晶体的点阵结构和晶体材料

合集下载

区分晶体和非晶体方法

区分晶体和非晶体方法

区分晶体和非晶体方法
晶体和非晶体是固体材料的两种基本结构状态。

晶体具有有序排列的结构、定向性良好和规则的几何形状,而非晶体没有有序排列的结构、定向性较差和无规则的几何形状。

下面是一些区分晶体和非晶体的方法:
1. X射线衍射:晶体材料的结构具有明显的点阵结构,可以通过X射线衍射图谱来确定其晶体结构。

而非晶体材料没有点阵结构,因此X射线衍射图谱呈现出弥散环形。

2. 热分析:晶体材料在特定温度范围内具有明显的热稳定性,即熔点和结晶温度。

非晶体材料则没有这些性质,其热分析图形似乎缺少明显的熔点和结晶峰。

3. 密度:晶体材料的密度通常比同种元素的非晶体材料高,因为晶体具有更紧密的结构和更少的空隙。

4. 光学性质:晶体具有各向异性,即其物理性质(如光学、电学和磁学等)取决于不同方向的取向。

而非晶体的物理性质是各向同性的。

5. 硬度:晶体材料的表面有规则的细微结构,通常比非晶体材料更坚硬。

6. 拉伸性能:晶体通常具有较好的拉伸性能,而非晶体则通常较为脆性。

第七章 晶体的点阵结构和晶体的性质

第七章  晶体的点阵结构和晶体的性质
邻的晶面的面间距都相等。 对正交晶系
900
dh*k*l*
dhk l
dh*k*l*
(a)
(b)
t/min
图7.4 晶体(a)与非晶体(b)的步冷曲线
辽宁石油化工大学
结构化学2
7.2 晶体结构的周期性和点阵
NaCl 晶体结构
辽宁石油化工大学
结构化学2
7.2 晶体结构的周期性和点阵
一、晶体结构的点阵理论 1. 结构基元与点阵
晶体的周期性结构使得人们可以把它抽象成
“点阵”来研究。将晶体中重复出现的最小单元
辽宁石油化工大学
结构化学2
7.1 晶体的结构和性质
辽宁石油化工大学
一、晶体的定义
由原子、分子或离子等微粒在空间按一定 规律、周期性重复排列所构成的固体物质。
图7.1 晶态结构示意图
图7.2 非晶态结构示意图
辽宁石油化工大学
结构化学2
7.1 晶体的结构和性质
二、 晶体结构的特征
固体物质按原子 ( 分子、离子 ) 在
Mn
(立方简单)
Li Na K Cr Mo W…...
(立方体心)
以上每一个原子都是一个结构基元,都可以抽象成一个点阵点.
实例:Ni Pd Pt Cu Ag Au ……
立方面心是一种常见的
金属晶体结构,其中每
个原子都是一个结构基 元,都可被抽象成一个 点阵点.
CsCl型晶体结构
CsCl型晶体中A、B是不同的原子,不能都被抽象为点阵 点. 否则,将得到错误的立方体心点阵!这是一种常见的错误:
将晶体中重复出现的最小单元作为结构基元,用 一个数学上的点来代表, 称为点阵点,整个晶体就被 抽象成一组点,称为点阵。

晶体的微观结构

晶体的微观结构

面心立方格子
(3)布拉菲格子 (4)复式格子 (5)格矢
2、一维布拉菲格子 3、一维复式格子 3、二维情况
4、三维情况:
重复单原是平行六面体,晶格周期性可表为:
(r) (r l1a1 l2a2 l3a3 )
采用原胞基矢 R l1a1 l2a2 l3a3 采用晶胞基矢 R ma nb pc
一、空间点阵
1、晶体的微观结构具周期性,其几何模型即空间点阵。 2、空间点阵:晶体中诸结点的空间排列
3、基元:晶体中一种或几种粒子组成的最小结构单元。 4、晶体结构=点阵+格点(基元)
碳 60 晶 体 的 晶 胞 , 晶 体 的 基 元 包 含 60 个 碳 原 子
二、晶格的周期性 基矢 1、定义: (1)原胞(固体物理学原胞):晶体中最小的重复单元 (2)晶胞(结晶学原胞):同时反映周期性和对称性, 不一定是最小的重复单元。
正 五 边 形 无 法 填 满 整 个 平 面
4、七个晶系 (1)晶系:在晶体学中,有共用特征对称素的一族点群称~ (共同的特征对称素决定着共同的晶胞形状) (2)每个晶系都有确定了标准的晶胞和基矢,晶系的对称性 可以完全由晶胞的对称性来描述。 (3)所有晶体可分为7个晶系:三斜、单斜、正交、四方、 三角、六角和立方(如图)
3、基本对称操作: (1)转动操作(n次旋转对称) 旋转轴:将晶体绕某轴旋转一定角度后,若晶体能完全 复原,该轴称为旋转对称轴。若转动 后能复 原,则定义 n 2 / 为该转轴的次数。 可证明晶体只有1、2、3、4、6次旋转轴 (2)镜面 (3)反演
(4)象转轴:只有 1,2, 3,4,6 五种 但: 1 i, 2 m, 3 3 i, 6 3 m

材料化学 (第一章 晶体的特性与点阵结构)

材料化学 (第一章 晶体的特性与点阵结构)

m, n, p = 0, ±1, ±2, ...
3.点阵及其基本性质
(1). 点阵: 连结任意两点所得向量进行平移后能够复原 的一组点称为点阵.
X X
不是点阵
不是点阵
点阵
(2). 点阵的二个必要条件: (a)点数无限多 (b)各点所处环境完全相同
(3). 点阵与平移群的关系:
(a)连结任意两点阵点所得向量必属于平移群. (b)属于平移群的任一向量的一端落在任一点阵点时, 其另一端必落在此 点阵中另一点阵点上.
第一章 晶体的特性与点阵结构
第一部分 晶体学基础
一 晶体学发展的历史
二 晶体的特性
三 晶体结构 (一)晶体结构的周期性 (二)点阵结构与点阵 (三)晶体结构参数
第二部分 晶体中的对称
一 晶体的宏观对称性 二 晶体的微观对称性
第一部分 晶体学基础
一、晶体学发展的历史
西汉,《韩诗外传》“凡草木花多五出,雪花独六出”
六方素格子、正方素格子、矩形素格子、矩形带心格子和平行四边形格子。
空间点阵的七种类型、十四种型式
(1) 七种类型 — 7种对称类型对应7个晶系


一维平移群表示为:Tm ma
m = 0, ±1, ±2, ……
2.二维点阵结构与平面点阵 1)实例 (a) NaCl晶体中平行于某一晶面的一层离子 结构:
结构基元: 点阵:
(b)石墨晶体中一层C原子
结构: x
结构基元: 点阵:
2)平面格子 连结平面点阵中各点阵点所得平面网格.
2)平面格子 连结平面点阵中各点阵点所得平面网格.
4.晶胞参数与原子坐标参数
(1).晶胞(Unit cell)
空间格子将晶体结构截成的一个个大小、形状相等,包含等同 内容的基本单位。

结构化学晶体点阵结构PPT课件

结构化学晶体点阵结构PPT课件

现代科技中的晶体材料
材料科学是人类文明大厦的基石,在现代 技术中, 晶体材料更占有举足轻重的地位. 人类对 固态物质的理解在很大程度上以单晶材料为基础, 所以晶体在物质结构研究中也具有特殊重要性.

半导体的后起之秀——砷化镓







作为半导体材料,GaAs的综合性能优于Si, 开关速 度仅为10-12 s(而Si为10-9 s), 用GaAs芯片制造计算机将使
假若你这样做了,试 把这所谓的“点阵”放回 金刚石晶体,按箭头所示 将所有原子平移,晶体能 复原吗?
这种所谓的“点阵”有一个致命错误:它本身就违反点 阵的数学定义,并不是点阵!更别说是金刚石晶体的点阵.
正确做法如下:
金刚石的点阵:立方面心
正当空间格子的标准:
空间格子净含点阵点数:

1. 平行六面体
所有顶点原子: 0,0,0 (前)后面心原子: 0,1/2,1/2 左(右)面心原子: 1/2,0,1/2 (上)下面心原子: 1/2,1/2,0
四、晶面与晶面指标
1 晶面 晶体的空间点阵可划分为一族平行而等间距
的平面点阵,晶面就是平面点阵所处的平面。
晶面 = 平面点阵 + 结构基元 各个晶面的方向及结构基元排列情况不同, 表现出的性质也不相同。为了区分不同的晶面 就产生了晶面符号也叫晶面指标。
12
6
3
54
12
6
3
54

AB
关键是第三层,对第一、二层来说,第三层可以有两种最紧 密的堆积方式。
第一种是将球对准第一层的球。 下图是此种六方 紧密堆积的前视图
12
A
6

第2章 材料中的晶体结构

第2章 材料中的晶体结构

b. 已知两不平行晶向[u1v1w1]和[u2v2w2 ],由其决定的 晶面指数(hkl)为:
h v1 w 2 v 2 w 1 , k w 1u 2 w 2 u 1, l u 1 v 2 u 2 v1
补充
cos
2
(对于立方晶系)
两个晶面(h1k1l1)与(h2k2l2)之间的夹角φ
h h
1 2

k k
1 2
2

2
ll
1
2 2 2
(h1
k
2 1

l1 )
(h 2
k

l
2 2
)
两个晶向[u1v1w1]与[u2v2w2]之间的夹角θ
cos
2
u u
1
2

vv
1 2
2

w w
1 2
2
(u 1
v
2 1

w1)
(u 2
v
2 2

w
2 2
)
晶面(hkl)与晶向[uvw]之间的夹角ψ
晶向指数用[uvtw] 来表示。其中 t =-(u+v)
120° 120°
晶面指数的标定
1.求晶面与四个轴的截距
2.取倒数
3.再化成简单整数
4.用圆括号括起来(h k i l)
六方系六个侧面的指数分别为:
(1 1 00),(01 1 0),(10 1 0),(1 100),(0 1 10),(1 010)
(210)
(012)
(362)
注意
选坐标原点时,应使其位于待定晶面以外,防止 出现零截距。 已知截距求晶面指数,则指数是唯一的;而已知 晶面指数,画晶面时,这个晶面就不是唯一的。

第二章材料中的晶体结构

第二章材料中的晶体结构

TiO2
体心四方
1个正离子 2个负离子
6
3
八面体 VO2, NbO2, MnO2, SnO2, PbO2, …
7. MgAl2O4(尖晶石)晶型
8.Al2O3(刚玉)晶型
第四节 共价晶体的结构
一、共价晶体的主要特点 1. 共价键结合,键合力通常强于离子键 2. 键的饱和性和方向性,配位数低于金属和离 子晶体 3. 高熔点、高硬度、高脆性、绝缘性
(2) 求投影.以晶格常数为单位,求待定 晶向上任一阵点的投影值。
(3) 化整数.将投影值化为一组最小整数。
(4) 加括号.[uvw]。
2.晶面指数及其确定方法
1) 晶面指数 — 晶体点阵中阵点面的 方向指数。 2) 确定已知晶面ห้องสมุดไป่ตู้指数。
(1) 建坐标.右手坐标,坐标轴为晶胞 的棱边,坐标原点不能位于待定晶面内。
cph
a=b≠c
a 2r
5. 致密度 — 晶胞中原子体积占总体积的分数
bcc
fcc
cph
3 0.68
8
2 0.74
6
2 0.74
6
6. 间隙 — 若将晶体中的原子视为球形,则相 互接触的最近邻原子间的空隙称为间隙。
间隙内能容纳的最大刚性球的半径称为
间隙半径 rB。 间隙大小常用间隙半径与原子半径 rA之
比 rB / rA 表示。
1) 面心立方结构晶体中的间隙 正八面体间隙:位于晶胞各棱边中点及体心位置.
一个晶胞中共有4个.
rB / rA 0.414
正四面体间隙:位于晶胞体对角线的四分之一处. 一个晶胞中共有8个.
rB / rA 0.225
2) 体心立方结构晶体中的间隙 扁八面体间隙:位于晶胞各棱边中点及面心处. 一个晶胞中共有6个. rB / rA 0.155

1.3布喇菲空间点阵、原胞、晶胞

1.3布喇菲空间点阵、原胞、晶胞
10:04
§1.3 布喇菲空间点阵、原胞、晶胞
简单晶格结构周期性描述起来很方便,而复式晶格描述起 来很麻烦,为集中反映晶体结构的周期性,引入点阵概念。
布喇菲提出空间点阵学说:晶体内部结构可以看成是由一
些相同的点子在空间作规则的周期性的无限分布。
人们把这些点子的总体称为布拉菲点阵。它是对实际晶 体的一个数学抽象,只反映晶体结构的周期性,(平移对 称性)。 空间点阵中的点子称为结点。
10:04
例:二维晶格A 和B,A为简单晶格,B为复式晶格,两者 周期性相同。
在图上任选一点O,找出与O环境相同的点子,这一无限多 的点子构成了相应的点阵。
O
A
O
B
对图象从o点移到任一位置, 做一平移,点阵(图象)不变, 表明:
*点阵是对实际晶格结构的一个数学抽象,它只反映晶体结构 的周期性(平移对称性)
➢ 原胞是体积最小的重复单元;
➢ 其格点只出现在顶角上;
➢ 每个原胞平均只包含一个原子(或格点)。
➢ 原胞的选择方式有多种,但原胞的体积都是相同的。
原胞往往反映不出对称性,为了表现对称性结晶学中取的重复单 元不是最小的重复单元,称为晶胞(或单胞、布喇菲原胞)。
晶胞的特点 ➢ 反映晶体的对称性;
➢ 晶胞中的格点不只出现在顶角上,还会出现在体心或面心上;
10:04
五、简单格子与复式格子
如果晶体由一种原子组成,且基元中仅包含一个 原子,则形成的晶格为简单格子或称为布拉菲格子。
如果晶体虽由一种原子组成,但基元中包含两个 原子,或晶体由多种原子组成,则每种原子都可构成 一个布拉菲格子。而整个晶体可以看做是相互之间有 一定位移的布拉菲格子套构而成的晶格,称为复式格 子。
原胞的选取不是唯一的,但它们的体积(或面积) 都相同

材料科学基础名词解释

材料科学基础名词解释
面族:在晶体中所有等效的面。
密排六方结构(HCP):有6个原子在上下面的角隅上,每个原子为6个单胞所共有,1个原子在上下基面的中心,为2个单胞所共有,有3个原子在中间面上的晶体结构。
最高密度面:任一晶系中具有最大面密度的晶面。
间隙:晶体中原子周围存在的空间,最低限度由最邻近四个原子或离子所确定的原子间区域。
各向同性:若晶体的性质和测量方向无关,则称晶体是各向同入原子或离子就形成晶体。
点阵常数:单胞的棱长称为点阵常数。
阵点:单胞的顶角点称为阵点。
线密度:在晶体方向单位长度上有原子中心的数目。ρL=在一个单胞内沿方向上原子中心的数目/包含在一个单胞内线的长度
密勒指数:用以描述晶体点阵系统中指定的点、方向和面的惯用约定和记号。
八面体位置:连接六个相同原子的多面体可以用来描述间隙位置的集合结构,在这种情况下,它有8个面,因而这些间隙称为八面体间隙。
面密度:在晶体学面单位面积上的原子或离子中心的数目。ρP=在一个单胞内中心原子一个 面上的原子数目/包含在一个单胞中的面的面积。
多晶体:指的是原子在整个晶体中不是按统一的规则排列的,无一定的外形,其物理性质在各个方向都相同。
第三章晶体结构
各向异性:若晶体的性质和测量方向有关,则称晶体是各向异性的。
原子堆垛因子:在晶体结构中原子占据的体积与可利用的总体积的比率定义为原子堆垛因子。
APF=在单胞中原子体积/单胞体积
体心立方(BCC):立方体单胞的每一个角隅和中心放入一个原子。
密排方向:满足线密度为最高线密度(1/2r)的方向。
密排面:满足面密度为最高面密度(1/( r2))的晶面,沿这个方向原子间相互接触。
密堆结构:体密度为1/( r3)的晶体结构称为密堆结构,在其中每个原子与六个近邻。

晶体的点阵结构

晶体的点阵结构

1.钴原子的平均氧化态为

2.以●代表氧原子,以●代表钴原子,画出 CoO2层的结构,用粗线画出两种二维晶胞。可 资参考的范例是:石墨的二维晶胞是右图中用 粗线围拢的平行四边形。
1965年,Juza提出石墨层间化合物组成是 LiC6,锂离子位于石墨层间,其投影位于石 墨层面内碳六圆环的中央。试在下图中用“·” 画出Li的位置。并在此二维图形上画出一个 晶胞。
G
H
体心(1/2,1/2,1/2)
下面心 (1/2,1/2,0) 右面心 (1/2,1,1/2)
晶胞的划分
• 对称性 晶系 正当晶胞
素晶胞:含1个结构基元
正当晶胞
复晶胞:含2个以上结构基元
氯化钠的正当晶胞与非正当晶胞
4NaCl
2NaCl
1NaCl
在晶体的点阵结构中每个点阵所
代表的具体内容,包括微粒的种类
和数量及其在空间按一定方式排列 的结构。
( 1 ) 直 线 点 阵Leabharlann ( 2 ) 平 面 点 阵
二维晶胞的五种类型
用粗线画出两种该晶体晶胞
用粗线画出两种该晶体晶胞
2003年3月日本筑波材料科学国家实验室一个研究 小组发现首例带结晶水的晶体在5K下呈现超导性。 1.3H2O,具 据报道,该晶体的化学式为Na0.35CoO2· 有……-CoO2-H2O-Na-H2O-CoO2-H2O-Na -H2O-……层状结构;在以“CoO2”为最简式表 示的二维结构中,钴原子和氧原子呈周期性排列, 钴原子被4个氧原子包围,Co-O键等长。
原子坐标 0, 0, 0 ½ ,½ ,½ ½ , 0, ½ ½ , 0, 0
平均每个晶胞的原子个数 8x⅛=1 1 2x½=1 4x¼=1

材料科学基础第一章晶体结构(一结晶学基础知识)

材料科学基础第一章晶体结构(一结晶学基础知识)

说明: a 指数意义:代表一组平行的晶面; b 0的意义:面与对应的轴平行; c 平行晶面:指数相同,或数字相同但正负号相反; d 晶面族:晶体中具有相同条件(原子排列和晶面间距完全相
同),空间位向不同的各组晶面。用{hkl}表示。 e 若晶面与晶向同面,则hu+kv+lw=0; f 立方晶系若晶面与晶向垂直,则u=h, k=v, w=l。
(2)晶面指数的标定 a 建立坐标系:确定原点(非阵点)、坐标轴和度量单位。 b 量截距:x,y,z。 c 取倒数:h’,k’,l’。 d 化整数:h,k,k。 e 加圆括号:(hkl)。 (最小整数?)
(2)晶面指数的标定
例:标定下列A,B,C面的指数。
(c) 2003 Brooks/Cole Publishing / Thomson Learning™
平移坐标原点:为了标定方便。
2.六方晶系的晶面指数和晶向指数
六方晶系的晶胞如图1-4所示,是边长为a,高为c的 六方棱柱体。
四轴定向:晶面符号一般写为(hkil),指数的排 列顺序依次与a轴、b轴、d轴、c轴相对应,其中a、b、d 三轴间夹角为120o,c轴与它1们垂直。它们之间的关系为: i=-(h+k)。
晶面指数:结晶学中经常用(hkl)来表示一组平行晶面,称为晶 面指数。数字hkl是晶面在三个坐标轴(晶轴)上截距的倒数的互 质整数比。
晶向:点阵可在任何方向上分解为相互平行的直线组,结点 等距离地分布在直线上。位于一条直线上的结点构成一个晶 向。 同一直线组中的各直线,其结点分布完全相同,故其中任何 一直线,可作为直线组的代表。不同方向的直线组,其质点 分布不尽相同。 任一方向上所有平行晶向可包含晶体中所有结点,任一结点 也可以处于所有晶向上。

材料科学基础-2

材料科学基础-2
[111 ]
[ 1 11]
[1 1 1]
[1 1 1]
[11 1 ]
[1 1 1]
[1 1 1]
[1 1 1]
例:在一个面心立方晶胞中画出[012]、[123] 晶向。
晶面:通过空间点阵中任一组阵点的平面代表晶 体中的原子平面,称为晶面 晶面指数:表示晶体中点阵平面的指数,由晶面 与三个坐标轴的截距值所决定。 晶面指数的标定步骤: 建坐标:所定晶面不应通过原点; 求截距:求出待定晶面在三个坐标轴上的截距, 如果该晶面与某坐标轴平行,则其截距为∞; 取倒数:取三个截距值的倒数; 化整并加圆括号:将三个截距的倒数化为最小 整数h、k、l,并加圆括号,即(hkl),如果截距 为负值,则在负号标注在相应指数的上方。
正交
三、晶向指数与晶面指数(Miller指数)
晶向:空间点阵中各阵点列的方向代表晶体中原子排列的 方向,称为晶向,即空间点阵中任意两阵点的连接矢量。 晶向指数:表示晶体中点阵方向的指数。 晶向指数的确定步骤:
z
[ 1 11]
[112] • 建立坐标系; • 确定坐标值:在待定晶向上确定 [1 1 1] [1 1 0] 距原点最近的一个阵点的三个坐标值; • 化整并加方括号:将三个坐标值化为最小 [001] [111] 整数u、v、w,并加方括号。如有负值,在 [010] o 该数值上方标负号。 [100] [110]
• 在立方晶系中,具有相同指数的晶面和晶向 必定相互垂直。不适合其它晶系。 如: [121] (121) 即:晶向 [121] 为晶面 (121)的法向量。 ★ 因此,晶面指数可作为向量进行运算。
例:在一个面心立方晶胞中画出(102)、 (223) 晶面。
六方晶系的晶向指数和晶面指数

晶体学基础与材料结构

晶体学基础与材料结构

晶体学基础与材料结构第⼀章晶体学基础及材料结构⽆论是⾦属材料还是⾮⾦属材料,通常都是晶体。

因此,作为材料科学⼯作者,⾸先要熟悉晶体的特征及其描述⽅法。

本章将扼要的介绍晶体学的基础知识,并了解材料结构。

1-1 晶体⼀、晶体与⾮晶体固态物质按其原⼦(或分⼦)的聚集状态⽽分为两⼤类:晶体与⾮晶体。

虽然我们看到⾃然界的许多晶体具有规则的外形(例如:天然⾦刚⽯、结晶盐、⽔晶等等),但是,晶体的外形不⼀定都是规则的,这与晶体的形成条件有关,如果条件不具备,其外形也就变得不规则。

所以,区分晶体还是⾮晶体,不能根据它们的外观,⽽应从其内部的原⼦排列情况来确定。

在晶体中,原⼦(或分⼦)在三维空间作有规则的周期性重复排列,⽽⾮晶体就不具有这⼀特点,这是两者的根本区别。

应⽤X射线衍射、电⼦衍射等实验⽅法不仅可以证实这个区别,还能确定各种晶体中原⼦排列的具体⽅式(即晶体结构的类型)、原⼦间距以及关于晶体的其他许多重要情况。

显然,⽓体和液体都是⾮晶体。

在液体中,原⼦亦处于紧密聚集的状态,但不存长程的周期性排列。

固态的⾮晶体实际上是⼀种过冷状态的液体,只是其物理性质不同于通常的液体⽽已。

玻璃就是⼀个典型的例⼦,故往往将⾮晶态的固体称为玻璃体。

从液态到⾮晶态固体的转变是逐渐过渡的,没有明显的凝固点(反之亦然,⽆明显的熔点)。

⽽液体转变为晶体则是突变的,有⼀定的凝固点和熔点。

⾮晶体的另⼀特点是沿任何⽅向测定其性能,所得结果都是⼀致的,不因⽅向⽽异,称为各向同性或等向性;晶体就不是这样,沿着⼀个晶体的不同⽅向所测得的性能并不相同(如导电性、导热性、热膨胀性、弹性、强度、光学数据以及外表⾯的化学性质等等),表现出或⼤或⼩的差异,称为各向异性或异向性。

晶体的异向性是因其原⼦的规则排列⽽造成的。

⾮晶体在⼀定条件下可转化为晶体。

例如:玻璃经⾼温长时间加热后能形成晶态玻璃;⽽通常呈晶体的物质,如果将它从液态快速冷却下来也可能得到⾮晶体。

⾦属因其晶体结构⽐较简单,很难阻⽌其结晶过程,故通常得不到⾮晶态固体,但近些年来采⽤了特殊的制备⽅法,已能获得⾮晶态的⾦属和合⾦。

材料分析方法 第一章 晶体学基础

材料分析方法 第一章 晶体学基础

A2
B2
A3
0
1/2
1
y
x
◆结论:若仅考虑晶面的空间方位,则A1 ,B1,A2,B2,…与A1,A2,A3,…一样, 均以晶面指数(010)标识 ◆若要考虑二者晶面间距的不同,则分别 用 (020) 和 (010) 标识,此即干涉指数.
z d010 d010/2 B1 A1 A3
A2
B2
0
1/2
1
3.晶体结构与空间点阵 ◆将空间点阵的阵点复原为结构基元,便 得到晶体结构,即: 晶体结构 = 空间点阵 + 结构基元.
NaCl结构
+
面心F点阵
0,0,0 1/2,0,0
=
Na+ Cl结构基元
◆注意:虽然空间点阵只有14种,但由 于结构基元是无穷尽的,因而晶体结构 也是无限的 (同一点阵因结构基元不同 形成多种结构)。
a* a
a* ┴ b, a* ┴ c, b* ┴ a, b* ┴ c, c* ┴ a, c* ┴ b, ∴ a*//(b×c), a*= K(b×c) b*//(c×a), b*= K(c×a) c*//(a×b), c*= K(a×b) 又∵ a*· a = K(b×c)· a=1 而(b×c)· a 为正点阵晶胞体积V ∴ a*· a = KV = 1 ∴ K = 1/V
a
A
o b
y
x
(4) 将倒数按比例化为互质的整数, 并加圆括号: (111)
例2: 求点阵面 MSR的密勒指数
步骤如下:
(1) 建立坐标系 (2)截距 x=1/4, y=2/3, z=1/2 (3)倒数: 1/x = 4, 1/y =3/2, 1/z =2 (4)将倒数乘公因子2, 化为最小整数 (5)加圆括号: (834)

几种常见的晶体模型

几种常见的晶体模型
几种常见的晶体模型
探索世界上几种常见的晶体模型,了解它们的基本结构以及在自然界和工业 中的应用。
晶体的基本结构
晶体是由原子、离子或分子有序排列而成的固体,拥有规则的几何形状和结构。它们具有高度的对称性和透明 度。
点阵模型
点阵模型是描述晶体结构的一种方式,通过将原子或离子视为均匀分布的点 来表示晶体的结构。它用于解释周期性结构和晶体缺陷。
NaCl型晶体
NaCl型晶体是一种典型的离子晶体结构,由正负离子按照体心立方排列而成。它具有高熔点、脆性和良好的 电导性。
锌伯氏体晶体
锌伯氏体晶体是由锌原子构成的金属晶体,具有紧密堆积的结构方晶体
面心立方晶体是一种常见的金属晶体结构,原子位于正八面体的每个面心上。 它具有高熔点和良好的可塑性。
立方氧化物型晶体
立方氧化物型晶体是一类由氧化物组成的晶体,通常具有高硬度、抗磨损和 高熔点。它们在电子、陶瓷和光学领域得到广泛应用。
金红石型晶体
金红石型晶体是一种复杂的氧化物晶体,具有六方最密堆积结构。它们在宝石和电子器件中常被用作材料。
花岗岩型晶体
花岗岩型晶体是一种以石英、长石和云母等矿物组成的岩石。它们在建筑和装饰领域得到广泛应用,具有多样 的颜色和纹理。

空间点阵与晶体结构的关系

空间点阵与晶体结构的关系

空间点阵与晶体结构的关系一、引言晶体是物质的一种特殊形态,其具有高度有序的结构和周期性的排列。

而晶体结构的基础则是空间点阵,它们密切相关并相互影响。

本文将探讨空间点阵与晶体结构之间的关系。

二、空间点阵的概念空间点阵是指在三维空间中由一组平移对称操作所得到的离散点集合。

它们是无限延伸的,具有无穷多的点,且点之间的间距是相等的。

在空间点阵中,每个点都具有相同的环境。

三、晶体结构的定义晶体结构是指晶体中原子、离子或分子的排列方式。

晶体结构可以分为晶体格点和晶胞两个层次。

晶体格点是指晶体中原子、离子或分子所占据的点阵位置,而晶胞则是晶体中最小的重复单元。

四、空间点阵与晶体结构的关系空间点阵是晶体结构的基础,晶体结构的形成离不开空间点阵的存在。

具体而言,晶体中的原子、离子或分子将占据空间点阵的各个位置,形成有序的排列。

晶体结构的类型和特性取决于所采用的空间点阵。

5、常见的空间点阵与晶体结构类型(1)立方晶系:立方晶系的空间点阵有简单立方格点、面心立方格点和体心立方格点。

这些格点所形成的晶体结构分别是简单立方结构、面心立方结构和体心立方结构。

(2)六方晶系:六方晶系的空间点阵只有一种,即六方最密堆积格点。

该格点所形成的晶体结构是六方密堆积结构。

(3)四方晶系:四方晶系的空间点阵有简单四方格点和体心四方格点。

这些格点所形成的晶体结构分别是简单四方结构和体心四方结构。

(4)正交晶系:正交晶系的空间点阵有简单正交格点、面心正交格点和体心正交格点。

这些格点所形成的晶体结构分别是简单正交结构、面心正交结构和体心正交结构。

(5)单斜晶系:单斜晶系的空间点阵有简单单斜格点和底心单斜格点。

这些格点所形成的晶体结构分别是简单单斜结构和底心单斜结构。

(6)菱面晶系:菱面晶系的空间点阵有简单菱面格点和体心菱面格点。

这些格点所形成的晶体结构分别是简单菱面结构和体心菱面结构。

六、空间点阵与晶体结构的重要性空间点阵为晶体结构的研究和理解提供了基础。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档