高中数学联赛数列基础练习题
(完整版)高中数学竞赛讲义(五)──数列
高中数学竞赛讲义(五)──数列一、基础知识定义1 数列,按顺序给出的一列数,例如1,2,3,…,n,…. 数列分有穷数列和无穷数列两种,数列{a n}的一般形式通常记作a1, a2, a3,…,a n或a1, a2, a3,…,a n…。
其中a1叫做数列的首项,a n是关于n的具体表达式,称为数列的通项。
定理1 若S n表示{a n}的前n项和,则S1=a1, 当n>1时,a n=S n-S n-1.定义2 等差数列,如果对任意的正整数n,都有a n+1-a n=d(常数),则{a n}称为等差数列,d叫做公差。
若三个数a, b, c成等差数列,即2b=a+c,则称b为a和c的等差中项,若公差为d, 则a=b-d, c=b+d.定理2 等差数列的性质:1)通项公式a n=a1+(n-1)d;2)前n项和公式:S n=;3)a n-a m=(n-m)d,其中n, m为正整数;4)若n+m=p+q,则a n+a m=a p+a q;5)对任意正整数p, q,恒有a p-a q=(p-q)(a2-a1);6)若A,B至少有一个不为零,则{a n}是等差数列的充要条件是S n=An2+Bn.定义3 等比数列,若对任意的正整数n,都有,则{a n}称为等比数列,q叫做公比。
定理3 等比数列的性质:1)a n=a1q n-1;2)前n项和S n,当q1时,S n=;当q=1时,S n=na1;3)如果a, b, c成等比数列,即b2=ac(b0),则b叫做a, c的等比中项;4)若m+n=p+q,则a m a n=a p a q。
定义4 极限,给定数列{a n}和实数A,若对任意的>0,存在M,对任意的n>M(n∈N),都有|a n-A|<,则称A为n→+∞时数列{a n}的极限,记作定义5 无穷递缩等比数列,若等比数列{a n}的公比q满足|q|<1,则称之为无穷递增等比数列,其前n项和S n的极限(即其所有项的和)为(由极限的定义可得)。
全国高中数学联赛模拟试题(三)
全国高中数学联赛模拟试题(三)第一试一、选择题(共36分)1. 化简cos 2π7+cos 4π7+cos 6π7的值为 ( )A.-1B.1C.-12D.122. S n 和T n 分别是等差数列{a n }和{b n }的前n 项和,且对任意的自然数n 都满足S n T n =7n +44n +27,那么a 11b 11= ( )A.43B.74C.32D.7871 3. 直线xcos θ+y +m =0(式中θ是△ABC 的最大角),则此直线的倾斜角变化范围是( )A.(-arctan 12,π4)B.[0,π4)∪(2π3,π)C.[0,π4]D.[0,π4]∪[π-arctan 12,π]4. 设实数m ,n ,x ,y 满足m 2+n 2=a ,x 2+y 2=b ,其中a ,b 为正常数且a ≠b ,那么mx+ny 的最大值为 ( )A.a +b 2B.abC.2ab a +bD.a 2+b 225. 如图,平面α中有△ABC 和△A 1B 1C 1分别在直线m 的两侧,它们与m 无公共点,并且关于m 成轴对称,现将α沿m 折成一个直二面角,则A ,B ,C ,A 1,B 1,C 1六个点可以确定的平面个数为 ( ) A.14 B.11 C.17 D.凸n边形的各边为直径作圆,使这个凸n 边形必能被这n个圆面所覆盖,则n 的最大值为( ) A.3 B.4 C.5 D.6二、填空题(共54分)6. 已知0<x <π2,log sinx cosx 与log cosx tanx 的首数均为零,尾数和为1,则x =_________.7. 设=n 21a a a 222+++ ,其中a 1,a 2,……,a n 是两两不等的非负整数,则a 1+a 2+…+a n =___________.8. 已知不等式a ≤34x 2-3x +4≤6的解集为{x|a ≤x ≤b},其中0<a <b,则b =___________.9.已知f(x)=x2+(lga+2)x+lgb,且f(-1)=-2,f(x)≥2x对一切x∈R都成立,则a+b=_____________.10.正四棱台ABCD-A1B1C1D1的高为25,AB=8,A1B1=4,则异面直线A1B与B1C的距离为____.11.方程(x2-x-1)x+2=1的解集为_________________.三、解答题(共计60分)12.(设f(x)=(1+x+x2)n=c0+c1x+c2x2+……+c2n x2n,则c0+c3+c6+……=c1+c4+c7+……=c2+c5+c8+……=3n-1.13.(已知满足不等式lg(x2)>lg(a-x)+1的整数x只有一个,试求常数a的取值范围.14.(设y=f(x)是定义在R上的实函数,而且满足条件:对任意的a,b∈R,有f[af(b)]=ab,试求|f()|.第二试一、(50分)如图,D ,E ,F 分别为△ABC 的边BC ,CA ,AB 上的点,且∠FDE =∠A ,∠DEF =∠B ,又设△AFE ,△BDF 和△DEF 均为锐角三角形,他们的垂心分别为H 1,H 2,H 3.求证:(1)∠H 2DH 3=∠FH 1E ;(2)△H 1H 2H 3≌△DEF.二、(50分)设C 0,C 1,C 2,……是坐标平面上的一族圆(周),其定义如下:(1)C 0是单位圆x 2+y 2=1;(2)任取n ∈Z 且n ≥0,圆C n +1位于上半平面y ≥0内及C n 的上方,与C n 外切并且与双曲线x 2-y 2=1相切于两点,C n 的半径记为r n (n ∈Z 且n ≥0) (1)证明:r n ∈Z ; (2)求r n .三、(50分)称自然数为“完全数”,如果它等于自己的所有(不包括自己)的正约数的和,例如,6=1+2+3,如果大于6的“完全数”可以被3整除,证明,它一定可以被9整除.C全国高中数学联赛模拟试题(三)参考答案 第一试一、选择题 1. Ccos 2π7+cos 4π7+cos 6π7=∑∑==π+π=π61k e 61k )]7k 2sin i 7k 2(cos [R 217k 2cos 21令z =cos 2π7+isin 2π7,于是z 7=1则上式=12(z +z 2+z 3+z 4+z 5+z 6)=……=-122. Aa 11b 11=21a 1121b 11=S 21T 21=7×21+44×21+27=43 3. Dθ∈[π3,π),cos θ∈(-1,12],则斜率k ∈[-12,1)4. B由柯西不等式ab =(m 2+n 2)(x 2+y 2)≥(mx +ny)2,当mx =ny 时取等号,所以mx +ny ≤ab5. B三点确定一个平面,但需除去三组四点共面重复的个数,共确定平面个数为3436C 3C -+3=11个6. B注意到:当且仅当∠C ≥90°时,△ABC 能被以AB 为直径的圆覆盖.从而易证n ≤4,当n =4时,正方形满足条件. 二、填空题 7.arcsin5-12; log sinx cosx +log cosx tanx =1 ⇒ log sinx cosx =12∴ sinx =cos 2x ∴ sin 2+sinx -1=0 ∴ sinx =5-12(负值舍去) 8.44;=210+29+28+27+26+249.4;分情况讨论得:a =43,b =410.110;f(-1)=1+lgb -(2+lga)=-2∴ lga =lgb +1,而(lga)2-4lgb ≤0∴ (lgb -1)2≤0 ∴ lgb =1 ∴ b =10,a =100 11.4105;过B 1作A 1B 的平行线交AB 于E ,转化为求B 点到平面B 1CE 的距离. 12.{-2,-1,0,2}若x 2-x -1=1,则x =2,-1若x 2-x -1=-1且x +2为偶数,得x =0若x +2=0且x 2-x -1≠0得x =-2 三、13.令ω=-12+32i ,则有f ⑴=c 0+c 1+c 2+c 4+c 5+……+c 2n =3n…………………①f(ω)=c 0+ωc 1+ω2c 2+c 3+ωc 4+ω2c 5+……+ω2nc 2n =0…………………②f(ω2)=c 0+ω2c 1+ωc 2+c 3+ω2c 4+ωc 5+……+ω4nc 2n =0…………………③①+②+③得3(c 0+c 3+c 6+……)=3n,∴ c 0+c 3+c 6+……=3n -1.②-①得c 1+c 4+c 7+……=c 2+c 5+c 8+……于是c 1+c 4+c 7+......=c 2+c 5+c 8+......=c 0+c 3+c 6+ (3),14.∵ x 2>0,∴ |x|≤1,∴ x =-1或0或1x =-1时,lg15>lg(a +1)+1,∴ -1<a <12x =0时,lgga +1 ∴ 0<a <2x =1时,lg15>lg(a -1)+l ∴ 0<a <52又因为满足条件的整数x 只有一个,∴ a 的取值范围是(-1,0]∪[12,1]∪[2,52)15.令a =1,则f(f(b))=b ,∴ f(f(x))=x∴ f(f(f 2(x)))=f 2(x)∴ f(f(f 2(a)))=f 2(a)再令a =f(b),则f(f 2(b)=bf(b)∴ f(f(f 2(b)))=f(bf(b))=b 2.∴ f(f(f 2(a)))=a 2.∴ f 2(a)=a 2, ∴ |f(a)|=|a| ∴ f()=第二试一、⑴∵ H 1为△AEF 的垂心,∴ ∠EH 1F =180°-∠A =∠B +∠C∠H 2DH 3=180°-∠H 2DB -∠H 3DC =180°-(90°-∠B)-(90°-∠C)=∠B +∠C ∴ ∠EH 1F =∠H 2DH 3⑵连结FH 2,EH 3,则FH 2⊥BD ,EH 3⊥BC∴ FH 2∥EH 3 由⑴中所证∠EH 1F +∠EOF =180° ⇒ E ,D ,F ,H 1四点共圆.同理,E ,D ,H 1,H 2四点共圆,H 1,D ,F ,H 3四点共圆,E ,D ,F ,H 1,H 2,H 3六点共圆. 二圆内接四边形EH 2H 3F 中,EH 2∥FH 3, ∴ EF =H 2H 3,同理,DE =H 1H 3,DF =H 1H 2, ∴ △H 1H 2H 3≌△DEF.二、⑴由对称性可知r n 的圆心在y 轴上,设r n 的方程为x 2+(y -s n )2=r n 2,其中s n =r 0+2(r 1+r 2+……+r n -1)+r n .将x 2=y 2+1代入其中得 y 2+1+y 2+s n 2-2ys n -r n 2=0△=4s n 28S n 2+8r n 2-8=0 ⇒ 2r n 2=S n 2+2 从而易得r n =6r n -1-r n -2,∵ r 0=1,r 1=3,∴ 对任意n ∈N ,有r n ∈N (2)由特征根方程可得r n =A(3+22)n+B(3-22)n,将r 0=1,r 1=3代入其中,得r n =12[(3+22)n +(3-22)n]三、设“完全数”等于3n ,其中n 不是3的倍数,于是3n 的所有正约数(包括它自己)可以分为若干个形如d 和3d 的“数对”,其中d 不可被3整除,从而3n 的所有正约数的和(它等于6n)是4的倍数,因此是2的倍数.我们注意到,此时32n ,n ,12n 和1是3n的互不相同的正约数,但它们的和等于3n +1>3n ,从而3n 不可能是“完全数”,得到矛盾.。
高中数学竞赛讲义(五)──数列
⾼中数学竞赛讲义(五)──数列⾼中数学竞赛讲义(五)──数列⼀、基础知识定义1 数列,按顺序给出的⼀列数,例如1,2,3,…,n,…. 数列分有穷数列和⽆穷数列两种,数列{a n}的⼀般形式通常记作a1, a2, a3,…,a n或a1, a2, a3,…,a n…。
其中a1叫做数列的⾸项,a n是关于n的具体表达式,称为数列的通项。
定理1 若S n表⽰{a n}的前n项和,则S1=a1, 当n>1时,a n=S n-S n-1.定义2 等差数列,如果对任意的正整数n,都有a n+1-a n=d(常数),则{a n}称为等差数列,d叫做公差。
若三个数a, b, c成等差数列,即2b=a+c,则称b为a和c的等差中项,若公差为d, 则a=b-d, c=b+d.定理2 等差数列的性质:1)通项公式a n=a1+(n-1)d;2)前n项和公式:S n=;3)a n-a m=(n-m)d,其中n, m为正整数;4)若n+m=p+q,则a n+a m=a p+a-q;5)对任意正整数p, q,恒有a p-a q=(p-q)(a2-a1);6)若A,B⾄少有⼀个不为零,则{a n}是等差数列的充要条件是S n=An2+Bn.定义3 等⽐数列,若对任意的正整数n,都有,则{a n}称为等⽐数列,q叫做公⽐。
定理3 等⽐数列的性质:1)a n=a1q n-1;2)前n项和S n,当q1时,S n=;当q=1时,S n=na1;3)如果a, b, c成等⽐数列,即b2=ac(b0),则b叫做a, c的等⽐中项;4)若m+n=p+q,则a m a n=a p a q。
定义4 极限,给定数列{a n}和实数A,若对任意的>0,存在M,对任意的n>M(n∈N),都有|a n-A|<,则称A为n→+∞时数列{a n}的极限,记作定义5 ⽆穷递缩等⽐数列,若等⽐数列{a n}的公⽐q满⾜|q|<1,则称之为⽆穷递增等⽐数列,其前n项和S n的极限(即其所有项的和)为(由极限的定义可得)。
高中数学数列专题训练(1)
log 2 2an 求数列
1 bn
的前 n 项和 Tn .
49. 公差不为零的等差数列 { an } 中, a3 7 ,又 a2, a4, a9 成等比数列 .
(Ⅰ)求数列 { an } 的通项公式; (Ⅱ)设 bn 2an ,求数列 { bn } 的前 n 项和 Sn .
33. 设 { an} 是各项都为正数的等比数列 , bn 是等差数列,且 a1 b1 1 ,a3 b5 13 ,
a5 b3 21.(1)求数列 { an} , bn 的通项公式;(2)求数列 { an} 的前 n 项和 Sn .
34. Sn 表示等差数列 an 的前 n 项的和,且 S4 S9 , a1 12
(1)求数列的通项 an 及 Sn ;(2)求和 Tn a1 a2 …… an 35. 已知数列 an 及其前 n 项和 Sn 满足: a1 3, Sn 2Sn 1 2 n ( n 2 , n N * ) .
(1 )证明:设 bn
Sn 2n
,
bn
是等差数列;(2)求 Sn 及 an .
36. 在等差数列 { an} 中, a2 6, S4 20.
(1)求 m 及 k 的值; (2)设数列 bn 的通项 bn Sn ,证明数列 bn 是等差数列,并求其前 n 项和 Tn .
n 32. 数 列 an 中, a1 3, an an 1 3 ,( n ≥2, n N * ), 数 列 bn 为 等 比 数 列 , 且
b1 a2 ,b2 a4 .(I) 求 数 列 an 的 通 项 公 式 ; ( I I ) 求数列 bn 的前 n 项和 .
A. 30
B. 27 C.24
D.33
4. 已知等差数列 an 满足 a2 a4 4, a3 a5 10 ,则它的前 10 项和 S10
高中数学数列基础100题精编练习
1. 已知数列的前项和,则数列的通项公式为_____ 。
2. 已知数列中,且,则_____ 。
3. 已知两个等差数列和的前项和分别为,,若,则_____ 。
4. 数列的前项和(),则数列的通项公式是_____。
5. 计算:_____。
6. 设是等差数列的前项和,已知,,则数列的前项的和为_____。
7. 若等比数列的前项和为,已知,,成等差数列,则数列的公比为_____。
8. 设公比不为的等比数列满足,且,,成等差数列,则数列的前项和为_____。
9. 等比数列中,,,则_____。
10. 已知等比数列的前项和为,,,则的值为_____。
11. 在数列、、、、中,按此规律,是该数列的第_____项。
12. 在等差数列中,若,,则_____。
13. 若在等比数列中,,则_____。
14. 已知数列的前项和,那么数列的通项公式为_____。
15. 在等比数列中,已知,则_____ 。
16. 已知是等差数列,是其前项和,若,,则的值是_____。
17. 已知等比数列中,若其前项的和为,则_____。
18. 在数列中,,,是其前项和,则的值是_____。
19. 已知等比数列的前项和为,则常数_____。
20. 设等差数列的前项和为,,,,则_____。
21. 数列中,若,,则_____。
22. 等比数列的各项均为正数,且,则_____。
23. 设等比数列的各项均为正数,若,。
则_____。
24. 已知为等差数列,公差为,且是与的等比中项,则_____ 。
25. 等差数列中,_____。
26. 数列是公比为的等比数列,其前项和为。
若,则_____;_____。
27. 数列中,若,(),则通项公式_____。
28. 如果,,,,成等比数列,那么_____。
29. 若数列满足,(),则该数列的前项的乘积_____。
30. 已知等差数列的前项和为,若,则_____。
31. 已知数列满足,,则_____。
32. 若数列的前项和为,则的值为_____。
高中数学数列专题训练6套含答案
目录第一套:等比数列例题精讲第二套:等差等比数列基础试题一第三套:等差等比数列基础试题二第四套:等差等比数列提升试题一第五套:等差等比数列提升试题二第六套:数列的极限拓展等比数列·例题解析【例1】 已知S n 是数列{a n }的前n 项和,S n =p n (p ∈R ,n ∈N*),那么数列{a n }.[ ]A .是等比数列B .当p ≠0时是等比数列C .当p ≠0,p ≠1时是等比数列D .不是等比数列分析 由S n =p n (n ∈N*),有a 1=S 1=p ,并且当n ≥2时, a n =S n -S n-1=p n -p n-1=(p -1)p n-1但满足此条件的实数p 是不存在的,故本题应选D .说明 数列{a n }成等比数列的必要条件是a n ≠0(n ∈N*),还要注【例2】 已知等比数列1,x 1,x 2,…,x 2n ,2,求x 1·x 2·x 3·…·x 2n . 解 ∵1,x 1,x 2,…,x 2n ,2成等比数列,公比q ∴2=1·q 2n+1x 1x 2x 3...x 2n =q .q 2.q 3...q 2n =q 1+2+3+ (2)式;(2)已知a 3·a 4·a 5=8,求a 2a 3a 4a 5a 6的值.故-,因此数列成等比数列≠-≠a =(p 1)p {a }p 0p 10(p 1)p 2n n 1⇔--=-⎧⎨⎪⎪⎪⎩⎪⎪⎪--()()p pp p p n 212意对任∈,≥,都为同一常数是其定义规定的准确含义.n *n 2N a a nn -1=q2n(1+2n)2==+q n n n ()212【例3】 {a }(1)a =4a n 25等比数列中,已知,=-,求通项公12解 (1)a =a q q =5252-∴-12∴a 4=2【例4】 已知a >0,b >0且a ≠b ,在a ,b 之间插入n 个正数x 1,x 2,…,x n ,使得a ,x 1,x 2,…,x n ,b 成等比数列,求证明 设这n +2个数所成数列的公比为q ,则b=aq n+1【例5】 设a 、b 、c 、d 成等比数列,求证:(b -c)2+(c -a)2+(d -b)2=(a -d)2.证法一 ∵a 、b 、c 、d 成等比数列∴b 2=ac ,c 2=bd ,ad =bc∴左边=b 2-2bc +c 2+c 2-2ac +a 2+d 2-2bd +b 2 =2(b 2-ac)+2(c 2-bd)+(a 2-2bc +d 2) =a 2-2ad +d 2 =(a -d)2=右边证毕.证法二 ∵a 、b 、c 、d 成等比数列,设其公比为q ,则: b =aq ,c =aq 2,d=aq 3∴==-=∵·=··=a a q 4()()(2)a a a a a a a =8n 2n 2n 2n 4354234543----1212又==∴a a a a a a a a a a =a =322635423456452证…<.x x x a bn n 122+∴∴……<q b ax x x aqaq aq aqab a bn n n nn n ++====+1122122∴a b b c c d==∴左边=(aq -aq 2)2+(aq 2-a)2+(aq 3-aq)2 =a 2-2a 2q 3+a 2q 6 =(a -aq 3)2 =(a -d)2=右边证毕.说明 这是一个等比数列与代数式的恒等变形相综合的题目.证法一是抓住了求证式中右边没有b 、c 的特点,走的是利用等比的条件消去左边式中的b 、c 的路子.证法二则是把a 、b 、c 、d 统一化成等比数列的基本元素a 、q 去解决的.证法二稍微麻烦些,但它所用的统一成基本元素的方法,却较证法一的方法具有普遍性.【例6】 求数列的通项公式:(1){a n }中,a 1=2,a n+1=3a n +2(2){a n }中,a 1=2,a 2=5,且a n+2-3a n+1+2a n =0 思路:转化为等比数列.∴{a n +1}是等比数列 ∴a n +1=3·3n-1 ∴a n =3n -1∴{a n+1-a n }是等比数列,即 a n+1-a n =(a 2-a 1)·2n-1=3·2n-1再注意到a 2-a 1=3,a 3-a 2=3·21,a 4-a 3=3·22,…,a n -a n-1=3·2n-2,这些等式相加,即可以得到说明 解题的关键是发现一个等比数列,即化生疏为已知.(1)中发现{a n +1}是等比数列,(2)中发现{a n+1-a n }是等比数列,这也是通常说的化归思想的一种体现.解 (1)a =3a 2a 1=3(a 1)n+1n n+1n +++⇒(2)a 3a 2a =0a a =2(a a )n+2n+1n n+2n+1n+1n -+--⇒a =3[1222]=3=3(21)n 2n-2n 1+++…+·-21211n ----证 ∵a 1、a 2、a 3、a 4均为不为零的实数∴上述方程的判别式Δ≥0,即又∵a 1、a 2、a 3为实数因而a 1、a 2、a 3成等比数列∴a 4即为等比数列a 1、a 2、a 3的公比.【例8】 若a 、b 、c 成等差数列,且a +1、b 、c 与a 、b 、c +2都成等比数列,求b 的值.解 设a 、b 、c 分别为b -d 、b 、b +d ,由已知b -d +1、b 、b +d 与b -d 、b 、b +d +2都成等比数列,有整理,得∴b +d=2b -2d 即b=3d 代入①,得9d 2=(3d -d +1)(3d +d) 9d 2=(2d +1)·4d 解之,得d=4或d=0(舍) ∴b=12【例7】 a a a a (a a )a 2a (a a )a a a =0a a a a 1234122242213422321234若实数、、、都不为零,且满足+-+++求证:、、成等比数列,且公比为.∴+-+++为实系数一元二次方程等式+-+++说明上述方程有实数根.(a a )x 2a (a a )x a a =0(a a )a 2a (a a )a a a =0a 122222132232122242213422324[2a (a a )]4(a a )(a a )=4(a a a )0(a a a )02132122222322213222132-+-++--≥∴-≤∴-≥必有-即(a a a )0a a a =0a =a a 2213222132213又∵a =2a 42()()()a a a a a a a a a a a a 1312222131213212++=++=b =(b d 1)(b d)b =(b d)(b d 2)22-++①-++②⎧⎨⎪⎩⎪b =b d b db =b d 2b 2d 222222-++-+-⎧⎨⎪⎩⎪【例9】 已知等差数列{a n }的公差和等比数列{b n }的公比都是d ,又知d ≠1,且a 4=b 4,a 10=b 10:(1)求a 1与d 的值; (2)b 16是不是{a n }中的项? 思路:运用通项公式列方程(2)∵b 16=b 1·d 15=-32b 1∴b 16=-32b 1=-32a 1,如果b 16是{a n }中的第k 项,则 -32a 1=a 1+(k -1)d ∴(k -1)d=-33a 1=33d∴k=34即b 16是{a n }中的第34项.解 设等差数列{a n }的公差为d ,则a n =a 1+(n -1)d解 (1)a =b a =b 3d =a d a 9d =a da (1d )=3d a (1d )=9d4410101131191319由++----⎧⎨⎩⇒⎧⎨⎪⎩⎪⇒⎧⎨⎪⎩⎪a ⇒⇒==-=-==-d d 2=063+-舍或∴d d a d d 1231331222()且+·--∴a =a 3d =22=b b =b d =2b =22b =a =2413441313113-【例10】 {a }b =(12)b b b =218b b b =18n n a n 123123设是等差数列,,已知++,,求等差数列的通项.∴·b =(12)b b =(12)(12)=(12)b n a 13a a +2d 2(a +d)221111+-()n d1解这个方程组,得∴a 1=-1,d=2或a 1=3,d=-2∴当a 1=-1,d=2时,a n =a 1+(n -1)d=2n -3 当a 1=3,d=2时,a n =a 1+(n -1)d=5-2n【例11】 三个数成等比数列,若第二个数加4就成等差数列,再把这个等差数列的第3项加32又成等比数列,求这三个数.解法一 按等比数列设三个数,设原数列为a ,aq ,aq 2 由已知:a ,aq +4,aq 2成等差数列 即:2(aq +4)=a +aq 2①a ,aq +4,aq 2+32成等比数列 即:(aq +4)2=a(aq 2+32)解法二 按等差数列设三个数,设原数列为b -d ,b -4,b +d由已知:三个数成等比数列 即:(b -4)2=(b -d)(b +d)b -d ,b ,b +d +32成等比数列由,解得,解得,代入已知条件整理得+b b b =18b =18b =12b b b =18b b =14b b =1781232321231313b b b 123218++=⎧⎨⎪⎪⎩⎪⎪⎧⎨⎪⎪⎩⎪⎪b =2b =18b =18b =21313,或,⇒aq 2=4a +②①,②两式联立解得:或-∴这三数为:,,或,,.a =2q =3a =29q =52618⎧⎨⎩⎧⎨⎪⎩⎪-29109509⇒8b d =162-①即b 2=(b -d)(b +d +32)解法三 任意设三个未知数,设原数列为a 1,a 2,a 3 由已知:a 1,a 2,a 3成等比数列a 1,a 2+4,a 3成等差数列 得:2(a 2+4)=a 1+a 3②a 1,a 2+4,a 3+32成等比数列 得:(a 2+4)2=a 1(a 3+32)③说明 将三个成等差数列的数设为a -d ,a ,a +d ;将三个成简化计算过程的作用.【例12】 有四个数,其中前三个数成等差数列,后三个数成等比数列,并且第一个数与第四个数的和是16,第二个数与第三个数的和是12,求这四个数.分析 本题有三种设未知数的方法方法一 设前三个数为a -d ,a ,a +d ,则第四个数由已知条⇒32b d 32d =02--②①、②两式联立,解得:或∴三数为,,或,,.b =269d =83b =10d =82618⎧⎨⎪⎪⎩⎪⎪⎧⎨⎩-29109509得:①a =a a 2213①、②、③式联立,解得:或a =29a =109a =509a =2a =6a =18123123-⎧⎨⎪⎪⎪⎩⎪⎪⎪⎧⎨⎪⎩⎪等比数列的数设为,,或,,是一种常用技巧,可起到a aq aq (a aq)2aq方法二 设后三个数为b ,bq ,bq 2,则第一个数由已知条件推得为2b -bq . 方法三 设第一个数与第二个数分别为x ,y ,则第三、第四个数依次为12-y ,16-x .由这三种设法可利用余下的条件列方程组解出相关的未知数,从而解出所求的四个数,所求四个数为:0,4,8,16或15,9,3,1.解法二 设后三个数为:b ,bq ,bq 2,则第一个数为:2b -bq所求四个数为:0,4,8,16或15,9,3,1.解法三 设四个数依次为x ,y ,12-y ,16-x .这四个数为0,4,8,16或15,9,3,1.【例13】 已知三个数成等差数列,其和为126;另外三个数成等比数列,把两个数列的对应项依次相加,分别得到85,76,84.求这两个数列.解 设成等差数列的三个数为b -d ,b ,b +d ,由已知,b -d +b +b +d=126 ∴b=42这三个数可写成42-d ,42,42+d .再设另三个数为a ,aq ,aq 2.由题设,得件可推得:()a d a+2解法一 a d a a d 设前三个数为-,,+,则第四个数为.()a d a+2依题意,有-+++a d =16a (a d)=12()a d a+⎧⎨⎪⎩⎪2解方程组得:或-a =4d =4a =9d =61122⎧⎨⎩⎧⎨⎩依题意有:-++2b bq bq =16b bq =122⎧⎨⎩解方程组得:或b =4q =2 b =9q =131122⎧⎨⎩⎧⎨⎪⎩⎪依题意有+-·--x (12y)=2yy (16x)=(12y)2⎧⎨⎩解方程组得:或x =0y =4x =15y =91122⎧⎨⎩⎧⎨⎩解这个方程组,得 a 1=17或a 2=68当a=17时,q=2,d=-26从而得到:成等比数列的三个数为17,34,68,此时成等差的三个数为68,42,16;或者成等比的三个数为68,34,17,此时成等差的三个数为17,42,67.【例14】 已知在数列{a n }中,a 1、a 2、a 3成等差数列,a 2、a 3、a 4成等比数列,a 3、a 4、a 5的倒数成等差数列,证明:a 1、a 3、a 5成等比数列.证明 由已知,有 2a 2=a 1+a 3①即 a 3(a 3+a 5)=a 5(a 1+a 3)所以a 1、a 3、a 5成等比数列.a 42d =85ap 42=76aq 42d =842+-+++⎧⎨⎪⎩⎪整理,得-①②+③a d =43aq =34aq d =422⎧⎨⎪⎩⎪当时,,a =68q =12d =25a =a a 3224·②③211435a a a =+由③,得·由①,得代入②,得··a =2a a a +a a =a +a 2a =a +a 243535213321323535a a a a +整理,得a =a (a +a )a +a 351235a a a =a a a a a =a a 323515353215++∴·【例15】已知(b-c)log m x+(c-a)log m y+(a-b)log m z=0.(1)设a,b,c依次成等差数列,且公差不为零,求证:x,y,z成等比数列.(2)设正数x,y,z依次成等比数列,且公比不为1,求证:a,b,c成等差数列.证明(1)∵a,b,c成等差数列,且公差d≠0∴b-c=a-b=-d,c-a=2d代入已知条件,得:-d(log m x-2log m y+log m z)=0∴log m x+log m z=2log m y∴y2=xz∵x,y,z均为正数∴x,y,z成等比数列(2)∵x,y,z成等比数列且公比q≠1∴y=xq,z=xq2代入已知条件得:(b-c)log m x+(c-a)log m xq+(a-b)log m xq2=0变形、整理得:(c+a-2b)log m q=0∵q≠1 ∴log m q≠0∴c+a-2b=0 即2b=a+c即a,b,c成等差数列高一数学数列练习【同步达纲练习】 一、选择题1.已知数列1,21,31,…,n1…,则其通项的表示为( ) A.{a n }B.{n 1}C. n1D.n2.已知数列{a n }中,a n =4n-13·2n+2,则50是其( )A.第3项B.第4项C.第5项D.不是这个数列的项3.已知数列的通项公式a n =2n-1,则2047是这个数列的( ) A.第10项 B.第11项 C.第12项 D.第13项 4.数列-1,58,-715,924,…的通项公式是( ) A.a n =(-1)n 122++n nnB.a n =(-1)n12)3(++n n nC.a n =(-1)n1222-+n nnD.a n =(-1)n12)2(++n n n5.在数列a 1,a 2,a 3,…,a n ,…的每相邻两项中插入3个数,使它们与原数列构成一个新数列,则新数列的第29项( )A.不是原数列的项B.是原数列的第7项C.是原数列的第8项D.是原数列的第9项6.已知数列的通项公式为a n =1213+-n n ,则a n 与a n+1的大小关系是( ) A.a n <a n+1 B.a n >a n+1C.a n =a n+1D.大小不能确定7.数列{a n }中,a n =-2n 2+29n+3,则此数列的最大项的值是( ) A.107B.108C.10881 D.1098.数列1,3,6,10,15,…的通项公式a n ,等于( ) A.n 2-(n-1) B.2)1(-n n C.2)1(+n n D.n 2-2n+2二、填空题1.数列-31,91,-271,…的一个通项公式是 .2.数列1,1,2,2,3,3,…的一个通项公式是 .3.数列1×3,2×4,3×5,…,n(n+2),…,问120是否是这个数列的项 .若是,120是第 项.4.已知数列{a n }满足a 1=1,a n+1=pa n +q ,且a 2=3,a 4=15,则p= ,q= .5.一个数列的前n 项之和是n n,则此数列的第4项为 .6.-1103,4203,-7403,10803,-131603,…的一个通项公式为 . 三、解答题1.已知数列{a n }的通项a n =)1(1+-n n n ,207、1207是不是这个数列的项?如果是,则是第几项?2.写出以下数列的一个通项公式.①-31,256,-499,274,-12115…; ②9,99,999,9999,99999,….3.已知下列数列{a n }的前n 项和S n ,求数列{a n }的通项公式.①S n =3+2n ; ②S n =2n 2+n+3【素质优化训练】1.已知数列的前4项如下,试写出下列各数列的一个通项公式:(1) 21,61,121,201; (2)-1,23,-45,87;(3)0.9,0.99,0.999,0.9999; (4)35,810,1517,2426.2.已知数列的通项公式为a n =-0.3n 2+2n+732,求它的数值最大的项.3.若数列{a n }由a 1=2,a n+1=a n +2n(n ≥1)确定,求通项公式a n .【生活实际运用】参加一次国际商贸洽谈会的国际友人居住在西安某大楼的不同楼层内,该大楼共有n 层,每层均住有参会人员.现要求每层指派一人,共n 人集中到第k 层开会,试问k 如何确定,能使n 位参加会议人员上、下楼梯所走路程总和最少?(假定相邻两层楼楼长都相等)【知识探究学习】某人从A 地到B 地乘坐出租车,有两种方案:第一种方案:利用起步价10元,每千米价为1.2元的汽车.第二种方案:租用起步价是8元,每千米价为4元的汽车.按出租车管理条例,在起步价内,不同型号车行驶的里程是相等的.则此人从A 地到B 地选择哪一种方案比较合适.解:设起步价内行驶里程为a 千米,A 地到B 地的距离是m 千米. 当m ≤a 时,选起步价8元的出租车比较合适. 当m >a 时,设m=a+x(x >0)乘坐起步价10元的出租车费用为P(x)元,乘坐起步价为8元的费用为Q(x)元, 则:P(x)=10+1.2x Q(x)=8+1.4x令P(x)=Q(x)得10+1.28+1.4x 解得x=10(千米) 此时两种出租车任选.当x >10时,P(x)-Q(x)=2-0.2x <0,故P(x)<Q(x) 此时选起步价为10元合适.当x <10时,P(x)-Q(x)=2-0.2x >0,故P(x)>Q(x) 此时选起步价为8元的出租车合适.参考答案:【同步达纲练习】一、1.C 2.B 3.B 4.D 5.C 6.A 7.B 8.C二、1.a n =nn3)1(- 2.a n =⎪⎪⎩⎪⎪⎨⎧+为偶数为奇数n n n n ,2,213.是,104.2或-3,1或65.2296.a n =(-1)n[(3n-2)+12103-∙n ] 三、1.207不是{a n }中的项,1207是{a n }中的第15项. 2.①a n =(-1)n2)12(3+n n ;②a n =10n-1.3.①a n =⎪⎩⎪⎨⎧≥=2)(n 21)(n 51-n ②a n =⎩⎨⎧≥-=2)(n 1n 41)(n 6。
高中数学联赛真题分类——数列(一试)
而 2 2 0 ,故 a1<0 若 d (2 2 )a1 ,则 q
2 a2 2 a1 2 a2 2 a1
( 2 1) 2
若 d (2 2 )a1 ,则 q
( 2 1) 2
„„„„„„„„„„„„ 10 分
但 lim (b1 b2 bn ) 2 1 存在,故| q |<1,于是 q ( 2 1) 2 不可能.
3
.
21 、 [10(11)] 证明:方程 2 x 5x 2 0 恰有一个实数根 r ,且存在唯一的严格递增正整数数列 {an } ,使得
2 r a1 r a2 r a3 . 5
高中数学联赛专题——数列(一试)参考答案 1、C 2、见奥数教程 86 页例 4 3、答案: A 由题意知 pq=a ,2b=p+c,2c=q+b b
n
且 a0=3,则∑
i=0
1
ai
的值是
;
10、 【05(6) 】记集合 T={0,1,2,3,4,5,6},M={ + 2+ 3+ 4| ai∈T,i=1,2,3,4},将 M 中的元素按从 7 7 7 7 大到小排列,则第 2005 个数是 5 5 6 3 A. + 2+ 3+ 4 7 7 7 7 5 5 6 2 B. + 2+ 3+ 4 7 7 7 7 1 1 0 4 C. + 2+ 3+ 4 7 7 7 7 ( ) 1 1 0 3 D. + 2+ 3+ 4 7 7 7 7
n
n
n
8、注意到 45 2025, 46 2116,故 a2003 2003 45 2048
高中数学数列经典题型专题训练试题(含答案)
高中数学数列经典题型专题训练试题学校:___________姓名:___________班级:___________考号:___________说明:1、本试卷包括第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分100分。
考试时间120分钟。
2、考生请将第Ⅰ卷选择题的正确选项填在答题框内,第Ⅱ卷直接答在试卷上。
考试结束后,只收第Ⅱ卷第Ⅰ卷(选择题)一.单选题(共15小题,每题2分,共30分)1.数列{a n},已知对任意正整数n,a1+a2+a3+…+a n=2n-1,则a12+a22+a32+…+a n2等于()A.(2n-1)2B.C.D.4n-12.若{a n}为等比数列a5•a11=3,a3+a13=4,则=()A.3B.C.3或D.-3或-3.已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7C.6D.4.等差数列{a n}中,a1=1,a3=4,则公差d等于()A.1B.2C.D.5.数列的前n项和为S n,a n=,则S n≥0的最小正整数n的值为()6.若数列{a n}的前n项和S n=2n2-2n,则数列{a n}是()A.公差为4的等差数列B.公差为2的等差数列C.公比为4的等比数列D.公比为2的等比数列7.已知数列{a n}的前n项和S n=2n-1,则此数列奇数项的前n项和为()A.B.C.D.8.在等比数列{a n} 中,a1=4,公比为q,前n项和为S n,若数列{S n+2}也是等比数列,则q 等于()A.2B.-2C.3D.-39.在数列{a n}中,a1=2,a2=2,a n+2-a n=1+(-1)n,n∈N*,则S60的值为()A.990B.1000C.1100D.9910.若数列{a n}是公差为2的等差数列,则数列是()A.公比为4的等比数列B.公比为2的等比数列C.公比为的等比数列D.公比为的等比数列11.在数列{a n}中,a1=0,a n=4a n-1+3,则此数列的第5项是()A.252B.255C.215D.52212.数列{a n}、{b n}满足a n•b n=1,a n=n2+3n+2,则{b n}的前10项之和等于()A.B.C.D.13.等比数列{a n}中,a1+a2=8,a3-a1=16,则a3等于()14.已知在等比数列{a n}中,S n为其前n项和,且a4=2S3+3,a5=2S4+3,则此数列的公比q为()A.2B.C.3D.15.数列{a n}的通项,则数列{a n}中的最大项是()A.第9项B.第8项和第9项C.第10项D.第9项和第10项二.填空题(共10小题,每题2分,共20分)16.已知等差数列{a n},有a1+a2+a3=8,a4+a5+a6=-4,则a13+a14+a15=______.17.在等差数列{a n}中,a3+a5+a7+a9+a11=20,则a1+a13=______.18.数列{a n}的通项公式为a n=2n+2n-1,则数列a n的前n项和为______.19.数列{a n}中,a1=1,a n+1=2a n+1,则通项a n=______.20.数列{a n}是公差不为0的等差数列,且a2+a6=a8,则=______.21.已知数列{a n},a n+1=2a n+1,且a1=1,则a10=______.22.设正项等比数列{an}的公比为q,且,则公比q=______.23.已知数列{a n}满足a1=3,a n+1=2a n+1,则数列{a n}的通项公式a n=______.24.数列{a n}为等差数列,已知a3+2a8+a9=20,则a7______.25.设数列{a n}为正项等比数列,且a n+2=a n+1+a n,则其公比q=______.第Ⅱ卷(非选择题)三.简答题(共5小题,50分)26.(10分)已知等差数列{a n},前n项和为S n=n2+Bn,a7=14.(1)求B、a n;(2)设c n=n•,求T n=c1+c2+…+c n.27.(8分)已知等差数列{a n}满足:a5=11,a2+a6=18(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若b n=a n+3n,求数列{b n}的前n项和S n.28.(7分)已知数列{a n}是公差不为0的等差数列,a1=2,且a2,a3,a4+1成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=,求数列{b n}的前n项和S n.29.(12分)已知数列{a n}满足.(1)求a2,a3,a4的值;(2)求证:数列{a n-2}是等比数列;(3)求a n,并求{a n}前n项和S n.30.(12分)在数列{a n}中,a1=16,数列{b n}是公差为-1的等差数列,且b n=log2a n(Ⅰ)求数列{a n}和{b n}的通项公式;(Ⅱ)在数列{b n}中,若存在正整数p,q使b p=q,b q=p(p>q),求p,q得值;(Ⅲ)若记c n=a n•b n,求数列{c n}的前n项的和S n.参考答案一.单选题(共__小题)1.数列{a n},已知对任意正整数n,a1+a2+a3+…+a n=2n-1,则a12+a22+a32+…+a n2等于()A.(2n-1)2B.C.D.4n-1答案:C解析:解:∵a1+a2+a3+…+a n=2n-1…①∴a1+a2+a3+…+a n-1=2n-1-1…②,①-②得a n=2n-1,∴a n2=22n-2,∴数列{a n2}是以1为首项,4为公比的等比数列,∴a12+a22+a32+…+a n2==,故选C.2.若{a n}为等比数列a5•a11=3,a3+a13=4,则=()A.3B.C.3或D.-3或-答案:C解析:解:∵{a n}为等比数列a5•a11=3,∴a3•a13=3①∵a3+a13=4②由①②得a3=3,a13=1或a3=1,a13=3∴q10=或3,∴=或3,故选C.3.已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7C.6D.答案:A解析:解:a1a2a3=5⇒a23=5;a7a8a9=10⇒a83=10,a52=a2a8,∴,∴,故选A.4.等差数列{a n}中,a1=1,a3=4,则公差d等于()A.1B.2C.D.答案:D解析:解:∵数列{a n}是等差数列,a1=1,a3=4,∴a3=a1+2d,即4=1+2d,解得d=.故选:D.5.数列的前n项和为S n,a n=,则S n≥0的最小正整数n的值为()A.12B.13C.14D.15答案:A解析:解:令a n=<0,解得n≤6,当n>7时,a n>0,且a6+a7=a5+a8=a4+a9=a3+a10=a2+a11=a1+a12=0,所以S12=0,S13>0,即使S n≥0的最小正整数n=12.故选A.6.若数列{a n}的前n项和S n=2n2-2n,则数列{a n}是()A.公差为4的等差数列B.公差为2的等差数列C.公比为4的等比数列D.公比为2的等比数列答案:A解析:解:∵S n=2n2-2n,则S n-S n-1=a n=2n2-2n-[2(n-1)2-2(n-1)]=4n-4故数列{a n}是公差为4的等差数列故选A.7.已知数列{a n}的前n项和S n=2n-1,则此数列奇数项的前n项和为()A.B.C.D.答案:C解析:解:当n=1时,a1=S1=21-1=1,当n≥2时,a n=Sn-Sn-1=2n-1-(2n-1-1)=2•2n-1-2n-1=2n-1,对n=1也适合∴a n=2n-1,∴数列{a n}是等比数列,此数列奇数项也构成等比数列,且首项为1,公比为4.∴此数列奇数项的前n项和为==故选C8.在等比数列{a n} 中,a1=4,公比为q,前n项和为S n,若数列{S n+2}也是等比数列,则q 等于()A.2B.-2C.3D.-3答案:C解析:解:由题意可得q≠1由数列{S n+2}也是等比数列可得s1+2,s2+2,s3+2成等比数列则(s2+2)2=(S1+2)(S3+2)代入等比数列的前n项和公式整理可得(6+4q)2=24(1+q+q2)+12解可得q=3故选C.9.在数列{a n}中,a1=2,a2=2,a n+2-a n=1+(-1)n,n∈N*,则S60的值为()A.990B.1000C.1100D.99答案:A解析:解:当n为奇数时,a n+2-a n=1+(-1)n=0,可得a1=a3=…=a59=2.当n为偶数时,a n+2-a n=1+(-1)n=2,∴数列{a2n}为等差数列,首项为2,公差为2,∴a2+a4+…+a60=30×2+=930.∴S60=(a1+a3+…+a59)+(a2+a4+…+a60)=30×2+930=990.故选:A.10.若数列{a n}是公差为2的等差数列,则数列是()A.公比为4的等比数列B.公比为2的等比数列C.公比为的等比数列D.公比为的等比数列答案:A解析:解:∵数列{a n}是公差为2的等差数列∴a n=a1+2(n-1)∴∴数列是公比为4的等比数列故选A11.在数列{a n}中,a1=0,a n=4a n-1+3,则此数列的第5项是()A.252B.255C.215D.522答案:B解析:解:由a n=4a n-1+3可得a n+1=4a n-1+4=4(a n-1+1),故可得=4,由题意可得a1+1=1即数列{a n+1}为首项为1,公比为4的等比数列,故可得a5+1=44=256,故a5=255故选B12.数列{a n}、{b n}满足a n•b n=1,a n=n2+3n+2,则{b n}的前10项之和等于()A.B.C.D.答案:B解析:解:∵a n•b n=1∴b n==∴s10==(-)+=-=故选项为B.13.等比数列{a n}中,a1+a2=8,a3-a1=16,则a3等于()A.20B.18C.10D.8答案:B解析:解:设等比数列{a n}的公比为q,∵a1+a2=8,a3-a1=16,∴,解得,∴=2×32=18.故选:B.14.已知在等比数列{a n}中,S n为其前n项和,且a4=2S3+3,a5=2S4+3,则此数列的公比q为()A.2B.C.3D.答案:C解析:解:∵a4=2S3+3,a5=2S4+3,即2S4=a5-3,2S3=a4-3∴2S4-2S3=a5-3-(a4-3)=a5-a4=2a4,即3a4=a5∴3a4=a4q解得q=3,故选C15.数列{a n}的通项,则数列{a n}中的最大项是()A.第9项B.第8项和第9项C.第10项D.第9项和第10项答案:D解析:解:由题意得=,∵n是正整数,∴=当且仅当时取等号,此时,∵当n=9时,=19;当n=9时,=19,则当n=9或10时,取到最小值是19,而取到最大值.故选D.二.填空题(共__小题)16.已知等差数列{a n},有a1+a2+a3=8,a4+a5+a6=-4,则a13+a14+a15=______.答案:-40解析:解:设等差数列{a n}的公差为d,∵a1+a2+a3=8,a4+a5+a6=-4,∵a4+a5+a6=(a1+3d)+(a2+3d)+(a3+3d)=a1+a2+a3+9d,∴-4=8+9d,解得d=-,∴a13+a14+a15=a1+a2+a3+36d=8-×36=-40,故答案为:-4017.在等差数列{a n}中,a3+a5+a7+a9+a11=20,则a1+a13=______.答案:8解析:解:由等差数列的性质可得a3+a5+a7+a9+a11=(a3+a11)+a7+(a5+a9)=2a7+a7+2a7=5a7=20∴a7=4∴a1+a13=2a7=8故答案为:818.(2015秋•岳阳校级月考)数列{a n}的通项公式为a n=2n+2n-1,则数列a n的前n项和为______.答案:2n+n2-1解析:解:数列a n的前n项和S n=(2+22+23+…+2n)+[1+3+5+…+(2n-1)]=+=2n-1+n2.故答案为:2n-1+n2.19.数列{a n}中,a1=1,a n+1=2a n+1,则通项a n=______.答案:2n-1解析:解:由题可得,a n+1+1=2(a n+1),则=2,又a1=1,则a1+1=2,所以数列{a n+1}是以2为首项、公比的等比数列,所以a n+1=2•2n-1=2n,则a n=2n-1.故答案为:2n-1.20.数列{a n}是公差不为0的等差数列,且a2+a6=a8,则=______.答案:3解析:解:设等差数列{a n}的首项为a1,公差为d,由a2+a6=a8,得a1+d+a1+5d=a1+7d,即a1=d,所以==.故答案为3.21.已知数列{a n},a n+1=2a n+1,且a1=1,则a10=______.答案:1023解析:解:由题意,两边同加1得:a n+1+1=2(a n+1),∵a1+1=2∴{a n+1}是以2为首项,以2为等比数列∴a n+1=2•2n-1=2n∴a n=2n-1∴a10=1024-1=1023.故答案为:1023.22.设正项等比数列{an}的公比为q,且,则公比q=______.答案:解析:解:由题意知得∴6q2-q-1=0∴q=或q=-(与正项等比数列矛盾,舍去).故答案为:23.已知数列{a n}满足a1=3,a n+1=2a n+1,则数列{a n}的通项公式a n=______.答案:2n+1-1解析:解:由题意知a n+1=2a n+1,则a n+1+1=2a n+1+1=2(a n+1)∴=2,且a1+1=4,∴数列{a n+1}是以4为首项,以2为公比的等比数列.则有a n+1=4×2n-1=2n+1,∴a n=2n+1-1.24.数列{a n}为等差数列,已知a3+2a8+a9=20,则a7______.答案:=5解析:解:等差数列{a n}中,∵a3+2a8+a9=20,∴(a1+2d)+2(a1+7d)+(a1+8d)=4a1+24d=4(a1+6d)=4a7=20,∴a7=5.故答案为:5.25.设数列{a n}为正项等比数列,且a n+2=a n+1+a n,则其公比q=______.答案:解析:解:由题设条件知a1+a1q=a1q2,∵a1>0,∴q2-q-1=0解得,∵数列{a n}为正项等比数列,∴.故答案:.三.简答题(共__小题)26.已知等差数列{a n},前n项和为S n=n2+Bn,a7=14.(1)求B、a n;(2)设c n=n•,求T n=c1+c2+…+c n.答案:解:(1)∵a7=14.即a7=S7-S6=72+7B-62-6B=14.解得B=1,当n=1时,a1=S1=2;当n≥2时,a n=S n-S n-1=n2+n-(n-1)2-(n-1)=2n.n=1时也适合∴a n=2n(2)由(1)c n=n•=n•4n,T n=c1+c2+…+c n.=1•41+2•42+3•43+…n•4n①4T n=1•42+2•43+3•44+…(n-1)•4n+n•4n+1,②①-②得-3T n=41+42+43+…4n-n•4n+1=-n•4n+1=•4n+1∴T n=•4n+1解析:解:(1)∵a7=14.即a7=S7-S6=72+7B-62-6B=14.解得B=1,当n=1时,a1=S1=2;当n≥2时,a n=S n-S n-1=n2+n-(n-1)2-(n-1)=2n.n=1时也适合∴a n=2n(2)由(1)c n=n•=n•4n,T n=c1+c2+…+c n.=1•41+2•42+3•43+…n•4n①4T n=1•42+2•43+3•44+…(n-1)•4n+n•4n+1,②①-②得-3T n=41+42+43+…4n-n•4n+1=-n•4n+1=•4n+1∴T n=•4n+127.已知等差数列{a n}满足:a5=11,a2+a6=18(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若b n=a n+3n,求数列{b n}的前n项和S n.答案:解:(Ⅰ)设等差数列{a n}的公差为d,∵a5=11,a2+a6=18,∴,解得a1=3,d=2.∴a1=2n+1.(Ⅱ)由(I)可得:b n=2n+1+3n.∴S n=[3+5+…+(2n+1)]+(3+32+…+3n)=+=n2+2n+-.解析:解:(Ⅰ)设等差数列{a n}的公差为d,∵a5=11,a2+a6=18,∴,解得a1=3,d=2.∴a1=2n+1.(Ⅱ)由(I)可得:b n=2n+1+3n.∴S n=[3+5+…+(2n+1)]+(3+32+…+3n)=+=n2+2n+-.28.已知数列{a n}是公差不为0的等差数列,a1=2,且a2,a3,a4+1成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=,求数列{b n}的前n项和S n.答案:解:(Ⅰ)设数列{a n}的公差为d,由a1=2和a2,a3,a4+1成等比数列,得(2+2d)2-(2+d)(3+3d),解得d=2,或d=-1,当d=-1时,a3=0,与a2,a3,a4+1成等比数列矛盾,舍去.∴d=2,∴a n=a1+(n-1)d=2+2(n-1)=2n.即数列{a n}的通项公式a n=2n;(Ⅱ)由a n=2n,得b n==,∴S n=b1+b2+b3+…+b n==.解析:解:(Ⅰ)设数列{a n}的公差为d,由a1=2和a2,a3,a4+1成等比数列,得(2+2d)2-(2+d)(3+3d),解得d=2,或d=-1,当d=-1时,a3=0,与a2,a3,a4+1成等比数列矛盾,舍去.∴d=2,∴a n=a1+(n-1)d=2+2(n-1)=2n.即数列{a n}的通项公式a n=2n;(Ⅱ)由a n=2n,得b n==,∴S n=b1+b2+b3+…+b n==.29.已知数列{a n}满足.(1)求a2,a3,a4的值;(2)求证:数列{a n-2}是等比数列;(3)求a n,并求{a n}前n项和S n.答案:解:(1)∵数列{a n}满足,∴.…(3分)(2)∵,又a1-2=-1,∴数列{a n-2}是以-1为首项,为公比的等比数列.…(7分)(注:文字叙述不全扣1分)(3)由(2)得,…(9分)∴.…(12分)解析:解:(1)∵数列{a n}满足,∴.…(3分)(2)∵,又a1-2=-1,∴数列{a n-2}是以-1为首项,为公比的等比数列.…(7分)(注:文字叙述不全扣1分)(3)由(2)得,…(9分)∴.…(12分)30.在数列{a n}中,a1=16,数列{b n}是公差为-1的等差数列,且b n=log2a n(Ⅰ)求数列{a n}和{b n}的通项公式;(Ⅱ)在数列{b n}中,若存在正整数p,q使b p=q,b q=p(p>q),求p,q得值;(Ⅲ)若记c n=a n•b n,求数列{c n}的前n项的和S n.答案:解:(Ⅰ)数列{a n}中,a1=16,数列{b n}是公差为-1的等差数列,且b n=log2a n;∴b n+1=log2a n+1,∴b n+1-b n=log2a n+1-log2a n=log2=-1;∴=,∴{a n}是等比数列,通项公式为a n=16×=;∴{b n}的通项公式b n=log2a n=log2=5-n;(Ⅱ)数列{b n}中,∵b n=5-n,假设存在正整数p,q使b p=q,b q=p(p>q),则,解得,或;(Ⅲ)∵a n=,b n=5-n,∴c n=a n•b n=(5-n)×;∴{c n}的前n项和S n=4×+3×+2×+…+[5-(n-1)]×+(5-n)×①,∴s n=4×+3×+2×+…+[5-(n-1)]×+(5-n)×②;①-②得:s n=4×----…--(5-n)×=64--(5-n)×=48+(n-3)×;∴s n=96+(n-3)×.解析:解:(Ⅰ)数列{a n}中,a1=16,数列{b n}是公差为-1的等差数列,且b n=log2a n;∴b n+1=log2a n+1,∴b n+1-b n=log2a n+1-log2a n=log2=-1;∴=,∴{a n}是等比数列,通项公式为a n=16×=;∴{b n}的通项公式b n=log2a n=log2=5-n;(Ⅱ)数列{b n}中,∵b n=5-n,假设存在正整数p,q使b p=q,b q=p(p>q),则,解得,或;(Ⅲ)∵a n=,b n=5-n,∴c n=a n•b n=(5-n)×;∴{c n}的前n项和S n=4×+3×+2×+…+[5-(n-1)]×+(5-n)×①,∴s n=4×+3×+2×+…+[5-(n-1)]×+(5-n)×②;①-②得:s n=4×----…--(5-n)×=64--(5-n)×=48+(n-3)×;∴s n=96+(n-3)×.。
高中数学竞赛00试题教师版——数列
高中数学比赛( 00-06) ——— 数列1. ( 00 全国) 定正数p,q,a,b,c ,此中 p q ,若 p,a,q 是等比数列, p,b,c,q 是等差数列,一元二次方程 bx 2 2ax+c=0( A )(A) 无 根(B) 有两个相等 根(C)有两个同号相异 根(D) 有两个异号 根2. ( 03 全国) 去正整数数列1,2, 3, ⋯⋯ 中的全部完整平方数,获得一个新数列,个新数列的第2003 是()A . 2046B 2047C . 2048D . 2049解:注意到 452= 2025,462= 2116,∴ 2026=a 2026— 45= a 1981,2115=a 2115—45=a 2070.而且在从第 1981 到第 2070 之 的 90 中没有完整平方数. 又 1981+ 22=2003,∴ a 2003= a 1981+22 = 2026+ 22= 2048.故 (C) .3. ( 04 天津) 已知数列 2004 , 2005 , 1,2004 , 2005 , ⋯ , 个数列的特色是从第二 起,每一 都等于它的前后两 之和, 个数列的前2004 之和 S 2004 等于(A ) 2005(B ) 2004(C ) 12(D ) 0( D)4.( 2006 年江 ) 已知数列a n 的通 公式 a n, a n的最大 是()n 2 4n5A a 1B a 2C a 3D a 45. ( 2006 吉林 ) 于一个有n 的数列 P=(p 1, p 2, ⋯ , p n ),P 的 “蔡 和 ”定 、 s 、⋯s 、的算 均匀 ,此中s+⋯p (1 ≤ k ≤,n)若数列 (p ,p ,⋯ ,p2006)的 “蔡s 1 2nk =p 1+p2k12和 ” 2007,那么数列 (1, p 1, p 2,⋯ , p 2006)的 “蔡 和 ”( )A. 2007B. 2008 n+1C. 2006D. 1004n 。
历年全国高中数学联赛《数列》专题真题汇编
历年全国高中数学联赛《数列 》专题真题汇编1、给定正数p ,q ,a ,b ,c ,其中p ≠q ,若p ,a ,q 是等比数列,p ,b ,c ,q 是等差数列,则一元二次方程bx 2-2ax +c =0 ( A )(A)无实根 (B)有两个相等实根 (C)有两个同号相异实根 (D)有两个异号实根2、删去正整数数列1,2,3,……中的所有完全平方数,得到一个新数列.这个数列的2003项是( )(A) 2046 (B) 2047 (C) 2048 (D) 2049 【解析】C【解析】452=2025,462=2116.在1至2025之间有完全平方数45个,而2026至2115之间没有完全平方数.故1至2025中共有新数列中的2025-45=1980项.还缺2003-1980=23项.由2025+23=2048.知选C .5、已知数列a 0,a 1,a 2,…,a n ,…满足关系式(3-a n +1)(6+a n )=18,且a 0=3,则n∑i=01a i的值是6、将关于x 的多项式2019321)(x x x x x x f +-+-+-=Λ表为关于y 的多项式=)(y g,202019192210y a y a y a y a a +++++Λ其中.4-=x y 则=+++2010a a a Λ .7、已知等差数列{a n }的公差d 不为0,等比数列{b n }的公比q 是小于1的正有理数。
若a 1=d ,b 1=d 2,且321232221b b b a a a ++++是正整数,则q 等于 。
【答案】21【解析】因为22111212121321232221114)2()(q q q b q b b d a d a a b b b a a a ++=++++++=++++,故由已知条件知道:1+q +q 2为m 14,其中m 为正整数。
令m q q 1412=++,则m m m q 4356211144121-+-=-++-=。
数列解答题基础50题(适合学困生,超基础)
1.(1)
(2)
【来源】河南省新未来2023届高三5月联考文科数学试题
【分析】(1)利用递推式得出 是以1为首项,3为公比的等比数列,求出 ,进而求解 即可.
(2)利用错位相减法求解数列前 项和即可.
【详解】(1)由 ,得 ,
又 , 是以1为首项,3为公比的等比数列,
, ,
即数列 的通项公式为 .
(1)求 的通项公式;
(2)求数列 的前 项和 .
12.在数列 中, , , .
(1)设 ,求证:数列 是等比数列;
(2)求数列 的前 项和 .
13.已知数列 的首项为 ,且满足 ,数列 满足 ,且 .
(1)求 , 的通项公式;
(2)设数列 的前n项和为 ,求 .
14.已知数列 是公比为2的等比数列, , , 成等差数列.
38.写出一个分别满足下列条件的数列 的通项公式:
(1)从第2项起,每一项都比它的前一项大2;
(2)各项均不为0,且从第二项起,每一项都是它的前一项的3倍.
39.设等差数列 的前n项和为 .
(1)已知 , ,求 ;
(2)已知 ,公差 ,求 .
40.记 为数列 的前 项和,且 .
(1)求 的通项公式;
(2)设 ,求数列 的前 项和 .
41.已知等差数列 的前三项依次为 ,4, ,前 项和为 ,且 .
(1)求 的通项公式及 的值;
(2)设数列 的通项 ,求证 是等比数列,并求 的前 项和 .
42.已知等比数列 的首项 ,公比 ,在 中每相邻两项之间都插入3个正数,使它们和原数列的数一起构成一个新的等比数列 .
(1)求 的通项公式及前 项和 ;
(2)设 ,求数列 的前 项和 .
高中数学数列试题及答案
高中数学数列试题及答案数列在高中数学的学习中占据着重要的地位,它是数学中最基础、最重要的内容之一。
下面将为大家提供一些高中数学数列的试题及答案,希望能帮助大家更好地理解和掌握数列的概念和应用。
1. 等差数列的试题及答案:试题:已知等差数列的首项为a,公差为d,若前n项和为Sn,则求第n项的表达式。
答案:第n项的表达式为an = a + (n-1)d.2. 等比数列的试题及答案:试题:已知等比数列的首项为a,公比为r,若前n项和为Sn,则求第n项的表达式。
答案:第n项的表达式为an = a * (r^(n-1)).3. 递推公式的试题及答案:试题:已知等差数列的递推关系为an = an-1 + d,其中a1 = a,求第n项的表达式。
答案:第n项的表达式为an = a + (n-1)d.4. 数列求和的试题及答案:试题:已知等差数列的首项为a,公差为d,若前n项和为Sn,则求Sn的表达式。
答案:前n项和的表达式为Sn = (n/2)(2a + (n-1)d).5. 数列相关性质的试题及答案:试题:已知等差数列的首项为a,公差为d,若an和an+1的和为S,则求a1、S和n的关系。
答案:a1 = (2S - n(d+1))/(2n).以上是一些高中数学数列的常见试题及答案,我们可以通过解答这些问题来加深对数列的理解和运用。
希望同学们在复习和应用数列知识时多加练习,提高数学水平。
总结:数列是高中数学中重要的内容,掌握数列的概念、性质和应用是学好高中数学的基础。
在解决数列相关问题时,需要熟练掌握等差数列、等比数列的递归关系、通项公式以及数列求和公式等内容。
通过大量的练习和应用,相信大家一定能够掌握数列的知识,并在数学学习中更上一层楼。
加油!。
高中数学联赛数列基础练习题
高中数学联赛数列基础练习题(考试时间:100分钟) 一、选择题(本题满分36分,每小题6分) 1. (真题汇编9)已知数列{n a }满足110,n a a +==,n N *∈,则( )A.0B.2.(高考分类题解60)已知数列{n a }的前n 项和1111[2()][2(1)()]22n n n s a b n --=---+,n N *∈,其中,a b 是非零常数。
则存在数列{},{}n n x y ,使得:( )A .n n n a x y =+,其中{}n x 为等差数列,{}n y 为等比数列;B .n n n a x y =+,其中{}n x 和{}n y 都为等差数列;C .n n n a x y =⋅,其中{}n x 为等差数列,{}n y 为等比数列;D .n n n a x y =⋅,其中{}n x 和{}n y 都为等差数列 3.(高一希望267)已知数列{n a }满足1112,1n n a a a +==-+,则2006a 等于( )A.32- B.13- C.1 D.24.(高一希望302)等比数列n a 中,11536a =,公比12q =-,用n p 表示数列的前n 项和,则n p 中最大的是( ) A. 9p B. 10p C. 11p D. 11p5.(2003.1.43)数列1,2,2,3,3,3,4,4,4,4,5,…的第1000项的值( ) A.8, B.10, C.14, D.166.(2005,7,34)设数列{a n }:01212,16,1663()n n n a a a a a n N ++===-∈,则2005a 被64整除的余数为( ) A.0, B.2, C.16, D.48二、填空题(本题满分54分,每小题9分)7.(30)在数列{n a }中,1n n a ca +=(c 为非0常数),其前n 项和3n n s k =+,则13limn nn s k +→∞=⋅ 。
高中数学数列习题带答案
高中数学数列习题带答案高中数学数列习题带答案数列是高中数学中的一个重要概念,它在数学中有着广泛的应用。
数列的学习不仅可以培养学生的逻辑思维能力,还可以提高他们的问题解决能力。
下面,我将为大家带来几道高中数学数列习题,并附上详细的解答过程。
第一题:已知数列{an}的通项公式为an = 3n + 2,求该数列的前n项和Sn。
解答:首先,我们可以通过将an的通项公式代入Sn的公式来求解。
Sn表示数列的前n项和,其公式为Sn = a1 + a2 + ... + an。
将an的通项公式代入Sn的公式可得:Sn = (3×1 + 2) + (3×2 + 2) + ... + (3×n + 2)= 3(1 + 2 + ... + n) + 2n= 3n(n + 1)/2 + 2n= (3n² + 3n + 4n)/2= (3n² + 7n)/2因此,数列{an}的前n项和Sn的通项公式为(3n² + 7n)/2。
第二题:已知数列{bn}的通项公式为bn = 2^n,求该数列的前n项和Sn。
解答:同样地,我们可以通过将bn的通项公式代入Sn的公式来求解。
Sn表示数列的前n项和,其公式为Sn = b1 + b2 + ... + bn。
将bn的通项公式代入Sn 的公式可得:Sn = 2^1 + 2^2 + ... + 2^n这是一个等比数列的前n项和,我们可以利用等比数列的求和公式来求解。
等比数列的前n项和公式为Sn = a1(1 - r^n)/(1 - r),其中a1为首项,r为公比。
将a1 = 2,r = 2代入公式中可得:Sn = 2(1 - 2^n)/(1 - 2)= 2(1 - 2^n)/(-1)= 2(2^n - 1)因此,数列{bn}的前n项和Sn的通项公式为2(2^n - 1)。
第三题:已知数列{cn}的通项公式为cn = n^2 + n,求该数列的前n项和Sn。
高中数学数列基础练习及参考答案
高中数学数列基础练习及参考答案一、填空题1. 已知等差数列的首项为5,公差为3,求第10项。
解:首项 a1 = 5,公差 d = 3,要求第10项 an,可以使用等差数列通项公式 an = a1 + (n-1)d。
将已知的数值代入:an = 5 + (10-1)3 = 5 + 9 × 3 = 5 + 27 = 32。
2. 某等差数列的前四项依次是4, 7, 10, 13,求公差。
解:已知数列的前四项分别为4, 7, 10, 13,设公差为d。
根据等差数列的性质,第2项减去第1项等于公差,第3项减去第2项仍然等于公差,以此类推。
则可得到以下方程组:7 - 4 = d10 - 7 = d13 - 10 = d解以上方程组可得公差 d = 3。
3. 某等差数列的前四项和为30,公差为2,求首项。
解:已知数列的前四项和为30,公差为2,设首项为a1。
根据等差数列的性质,可得到以下方程:(1/2)[2a1 + 3(2a1+2)] = 30化简得:[2an + 3an + 6] = 60整理得:5an = 54则 an = 10.8因为 a1 = 10.8 - 3(2) = 4.8,所以首项为4.8。
二、选择题1. 若等差数列的首项为3,公差为2,求第6项的值。
A. 8B. 11C. 13D. 15解:根据等差数列通项公式,第6项 an = a1 + (n-1)d = 3 + (6-1)2 =3 + 5 × 2 = 3 + 10 = 13。
所以选项 C. 13 正确。
2. 若等差数列的公差为-4,前五项的和为10,求该等差数列的首项。
A. -5B. -4C. -2D. 1解:设等差数列的首项为 a1,则根据等差数列和的公式,前五项和为:S5 = (5/2)[2a1 + 4d] = 10化简得:a1 + 2d = 2代入公差d为-4,得到 a1 - 8 = 2整理得:a1 = 10所以选项 D. 1 正确。
(完整版)高中数学数列练习题及答案解析
高中数学数列练习题及答案解析第二章数列1 .{an} 是首项a1=1,公差为d=3的等差数列,如果an=005,则序号n 等于.A .667B.668C.669D.6702 .在各项都为正数的等比数列{an} 中,首项a1 =3,前三项和为21 ,则a3+a4+a5=.A .33B.7C.84D.1893 .如果a1 ,a2,⋯,a8 为各项都大于零的等差数列,公差d≠ 0,则.A .a1a8> a4a5B.a1a8< a4a5C.a1+a8< a4+a5D.a1a8=a4a54 .已知方程=0 的四个根组成一个首项为|m-n|等于.A .1B.313C.D.8421 的等差数列,则5 .等比数列{an} 中,a2=9,a5=243,则{an} 的前4项和为.A .81B .120C .1D.1926 .若数列{an} 是等差数列,首项a1 > 0,a003+a004> 0,a003· a004< 0,则使前n 项和Sn> 0 成立的最大自然数n 是.A .005B.006C.007D.0087 .已知等差数列{an} 的公差为2,若a1 ,a3,a4 成等比数列, 则a2=.A .-4B.-6C.-8D.-108 .设Sn 是等差数列{an} 的前n 项和,若A .1B.-1 C.2D.1a2?a1 的值是.b2a5S5 =,则9=.a3S599 .已知数列- 1 ,a1 ,a2,- 4 成等差数列,-1,b1,b2,b3,-4成等比数列,则A .11111B.-C.-或D.2222210 .在等差数列{an} 中,a n≠ 0,an- 1 -an+an+1=0,若S2n-1=38,则n=.第 1 页共页A .38B.20 C.10D.9二、填空题11 .设 f = 12?x ,利用课本中推导等差数列前n项和公式的方法,可求得 f + f +⋯+ f +⋯+f + f 的值为12.已知等比数列{an} 中,若a3·a4·a5=8,则a2·a3·a4·a5·a6=.若a1 +a2=324,a3+a4=36,则a5+a6=.若S4=2,S8=6,则a17+a18+a19+a20=.82713 .在和之间插入三个数,使这五个数成等比数列,则插入的三个数的乘积为.314 .在等差数列{an} 中,3+2=24,则此数列前13 项之和为.15 .在等差数列{an} 中,a5=3,a6=-2,则a4+a5+⋯+a10=.16 .设平面内有n 条直线,其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用 f 表示这n 条直线交点的个数,则f=;当n> 4时,f =.三、解答题17 .已知数列{an} 的前n 项和Sn=3n2-2n,求证数列{an} 成等差数列.已知第页共页111b?cc?aa?b ,,成等差数列,求证,,也成等差数列. abcabc18 .设{an} 是公比为q 的等比数列,且a1,a3,a2 成等差数列.求q 的值;设{bn} 是以 2 为首项,q 为公差的等差数列,其前n 项和为Sn,当n≥2时,比较Sn 与bn 的大小,并说明理由.19 .数列{an} 的前n 项和记为Sn,已知a1=1,an+1=求证:数列{20 .已知数列{an} 是首项为a且公比不等于 1 的等比数列,Sn 为其前n 项和,a1 ,2a7,3a4 成等差数列,求证:12S3,S6,S12-S6 成等比数列.第页共页n?2Sn .nSn} 是等比数列.n第二章数列参考答案一、选择题1 .C解析:由题设,代入通项公式an=a1+d,即005=1+3,∴n=699.2 .C解析:本题考查等比数列的相关概念,及其有关计算能力.设等比数列{an} 的公比为q,由题意得a1+a2+a3=21,即a1 =21 ,又a1 =3,∴1+q+q2=7.解得q= 2 或q=-3,∴ a3+a4+a5=a1q2=3× 22× 7=84..B.解析:由a1 +a8=a4+a5,∴排除C.又a1· a8=a1=a12+7a1d,a12+7a1d +12d2> a1· a8.a4· a5==3 .C解析:解法 1 :设a1=中两根之和也为2,∴ a1+a2+a3+a4=1+6d=4,∴ d=∴ 11735,a1=,a4=是一个方程的两个根,a1=,a3=是另一个方程的两个根.44441111 ,a2=+d,a3=+2d,a4=+3d,而方程x2-2x +m=0 中两根之和为2,x2-2x+n=04444715,分别为m或n,1616第页共页∴|m-n|=1 ,故选C.解法2:设方程的四个根为x1 ,x2,x3,x4,且x1 +x2=x3+x4=2,x1·x2=m,x3·x4=n.由等差数列的性质:若?+s=p+q,则a?+as=a p+aq,若设x1 为第一项,x2 必为第四项,则x2=差数列为1357,,,,444715 ,n=,16161 .7,于是可得等4∴ m=∴|m-n|=5 .B解析:∵a2=9,a5=243,a5243=q3==27,a29∴ q=3,a1q=9,a1 =3,3 -35240∴ S4===120. 1 -326 .B解析:解法1:由a003+a004> 0,a003· a004< 0,知a003和a004 两项中有一正数一负数,又a1 > 0,则公差为负数,否则各项总为正数,故a003> a004,即a003> 0,a004< 0.∴ S006=∴ S007=40062=40062> 0,0074007·=·2a004<0,2故006 为Sn> 0 的最大自然数. 选B.解法2:由a1> 0,a003+a004> 0,a003·a004< 0,0 ,a004< 0,∴ S003 为Sn 中的最大值.∵ Sn 是关于n 的二次函数,如草图所示,∴ 003 到对称轴的距离比004 到对称轴的距离小,∴ 4007 在对称轴的右侧.同解法 1 的分析得a003>根据已知条件及图象的对称性可得006 在图象中右侧第页共页零点B的左侧,007,4第二章数列2 .在各项都为正数的等比数列{an} 中,首项a1 =3,前三项和为21 ,则a3+a4+a5=.A .3B.7C.8D.1894 .已知方程=0 的四个根组成一个首项为|m-n|等于.A . 1B . 1 的等差数列,则4C.1D.5 .等比数列{an} 中,a2=9,a5=243,则{an} 的前4项和为.A .81B .120C .1D.1926 .若数列{an} 是等差数列,首项a1 > 0,a003+a004> 0,a003· a004< 0,则使前n 项和Sn> 0 成立的最大自然数n 是.A .00B.00C.00D.0087 .已知等差数列{an} 的公差为2,若a1 ,a3,a4 成等比数列, 则a2=.A .-B.-C.-D.-108 .设S n 是等差数列{an} 的前n 项和,若A . 1B .-1a5S5=,则9=.a3S5C.D. 1a2?a1 的值是.b29 .已知数列-1,a1 ,a2,- 4 成等差数列,-1,b1,b2,b3,- 4 成等比数列,则A . 1B .- 1C .-11 或D. 1二、填空题12 .已知等比数列{an} 中,若a3·a4·a5=8,则a2·a3·a4·a5·a6=.若a1 +a2=324,a3+a4=36,则a5+a6=.若S4=2,S8=6,则a17+a18+a19+a20=.13 .在等差数列{an} 中,3+2=24,则此数列前13 项之和为.14 .在等差数列{an} 中,a5=3,a6=-2,则a4+a5+⋯+a10=.三、解答题15 .已知数列{an} 的前n 项和Sn=3n2-2n,求证数列{an} 成等差数列.已知18 .设{an} 是公比为q? 的等比数列,且a1 ,a3,a2成等差数列.求q 的值;设{bn} 是以 2 为首项,q 为公差的等差数列,其前n 项和为Sn,当n≥2时,比较Sn 与bn 的大小,并说明理由.111b?cc?aa?b ,,成等差数列,求证,,也成等差数列.abcabc19 .数列{an} 的前n 项和记为Sn,已知a1 =1,an+1=求证:数列{n?2Sn .nSn} 是等比数列.n20 .已知数列{an} 是首项为a 且公比不等于1的等比数列,Sn 为其前n 项和,a1 ,2a7,3a4 成等差数列,求证:12S3,S6,S12-S6 成等比数列.第二章数列参考答案一、选择题1 .C解析:由题设,代入通项公式an=a1+d,即005=1+3,∴n=699.2 .C解析:本题考查等比数列的相关概念,及其有关计算能力.设等比数列{an} 的公比为q,由题意得a1+a2+a3=21,即a1=21,又a1 =3,∴1+q+q2=7.解得q= 2 或q=-3,∴ a3+a4+a5=a1q2=3× 22× 7=84.3 .B.解析:由a1 +a8=a4+a5,∴排除C.又a1 · a8=a1 =a12+7a1d,∴ a4· a5==a12+7a1d +12d2> a1· a8.4 .C解析:解法 1 :设a1=两根之和也为2,∴a1+a2+a3+a4=1+6d=4,∴ d=∴1111,a2=+d,a3=+2d,a4=+3d,而方程x2-2x+m=0 中两根之和为2,x2-2x+n =0 中444411735,a1=,a4=是一个方程的两个根,a1 =,a3=是另一个方程的两个根.4444715,分别为m或n,16161 ,故选C.∴|m-n|=解法2:设方程的四个根为x1 ,x2,x3,x4,且x1 +x2=x3+x4=2,x1·x2=m,x3·x4=n.由等差数列的性质:若?+s=p+q,则a?+as=ap +aq,若设x1 为第一项,x2 必为第四项,则x2=数列为7,于是可得等差41357,,,,444715 ,n=,16161 .∴m=∴|m-n|=5 .B解析:∵a2=9,a5=243,a5243=q3==27,a29∴ q=3,a1q=9,a1 =3,3 -35240∴ S4===120.1 -326 .B解析:解法1:由a003+a004> 0,a003· a004< 0,知a003和a004 两项中有一正数一负数,又a1 > 0,则公差为负数,否则各项总为正数,故a003> a004,即a003> 0,a004< 0.∴ S006=∴ S007=40062=40062> 0,0074007·=·2a004<0,2故006 为Sn> 0 的最大自然数. 选B.解法2:由a1> 0,a003+a004> 0,a003· a004< 0,同a004 < 0,∴ S003 为Sn 中的最大值.∵ Sn 是关于n 的二次函数,如草图所示,∴ 003 到对称轴的距离比004 到对称轴的距离小,∴ 4007 在对称轴的右侧.解法 1 的分析得a003> 0,根据已知条件及图象的对称性可得006 在图象中右侧都在其右侧,Sn> 0 的最大自然数是006.7 .B解析:∵{an} 是等差数列,∴a3=a1+4,a4=a1+6,又由a1 ,a3,a4 成等比数列,∴ 2=a1 ,解得a1 =-8,∴ a2=-8+2=-6.8 . A 零点 B 的左侧,007,00899?a5S95 解析:∵9===·= 1 ,∴选A.5?a3S55929 .A解析:设d和q 分别为公差和公比,则-4=-1+3d且-4=q4,∴ d=- 1 ,q2=2,第二章数列1 .{an} 是首项a1=1,公差为d=3的等差数列,如果an=005,则序号n 等于.A .66B.66C.66D.6702 .在各项都为正数的等比数列{an} 中,首项a1 =3,前三项和为21 ,则a3+a4+a5=.A .3B.7C.8D.1893 .如果a1 ,a2,⋯,a8 为各项都大于零的等差数列,公差d≠ 0,则.A .a1a8> a4a B.a1a8< a4a C.a1+a8< a4+aD.a1a8=a4a54 .已知方程=0 的四个根组成一个首项为|m-n|等于.A . 1B . 1 的等差数列,则4C.1D.5 .等比数列{an} 中,a2=9,a5=243,则{an} 的前4项和为.A .81B .120C .1D.1926 .若数列{an} 是等差数列,首项a1 > 0,a003+a004> 0,a003· a004< 0,则使前n项和Sn> 0 成立的最大自然数n 是.A .00B.00C.00D.0087 .已知等差数列{an} 的公差为2,若a1 ,a3,a4 成等比数列, 则a2=.A .-B.-C.-D.-108 .设Sn 是等差数列{an} 的前n 项和,若A . 1B .-1a5S5=,则9=.a3S5C.D. 1a2?a1 的值是.b29 .已知数列-1,a1 ,a2,- 4 成等差数列,-1,b1,b2,b3,- 4 成等比数列,则A . 1B .- 1C .-11 或D. 1210 .在等差数列{an} 中,an≠ 0,an- 1-an+an+1=0,若S2n-1=38,则n=.A .3B.20 C.10 D.9二、填空题第 1 页共页11 .设 f =12x? ,利用课本中推导等差数列前n 项和公式的方法,可求得 f + f +⋯+ f +⋯+f+ f 的值为.12 .已知等比数列{an} 中,若a3·a4·a5=8,则a2·a3·a4·a5·a6=.若a1 +a2=324,a3+a4=36,则a5+a6=.若S4=2,S8=6,则a17+a18+a19+a20=.82713 .在和之间插入三个数,使这五个数成等比数列,则插入的三个数的乘积为.314 .在等差数列{an} 中,3+2=24,则此数列前13 项之和为.15 .在等差数列{an} 中,a5=3,a6=-2,则a4+a5+⋯+a10=.16 .设平面内有n 条直线,其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用 f 表示这n 条直线交点的个数,则f=;当n> 4时,f=.三、解答题17 .已知数列{an} 的前n 项和S n=3n2-2n,求证数列{an} 成等差数列.已知18 .设{an} 是公比为q? 的等比数列,且a1 ,a3,a2成等差数列.求q 的值;设{bn} 是以 2 为首项,q 为公差的等差数列,其前n 项和为Sn,当n≥2 时,比较Sn 与bn 的大小,并说明理由.第页共页111b?cc?aa?b ,,成等差数列,求证,,也成等差数列. abcabc19 .数列{an} 的前n 项和记为Sn,已知a1 =1,an+1=求证:数列{20 .已知数列{an} 是首项为 a 且公比不等于1 的等比数列,Sn 为其前n 项和,a1 ,2a7,3a4 成等差数列,求证:12S3,S6,S12-S6 成等比数列.n?2Sn .nSn} 是等比数列.n第二章数列第页共页参考答案一、选择题1 .C解析:由题设,代入通项公式an=a1+d,即005=1+3,∴n=699.2 .C解析:本题考查等比数列的相关概念,及其有关计算能力.设等比数列{an} 的公比为q,由题意得a1+a2+a3=21,即a1 =21 ,又a1 =3,∴1+q+q2=7.解得q= 2 或q=-3,∴ a3+a4+a5=a1q2=3× 22× 7=84.3 .B.解析:由a1 +a8=a4+a5,∴排除C.又a1· a8=a1=a12+7a1d,∴ a4· a5==a12+7a1d +12d2> a1· a8.4 .C解析:解法 1 :设a1=两根之和也为2,∴a1+a2+a3+a4=1+6d=4,∴ d=∴1111,a2=+d,a3=+2d,a4=+3d,而方程x2-2x+m=0 中两根之和为2,x2-2x +n=0中444411735,a1=,a4=是一个方程的两个根,a1 =,a3=是另一个方程的两个根.4444715,分别为m或n,16161 ,故选C.∴|m-n|=解法2:设方程的四个根为x1 ,x2,x3,x4,且x1 +x2=x3+x4=2,x1· x2=m,x3· x4=n.由等差数列的性质:若?+s=p+q,则a?+as=ap+aq,若设x1 为第一项,x2 必为第四项,则x2=数列为7,于是可得等差41357,,,,444715 ,n=,1616第页共页∴ m=∴|m-n|=5 . B 1.解析:∵a2=9,a5=243,a5243=q3==27,a29∴ q=3,a1q=9,a1 =3,3 -35240∴ S4===120.1 -326 .B解析:解法1:由a003+a004> 0,a003· a004< 0,知a003和a004 两项中有一正数一负数,又a1 > 0,则公差为负数,否则各项总为正数,故a003> a004,即a003> 0,a004< 0.∴ S006=∴ S007=40062=40062> 0,0074007·=·2a004<0,2故006 为Sn> 0 的最大自然数. 选B.解法2:由a1> 0,a003+a004> 0,a003· a004< 0,同a004 < 0,∴ S003 为Sn 中的最大值.∵ Sn 是关于n 的二次函数,如草图所示,∴ 003 到对称轴的距离比004 到对称轴的距离小,∴ 4007 在对称轴的右侧.解法 1 的分析得a003> 0,根据已知条件及图象的对称性可得006 在图象中右侧都在其右侧,Sn> 0 的最大自然数是006.7 .B解析:∵{an} 是等差数列,∴a3=a1+4,a4=a1+6,又由a1 ,a3,a4 成等比数列,∴ 2=a1 ,解得a1 =-8,∴ a2=-8+2=-6.8 .A第页共页零点B的左侧,007,008。
高中数学数列复习 题集附答案
高中数学数列复习题集附答案高中数学数列复习题集附答案一、选择题1. 设数列 {an} 的通项公式为 an = 3n + 2,则 {an} 的首项是:A. 1B. 2C. 3D. 4答案:B2. 数列 {an} 的通项公式为 an = 2^n,则 {an} 的前5项分别是:A. 1, 2, 3, 4, 5B. 2, 4, 8, 16, 32C. 1, 4, 9, 16, 25D. 2, 3, 4, 5, 6答案:B3. 已知数列 {an} 的首项是 a1 = -5,公差是 d = 3,求 {an} 的通项公式。
A. an = -5 + 3nB. an = -5 - 3nC. an = -5n + 3D. an = -5 - 3^n答案:A二、填空题1. 求等差数列 {an} 的前5项和,已知首项 a1 = 3,公差 d = 4。
答案:S5 = 752. 求等差数列 {an} 的第10项,已知首项 a1 = 2,公差 d = -3。
答案:a10 = -253. 若等差数列 {an} 的第7项是 20,末项是 74,求首项和公差。
答案:a1 = -16,d = 6三、解答题1. 求等差数列 {an} 的通项公式,已知前三项分别是:a1 = 3,a2 = 7,a3 = 11。
解答:设通项公式为 an = a + (n-1)d,代入前三项得到以下等式:3 = a + 0d7 = a + 1d11 = a + 2d解上述方程组可得,a = 3,d = 4。
因此,该数列的通项公式为an = 3 + 4(n-1)。
2. 若等差数列 {bn} 的前5项的和为 40,已知首项 b1 = 1,公差 d = 2,求数列的前n项和 Sn。
解答:首先确定数列的通项公式为 bn = 1 + (n-1)2 = 2n-1。
因此,前n项和 Sn = (b1 + bn) * n / 2 = (1 + (2n-1)) * n / 2 = n^2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学联赛数列基础练习题
(考试时间:100分钟) 一、选择题(本题满分36分,每小题6分)
1.设函数2()(1),([1,3],)f x x n x n N *=-+∈-∈的最小值为n a ,最大值为n b ,记22n n n c b a =-,则数列{n a } ( D )
A .是公差不为零的等差数列;B.是公比不为1的等比数列; C.是常数列; D.不是等差数列也不是等比数列 2.等差数列{}n a 中,2n ≥,公差0d <,前n 项和是n S .则有(C). (A)1n S na ≥ (B)n n S na ≤ (C)1n n na S na << (D)1n n na S na <<
3.(2004,3,37)22
11(1)(1)
23-
- (21)
(1)2003-的值是( ) A .20054006 B .10012003 C .10022003 D .20074006
4.(高一希望311)自然数k 的各位数字和的平方记为1()f k ,且
11()[()]n n f k f f k -=,则(11)n f ,(n N *∈)的值域为( )
A .N * B. 5 C.{4,16,49,169,256} D.{2,4,7,13,16} 5.(高考分类题解60)若{n a }是等差数列,首项
11116
,,55n n n a a a n N *++=+=∈,则12()lim n a a →∞
++n …+a =( )
A .25 B.27 C.14 D.
425
6.(2005,11,41)数列{n a }的前n 项的和n s ,若1n a =+,则满足条件的数列有( )
A .1个 B.2个 C.多于2的有限个 D.无限个
二、填空题(本题满分54分,每小题9分)
7.(高二希望115)前n 个正整数中,所有不连续的相异两数之积的和是
8.(高考分类题解60)在等差数列{n a }中,若100a =,则有等式
1212a a a a ++=++n …+a …19n a -+(19,n n N *<∈)成立,类比上述性质,相
应地,在等比数列{n b }中,若91b =,则有等式 成立。
9.(16届希望37)设0t >,数列{n a }是首项为t ,公差为2t 的等差数列,其前n 项和为,n s 使对任意n N *∈
,n
n
S a >t 的取值范围是
10.(16届希望38)数列23n n n a =+,1n n n b a ma +=-,则数列{n b }是等比数列的充要条件是
11.(高二希望153)在数列{81,n n N *+∈}的前m 项中,恰有十项的值是平方数,则m 的最小值是
12.(1999,全国)已知正整数n 不超过2000,且能表示成不少于60个连续整数之和,那么这样n 的个数是 三、解答题(本题满分60分,每小题20分)
13.(29)已知函数3()3f x x x =-在(-1,0)上是减函数,定义数列{n a }:
111
(),102
n n a f a a +=-
-<<,试比较1n a +与n a 的大小。
14.(先锋94)设135n a ⋅⋅=⋅⋅…(2n-1)
246?2n ,n N *∈
,求证:0n a <<
15.(高一华90)正数数列{n a }:21
123320061,997,n n n n
a a a a a a a ++++====,
证明:所有n a 均为整数。