PID控制电机实验报告范本
pid控制实验报告
pid控制实验报告实验报告:PID控制一、实验目的通过本实验,我们的目的是深入了解PID(比例、积分、微分)控制算法,理解其在实际控制中的应用,掌握PID参数的调整方法。
二、实验原理PID控制是依据被控对象的误差(偏差)与时间的积分、微分关系来确定控制器输出的控制方式。
具体来说,PID控制器输出的控制量=Kp*(当前误差+上次误差*dt+所有误差的积分),其中Kp、Ki和Kd分别为比例系数、积分系数和微分系数。
它通过对偏差的补偿,使得被控对象能够在振荡绕过设定值、稳定达到设定值的过程中快速、准确定位设定值。
三、实验设备本实验采用的设备为PID控制器、液晶显示屏、电压控制电机和传感器。
四、实验步骤1. 首先,我们需要将系统设为手动调节状态,关闭控制器。
2. 然后,我们将传感器和记录仪建立起连接。
3. 将系统调整为自动控制状态,让控制器自行计算控制量、作出相应控制。
4. 调整PID控制器的Kp系数,以调整控制精度。
5. 调整PID控制器的Ki系数,以调整控制的灵敏度。
6. 调整PID控制器的Kd系数,以调整控制器的稳定性。
7. 最终完成调整后,我们可以用振荡器数据展示出来实验结果。
五、实验结果在完成调整后,我们得出的控制器输出的控制量稳定在理论值附近,在控制精度与控制的灵敏度达到较好平衡的情况下,控制器的稳定性得到了保证。
实验结果具有较好指导意义。
六、结论本实验通过掌握PID控制算法的实际应用方法,以及对参数的合理设置为基础,完成了对PID控制器各参数调整技巧的掌握,极大地丰富了实验基础技能。
同时,实验结果为之后的实际应用提供了参考,有着极其重要的现实意义。
《自动控制原理》自动控制PID实验报告
《自动控制原理》自动控制PID实验报告课程名称自动控制原理实验类型:实验项目名称:自动控制PID一、实验目的和要求1、学习并掌握利用MATLAB 编程平台进行控制系统复数域和频率域仿真的方法。
2、通过仿真实验研究并总结PID 控制规律及参数对系统特性影响的规律。
3、实验研究并总结PID 控制规律及参数对系统根轨迹、频率特性影响的规律,并总结系统特定性能指标下根据根轨迹图、频率响应图选择PID 控制规律和参数的规则。
二、实验内容和原理一)任务设计如图所示系统,进行实验及仿真程序,研究在控制器分别采用比例(P)、比例积分(PI)、比例微分(PD)及比例积分微分(PID)控制规律和控制器参数(Kp、Ki、Kd)不同取值时,控制系统根轨迹和阶跃响应的变化,总结pid 控制规律及参数变化对系统性能、系统根轨迹、系统阶跃响应影响的规律。
具体实验容如下:1、比例(P)控制,设计参数Kp 使得系统处于过阻尼、临界阻尼、欠阻尼三种状态,并在根轨迹图上选择三种阻尼情况的Kp 值,同时绘制对应的阶跃响应曲线,确定三种情况下系统性能指标随参数Kp 的变化情况。
总结比例(P)控制的规律。
2、比例积分(PI)控制,设计参数Kp、Ki 使得由控制器引入的开环零点分别处于:1)被控对象两个极点的左侧;2)被控对象两个极点之间;3)被控对象两个极点的右侧(不进入右半平面)。
分别绘制三种情况下的根轨迹图,在根轨迹图上确定主导极点及控制器的相应参数;通过绘制对应的系统阶跃响应曲线,确定三种情况下系统性能指标随参数Kp 和Ki 的变化情况。
总结比例积分(PI)控制的规律。
3、比例微分(PD)控制,设计参数Kp、Kd 使得由控制器引入的开环零点分别处于:1)被控对象两个极点的左侧;2)被控对象两个极点之间;66 3)被控对象两个极点的右侧(不进入右半平面)。
分别绘制三种情况下的根轨迹图,在根轨迹图上确定控制器的相应参数;通过绘制对应的系统阶跃响应曲线,确定三种情况下系统性能指标随参数Kp 和Kd 的变化情况。
PID仿真实验报告
PID仿真实验报告PID控制算法是一种重要的控制算法,被广泛应用于工业控制系统中。
本文通过仿真实验的方式,对PID控制算法进行了验证和分析。
一、实验目的1.了解PID控制算法的基本原理和调节方法;2. 掌握MATLAB/Simulink软件的使用,进行PID控制实验仿真;3.验证PID控制算法的稳定性和性能。
二、实验内容本次实验选择一个常见的控制系统模型,以电感驱动的直流电机控制系统为例。
通过PID控制算法对该系统进行控制,观察系统的响应特性。
三、实验步骤1.搭建电感驱动的直流电机控制系统模型,包括电感、直流电机、PID控制器等组成部分;2.设置PID控制器的参数,包括比例增益Kp、积分时间Ti、微分时间Td等;3.进行仿真实验,输入适当的控制信号,观察系统的响应曲线;4.调节PID控制器的参数,尝试不同的调节方法,观察响应曲线的变化,寻找合适的参数。
四、实验结果与分析1.首先,设置PID控制器的参数为Kp=1,Ti=1,Td=0,进行仿真实验。
观察到系统的响应曲线,并记录与分析曲线的特点;2.其次,调整PID控制器的参数,如增大比例增益Kp,观察系统的响应曲线的变化;3.最后,调整积分时间Ti和微分时间Td,观察系统的响应曲线的变化。
通过实验结果与分析,可以得到以下结论:1.PID控制算法能够有效地控制系统,并实现稳定的控制;2.比例增益Kp对系统的超调量有较大的影响,增大Kp可以减小超调量,但也会增加系统的稳定时间;3.积分时间Ti对系统的稳态误差有较大的影响,增大Ti可以减小稳态误差,但也会增加系统的超调量;4.微分时间Td对系统的响应速度有较大的影响,增大Td可以增加系统的响应速度,但可能会引起系统的振荡。
五、实验总结通过本次实验,我深入理解了PID控制算法的原理和调节方法。
同时,通过对实验结果的分析,我也了解了PID控制算法的稳定性和性能。
在实际工程应用中,需要根据具体的控制对象,合理选择PID控制器的参数,并进行调节优化,以获得理想的控制效果。
PID控制电机实验报告实验报告
PID控制电机实验报告实验目的本次实验的目的是掌握PID控制器的工作原理和应用,了解PID控制的基本概念和设计方法,并通过实验实现对电机的控制。
实验步骤材料准备本次实验所需要的材料如下:•电脑•Arduino开发板•直流电机•按钮•电位器•面包板•杜邦线•电源线硬件连接首先将直流电机连接到Arduino开发板的PWM引脚上,同时将按钮和电位器连接到开发板的数字引脚上,如下图所示:image1image1软件实现打开Arduino IDE,新建一个工程,然后编写如下代码:// 定义控制引脚和输入引脚const int CONTROL_PIN = 9;const int INPUT_PIN = A0;const int BUTTON_PIN = 2;// 设置时间间隔const int INTERVAL = 100;// 设置p、i、d系数和初始误差const float Kp = 0.8;const float Ki = 0.1;const float Kd = 0.1;const float TARGET = 500;float error = 0;float lastError = 0;float integral = 0;// 定义按钮状态和电位器值int buttonState = HIGH;int potValue = 0;// 初始化控制引脚和按钮引脚void setup() {pinMode(CONTROL_PIN, OUTPUT);pinMode(BUTTON_PIN, INPUT);digitalWrite(BUTTON_PIN, HIGH);}// 主循环void loop() {// 获取按钮状态和电位器值buttonState = digitalRead(BUTTON_PIN);potValue = analogRead(INPUT_PIN);// 判断按钮状态if (buttonState == LOW) {// 按下按钮时,执行pid控制error = TARGET - potValue;integral += error;float derivative = error - lastError;lastError = error;float output = Kp * error + Ki * integral + Kd * derivative;if (output > 255) {output = 255;}if (output < -255) {output = -255;}analogWrite(CONTROL_PIN, abs(output));} else {// 未按下按钮时,关闭电机analogWrite(CONTROL_PIN, 0);}// 等待一段时间delay(INTERVAL);}以上代码实现了一个PID控制器,当按下按钮时,控制器根据电位器的值计算出控制信号,并控制电机的转速,使电位器的值逐渐趋近于目标值,当释放按钮时,电机停止转动。
pid控制实验报告
pid控制实验报告PID控制实验报告引言PID控制是一种常用的控制算法,广泛应用于工业自动化系统中。
本实验旨在通过实际的PID控制实验,验证PID控制算法的效果和优势,并对PID控制的原理、参数调节方法等进行探讨和分析。
一、实验目的本次实验的目的是通过一个简单的温度控制系统,使用PID控制算法来实现温度的稳定控制。
通过实验,验证PID控制算法的有效性和优越性,掌握PID控制的基本原理和参数调节方法。
二、实验设备和原理本实验所用的设备为一个温度控制系统,包括一个温度传感器、一个加热器和一个控制器。
温度传感器用于实时检测环境温度,加热器用于调节环境温度,控制器用于实现PID控制算法。
PID控制算法是基于误差的反馈控制算法,其主要原理是通过不断地调整控制器的输出信号,使得系统的实际输出与期望输出之间的误差最小化。
PID控制算法由比例控制、积分控制和微分控制三部分组成。
比例控制通过比例系数调整控制器的输出信号与误差的线性关系;积分控制通过积分系数调整控制器的输出信号与误差的积分关系;微分控制通过微分系数调整控制器的输出信号与误差的微分关系。
通过合理调节这三个系数,可以实现对系统的精确控制。
三、实验步骤1. 搭建温度控制系统:将温度传感器、加热器和控制器连接在一起,确保信号传输的正常。
2. 设置期望温度:根据实验要求,设置一个期望的温度作为控制目标。
3. 调节PID参数:根据实验的具体要求和系统的特性,调节PID控制器的比例系数、积分系数和微分系数,使得系统的响应速度和稳定性达到最佳状态。
4. 开始实验:启动温度控制系统,观察实际温度与期望温度的变化情况,记录实验数据。
5. 数据分析:根据实验数据,分析PID控制算法的效果和优势,总结实验结果。
四、实验结果与讨论通过实验,我们得到了一系列的实验数据。
根据这些数据,我们可以进行进一步的分析和讨论。
首先,我们观察到在PID控制下,温度的稳定性得到了显著的提高。
PID自控原理实验报告范文pid调节实验报告范文
PID自控原理实验报告范文pid调节实验报告范文自动控制原理实验——第七次实验实验目的了解数字PID控制的特点,控制方式。
理解和掌握连续控制系统的PID控制算法表达式。
了解和掌握用试验箱进行数字PID控制过程。
观察和分析在标PID控制系统中,PID参数对系统性能的影响。
实验内容1、数字PID控制一个控制系统中采用比例积分和微分控制方式控制,称之为PID控制。
数字PID控制器原理简单,使用方便适应性强,可用于多种工业控制,鲁棒性强。
可以用硬件实现,也可以用软件实现,也可以用如见硬件结合的形式实现。
PID控制常见的是一种负反馈控制,在反馈控制系统中,自动调节器和被控对象构成一个闭合回路。
模拟PID控制框图如下:U(s)U(s)E(s)KpKiKd输出传递函数形式:其中Kp为调节器的比例系数,Ti为调节器的积分常数,Td是调节器的微分常数。
2、被控对象数学模型的建立1)建立模型结构在工程中遇到的实际对象大多可以表示为带时延的一阶或二价惯性环节,故PID整定的方法多从这样的系统入手,考虑有时延的单容被控过程,其传递函数为:这样的有时延的单容被控过程可以用两个惯性环节串联组成的自平衡双容被控过程来近似,本实验采用该方式作为实验被控对象,如图3-127所示。
2)被控对象参数的确认对于这种用两个惯性环节串联组成的自平衡双容被控过程的被控对象,在工程中普遍采用单位阶跃输入实验辨识的方法确认和τ,以达到转换成有时延的单容被控过程的目的。
单位阶跃输入实验辨识的原理方框如图3-127所示。
对于不同的T1、T2和K值,得到其单位阶跃输入响应曲线后,由和得到和,再利用拉氏反变换公式得到To=To=t2-t1Ln1-Yoτ=t2Ln1-Yot13、采样周期的选择采样周期选择0.05s。
4、数字PID调节器控制参数的工程整定方法虽然PID调节可全面、综合的考虑系统的各项性能,但在工程实际中,考虑到工程造价和调节器的易于实现,长采用PID三个参数来对系统进行校正。
PID控制电机实验报告
PID控制电机实验报告【摘要】本实验通过PID控制电机,对系统进行控制,实现系统的速度调节和位置调节。
首先通过对系统的建模和参数辨识,得到了系统的数学模型和参数,并根据模型设计了合适的PID控制器。
然后通过实验验证了设计的控制器的有效性,实现了对电机速度和位置的调节。
实验结果表明,PID控制器对于系统的速度调节和位置调节具有良好的性能,能够实现较好的控制效果。
【关键词】PID控制;电机;速度调节;位置调节一、实验目的1.通过PID控制器实现对电机的速度调节和位置调节;2.验证PID控制器的有效性和性能。
二、实验原理PID控制器是一种经典的控制策略,由比例(P)、积分(I)和微分(D)三个部分组成。
PID控制器的数学表达式为输出信号u(t) = Kp*e(t) + Ki*∫e(t)dt + Kd*de(t)/dt,其中e(t)为控制偏差,Kp、Ki和Kd分别为比例、积分和微分系数。
在电机控制中,可以将电机看作一个被控对象,输入电机的电压u(t)通过电机的转矩转化为输出角速度ω(t)。
通过对电机的数学建模,可以得到电机的传递函数为G(s)=k/(Ts+1),其中k为系统增益,T为系统时间常数。
根据系统传递函数的性质,可以得到电机系统的速度和位置闭环模型为Kv(s)=1/(Ts+1)和Kp(s)=Ks/(Ts+1),分别对应于速度和位置的调节。
三、实验装置1.PC机;2.PID控制器板卡;3.直流电机;4.电压放大电路;5.角度传感器。
四、实验步骤1.建立电机的数学模型,并利用实验数据辨识系统的参数;2.根据模型设计PID控制器的参数;3.连接实验装置,将PC机与PID控制器板卡连接,通过板卡控制电机的电压,实现速度和位置调节;4.设置不同的目标速度和目标位置,进行实验并记录实验数据;5.分析实验数据,评价控制器的性能和有效性。
五、实验结果与分析通过实验得到了电机系统的数学模型为G(s)=2/(s+1)和Ks=10/(s+1),并根据模型参数设计了PID控制器的参数为Kp=1,Ki=0.01和Kd=0.5、实验中设置了不同的目标速度和目标位置,通过对比实际速度和位置与目标值的差异,评价了控制器的性能。
pid控制实验报告[最新版]
pid控制实验报告pid控制实验报告篇一:PID控制实验报告实验二数字PID控制计算机控制是一种采样控制,它只能根据采样时刻的偏差值计算控制量。
因此连续PID控制算法不能直接使用,需要采用离散化方法。
在计算机PID控制中,使用的是数字PID控制器。
一、位置式PID控制算法按模拟PID控制算法,以一系列的采样时刻点kT代表连续时间t,以矩形法数值积分近似代替积分,以一阶后向差分近似代替微分,可得离散PID位置式表达式:Tu T ?kpeu=para; J=0.0067;B=0.1; dy=zeros= y= -+ = k*ts; %time中存放着各采样时刻rineu_1=uerror_1=error;%误差信号更新图2-1 Simulink仿真程序其程序运行结果如表2所示。
Matlab输出结果errori = error_1 = 表2 例4程序运行结果三、离散系统的数字PID控制仿真1.Ex5 设被控对象为G?num 仿真程序:ex5.m%PID Controller clear all; close all;篇二:自动控制实验报告六-数字PID控制实验六数字PID控制一、实验目的1.研究PID控制器的参数对系统稳定性及过渡过程的影响。
2.研究采样周期T对系统特性的影响。
3.研究I型系统及系统的稳定误差。
二、实验仪器1.EL-AT-III型自动控制系统实验箱一台 2.计算机一台三、实验内容1.系统结构图如6-1图。
图6-1 系统结构图图中 Gc(s)=Kp(1+Ki/s+Kds) Gh(s)=(1-e)/s Gp1(s)=5/((0.5s+1)(0.1s+1)) Gp2(s)=1/(s(0.1s+1))-TS 2.开环系统(被控制对象)的模拟电路图如图6-2和图6-3,其中图6-2对应GP1(s),图6-3对应Gp2(s)。
图6-2 开环系统结构图1 图6-3开环系统结构图2 3.被控对象GP1(s)为“0型”系统,采用PI控制或PID控制,可使系统变为“I型”系统,被控对象Gp2(s)为“I型”系统,采用PI控制或PID控制可使系统变成“II型”系统。
直流电机控制(PID)实验报告
s = speed1 % 100 / 10;
g = speed1 % 100 % 10;
sent(table[b]);
sent(table[s]);
sent(table[g]);
sent(0); sent(0);//预期值
sent(table[speedset/100]);
out=0;
uk1=uk;//为下一次增量做准备
e2=e1;
e1=e;
PWMTime=out; //out对应于PWM高电平的时间
return(0);
}
void PWMOUT()
{
//PWM=1;
if(cnt<PWMTime)//若小于PWM的设定时间,则输出高电平
PWM=1;
else//否则输出低电平
三、仪器及原理图
实验仪器:THKL-C51仿真器
四、实验代码
%增量式
#include<reg51.h>
#define uchar unsigned char
#define uint unsigned int
#define ufloat unsigned float
sbit PWM=P1^2;
sbit DIN=P1^0;
sbit CLK=P1^1;
uint num;
float count=0;
uint cnt,n=0;
uint out;
uint PWMTime;
uchar code table[] = { 0x3F,0x06,0x5B,0x4F,0x66,0x6D,0x7D,0x07,0x7F,0x6F,0x77,0x7C,0x39,0x5E,0x7B,0x71,0x00,0x40 };
pid 实验报告
pid 实验报告PID 实验报告引言在自动控制领域中,PID(比例-积分-微分)控制器是一种常见且广泛应用的控制算法。
本实验旨在通过实际应用和实验验证,探讨PID控制器的原理、特点以及在工程领域中的应用。
一、PID控制器的原理PID控制器是一种反馈控制算法,其基本原理是根据系统的误差信号进行调整,以达到期望的控制效果。
PID控制器由比例(P)、积分(I)和微分(D)三个部分组成。
1.1 比例控制(P)比例控制是根据误差的大小来调整输出信号的幅度,其公式为:P = Kp * e(t)其中,P为比例控制的输出,Kp为比例增益,e(t)为当前时刻的误差。
1.2 积分控制(I)积分控制是根据误差的累积值来调整输出信号的幅度,其公式为:I = Ki * ∫e(t)dt其中,I为积分控制的输出,Ki为积分增益,∫e(t)dt为误差的累积值。
1.3 微分控制(D)微分控制是根据误差变化的速率来调整输出信号的幅度,其公式为:D = Kd * de(t)/dt其中,D为微分控制的输出,Kd为微分增益,de(t)/dt为误差的变化率。
综合以上三个部分,PID控制器的输出为:PID = P + I + D二、PID控制器的特点2.1 稳定性PID控制器具有良好的稳定性,能够在系统受到外界扰动时,通过调整输出信号来保持系统的稳定运行。
2.2 响应速度PID控制器能够根据误差的大小和变化率来调整输出信号,从而实现快速响应。
当误差较大且变化迅速时,PID控制器会加大输出信号的幅度,以尽快达到期望值。
2.3 鲁棒性PID控制器对于系统参数的变化和外界干扰具有一定的鲁棒性。
通过合理设置PID参数,可以使系统在一定范围内保持稳定性和良好的控制效果。
三、PID控制器在工程领域中的应用PID控制器广泛应用于各个工程领域,如温度控制、速度控制、位置控制等。
3.1 温度控制在工业生产中,许多过程需要对温度进行控制,以确保产品质量和生产效率。
pid的控制作用实验报告
pid的控制作用实验报告一、实验目的本次实验的主要目的是深入研究和理解 PID(比例积分微分)控制器在控制系统中的作用,并通过实际实验观察和分析其对系统性能的影响。
二、实验原理PID 控制器是一种常见的反馈控制算法,它由比例(P)、积分(I)和微分(D)三个部分组成。
比例控制部分根据误差的大小成比例地调整控制输出,其作用是快速减少误差,但不能完全消除稳态误差。
积分控制部分则对误差进行积分,随着时间的积累,积分项可以消除稳态误差,但可能会导致系统响应变慢。
微分控制部分根据误差的变化率来调整控制输出,它能够预测误差的变化趋势,提前进行调整,从而改善系统的动态性能,减少超调量和调节时间。
PID 控制器的输出为这三个部分的总和:$u(t) = K_p e(t) + K_i\int_{0}^{t} e(\tau) d\tau + K_d \frac{de(t)}{dt}$其中,$u(t)$是控制器的输出,$e(t)$是设定值与实际值之间的误差,$K_p$ 是比例系数,$K_i$ 是积分系数,$K_d$ 是微分系数。
三、实验设备与环境1、实验设备控制器:采用可编程逻辑控制器(PLC)或微控制器作为 PID 控制器。
执行机构:例如电机、阀门等。
传感器:用于测量系统的输出,如温度传感器、压力传感器等。
数据采集卡:用于采集传感器的数据并传输给计算机。
计算机:用于运行控制算法和数据分析软件。
2、实验环境温度:室温(约 25℃)湿度:50% 70%四、实验步骤1、系统建模首先,对实验对象进行建模,确定其传递函数或状态空间模型。
通过实验测量或理论分析,获取系统的参数,如时间常数、增益等。
2、参数整定采用试凑法或 ZieglerNichols 等整定方法,初步确定 PID 控制器的参数$K_p$、$K_i$ 和$K_d$。
观察系统的响应,根据性能指标(如超调量、调节时间、稳态误差等)对参数进行调整,直到获得满意的控制效果。
pid控制实验报告
pid控制实验报告引言:PID(Proportional-Integral-Derivative)控制是一种常用的控制算法,广泛应用于自动控制系统中。
PID控制器通过不断调整控制量,使得被控对象的输出尽可能接近所期望的目标值。
本文将对PID控制实验进行详细介绍。
实验目的:通过实验,掌握PID控制器的基本原理和工作方式,熟悉PID 参数的调节方法,了解PID控制器在不同系统中的应用。
实验器材:1. 一台计算机2. 编程软件(如MATLAB)3. 实验装置(可选项,如温度控制装置、电机等)实验步骤:1. 确定实验对象:可以选择温度控制装置、水位控制装置或电机等,根据实际需求进行选择。
2. 设计PID控制器:根据实验对象的特性和目标,设计合适的PID控制器,包括确定比例系数KP、积分系数KI和微分系数KD。
3. 参数调节:通过试验和分析,调节PID参数,使得控制系统的性能最优。
4. 实验记录和分析:记录实验数据,并进行分析,评估PID控制器的性能和稳定性。
实验结果:实验结果将根据实际情况有所不同,这里以温度控制装置为例进行讨论。
1. 初始状态:实验开始时,温度控制装置处于初始状态,温度与目标温度存在误差。
2. 比例控制作用:PID控制器根据比例系数KP对误差进行处理,并输出相应的控制量。
当误差较大时,控制量较大,加快系统的响应速度。
随着误差减小,控制量逐渐减小,使系统温度逐渐接近目标温度。
3. 积分控制作用:当误差存在积累时,积分控制作用发挥作用,通过积分系数KI 对误差进行处理。
积分控制可以消除稳态误差,使得系统温度更加稳定。
4. 微分控制作用:微分控制主要处理误差的变化率,通过微分系数KD对误差变化的斜率进行处理。
微分控制可以提高系统的稳定性和响应速度。
5. 参数调节:在实验过程中,根据实际的系统响应和性能要求,通过试验和分析逐步调节PID参数,使得系统的控制响应更加稳定和准确。
实验分析:PID控制器在实验中的表现取决于PID参数的选择和调节。
电机控制实验报告分析(3篇)
第1篇一、实验背景电机控制技术在现代工业和日常生活中扮演着重要角色,其性能直接影响着设备的运行效率和稳定性。
为了更好地理解和掌握电机控制技术,我们进行了一系列电机控制实验。
本报告将对实验过程、结果及分析进行详细阐述。
二、实验目的1. 熟悉电机控制系统的基本组成和原理;2. 掌握电机控制实验的操作步骤和注意事项;3. 分析实验数据,验证电机控制理论;4. 提高实际操作能力和故障排除能力。
三、实验内容1. 电机控制实验平台搭建实验平台主要包括电机、控制器、传感器、电源等设备。
实验过程中,我们需要根据实验要求,正确连接各设备,确保实验顺利进行。
2. 电机调速实验通过调整PWM信号的占空比,实现对电机转速的调节。
实验中,我们测试了不同占空比下电机的转速,并记录实验数据。
3. 电机转向控制实验通过改变PWM信号的极性,实现对电机转向的控制。
实验中,我们测试了不同极性下电机的转向,并记录实验数据。
4. 电机制动实验通过调整PWM信号的占空比和极性,实现对电机制动的控制。
实验中,我们测试了不同制动条件下电机的制动效果,并记录实验数据。
四、实验结果与分析1. 电机调速实验结果分析实验结果显示,随着PWM占空比的增大,电机转速逐渐提高。
当占空比为100%时,电机达到最大转速。
实验数据与理论分析基本一致。
2. 电机转向控制实验结果分析实验结果显示,通过改变PWM信号的极性,可以实现对电机转向的控制。
当PWM信号极性为正时,电机正转;当PWM信号极性为负时,电机反转。
实验数据与理论分析相符。
3. 电机制动实验结果分析实验结果显示,通过调整PWM信号的占空比和极性,可以实现对电机制动的控制。
当PWM信号占空比为0时,电机完全制动;当占空比逐渐增大时,电机制动效果逐渐减弱。
实验数据与理论分析基本一致。
五、实验结论1. 电机控制实验平台搭建成功,能够满足实验要求;2. 电机调速、转向和制动实验均取得了良好的效果,验证了电机控制理论;3. 通过实验,提高了实际操作能力和故障排除能力。
PID实验报告(实验一)
实验一: 使用simulink对给定对象进行控制仿真一:原理说明:一般说, 增加控制系统比例增益, 可以提高系统的响应速度, 同时也会降低稳态误差。
尽管如此, 如果比例增益太大, 系统超调就会增大, 如果Kp再进一步增加, 震荡就会加大, 系统就会变得不稳定。
图a实验原理图如下图(a)所示, 其中原理图中给定的黄色的输入信号的理想的输入稳定值是1(如图(b)中的箭头所示), 而根据误差中值定理算得它的实际的稳定值是0.6。
通过尝试使用不同的Kp值, 观察Kp的设定对系统动态过程的影响如下图(b)、 (c) 、(d) 、(e)所示。
当: A.要求系统的静差为给定值的40%时, 计算为: (1 -0.6)/1*100%=40%), 系统的静差为给定值的40%的图像如左图(d)所示;B.系统要求它的超调量小于或者等于40%的条件下, 使得系统的上升时间尽量减少, 计算过程为: (1.4-1)/1*100%=40%),系统要求超调量小于或者40%的条件下, 使得系统的上升时间尽量减少的图像如左图(e)所示。
一: 当给定KP 分别为 0.8、2.4、3.5 :Kp 的设定对系统动态过程的影响图像如左图(b )所示:1_1: 当调节KP 分别为1.3.5:Kp 的设定对系统动态过程的影响图像如左图(c )所示:1_2: 当调节KP 分别为 1.5.3.5 : 图(b )图(c )系统的静差为给定值40%(注: (1-0.6)/1*100%=40%)的图像如左图(d)所示:图(d)对于单位负反馈, 静差E(S)=R(S)-C(S), 其中输入信号为1(t)根据终值定理可知当KP取1.5时, 系统的静差刚好为给定值的40%。
1_3: 当调节KP分别为7、3.5:➢系统要超调量小于或40%((1.4-1)/1*100%=40%)条件下, 使系统上升时间尽量减少如图(e)所示:➢总结: 联系上图(b)、(c)、(d)、(e)可知, KP由0.8一直增大到7可以看出, 增大比例系数KP可以加快系统的响应, 在有静差的时候有助于减小静差。
PID实验报告范文
PID实验报告范文一、实验目的本实验旨在通过PID控制算法的应用,实现对温度的自动控制,并掌握PID控制算法的原理和实现方法。
二、实验装置1.温度传感器:用于实时检测待控温度的数值。
2.加热器:用于提供热源,调节温度。
3.控制器:利用PID控制算法对加热器的工作进行调节。
4.显示器:实时显示当前温度和设定温度。
5.电源:为实验装置供电。
三、实验原理PID控制器是一种常见的闭环控制算法,它通过计算误差的比例、积分和微分部分来调节控制器的输出,从而实现对被控对象的控制。
1.比例部分(P):根据当前误差,控制器输出与误差成正比的值。
2.积分部分(I):根据误差的累积值,控制器输出与误差积分成正比的值。
3.微分部分(D):根据误差变化的速率,控制器输出与误差微分成正比的次方值。
PID控制器输出的总和即为最终控制器的输出值。
四、实验步骤1.确定待控温度的设定值,并将设定值输入到控制器中。
2.控制器读取当前温度传感器的数值,并将数值与设定值进行比较得到误差。
3.根据误差,分别计算比例、积分和微分部分的输出值。
4.将三个部分的输出值相加得到最终控制器的输出值,并将输出值转化为控制器对加热器的控制信号。
5.加热器根据控制信号进行开关操作,调节温度。
6.重复步骤2-5,直到实际温度与设定值之间的误差小于预设的误差范围,控制循环结束。
五、实验结果与分析在实验中,我们将待控温度设定值设置为25℃,并通过PID控制器对温度进行控制。
实验结果显示,在不同的环境条件下,PID控制器能够稳定地将实际温度控制在设定值附近。
通过对比实验中不同的PID参数设定,我们发现比例参数的变化对于控制效果的影响最为明显。
比例参数较小时,控制器对误差的修正速度较慢,温度波动较大;而比例参数较大时,控制器对误差的修正速度较快,但容易发生超调现象。
此外,积分参数和微分参数的设定也会对控制效果产生一定的影响。
积分参数较小时,控制器对误差的累积效果较小;而积分参数较大时,控制器可能对误差的累积过度敏感,导致控制器过度调整。
PID控制实验报告
页脚内容1实验二 数字PID 控制计算机控制是一种采样控制,它只能根据采样时刻的偏差值计算控制量。
因此连续PID 控制算法不能直接使用,需要采用离散化方法。
在计算机PID 控制中,使用的是数字PID 控制器。
一、位置式PID 控制算法按模拟PID 控制算法,以一系列的采样时刻点kT 代表连续时间t ,以矩形法数值积分近似代替积分,以一阶后向差分近似代替微分,可得离散PID 位置式表达式:∑∑==--++=⎪⎪⎭⎫ ⎝⎛--++=k j di p kj D I p T k e k e k T j e k k e k k e k e T T j e T T k e k k u 00)1()()()())1()(()()()( 式中,D p d I pi T k k T k k ==,,e 为误差信号(即PID 控制器的输入),u 为控制信号(即控制器的输出)。
在仿真过程中,可根据实际情况,对控制器的输出进行限幅。
二、连续系统的数字PID 控制仿真连续系统的数字PID 控制可实现D/A 及A/D 的功能,符合数字实时控制的真实情况,计算机及DSP 的实时PID 控制都属于这种情况。
1.Ex3 设被控对象为一个电机模型传递函数BsJs s G +=21)(,式中J=0.0067,B=0.1。
输入信号为)2sin(5.0t π,采用PD 控制,其中5.0,20==d p k k 。
采用ODE45方法求解连续被控对象方程。
页脚内容2 因为Bs Js s U s Y s G +==21)()()(,所以u dt dy B dt y d J =+22,另y y y y ==2,1,则⎪⎩⎪⎨⎧+-==/J)*u ((B/J)y y y y 12221 ,因此连续对象微分方程函数ex3f.m 如下function dy = ex3f(t,y,flag,para)u=para;J=0.0067;B=0.1;dy=zeros(2,1);dy(1) = y(2);dy(2) = -(B/J)*y(2) + (1/J)*u;控制主程序ex3.mclear all;close all;ts=0.001; %采样周期xk=zeros(2,1);%被控对象经A/D 转换器的输出信号y 的初值e_1=0;%误差e(k-1)初值u_1=0;%控制信号u(k-1)初值for k=1:1:2000 %k 为采样步数time(k) = k*ts; %time中存放着各采样时刻rin(k)=0.50*sin(1*2*pi*k*ts); %计算输入信号的采样值para=u_1; % D/AtSpan=[0 ts];[tt,xx]=ode45('ex3f',tSpan,xk,[],para); %ode45解系统微分方程%xx有两列,第一列为tt时刻对应的y,第二列为tt时刻对应的y导数xk = xx(end,:); % A/D,提取xx中最后一行的值,即当前y和y导数yout(k)=xk(1); %xk(1)即为当前系统输出采样值y(k)e(k)=rin(k)-yout(k);%计算当前误差de(k)=(e(k)-e_1)/ts; %计算u(k)中微分项输出u(k)=20.0*e(k)+0.50*de(k);%计算当前u(k)的输出%控制信号限幅if u(k)>10.0u(k)=10.0;endif u(k)<-10.0页脚内容3u(k)=-10.0;end%更新u(k-1)和e(k-1)u_1=u(k);e_1=e(k);endfigure(1);plot(time,rin,'r',time,yout,'b');%输入输出信号图xlabel('time(s)'),ylabel('rin,yout');figure(2);plot(time,rin-yout,'r');xlabel('time(s)'),ylabel('error');%误差图程序运行结果显示表1所示。
PID控制电机实验报告
PID控制电机实验报告实验目的:通过PID控制电机,实现指定速度和位置的控制。
实验原理:PID控制器是一种常用的闭环控制方法,用于控制系统的稳定性和精确性。
PID控制器根据当前的误差信号,通过P(比例)、I(积分)、D(微分)三个控制器的作用,调节输出信号,使误差信号趋近于零。
具体的PID控制算法如下:- P(比例)控制器:将误差信号与比例增益Kp相乘,得到一个与误差相关的控制量。
比例增益越大,响应速度越快,但可能导致超调。
- I(积分)控制器:将误差信号积分得到一个与误差面积相关的控制量。
积分控制器主要用来抵消系统静差,提高系统的稳定性。
- D(微分)控制器:将误差信号的微分得到一个与误差变化趋势相关的控制量。
微分控制器主要用来预测误差的变化趋势,提高系统的动态响应性能。
实验器材:- 电机- PID控制器- 控制器接口- 电源- 电压表- 电流表- 编码器实验步骤:1. 将电机连接到电源和PID控制器,确保电路正确连接。
2. 设置控制器接口的参数,包括控制模式、PID参数等。
3. 运行控制器,设置目标速度或位置。
4. 实时监测电机的电流和速度,并记录数据。
5. 根据实验数据,分析电机的响应特性,包括超调量、调节时间等。
实验结果:根据实验数据,通过PID控制器可以控制电机的速度和位置,实现了较好的控制效果。
调节PID参数可以调整电机的响应速度和稳定性。
根据实验数据,可以计算出电机的超调量、调节时间等指标,评估控制器的性能,并进行优化。
实验结论:通过实验验证了PID控制器在电机控制中的应用,并验证了PID控制器的稳定性和精确性。
通过调节PID参数,可以实现不同的控制效果,满足不同的应用需求。
通过实验数据的分析,可以评估控制器的性能,并进行优化。
PID直流电机转速控制实验报告
STC89C52 参数
STC89C52 基本参数
FLASH (bytes)
8K
RAM (Bytes)
256
最大频率 (MHz)
24
11
Vcc (V)
5±20%
STC89C52 其他特性
I/O 引脚
32
ISP
--
STC89C52 封装类型
PDIP40, PLCC44, TQFP44, PQFP44
2.2 直流电机驱动芯片 ULN2803 的设计
5
Ea = Ceфn=Ke n 可知 1.电刷两端的感应电势与电机的转速成正比。 2.直流发电机能够把转速信号换成电势信号,从而用来测
速。 自动控制系统对测速发动机的要求为:1.输出电压与转速的关 系曲线为线性。2.输出特性的斜率要大。3.温度变化对输出特 性的影响要小。4.输出电压的波纹要小。5.正反转两个方向的 输出特性要一致。 图中实线为直流测速发电机的理想输出特性,虚线为实际输出 特性,实际特性与要求的线性特性之间存在误差,且该误差与 负载电阻有关。
电机每转一圈,每一相霍尔传感器产生 2 脉冲,且其周期与 电机转速成反比,因此可以利用霍尔传感器信号得到电机的实 际转速。为尽可能缩短一次速度采样的时间,可测得任意一相霍 尔传感器的一个正脉冲的宽度,则电机的实际转速为:
V=N*30; V:速度 R/min N:每秒采样的脉冲个数 霍尔传感器输出的是脉冲,可以直接将输出脉冲接入单片 机外部计数器,故而非常简单实用。
1.4.1 模拟 PID 控制规律的离散化
模拟形式
离散化形式
e(t) r(t) c(t)
e(n) r(n) c(n)
de(t ) dT
t
0 e(t)dt
pid控制实验报告
pid控制实验报告PID控制实验报告。
一、实验目的。
本实验旨在通过对PID控制器的调试和实验验证,掌握PID控制器的工作原理和调节方法,加深对控制原理的理解,提高实际控制系统的设计和调试能力。
二、实验原理。
PID控制器是一种常用的控制器,它由比例(P)、积分(I)、微分(D)三个部分组成。
在实际控制系统中,PID控制器通过对控制对象的测量值和设定值进行比较,产生误差信号,然后根据比例、积分和微分三个部分的参数进行计算,输出控制信号,使控制对象的输出值逼近设定值,实现控制目标。
三、实验装置。
本实验采用了PLC控制器和温度传感器作为控制系统,通过对温度传感器的测量值进行反馈控制,调节加热器的功率输出,控制温度在设定值附近波动。
四、实验步骤。
1. 首先,设置PID控制器的比例、积分和微分参数为初始值,将控制系统接通,使加热器开始工作。
2. 然后,通过监测温度传感器的测量值,观察加热器的工作状态和温度的变化情况。
3. 接着,根据实际情况,逐步调节PID控制器的参数,使控制系统的响应速度和稳定性达到最佳状态。
4. 最后,记录和分析不同参数下控制系统的响应曲线,比较不同参数对控制系统性能的影响,总结调节经验。
五、实验结果与分析。
经过一系列的实验调节,我们得到了不同参数下的控制系统响应曲线。
通过对比分析,我们发现:1. 比例参数的增大会加快系统的响应速度,但会引起超调和振荡现象;2. 积分参数的增大可以减小稳态误差,但会增加超调和振荡的幅度;3. 微分参数的增大可以减小超调和振荡,但会降低系统的响应速度。
六、实验结论。
通过本次实验,我们深入理解了PID控制器的工作原理和调节方法,掌握了控制系统的设计和调试技巧。
在实际工程中,我们可以根据实际需求,通过调节PID 控制器的参数,使控制系统达到最佳的性能指标。
七、实验心得。
通过本次实验,我们不仅学习了PID控制器的基本原理和调节方法,还提高了实际控制系统的设计和调试能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
PID控制电机实验报告
Record the situation and lessons learned, find out the existing problems and
form future countermeasures.
姓名:___________________
单位:___________________
时间:___________________
编号:FS-DY-20618
PID控制电机实验报告
摘要
以电机控制平台为对象,利用51单片机和变频器,控制电机精确的定位和正反转运动,克服了常见的因高速而丢步和堵转的现象。
电机实现闭环控制的基本方法是将电机工作于启动停止区,通过改变参考脉冲的频率来调节电机的运行速度和电机的闭环控制系统由速度环和位置环构成。
通过PID调节实现稳态精度和动态性能较好的闭环系统。
关键词:变频器PID调节闭环控制
一、实验目的和任务
通过这次课程设计,目的在于掌握如何用DSP控制变频器,再通
过变频器控制异步电动机实现速度的闭环控制。
为实现闭环控制,我们需完成相应的任务:
1、通过变频器控制电机的五段调速。
2、通过示波器输出电机速度变化的梯形运行图与s形运行图。
3、通过单片机实现电机转速的开环控制。
4、通过单片机实现电机的闭环控制。
二、实验设备介绍
装有ccs4.2软件的个人计算机,含有ADC模块的51单片机开发板一套,变频器一个,导线若干条。
三、硬件电路
1.变频器的简介
变频器(Variable-frequency Drive,VFD)是应用变频技术与微电子技术,通过改变电机工作电源频率方式来控制交流电动机的电力控制设备。
变频器主要由整流(交流变直流)、滤波、逆变(直流变交流)、制动单元、驱动单元、等组成。
变频器靠内部IGBT的开断来调整输出电源的电压和频率,变频器还有很多的保护功能。
随着工业自动化程度的不断提高,变频器也得到了非常广泛的应用。
2.变频器的使用
变频器事物图变频器原理图
Foonshion图文设计有限公司Fonshion Design Co., Ltd。