47.4747……

0.4747……×100-0.4747……=47.4747……-0.4747……

(100-1)×0.4747……=47

即99×0.4747…… =47

那么0.4747……=47/99

解法2:0.33……×10=3.33……

0.33……×10-0.33……=3.33…-0.33……

(10-1) ×0.33……=3

即9×0.33……=3

那么0.33……=3/9=1/3

由此可见, 纯循环小数化分数,它的小数部分可以写成这样的分数:纯循环小数的循环节最少位数是几,分母就是由几个9组成的数;分子是纯循环小数中一个循环节组成的数。

⑵把0.4777……和0.325656……化成分数。

想1:0.4777……×10=4.777……①

0.4777……×100=47.77……②

用②-①即得:

0.4777……×90=47-4

所以, 0.4777……=43/90

想2:0.325656……×100=32.5656……①

0.325656……×10000=3256.56……②

用②-①即得:

0.325656……×9900=3256.5656……-32.5656……

0.325656……×9900=3256-32

所以, 0.325656……=3224/9900

一个混循环小数的小数部分可以化成分数,这个分数的分子是第二个循环节以前的小数部分组成的数与小数部分中不循环部分组成的数的差,分母的头几位数是9,末几位是0。9的个数与循环节中的位数相同,0的个数与不循环部分的位数相同。

相关文档
最新文档