静电场作业含答案

合集下载

高中物理静电场经典习题30道--带答案

高中物理静电场经典习题30道--带答案

高中物理静电场经典习题30道--带答案1.如图,在光滑绝缘水平面上,三个带电小球a、b和c 分别位于边长为l的正三角形的三个顶点上;a、b带正电,电荷量均为q,c带负电.整个系统置于方向水平的匀强电场中.已知静电力常量为k.若三个小球均处于静止状态,则匀强电场场强的大小为()A.$\frac{kq}{l^2}$。

B.$\frac{\sqrt{3}kq}{l^2}$。

C.$\frac{2kq}{l^2}$。

D.$\frac{3kq}{l^2}$2.如图,一半径为R的圆盘上均匀分布着电荷量为Q的电荷,在垂直于圆盘且过圆心c的轴线上有a、b、d三个点,a和b、b和c、c和d间的距离均为R,在a点处有一电荷量为q(q>)的固定点电荷.已知b点处的场强为零,则d点处场强的大小为(k为静电力常量)A.$\frac{kQ}{4R^2}$。

B.$\frac{\sqrt{2}kQ}{4R^2}$。

C.$\frac{kQ}{2R^2}$。

D.$\frac{\sqrt{2}kQ}{R^2}$3.如图所示,在光滑绝缘水平面上放置3个电荷量均为q (q>)的相同小球,小球之间用劲度系数均为k的轻质弹簧绝缘连接.当3个小球处在静止状态时,每根弹簧长度为l.已知静电力常量为k,若不考虑弹簧的静电感应,则每根弹簧的原长为A.$l+\frac{2q^2}{kl}$。

B.$l-\frac{2q^2}{kl}$。

C.$l-\frac{q^2}{kl}$。

D.$l+\frac{q^2}{kl}$4.如图所示,在光滑的绝缘水平面上,由两个质量均为m 带电量分别为+q和﹣q的甲、乙两个小球,在力F的作用下匀加速直线运动,则甲、乙两球之间的距离r为A.$\frac{F}{2kq^2}$。

B.$\frac{F}{kq^2}$。

C.$\frac{F}{4kq^2}$。

D.$\frac{2F}{kq^2}$5.一带负电荷的质点,在电场力作用下沿曲线abc从a运动到c,已知质点的速率是递减的.关于b点电场强度E的方向,下列图示中可能正确的是(虚线是曲线在b点的切线)A.。

第二章作业题解答

第二章作业题解答

第二章静电场习题解答2-1.已知半径为F = Cl的导体球面上分布着面电荷密度为A = p s0 cos的电荷,式中的炖0为常数,试计算球面上的总电荷量。

解取球坐标系,球心位于原点中心,如图所示。

由球面积分,得到2用打Q =护= J j p50cos OrsmOd Od(p(S) 0 0In x=j j psQSefsinGded00 0In n=PsF j J cos ageded(p0 0丸=sin20d0 = 0o2-2.两个无限人平面相距为d,分别均匀分布着等面电荷密度的异性电荷,求两平面外及两平面间的电场强度。

解对于单一均匀带电无限人平面,根据对称性分析,计算可得上半空间和卞半空间的电场为常矢量,且大小相等方向相反。

由高斯定理,可得电场大小为E = ^-2e0对于两个相距为的d无限大均匀带电平面,同样可以得到E] = E“耳=E3题2-2图因此,有2-3.两点电荷q、= 8C和q2 = -4C ,分别位于z = 4和),=4处,求点P(4,0,0)处的电场强度。

解根据点电荷电场强度叠加原理,P点的电场强度矢量为点Si和Si处点电荷在P处产生的电场强度的矢量和,即E r = Qi 弘 | ① R?4T V£0/?/ 4TT£0R] = r — r L = 4e v — 4e., R 、= J 4-0 " + 0-4 ~ = 4>/2 R 2 =r —r 2 =4e v -4e v , R 2 = J 4-0 ' + 0-4 ' = 4>/22-7. 一个点电荷+q 位于(-a, 0,0)处,另一点电荷-2q 位于(a,0,0)处,求电位等于零的 面;空间有电场强度等于零的点吗?解根据点电荷电位叠加原理,有々)=丄]鱼+鱼4矶丄忌」式中Rj =r-r L = x-\-a e v + ye v +e. R i = yl x + a 2 + r+^2 R 2 =r-r 2 = x ~a e v + ),e y+e r R? — yj x — ci + )r +代入得到式中代入得到心孟 _______ 1^x + a)2+ y 2+ z 22JaS+b+z 2(3x+d )(x+3a ) + 3),+3z ,=0根据电位与电场强度的关系,有电位为零,即令简化可得零电位面方程为要是电场强度为零,必有E x = 0, E y = 0, E : = 0一 (x+ d)[(x + d)2 + y 2 + ^2p + 2(—d)[(—d)2+ y 2 + 疋 -)^(x+n)2 + y 2 + z 2 2 +2y^(x-a)2 + y 2+ z 2丄-z[(x + d)2 + + 疋 2+2z[(x-d)2 +)*此方程组无解,因此,空间没有电场强度为零的点。

静电场习题(有答案)

静电场习题(有答案)

经典的静电场习题1、如图所示,中央有正对小孔的水平放置的平行板电容器与电源连接,电源电压为U 。

将一带电小球从两小孔的正上方P 点处由静止释放,小球恰好能够达到B 板的小孔b 点处,然后又按原路返回。

那么,为了使小球能从B 板的小孔b 处出射,下列可行的办法是( ) A.将A 板上移一段距离 B.将A 板下移一段距离 C.将B 板上移一段距离 D.将B 板下移一段距离2、如图所示,A 、B 、C 、D 、E 、F 为匀强电场中一个正六边形的六个顶点,已知A 、B 、C 三点的电势分别为1V 、6V 和9V 。

则D 、E 、F 三点的电势分别为( )A 、+7V 、+2V 和+1VB 、+7V 、+2V 和1VC 、-7V 、-2V 和+1VD 、+7V 、-2V 和1V3、质量为m 、带电量为-q 的粒子(不计重力),在匀强电场中的A 点以初速度υ0沿垂直与场强E 的方向射入到电场中,已知粒子到达B 点时的速度大小为2υ0,A 、B 间距为d ,如图所示。

则(1)A 、B 两点间的电势差为( ) A 、q m U AB232υ-= B 、q m U AB232υ= C 、q m U AB22υ-= D 、qm U AB22υ= (2)匀强电场的场强大小和方向( ) A 、qdm E 221υ=方向水平向左 B 、qdm E 221υ=方向水平向右 C 、qdm E 2212υ= 方向水平向左D 、qdm E 2212υ=方向水平向右4、一个点电荷从静电场中的A 点移到电场中的B 点,其电势能变化为零,则( ) A 、A 、B 两点处的场强一定相等 B 、该电荷一定能够沿着某一等势面移动 C 、A 、B 两点的电势一定相等 D 、作用于该电荷上的电场力始终与其运动方向垂直 A B a bP· m 、q。

U+ -A B C DEF E· Aυ0 B·5、在静电场中( )A.电场强度处处为零的区域内,电势也一定处处为零B.电场强度处处相等的区域内,电势也一定处处相等C.电场强度的方向总是跟等势面垂直D.沿着电场线的方向电势是不断降低的6、一个初动能为E K 的带电粒子,沿着与电场线垂直的方向射入两平行金属板间的匀强电场中,飞出时该粒子的动能为2E K ,如果粒子射入时的初速度变为原来的2倍,那么当它飞出电场时动能为( ) A 、4E K B 、4.25E K C 、5E K D 、8E K7、如图所示,实线为一簇电场线,虚线是间距相等的等势面,一带电粒子沿着电场线方向运动,当它位于等势面φ1上时,其动能为20eV ,当它运动到等势面φ3上时,动能恰好等于零,设φ2=0,则,当粒子的动能为8eV 时,其电势能为( ) A 、12eV B 、2eV C 、10eV D 、08、如图10—7所示,在两电荷+Q 1和-Q 2连线的延长线上有a 、b 、c 三点,测得b 点的场强为零。

静电场习题-参考答案

静电场习题-参考答案

静电场习题参考答案一、选择题1C 2D 3D 4D 5B 6C 7C 8B 9D 10B 11B 12B 13C 二、填空1. 002-3E ε、0043E ε2. 06q ε3. 不变 减小4. ⎪⎪⎭⎫ ⎝⎛-π00114r r q ε5. ⎪⎭⎫ ⎝⎛-πR r Q 1140ε6.⎪⎪⎭⎫ ⎝⎛-π20114r R Qq ε7.10114q r R ε⎛⎫- ⎪π⎝⎭8. 2202dSU ε 9.204R q επ10. 2021+4q L επ() 11. C Fd /2 FdC 212. 不变 、 减小三、计算1. 解:设杆的左端为坐标原点O ,x 轴沿直杆方向.带电直杆的电荷线密度为λ=q / L ,在x 处取一电荷元d q = λd x = q d x / L ,它在P 点的场强:()204d d x d L q E -+π=ε()204d x d L L xq -+π=ε 总场强为 ⎰+π=Lx d L xL q E 020)(d 4-ε()d L d q +π=04ε方向沿x 轴,即杆的延长线方向.P Ldd q x(L+d -d ExO2. 解:选杆的左端为坐标原点,x 轴沿杆的方向.在x 处取一电荷元λd x ,它在点电荷所在处产生场强为:()204d d x d xE +π=ελ整个杆上电荷在该点的场强为:()()l d d lx d x E l+π=+π=⎰00204d 4ελελ 点电荷q 0所受的电场力为:()ld d lq F +π=004ελ=0.90 N 沿x 轴负向3. 解:设内球上所带电荷为Q ,则两球间的电场强度的大小为204r QE επ= (R 1<r <R 2) 两球的电势差⎰⎰π==212120124d R R R R r dr Q r E U ε⎪⎪⎭⎫ ⎝⎛-π=21114R R Q ε∴ 12122104R R U R R Q -π=ε=2.14×10-9 C4. (1)由高斯定理 024επQE r =求出 204rQ E πε=21R r R <<)11(421021R R Q Edr U R R -==⎰πε5. 解:由高斯定理当r >R 时,20141r QE πε=当r <R 时,r R Q r r R QE 302330241343441πεπππε==以无穷远处为参考点,球内离球心r 处的P 点的电势为⎰⎰⎰∞∞⋅+⋅=⋅=RR r PP l E l E l E V Pϖϖϖϖϖϖd d d 12q沿径向路径积分得32202030122)3(41d 41d 41d d R r R Q r r Qr r R Q rE r E V P R Rr RRr P PP-=⋅+⋅=⋅+⋅=⎰⎰⎰⎰∞∞πεπεπε6. 解:未插导体片时,极板A 、B 间场强为: E 1=V / d 插入带电荷q 的导体片后,电荷q 在C 、B 间产生的场强为:E 2=q / (2ε0S ) 则C 、B 间合场强为:E =E 1+E 2=(V / d )+q / (2ε0S )因而C 板电势为: U =Ed / 2=[V +qd / (2ε0S )] / 27. 解:应用动能定理,电场力作功等于粒子的动能增量0212-=v m qEl无限大带电平面的电场强度为: E = σ / (2ε0) 由以上两式得 σ = ε0m v 2 / (ql )8. 解:设试验电荷置于x 处所受合力为零,即该点场强为零.()()0142142020=+π-+-πx qx q εε 得 x 2-6x +1=0, ()223±=x m因23-=x 点处于q 、-2q 两点电荷之间,该处场强不可能为零.故舍去.得 ()223+=x md d。

大物静电场作业解答

大物静电场作业解答
02
一半径为R的无限长带电圆柱,其体电荷密度为 = 0 r ( r R ), 0为常数,求其圆柱体内的场强(r R),圆柱体外的场强为(r > R)。
R
解:取同轴高斯面r R,由高斯定理得
h
解:取同轴高斯面r > R,由高斯定理得
三.计算题:
真空中一高 h 等于 20 cm ,底面半径 R = 10cm 的圆锥体, 在其顶点与底面中心连线的中点上置一 q = 10-5 C 的点电荷,求通过该圆锥体侧面的电场强度通量.( 0 = 8.85×10-12 N -1 • m -2 )
8
4.在静电场中,下列说法中哪一个是正确的? [ D ]
5. 有四个等量点电荷在OXY平面上的四种不同组态,所有点电荷均与原点等距,设无穷远处电势为零,则原点O处电场强度和电势为零的组态是: [ D ]
-q
-q
+q
+q
O
-q
+q
-q
+q
O
+q
-q
+q
-q
O
+q
-q
-q
+q
O
则通过圆锥侧面的电场强度通量就等于对整个球面的通量减去通过圆锥底面所截球冠的通量 .
以为圆心、为 半径作球面。
r 由几何关系 h
2. 图示一厚度为d 的"无限大"均匀带电平面,电荷密度为,试求板内外的场强分布.并画出场强在x轴的投影值随坐标变化的图线,即Ex-x图线.(设原点在带电平板的中央平面上,ox轴垂直于平板)
,不是 y!
设在均匀电场中,场强E与半径为R的半球面的轴相平行,通过此半球面的电场强度通量为­ [ ] 解:利用高斯定理,穿过圆平面的电力线必通过半球面,因此在圆平面上 所以通过此半球面的电通量为

高中物理静电场(精选100题答案)

高中物理静电场(精选100题答案)
Q 强大小皆为 k2L2,方向与水平方向成 45°角,因三个点电荷的空间对称性,水平方向合场强为零,总合场
3 2kQ 强为三个场强的竖直分量之和,即 4L2 ,选项 D 正确。
7. 解析:选 A 设在 O 点的球壳为完整的带电荷量为 2q 的带电球壳,则在 M、N 两点产生的场强大
k·2q kq 小为 E0=2R2=2R2。题图中左半球壳在 M 点产生的场强为 E,则右半球壳在 M 点产生的场强为 E′=
4Q·2Q
Q2
FAC=k 12L2 =32kL2
B、C 之间为引力,大小为 Q·2Q Q2
FBC=k12L2=8k L2
Q2 F 合=FAC+FBC=40kL2 。
(2)根据三个点电荷的平衡规律,D 为正电荷,且 D 应放在 AB 连线的延长线上靠近 B 的一侧,设 D 到 B 的距离为 x,电荷量为 q,
静电场典型题目 70 题参考答案
1. 解析:选 A 库仑力作用符合牛顿第三定律,即两小球所带电荷量不相等时,相互作用的库仑力
大小相等,因此 α>β 不是电荷量不相等造成的。根据受力平衡条件及 α>β,可得 m1<m2,故 A 正确。
2. 解析:选 D 由于小球 c 所受库仑力的合力的方向平行于 a、b 的连线,根据受
库仑力与 b 对 c 的库仑力关于 Oc 对称,即 qa=qb,B 正确;对 a、b 整体受力分析可得:因为 a、b 连线
水平,则 ma=mb,但与 c 的质量关系不能确定,A 错误;因 c 对 a、b 的库仑力关于 Oc 对称,由受力分
析知,细线 Oa、Ob 所受拉力大小相等,C 正确;c 所带电荷量与 a、b 所带电荷量不一定相等,所以 a、
kq
kq

静电场部分习题及答案(1)

静电场部分习题及答案(1)

静电场部分习题一选择题1.在坐标原点放一正电荷Q,它在P点(x=+1,y=0)产生的电场强度为.现在,另外有一个负电荷-2Q,试问应将它放在什么位置才能使P点的电场强度等于零(A) x轴上x>1.(B) x轴上0<x<1.(C) x轴上x<0.(D) y轴上y>0.(E) y轴上y<0.[C ]2有两个电荷都是+q 的点电荷,相距为2a.今以左边的点电荷所在处为球心,以a为半径作一球形高斯面.在球面上取两块相等的小面积S1和S2,其位置如图所示.设通过S1和S2的电场强度通量分别为φ1和φ2,通过整个球面的电场强度通量为φS,则(A)φ1>φ2φS=q /ε0.(B) φ1<φ2,φS=2q /ε0.(C) φ1=φ2,φS=q /ε0.(D) φ1<φ2,φS=q /ε0.[D ]x3 如图所示,边长为m的正三角形abc,在顶点a处有一电荷为10-8 C的正点电荷,顶点b处有一电荷为-10-8 C的负点电荷,则顶点c处的电场强度的大小E和电势U为:(=9×109 N m /C2)(A) E=0,U=0.(B) E=1000 V/m,U=0.(C) E=1000 V/m,U=600 V.(D) E=2000 V/m,U=600 V.[ B ]4. 点电荷-q位于圆心O处,A、B、C、D为同一圆周上的四点,如图所示.现将一试验电荷从A点分别移动到B、C、D各点,则(A) 从A到B,电场力作功最大.(B) 从A到C,电场力作功最大.(C) 从A到D,电场力作功最大.(D) 从A到各点,电场力作功相等.[D ]A5 一导体球外充满相对介电常量为εr 的均匀电介质,若测得导体表面附近场强为E,则导体球面上的自由电荷面密度δ为(A) ε 0 E.(B) ε 0εr E.(C) ε r E.(D) (ε 0εr-ε 0)E.[ B ]6一空气平行板电容器充电后与电源断开,然后在两极板间充满某种各向同性、均匀电介质,则电场强度的大小E、电容C、电压U、电场能量W四个量各自与充入介质前相比较,增大(↑)或减小(↓)的情形为(A) E↑,C↑,U↑,W↑.(B) E↓,C↑,U↓,W↓.(C) E↓,C↑,U↑,W↓.(D) E↑,C↓,U↓,W↑.[ B ]7 一个带负电荷的质点,在电场力作用下从A点出发经C点运动到B点,其运动轨道如图所示。

《静电场》_单元测试题(含答案)

《静电场》_单元测试题(含答案)

第一章 《静电场 》单元测试题班级 姓名一、单项选择题(本题共6小题,每小题5分,共30分)1.关于电场强度与电势的关系,下面各种说法中正确的是( )A .电场强度大的地方,电势一定高B .电场强度不变,电势也不变C .电场强度为零时,电势一定为零D .电场强度的方向是电势降低最快的方向2.如图1所示,空间有一电场,电场中有两个点a 和b .下列表述正确的是A .该电场是匀强电场B .a 点的电场强度比b 点的大C .a 点的电势比b 点的高D .正电荷在a 、b 两点受力方向相同3.如图2空中有两个等量的正电荷q 1和q 2,分别固定于A 、B 两点,DC 为AB连线的中垂线,C 为A 、B 两点连线的中点,将一正电荷q 3由C 点沿着中垂线移至无穷远处的过程中,下列结论正确的有( )A .电势能逐渐减小B .电势能逐渐增大C .q 3受到的电场力逐渐减小D .q 3受到的电场力逐渐增大 图24.如图3所示,a 、b 、c 为电场中同一条水平方向电场线上的三点,c 为ab 的中点,a 、b 电势分别为φa =5 V 、φb =3 V .下列叙述正确的是( )A .该电场在c 点处的电势一定为4 VB .a 点处的场强E a 一定大于b 点处的场强E bC .一正电荷从c 点运动到b 点电势能一定减少D .一正电荷运动到c 点时受到的静电力由c 指向a 图35.空间存在甲、乙两相邻的金属球,甲球带正电,乙球原来不带电,由于静电感应,两球在空间形成了如图4所示稳定的静电场.实线为其电场线,虚线为其等势线,A 、B 两点与两球球心连线位于同一直线上,C 、D 两点关于直线AB 对称,则( )A .A 点和B 点的电势相同B .C 点和D 点的电场强度相同C .正电荷从A 点移至B 点,静电力做正功D .负电荷从C 点沿直线CD 移至D 点,电势能先增大后减小 图46.如图5所示,一半径为R 的圆盘上均匀分布着电荷量为Q 的电荷,在垂直于圆盘且过圆心c 的轴线上有a 、 b 、d 三个点,a 和b 、b 和c 、 c 和d 间的距离均为R ,在a 点处有一电荷量为q (q >0)的固定点电荷.已知b 点处的场强为零,则d 点处场强的大小为(k 为静电力常量)( ). 图5A .k 3q R 2B .k 10q 9R 2C .k Q +q R 2D .k 9Q +q 9R 2 二、多项选择题(本题共4小题,每小题8分,共32分)7.下列各量中,与检验电荷无关的物理量是( )A .电场力FB .电场强度EC .电势差UD .电场力做的功W图18.带电粒子M 只在电场力作用下由P 点运动到Q 点,在此过程中克服电场力做了2.6×10-8 J 的功,那么( ) A .M 在P 点的电势能一定小于它在Q 点的电势能B .P 点的场强一定小于Q 点的场强C .P 点的电势一定高于Q 点的电势D .M 在P 点的动能一定大于它在Q 点的动能9.如图6所示的电路中,AB 是两金属板构成的平行板电容器.先将电键K 闭合,等电路稳定后再将K 断开,然后将B 板向下平移一小段距离,并且保持两板间的某点P 与A 板的距离不变.则下列说法正确的是( )A .电容器的电容变小B .电容器内部电场强度大小变大C .电容器内部电场强度大小不变D .P 点电势升高10.带电粒子在匀强电场中的运动轨迹如图7所示,如果带电粒子只受电场力作用从a 到b 运动,下列说法正确的是( )A .粒子带正电B .粒子在a 和b 点的加速度相同C .该粒子在a 点的电势能比在b 点时大D .该粒子在b 点的速度比在a 点时大三.计算题:(38分)11.(16分)有一带电荷量q = -3×10-6 C 的点电荷,从某电场中的A 点移到B 点,电荷克服电场力做6×10-4 J 的功,从B 点移到C 点,电场力对电荷做9×10-4 J 的功,求A 、C 两点的电势差并说明A 、C 两点哪点的电势较高图7图612.(22分)如图所示为一真空示波管,电子从灯丝K发出(初速度不计),经灯丝与A板间的加速电压U1加速,从A板中心孔沿中心线射出,然后进入两块平行金属板M、N形成的偏转电场中(偏转电场可视为匀强电场),电子进入M、N间电场时的速度与电场方向垂直,电子经过电场后打在荧光屏上的P点。

静电场应用题__附答案详解

静电场应用题__附答案详解

3、如图所示,空间存有着强度E =2.5×102N/C 方向竖直向上的匀强电场,在电场内一长为L =0.5m 的绝缘细线,一端固定在O 点,一端拴着质量m =0.5kg 、电荷量q =4×10-2C 的小球.现将细线拉直到水平位置,使小球由静止释放,当小球运动最高点时细线受到的拉力恰好达到它能承受的最大值而断裂.取g =10m/s 2.求: (1)小球的电性;(2)细线能承受的最大拉力;(3)当小球继续运动后与O 点水平方向距离为L 时,小球距O 点的高度. 解析:(1)由小球运动到最高点可知,小球带正电(2分) (2)设小球运动到最高点时速度为v ,对该过程由动能定理有,21()2qE mg L mv-=①(2分) 在最高点对小球由牛顿第二定律得,2T v F mg qE m L +-=②(2分)由①②式解得,F T =15N (1分)(3)小球在细线断裂后,在竖直方向的加速度设为a ,则qE mga m-=③(2分) 设小球在水平方向运动L 的过程中,历时t ,则L=v t ④(1分) 设竖直方向上的位移为s ,则212s at=⑤(1分) 由①③④⑤解得,s=0.125m (2分)∴小球距O 点高度为s+L =0.625m. (1分)4、如图所示.半径为r 的绝缘光滑圆环固定在竖直平面内,环上套有质量为m 的带正电的珠子,空间存有水平向右的匀强电场,珠子所受静电力是其重力的3/4倍.将珠子从环上最低点A 静止释放,求珠子所能获得的最大动能E k .。

解:珠子沿圆环先做加速运动,后做减速运动,设其运动至跟圆心连线与竖直方向的夹角为θ时,切向合力为零,珠子在此位置时速度最大,动能最大,则有sin cos mg F θθ=电所以tan F mg θ=电,则3sin 5θ=,4cos 5θ= 由动能定理E km =qE·rsin θ-mgr (1-cos θ)=mgr/45、如图所示,水平地面上方分布着水平向右的匀强电场。

静电场习题解答

静电场习题解答

习题 22-1 两个点电荷q 和-q 分别位于+y 轴和+x 轴上距原点为a 处,求:(1)z 轴上任一点处电场强度的方向a E ; (2)平面y = x 上任一点的a E 。

解:(1)源点坐标q (0,a ,0)、-q (0,a ,0),场点坐标(0,0,z )3030π4)(π4)(--++'-'--'-'-=r r r r r r r r E εεq q 3030π4)(π4)(a z a z q az a z q x z x z y z y z a a a a a a a a -----=εε 2/3220)(π4)(a z qa y x +-=εa a)(22E y x E a a E a -==(2)位于平面y = x 上任一点的场点坐标(x ,x ,z ),电场为3030π4)(π4)(--++'-'--'-'-=r r r r r r r r E εεq q 3030π4)(π4)(az x x a z x x q az x x a z x x q x z y x x z y x y z y x y z y x a a a a a a a a a a a a a a a a -++-++--++-++=εε2/32220])([π4)(z a x x qa y x +-+-=εa a)(22E y x E a a E a -==2-2 xy 平面上半径为 a 圆心位于原点的半圆环关于 x 轴对称,且开口朝向+x 轴。

若半环上电荷线密度为ρl ,求位于原点的点电荷 q 所受到的作用力。

解:⎰⎰+===2/3π2/π2020d π4)sin cos (d π4ϕεϕϕρερa q l R q q y x l l Rl a a a E F a q a q lx y x l 03ππ/2/π20π2π4)cos sin (ερεϕϕρa a a =-= 2-3 卢瑟福在1911年采用的原子模型为:半径为r a 的球体积中均匀分布着总电量为- z e 的电子云,球心有一正电荷z e (z 为原子序数, e 是质子的电量),试证明他得到的原子内的电场和电位的表示式:230e 1ra z r r r πε⎛⎫=- ⎪⎝⎭E a230e 13422a a z r r r r Φπε⎛⎫=-+ ⎪⎝⎭证明:球内的体电荷均匀分布,密度为3f π34ea r z -=ρ由高斯定律,取同心球面为高斯面,得()⎰∑⎰+-==∙ττρεεd e 11d f 00z q SS E()330023021e d π4)π34e (e 1)(π4ar a r r r z r r r z z E r -=⎪⎭⎫ ⎝⎛-=⎰εεr于是得球内任意点的电场强度为 ⎪⎪⎭⎫ ⎝⎛-==3201π1)(a rr r r r r E εa r a E球外的电场强度为零。

人教高二物理选修3—1第一章 静电场练习含答案 word版含解析答案

人教高二物理选修3—1第一章 静电场练习含答案  word版含解析答案

(高二)人教物理选修3—1第一章 静电场练习含答案 人教选修3—1第一章 静电场1、(双选)当用丝绸摩擦过的玻璃棒去接触验电器的金属球后,金属箔片张开。

此时,金属箔片所带电荷的电性和起电方式是( ) A .正电荷 B .负电荷 C .接触起电D .感应起电2、如图所示,光滑绝缘水平面上固定金属小球A ,用原长为L 0的绝缘弹簧将A 与另一个金属小球B 连接,让它们带上等量同种电荷,弹簧伸长量为x 1,若两球电荷量各漏掉一半,弹簧伸长量变为x 2,则有( )A.x 2=12x 1 B .x 2=14x 1 C .x 2>14x 1D .x 2<14x 13、如图所示,一半径为R 的圆盘上均匀分布着电荷量为Q 的电荷,在垂直于圆盘且过圆心c 的轴线上有a 、b 、d 三个点,a 和b 、b 和c 、c 和d 间的距离均为R ,在a 点处有一电荷量为q(q>0)的固定点电荷。

已知b 点处的电场强度为零,则d 点处电场强度的大小为(k 为静电力常量)( )A .k 3qR 2 B .k 10q 9R 2 C .k Q +qR 2D .k 9Q +q 9R 24、如图所示,Q 是带正电的点电荷,P 1、P 2为其产生的电场中的两点,若E 1、E 2分别为P 1和P 2两点的电场强度的大小,φ1、φ2分别为P 1和P 2两点的电势,则( )A .E 1>E 2,φ1>φ2B .E 1>E 2,φ1<φ2C .E 1<E 2,φ1>φ2D .E 1<E 2,φ1<φ25、(多选)如图所示的等量异号电荷中,A带正电,B带负电,在A、B连线上有a、b、c三点,其中b为连线的中点,且ab=bc,则()A.a点与c点的电场强度相同B.a点与c点的电势相等C.a、b间电势差与b、c间电势差相等D.点电荷沿AB中垂线移动时,电场力不做功6、a、b、c、d是匀强电场中的四个点,它们正好是一个矩形的四个顶点。

09静电场习题解答

09静电场习题解答

第九章 静电场一 选择题1. 在坐标原点放一正+Q ,它在P 点〔x =+1,y =0〕产生的电场为E 。

现在,另外有一个负电荷-2Q ,试问应将它放在什么位置才能使P 点的电场强度为零?〔〕A. x 轴上x >1。

B. x 轴上x <0。

C. x 轴上0<x <1。

D. y 轴上y >0。

E. y 轴上y <0。

解:根据电场叠加原理,应选〔B〕。

2. 下列说法中哪一个是正确的?A. 电场中某点场强的方向,就是将点电荷放在该点所受的电场力的方向。

B. 在以点电荷为中心的球面上,该电荷产生的场强处处相同。

C. 场强方向可由qFE =定出,其中q 为试验电荷的电量,q 可正可负,F为试验电荷所受的电场力。

D. 以上说法都不正确。

( ) 解:根据电场强度的定义应选(C)。

3. 如图,电量为Q 的点电荷被曲面S 所包围,从无穷远处引另一电量为q 的点电荷至曲面外一点,则:〔〕A.曲面S 的E 通量不变,曲面上各点场强不变 B.曲面S 的E 通量变化,曲面上各点场强不变 C.曲面S 的E 通量变化,曲面上各点场强变化D.曲面S 的E 通量不变,曲面上各点场强变化 解:根据高斯定理,应选(D)。

4. 两个同心均匀带电球面,半径分别为R a 和R b 〔R a <R b 〕,所带电量分别为Q a 和Q b ,设某点与球心相距r ,当R a <r< R b 时,该点的电场强度的大小为:〔 〕202202020π41 D. π41C.π41B. π41A.r Q .) R Q r Q (r Q Q . r Q Q .abb a b a b a εεεε+-+解:外球面上的电荷在其内部产生的场强为零,两球面间的场强仅由内球面电荷产生,故选〔D 〕。

5. 图示为一具有球对称性分布的静电场的E -r 关系曲线,请指出该静电场是由下列哪种带电体产生的。

〔 〕S . Q.q 选择题3图A . 半径为R 的均匀带电球面 B. 半径为R 的均匀带电球体 C. 半径为R 、电荷体密度ρ=Ar 〔A 为常数〕的非均匀带电球体 D. 半径为R 、电荷体密度ρ=A/r 〔A 为常数〕的非均匀带电球体解:根据计算可知,该电场为半径为R 、电荷体密度ρ=A/r 〔A 为常数〕的非均匀带电球体所产生,故选〔D 〕。

大学物理静电场作业题参考答案

大学物理静电场作业题参考答案

解得 q 2l sin 4 0mg tan 7.3.4 长 l =15.0cm的直导线AB上均匀地分布着线密度 =5.0x10-9C·m-1的正电荷.试
求:(1)在导线的延长线上与导线B端相距 a1 =5.0cm处 P 点的场强;(2)在导线的垂直 平分线上与导线中点相距 d2 =5.0cm 处 Q 点的场强.
S
(D) 曲 面 S 的 电 场 强 度 通 量 不 变 , 曲 面 上 各 点 场 强 变
化.
题 7.1(2)图
[答案 D ]
(3)在电场中的导体内部的 [ ] (A)电场和电势均为零; (B)电场不为零,电势均为零; (C)电势和表面电势相等; (D)电势低于表面电势。 [答案:C]
(4)两个同心均匀带电球面,半径分别为 Ra 和 Rb (Ra<Rb), 所带电荷分别为 Qa 和
Uo
4U1
4
8.99
109
1.25 5
108 102
8.99 103V
(2)根据电势差的定义,有UO q0 (U UO )
选取无穷远处为电势零点WO q0 (U UO ) 8.99 106 J
电场力做负功,说明实际需要外力克服电场力做功。
题 7.3.11 图 7.3.11 如题7.3.11图所示,在 A ,B 两点处放有电量分别为+ q ,- q 的点电荷,AB
解:如题 7.3.4 图所示
(1) 在带电直线上取线元 dx ,其上电量 dq 在 P 点产生场强为 dEP
1 4π 0
dx (a x)2
EP
dE P
4π 0
l 2 l 2
dx (a x)2
4π 0
[ a
1
l
1 a

(完整版)静电场练习题及答案

(完整版)静电场练习题及答案

静电场练习题一、电荷守恒定律、库仑定律练习题4.把两个完满相同的金属球 A 和B 接触一下,再分开一段距离,发现两球之间相互排斥,则A、 B 两球原来的带电情况可能是[ ]A.带有等量异种电荷B.带有等量同种电荷C.带有不等量异种电荷 D .一个带电,另一个不带电8.真空中有两个固定的带正电的点电荷,其电量Q1> Q2,点电荷q 置于Q1、Q2连线上某点时,正好处于平衡,则[ ]A. q 必然是正电荷 B . q 必然是负电荷C. q 离 Q2比离 Q1远D. q 离 Q2比离 Q1近-8在同一高度相距3cm 时,丝线与竖直夹角为45°,此时小球 B 碰到的库仑力F= ______,小球 A 带的电量 q A= ______.二、电场电场强度电场线练习题6.关于电场线的说法,正确的选项是[ ]A.电场线的方向,就是电荷受力的方向B.正电荷只在电场力作用下必然沿电场线运动C.电场线越密的地方,同一电荷所受电场力越大D.静电场的电场线不能能是闭合的7.如图 1 所示,带箭头的直线是某一电场中的一条电场线,在这条线上有A、 B 两点,用E A、 E B表示A、B 两处的场强,则 [ ]A. A、 B 两处的场强方向相同B.因为 A、 B 在一条电场上,且电场线是直线,所以E A=E BC.电场线从 A 指向 B,所以 E A> E BD.不知 A、 B 周边电场线的分布情况,E A、 E B的大小不能够确定8.真空中两个等量异种点电荷电量的值均为q,相距 r ,两点电荷连线中点处的场强为[ ]A. 0 B . 2kq/ r 2 C . 4kq/ r 2 D . 8kq/ r 29.四种电场的电场线如图 2 所示.一正电荷q 仅在电场力作用下由M点向N 点作加速运动,且加速度越来越大.则该电荷所在的电场是图中的[ ]11.如图 4,真空中三个点电荷的带电量、电性及相互距离都未知,但A、 B、 C,能够自由搬动,依次排列在同素来线上,都处于平衡状态,若三个电荷AB> BC,则依照平衡条件可判断[ ]A. A、 B、C 分别带什么性质的电B. A、 B、C 中哪几个带同种电荷,哪几个带异种电荷C. A、 B、C 中哪个电量最大D. A、 B、C 中哪个电量最小二、填空题12.图 5 所示为某地域的电场线,把一个带负电的点电荷为 ______.q 放在点 A 或B 时,在________点受的电场力大,方向16.在 x 轴上有两个点电荷,一个带正电荷Q1,另一个带负电荷 Q2,且 Q1= 2Q,用 E1、 E2表示这两个点电荷所产生的场强的大小,则在 x 轴上, E1= E2的点共有 ____处,其中 _______处的合场强为零, ______处的合场强为 2E2。

静电场练习(含答案)

静电场练习(含答案)

静电场练习一、选择题(本题共10小题,每小题4分,共40分.有的小题只有一个选项正确,有的小题有多个选项正确,把正确的选项前的符号填在括号内) 1.在真空中的一个点电荷的电场中,离该点电荷距离为r0的一点引入电荷量为q的检验电荷,所受静电力为F,则离该点电荷为r处的场强大小为() A.F/q B.Fr20/(qr2)C.Fr0/qr D.Fqrr0解析由库仑定律,得:F=kqQr20,在r处的场强E=kQr2,得E=Fr20qr2,故B选项正确.答案 B2.如图所示,一电场的电场线分布关于y轴(沿竖直方向)对称,O、M、N是y轴上的三个点,且OM=MN.P点在y轴右侧,MP⊥ON.则()A. M点的电势比P点的电势高B.将负电荷由O点移动到P点,电场力做正功C. M、N两点间的电势差大于O、M两点间的电势差D.在O点静止释放一带正电粒子,该粒子将沿y轴做直线运动解析过M、P、N做等势线,可得到过P点的等势线通过M、N之间,因顺着电场线电势降低,则有φM>φP>φN,故A选项正确;将负电荷由O点移到P 点,因U OP>0,所以W=-qU OP<0,则电场力做负功,故B选项错误;由U=Ed可知,MN间的平均场强小于OM间的平均场强,故MN两点间的电势差小于OM两点间的电势差,C选项错误;根据电场线的分布特点会发现,电场线关于y轴两边对称,故y轴上的场强方向在y轴上,所以在O点静止释放一带正电粒子,其所受电场力沿y轴正方向,则该粒子将沿y轴做直线运动,故D选项正确.答案AD3.空间存在竖直向上的匀强电场,质量为m的带正电的微粒水平射入电场中,微粒的运动轨迹如图所示.在相等的时间间隔内()A.重力做的功相等B.电场力做的功相等C.电场力做的功大于重力做的功D.电场力做的功小于重力做的功解析本题考查了带电粒子在电场中运动的功能问题.带电粒子进入电场后做水平方向的匀速直线运动和竖直方向的匀加速直线运动,即为类平抛运动,故-带电微粒的动能增大,且在运动过程中,重力做负功,电场力做正功,即W电W G=ΔE k>0,故W电>W G.答案 C4.如图所示,在点电荷Q的电场中有a、b两点,两点到点电荷的距离r a<r b.设a、b两点场强大小分别为E a和E b,电势分别为φa和φb,则() A.E a一定大于E b,φa一定大于φbB.E a一定大于E b,φa可能小于φbC.E a一定大于E b,φa可能大于φbD.E a可能小于E b,φa可能小于φb解析电场中某点的电场强度E和电势φ没有联系,电场中某点的电势与零势点的选取有关,故B、C选项正确.答案BC5.A、B是一条电场线上的两个点,一带负电的微粒仅在电场力作用下以一定初速度从A点沿电场线运动到B点,其速度-时间图象如图所示.则这一电场可能是()解析由v-t图象可知微粒的速度减小,加速度增大,可知微粒所受电场力方向由B指向A,从A到B的过程中电场力逐渐增大,结合粒子带负电,可以判断电场线方向由A指向B且越来越密,故A选项正确.答案 A6.一平行板电容器的两个极板水平放置,两极板间有一带电量不变的小油滴,油滴在极板间运动时所受空气阻力的大小与其速率成正比.若两极板间电压为零,经一段时间后,油滴以速率v匀速下降;若两极板间的电压为U,经一段时间后,油滴以速率v匀速上升.若两极板间电压为-U,油滴做匀速运动时速度的大小、方向将是()A.2v、向下B.2v、向上C.3v、向下D.3v、向上解析由电容器两极板间电压为0,油滴以速度v匀速下降时,油滴受力如图①所示,则有mg=Ff1,①Ff1=k v.②若极板间电压为U时,受力如图②所示,=Ff2+mg,③则有F电Ff2=k v,④若极板间电压为-U时,油滴受力如图③所示,则有F电+mg=Ff3,⑤Ff3=k v′.⑥由①②③④⑤⑥联立可解得v′=3v,且方向向下,故选C.答案 C7.(2012·新课标全国)如图,平行板电容器的两个极板与水平地面成一角度,两极板与一直流电源相连.若一带电粒子恰能沿图中所示水平直线通过电容器,则在此过程中,该粒子()A.所受重力与电场力平衡B.电势能逐渐增加C.动能逐渐增加D.做匀变速直线运动解析带电粒子在平行板电容器之间受到两个力作用,一是重力mg,方向竖直向下,二是电场力F=qE,方向垂直极板向上.因为二力均为恒力,已知带电粒子做直线运动,所以此二力的合力一定在粒子运动的直线轨迹上,根据牛顿第二定律可知,该粒子做匀减速直线运动,故选项D正确,选项A、C错误;从粒子运动的方向和电场力的方向可判断出,电场力对粒子做负功,粒子的电势能增加,故选项B正确.答案BD8.如图所示,在两个电荷量均为+q的点电荷连线中点O与中垂线上某点P 中,正确的关系是()A. φO<φP,EO>EPB. φO>φP,EO<EPC.将正电荷从O点移到P点,电场力做正功D.将正电荷从O点移到P点,电场力做负功解析等量同种电荷连线中点场强为零,中垂线上其他点合场强沿中垂线向外,所以E P>E O,φP<φO,选项A错误,选项B正确.将正电荷由O点移到P 点,是沿着电场力移动,电场力做正功,选项C正确,选项D错误.答案BC9.如图所示是一个说明示波管工作的原理图,电子经加速电场(加速电压为U1)加速后垂直进入偏转电场,离开偏转电场时偏转量是h,两平行板间的距离为d,电压为U2,板长为l,每单位电压引起的偏移hU2叫做示波管的灵敏度,为了提高灵敏度,可采用下列哪些方法()A.增大U1B.减小lC.减小d D.增大U2解析电子经过加速电场U1加速,由动能定理,可得eU1=12m v21,进入偏转电场后,偏转量h=12at2=eU2l22dm v21=eU2l24eU1d=U2l24U1d,可得hU2=l24U1d,由此式可知C选项正确.答案 C10.如图所示,用绝缘细线拴一带负电小球,在竖直平面内做圆周运动,匀强电场方向竖直向下,则()A.当小球运动到最高点a时,线的张力一定最小B.当小球运动到最低点b时,小球的速度一定最大C.当小球运动到最高点a时,小球的电势能最小D.小球在运动过程中机械能不守恒解析若qE=mg,小球将做匀速圆周运动,球在各处对细线的拉力一样大.若qE<mg,球在a处速度最小,对细线的拉力最小.若qE>mg,球在a处速度最大,对细线的拉力最大.故选项A、B错误.a点电势最高,负电荷在电势最高处电势能最小,故选项C正确.小球在运动过程中除重力外,还有电场力做功,机械能不守恒,选项D正确.答案CD第Ⅱ卷(非选择题,共60分)二、填空题(每小题5分,共20分)11.质量为m,电荷量为q的质点,在静电力作用下以恒定速率v沿圆弧由A运动到B,其速度方向改变θ角,AB弧长为s,则A、B两点的电势差U AB=________,AB中点的场强大小E=________.解析由动能定理qU AB=ΔE k=0,所以U AB=0.质点做匀速圆周运动R=s θ静电力提供向心力有qE=m v2 R.解得E=m v2θqs.答案0m v2θqs12.在真空中两个带等量异种电荷的点电荷,电荷量均为2×10-8C,相距20 cm,则它们之间的相互作用力为________N,在两者连线的中点处,电场强度大小为________N/C.答案9×10-5 3.6×10413.如图所示,实线为电场线,虚线为等势面,且相邻两等势面的电势差相等,一正电荷在等势面φ3上时具有动能60 J,它运动到等势面φ1上时,速度恰好为零,令φ2=0,那么,当该电荷的电势能为12 J时,其动能大小为________J.解析以φ2的电势为零,由能量守恒可知,电荷的电势能和动能的总和保持不变,由题意可知每经过一个等势面带电粒子的动能减少30 J,则在等势面φ2上时动能为30 J,电势能为0,则总能量为30 J,故当电势能为12 J时,动能为18 J.答案1814.如图所示,真空中有一电子束,以初速度v0沿着垂直场强方向从O点进入电场,以O点为坐标原点,沿x轴取OA=AB=BC,再自A、B、C作y轴的平行线与电子径迹分别交于M、N、P点,则AM:BN:CP=________,电子流经M、N、P三点时沿x轴的分速度之比为________.答案1:4:91:1:1三、计算题(本题共3小题,共40分.解答时应写出必要的文字说明、方程式和重要的演算步骤)15.(10分)如图所示是示波器的示意图,竖直偏转电极的极板长L1=4 cm,板间距离d=1 cm.板右端距离荧光屏L2=18 cm,电子沿中心线进入竖直偏转电场的速度是v =1.6×107 m/s ,电子电荷量e =1.6×10-19 C ,质量m =0.91×10-30kg.要使电子束不打在偏转电极上,加在竖直偏转电极上的最大偏转电压U 不能超过多大?解析 由类平抛运动的知识,得d 2=12at 2. 由牛顿第二定律,得a =Uedm . 飞行时间t =L 1v .联立以上各式,得最大偏转电压U =md 2v 2eL 21=91 V .即加在竖直偏转电极上的最大偏转电压不能超过91 V . 答案 91 V 16.(14分)如图所示,ab 是半径为R 的圆的一条直径,该圆处于匀强电场中,场强大小为E ,方向一定,在圆周平面内,将一带正电荷q 的小球从a 点以相同的动能抛出,抛出方向不同时,小球会经过圆周上不同的点,在所有的这些点中,到达c 点时小球的动能最大.已知∠cab =30°,若不计重力和空气阻力,试求:(1)电场方向与ac 间的夹角θ为多大?(2)若小球在a 点时初速度方向与电场方向垂直,则小球恰好能落在c 点,那么初动能为多大?解析(1)带正电小球从a 点抛出后,仅在电场力作用下,运动到圆周上的c 点,且具有最大动能,则说明在圆周上c 点与a 点的电势差最大,过c 点做圆的切线即为该匀强电场的等势线,故电场的方向沿Oc 方向,如图所示.电场方向与ac 间的夹角为30°.(2)设初速度为v 0,垂直电场方向带正电小球做匀速运动,有R ·sin60°=v 0t ; 平行于电场方向带正电小球做匀加速直线运动,有 R +R cos60°=12at 2,根据牛顿第二定律得qE =ma , 联立以上各式解得 E k a =12m v 20=EqR 8. 答案 (1)30° (2)EqR 8 17.(16分)如图所示,光滑斜面倾角为37°,一带有正电的小物块质量为m ,电荷量为q ,置于斜面上,当沿水平方向加有如图所示的匀强电场时,带电小物块恰好静止在斜面上,从某时刻开始,电场强度变化为原来的12,求:(1)原来的电场强度大小;(2)物块运动的加速度;(3)沿斜面下滑距离为L 时物块的速度大小.(g 取10 m/s 2,sin37°=0.6,cos37°=0.8)解析 (1)物体受到的力有重力mg ,支持力F N .静电力F =qE ,如图. qE =mg tan37°∴E =mg tan37°q=3mg 4q . (2)当电场强度变为原来的12时,物块在斜面方向有mg sin θ-q E 2cos θ=ma .∴a =g sin37°-12g sin37°=3.0 m/s 2.方向沿斜面向下.(3)由动能定理,得mgL sin37°-qE′L cos37°=12m v2-0.解得v=6L m/s.答案(1)3mg 4q(2)3.0 m/s2方向沿斜面向下(3)6L m/s。

(完整版)静电场练习题及答案

(完整版)静电场练习题及答案

静电场练习题一、电荷守恒定律、库仑定律练习题4.把两个完全相同的金属球A和B接触一下,再分开一段距离,发现两球之间相互排斥,则A、B两球原来的带电情况可能是 [ ]A.带有等量异种电荷 B.带有等量同种电荷C.带有不等量异种电荷 D.一个带电,另一个不带电8.真空中有两个固定的带正电的点电荷,其电量Q1>Q2,点电荷q置于Q1、Q2连线上某点时,正好处于平衡,则 [ ]A.q一定是正电荷 B.q一定是负电荷C.q离Q2比离Q1远D.q离Q2比离Q1近14.如图3所示,把质量为0.2克的带电小球A用丝线吊起,若将带电量为4×10-8库的小球B靠近它,当两小球在同一高度相距3cm时,丝线与竖直夹角为45°,此时小球B受到的库仑力F=______,小球A带的电量q A=______.二、电场电场强度电场线练习题6.关于电场线的说法,正确的是 [ ]A.电场线的方向,就是电荷受力的方向B.正电荷只在电场力作用下一定沿电场线运动C.电场线越密的地方,同一电荷所受电场力越大D.静电场的电场线不可能是闭合的7.如图1所示,带箭头的直线是某一电场中的一条电场线,在这条线上有A、B两点,用E A、E B表示A、B两处的场强,则 [ ]A.A、B两处的场强方向相同B.因为A、B在一条电场上,且电场线是直线,所以E A=E BC.电场线从A指向B,所以E A>E BD.不知A、B附近电场线的分布情况,E A、E B的大小不能确定8.真空中两个等量异种点电荷电量的值均为q,相距r,两点电荷连线中点处的场强为 [ ]A.0 B.2kq/r2 C.4kq/r2 D.8kq/r29.四种电场的电场线如图2所示.一正电荷q仅在电场力作用下由M点向N点作加速运动,且加速度越来越大.则该电荷所在的电场是图中的 [ ]11.如图4,真空中三个点电荷A、B、C,可以自由移动,依次排列在同一直线上,都处于平衡状态,若三个电荷的带电量、电性及相互距离都未知,但AB>BC,则根据平衡条件可断定 [ ]A.A、B、C分别带什么性质的电B.A、B、C中哪几个带同种电荷,哪几个带异种电荷C.A、B、C中哪个电量最大D.A、B、C中哪个电量最小二、填空题12.图5所示为某区域的电场线,把一个带负电的点电荷q放在点A或B时,在________点受的电场力大,方向为______.16.在x轴上有两个点电荷,一个带正电荷Q1,另一个带负电荷Q2,且Q1=2Q2,用E1、E2表示这两个点电荷所产生的场强的大小,则在x轴上,E1=E2的点共有____处,其中_______处的合场强为零,______处的合场强为2E2。

静电场作业含答案

静电场作业含答案

静电场作业含答案本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March班级 姓名 学号静电场作业 一、填空题1. 一均匀带正电的空心橡皮球,在维持球状吹大的过程中,球内任意点的场强 不变 。

球内任意点的电势 变小 。

始终在球外任意点的电势 不变 。

(填写变大、变小或不变) 解:2. 真空中有一半径为R ,带电量为 +Q 的均匀带电球面。

今在球面上挖掉很小一块面积△S ,则球心处的电场强度E = 。

解:电荷面密度3. 点电荷q 1、q 2、q 3和q 4在真空中的分布如图所示。

S 为闭合曲面,则通过该闭合曲面的电通量为 。

042εq q +解:高斯定理 ;其中为S 闭合面内所包围的所有电荷的代数和4. 边长为a 的正六边形每个顶点处有一个点电荷 +q ,取无限远处作为电势零点,则正六边形中心O 点电势为 V 。

aq 023πε1q +q 2041rQE ⋅=πε0=E (r > R 球外) (r < R 球内) 均匀带电 球面 r QU ⋅=041πεRQU ⋅=041πεs24R Qπσ=24R s Q q π∆=∴4022022*******R sQ R R s Q r qE εππεππε∆=⨯∆==40216R sQ επ∆0εφ∑⎰=⋅=i Sq S d E ∑i qq q解:O 点电势为6个点电荷电势之和。

每个q 产生的电势为aq aq U o 002364πεπε=⨯=∴5. 两点电荷等量异号,相距为a ,电量为q ,两点电荷连线中点O 处的电场强度大小E = 。

202aqπε 解:6. 电量为-5.0×10-9 C 的试验电荷放在电场中某点时,受到20.0×10-9 N 的向下的力,则该点的电场强度大小为 4 N/C 。

解:由电场强度定义知,7. 一半径为R 的带有一缺口的细圆环,缺口长度为d (d << R ),环上均匀 带正电,总电量为q ,如图所示,则圆心O 处的场强大小E =__________ __。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

班级 姓名 学号 静电场作业 一、填空题1. 一均匀带正电的空心橡皮球,在维持球状吹大的过程中,球内任意点的场强 不变 。

球内任意点的电势 变小 。

始终在球外任意点的电势 不变 。

(填写变大、变小或不变)解:2. 真空中有一半径为R ,带电量为 +Q 的均匀带电球面。

今在球面上挖掉很小一块面积△S ,则球心处的电场强度E = 。

解:电荷面密度3. 点电荷q 1、q 2、q 3和q 4在真空中的分布如图所示。

S 为闭合曲面, 则通过该闭合曲面的电通量为 。

42εq q +解:高斯定理 ;其中为S 闭合面内所包围的所有电荷的代数和4. 边长为a 的正六边形每个顶点处有一个点电荷 +q ,取无限远处作为电势零点,则正六边形中心O 点电势为 V 。

aq 023πε解:O 点电势为6个点电荷电势之和。

每个q 产生的电势为+2041rQE ⋅=πε0=E (r > R 球(r < R 球均匀带电球面 r QU ⋅=041πεRQU ⋅=041πεs24R Qπσ=24R s Q q π∆=∴4022022*******R sQ R R s Q r qE εππεππε∆=⨯∆==40216R sQ επ∆0εφ∑⎰=⋅=iSq S d E ∑i qaq rq U 0044πεπε==q q U o 36=⨯=∴5. 两点电荷等量异号,相距为a ,电量为q ,两点电荷连线中点O 处的电场强度大小E = 。

202aqπε 解:6. 电量为-×10-9 C 的试验电荷放在电场中某点时,受到×10-9N 的向下的力,则该点的电场强度 大小为 4 N/C 。

解:由电场强度定义知,7. 一半径为R 的带有一缺口的细圆环,缺口长度为d (d << R ),环上均匀 带正电,总电量为q ,如图所示,则圆心O 处的场强大小E =__________ __。

)2(420d R R qd-ππε解:根据圆环中心E=0可知,相当于缺口处对应电荷在O 点处产生的电场电荷线密度为; 缺口处电荷8. 如图所示,将一电量为-Q 的试验电荷从一对等量异号点电荷连线的中点O 处,沿任意路径移到无穷远处,则电场力对它作功为 0 J 。

解:根据电场力做功与电势差之间的关系可求其中d+-Oq+q-•E 2a 2a 202022422a q a q E E q πεπε=⎪⎭⎫ ⎝⎛⨯==+4==qF E dR q-=πλ2ddR qq ⨯-='π2)2(44124202020d R R qdR d R qd R q E -=⨯-='=ππεπεππε)(∞-=U U q A O ;0=∞U ;04400=+-=rq rq U o πεπε0)(=--=∴∞U U Q A O二、选择题1.关于静电场的高斯定理,下列说法正确的是( B )(A )闭合曲面上各点的电场强度都为零时,曲面内一定没有电荷; (B )闭合曲面上各点的电场强度都为零时,曲面内电荷的代数和必定为零; (C )闭合曲面的电通量为零时,曲面上各点的电场强度必定为零;( D )闭合曲面的电通量不为零时,曲面上任意一点的电场强度都不可能为零。

2.电量为q 的三个点电荷,分别放在正三角形的三个顶点。

在三角形中心处有另一个点电荷Q , 欲使作用在每个点电荷上的合力为零,则Q 的电量为: ( C ) (A ) -2q ; (B ) 2q ; (C ) 33q - ; (D ) 32q - 。

解:3.在匀强电场中,将一负电荷从A 移至B ,如图所示,则( D ) (A )电场力作正功,负电荷的电势能减少; (B )电场力作正功,负电荷的电势能增加; (C )电场力作负功,负电荷的电势能减少; (D )电场力作负功,负电荷的电势能增加。

解:沿电场线方向电势降低显然负电荷所受电场力方向向左,阻碍电荷运动,故做负功。

保守力做功等于势能增量的负值 4.静电场的环路定理 0=⋅⎰ll d E说明静电场的性质是( D )(A) 电场线是闭合曲线; (B )静电场力是非保守力;(C) 静电场是有源场; (D )静电场是保守场.30cos 21F F =202202432342a q a q πεπε=⋅=EB20)(41OA qQ F ⋅-='πε202043)33(4a Q q a Q q πεπε-=⋅-=-由 F = F ′解得: q Q 33-=qUW -=0>>B A U U BA W W <∴0)(<--=AB W W A BA W W <∴5.下列说法正确的是 ( D )(A )电场强度为零的点,电势也一定为零; (B )电场强度不为零的点,电势也一定不为零; (C )电势为零的点,电场强度也一定为零;( D )电势在某一区域内为常数,则电场强度在该区域内必定为零。

解:电势是相对概念,与电势零点选择有关,而电势零点选择是任意的6.下面几种说法中正确的是 ( C )(A )电场中某点场强的方向,就是将点电荷放在该点所受电场力的方向; (B )在以点电荷为球心的球面上,由该点电荷产生的场强处处相同;(C )场强方向可由E=F/q 定出,其中q 为试探电荷的电量,q 可正可负,F 为电场力; (D )均匀电场中各点场强大小一定相等,场强方向不一定相同。

7.在点电荷+q 的电场中,作三个等势面A 、B 、C ,相邻两等势面的间距相等, 那么相邻两等势面的电势差( A )(A )U A -U B > U B -U C ; (B )U A -U B < U B -U C ; (C )U A -U B = U B -U C ; (D )难以判断。

8.电量都为+Q 的两个点电荷相距为l ,连线的中点为O ,另有一点电荷-q ,静止地放在连线的中垂线上距O 为x 处,则点电荷所处的状态为( D )(A)保持静止不动; (B )作均加速直线运动; (C )作均速直线运动; (D )作周期性振动。

9.静电场的电场线方向,就是( B )(A )电势能减小的方向; (B )电势减小的方向; (C )正电荷在场中的运动方向; (D )负电荷在场中的运动方向。

三、计算题1、两个带有等量异号电荷的无限长同轴圆柱面,半径分别为R 1和R 2(R 1<R 2),单位长度上的电量为λ。

求离轴线为r 处的电场强度;(r <R 1、R 1<r <R 2、r >R 2);解:(1)作半径为r 、长为l 的同轴的闭合圆柱面为高斯面,如图所示, 根据高斯定理有02επ∑⎰=⋅=⋅ql r E S d E Sr <R 1 0=∑q E 1= 0R 1<r <R 2lq λ=∑rE 022πελ=r >R 20=∑q E 3= 0+AB C…(1′)2、两平行无限大均匀带电平面上的面电荷密度分别为+б和-2б,如图所示,求: (1)图中三个区域的场强1E ,2E ,3E 的表达式;(2)若б=×10-6C ·m -2,那么,1E ,2E ,3E 各多大解:(1)无限大均匀带电平板周围一点的场强大小为02E σε=在Ⅰ区域 10002222σσσεεε-=+=E i i i Ⅱ区域 200023222σσσεεε=+=E i i i Ⅲ区域 30002222σσσεεε=-=-E i i i (2)若 624.4310C m σ--=⨯⋅ 则51102.5010(V m )2E i i σε-==⨯⋅ 512037.5010(V m )2E i i σε-==⨯⋅ 51302.5010(V m )2E i i σε-=-=-⨯⋅4、如图所示,在半径为cm R 51=和cm R 102=的两个同心球面上,分别均匀地分布着电荷C Q 51102-⨯=和C Q 52103-⨯=,试求:(1)各区域内的场强分布; (2)各区域内的电势分布;解:(1)利用高斯定理求出空间的电场强度:作同心球面为高斯面,则有024επ∑⎰==⋅q E r S d E S当1R r <时,∑=0q 0=ⅠE当12R r R <<时, ∑=1Q q 252125201108.11085.814.341024rr r Q E ⨯=⨯⨯⨯⨯==--πεⅡ 当2r R >时 , 21Q Q q +=∑ 2521252021105.41085.814.341054rr r Q Q E ⨯=⨯⨯⨯⨯=+=--πεⅢ (2)则空间电势的分布:R 1R 2Q 1Q 2σ+σ2-当1R r <时, 20210144R Q R Q U πεπε+=Ⅰ=当21R r R <≤时,2020144R Q rQ U πεπε+=Ⅱ=当2r R ≥时, rQ Q U 0214πε+=Ⅲ=5、两根26.010m -⨯长的丝线由一点挂下,每根丝线的下端都系着一个质量为30.510kg -⨯的小球.当这两个小球都带有等量的正电荷时,每根丝线都平衡在与沿垂线成60°角的位置上。

求每一个小球的电量。

解: 设两小球带电12=q q q =,小球受力如图所示220cos304πq F T Rε==︒ ① sin30mg T =︒ ②联立①②得 2o 024tan30mg R qπε= ③其中223sin 606103310(m)r l --=︒=⨯= 2R r =代入③式,得71.0110C q -=⨯。

相关文档
最新文档