食工原理课后习题答案第3-6章
食品工程原理岳田利课后答案
食品工程原理岳田利课后答案
1. 调味品的贮藏原理:
调味品的贮藏原理是将调味品的容积、质量和价值综合考虑,采取恰当的贮藏方法,以保证调味品的品质,防止其腐败变质。
2. 水的净化原理:
水的净化原理是通过加入不同的净化剂、通过加热的方法、添加活性炭或沉淀的方法,去除水中的杂质、细菌。
3. 调味品的制备原理:
调味品的制备原理是根据调味品的成分、品质特点,采取正确的技术工艺和调配,实现调味品的合理制备。
4. 烹调原理:
烹调原理是通过烹饪方法,选择合适的温度、时间及渗透剂,将食物的食材经过搅拌、混合、冷却等操作,使食物充分消化,以达到食用的目的。
5. 粮食贮存原理:
粮食贮存原理是采取不同存储条件,控制仓库的温度、湿度、通风及消毒,保持粮食品质,以防止粮食腐烂、变质。
6. 易霉变原理:
易霉变原理是由于含水量较高的调味品中,含水量越高,发霉的可能性就越大,因此,要尽量减少调味品中的水份,以防止发霉。
7. 冷冻食品保鲜原理:
冷冻食品保鲜原理是采用低温冷冻技术,减缓微生物的活动,降低呼
吸代谢,阻止水份蒸发等,保持食物本身的营养成分,延长食物的贮藏期。
食品工程原理—第六章
度而异,浓度越大,液柱越高,沸点升高值越大。
溶液沸点升高的计算公式:
t T
式中 Δ——溶液的沸点升高,℃ t ——溶液的沸点,℃ T/——与溶液压强相等时水的沸点,即二次蒸气的 饱和温度,℃
蒸发过程中引起温度差损失的原因有:
(1)因溶液的蒸汽压下降而引起的温度差损失Δ′; (2)因加热管内液柱静压强而引起的温度差损失Δ″; (3)因管路流体阻力而引起的温度差损失 。
1 ao
式中 a——对流传热系数,W/(m2•℃) d——管径,m Ri——垢层热阻,m2•℃/W
b——管壁厚度,m
λ——管材的导热系数,W/(m•℃) 下标i表示管内侧、o表示外侧、m表示平均。
垢层热阻值可按经验数值估算。管外侧的蒸气冷凝传热系数 可按膜式冷凝传热系数公式计算,管内侧溶液沸腾传热系数则 按管内沸腾传热系数关联式计算。
逆流法原料液加热蒸汽至冷凝器完成液冷凝水冷凝水冷凝水效数多时也可采用顺流和逆流并用的操作称为混流法这种流程可协调两种流程的优缺点适于粘度极高料液的浓平流法原料液分别加入各效中完成液也分别自各效底部取出蒸气流向仍是由第一效流至末效
第六章
本章重点和难点:
蒸发
和一般的传热过程相比,蒸发操作具有哪些特点,
对蒸发设备及蒸发工艺过程有何特殊要求;
蒸发器的基本结构,操作特性及适用场合; 蒸发过程计算(以单效计算为重点,包括溶液沸
点升高、物料衡算、热量衡算、传热面积计算等);
蒸发操作的强化及节能途径;
第一节 概述
一、蒸发的定义
使含有不挥发性溶质的溶液沸腾汽化并移出蒸气,从而使 溶液中溶质浓度提高的单元操作称为蒸发,所用的设备称为蒸 发器。
蒸发纯水的温度差。
4、泡沫挟带:二次蒸气中带有大量泡沫,易造成物料损失和冷凝设
《食品工程原理》习题答案
《食品工程原理》复习题答案第一部分 动量传递(流动、输送、非均相物系)一.名词解释1.过程速率:是指单位时间内所传递的物质的量或能量。
2.雷诺准数:雷诺将u 、d 、μ、ρ组合成一个复合数群。
Re 值的大小可以用来判断流动类型。
3.扬程(压头):是指单位重量液体流经泵后所获得的能量。
4.分离因数:同一颗粒在同种介质中的离心沉降速度与重力沉降速度的比值。
二.填空题1.理想流体是指 的流体。
(黏度为零)2.对于任何一种流体,其密度是 和 的函数。
(压力,温度)3.某设备的真空表读数为200mmHg ,则它的绝对压强为 mmHg 。
当地大气压强为101.33×103Pa 。
(560mmHg ) 4.在静止的同—种连续流体的内部,各截面上 与 之和为常数。
(位能,静压能) 5.转子流量计读取方便,精确,流体阻力 ,不易发生故障;需 安装。
(小,垂直)6.米糠油在管中作流动,若流量不变,管径不变,管长增加一倍,则摩擦阻力损失为原来的______倍。
(2)7.米糠油在管中作层流流动,若流量不变,管径、管长不变,油温升高,粘度为原来的1/2 ,则摩擦阻力损失为原来的 倍。
(1/2)8.米糠油在管中作层流流动,若流量不变,管长不变, 管径增加一倍,则摩擦阻力损失为原来的_____倍。
(1/16)9.实际流体在直管内流过时,各截面上的总机械能 守恒,因实际流体流动时有 。
(不,摩擦阻力)10.任何的过程速率均与该过程的推动力成 比,而与其阻力成 比。
(正,反) 11.在离心泵吸入管底部安装带吸滤网的底阀,底阀为 。
(逆止阀)12. 是为了防止固体物质进入泵内,损坏叶轮的叶片或妨碍泵的正常操作。
(滤网) 13.离心泵工作时流体流速与压力的变化为:高压流体泵壳通道逐渐扩大的的离心力机械旋转所造成的气压流体被甩出后常压流体)()((低速流体、高速流体)14.泵的稳定工作点应是 特性曲线与 特性曲线式M 的交点。
食品工程原理试题思考题与习题及答案
思考题与习题绪论一、填空1 同一台设备的设计可能有多种方案,通常要用( )来确定最终的方案。
2 单元操作中常用的五个基本概念包括( )、( )、( )、( )和( )。
3 奶粉的生产主要包括( )、( )、( )、( )、( )等单元操作。
二、简答1 什么是单元操作?食品加工中常用的单元操作有哪些?2 “三传理论”是指什么?与单元操作有什么关系?3 如何理解单元操作中常用的五个基本概念?4 举例说明三传理论在实际工作中的应用。
5 简述食品工程原理在食品工业中的作用、地位。
三、计算1 将5kg得蔗糖溶解在20kg的水中,试计算溶液的浓度,分别用质量分数、摩尔分数、摩尔浓度表示。
已知20%蔗糖溶液的密度为1070kg/m3。
2 在含盐黄油生产过程中,将60%质量分数的食盐溶液添加到黄油中。
最终产品的水分含量为15.8%,含盐量1.4%,试计算原料黄油中含水量。
3 将固形物含量为7.08%的鲜橘汁引入真空蒸发器进行浓缩,得固形物含量为58%得浓橘汁。
若鲜橘汁进料流量为1000kg/h,计算生产浓橘汁和蒸出水的量。
4 在空气预热器中用蒸气将流量1000kg/h,30℃的空气预热至66℃,所用加热蒸气温度143.4℃,离开预热器的温度为138.8℃。
求蒸气消耗量。
5 在碳酸饮料的生产过程中,已知在0℃和1atm下,1体积的水可以溶解3体积的二氧化碳。
试计算该饮料中CO2的1质量分数;2摩尔分数。
忽略CO2和水以外的任何组分。
6 采用发酵罐连续发酵生产酵母。
20m3发酵灌内发酵液流体发酵时间为16h。
初始接种物中含有1.2%的酵母细胞,将其稀释成2%菌悬液接种到发酵灌中。
在发酵罐内,酵母以每2.9h 增长一倍的生长速度稳定增长。
从发酵罐中流出的发酵液进入连续离心分离器中,生产出来的酵母悬浮液含有7%的酵母,占发酵液中总酵母的97%。
试计算从离心机中分离出来的酵母悬浮液的流量F以及残留发酵液的流量W假设发酵液的密度为1000kg/m3。
食品工程原理-李云飞版本的课后题答案
解得: T3 ? ? 15.9 ℃
?
? ' ? 0.027 ?
1
Re 0.8 Pr 3 (
?
) 0.14
di
?W
?
0.027 ?
0.61
?
(3.575
?
10 3
)
0.8
?
(14.03)
1 3
? ( 2.15 ) 0.14
?
500W /(m2 .K )
校正系数为0.:06
?
?
1?
6 ? 105
/ Re1.8
?
10 ? 4 3.14 ? 0.0512 ? 3600
? 1.36
m/s
Re
4
?
du? ?
?
0.051? 1.36 ? 1000 1? 10?3
?
6.9 ? 104
? ? 0.250.0049
d 51
H ? Z2 ? ? hf
? 20 ? 5.92 ? 0.93
? 26.85 m
轴功率为
P
?
HQ?g 1000?
p1 ? 1.0133 ? 105 Pa
u1
?
0,
u2
?
Q? A
40 3600
? ? 0.1062
? 1.26 m/s
4
p2
p2
?
p1 ?
? gZ2
?
?
u22 2
? 1.0133? 105 ? 1000 ?
? ? ? Lf
9.8 ? 5.5 ?
1000 ? 1.262 2
?
1000 ?
4.5
? 42136.2 Pa
食品工程原理练习题参考答案
《食品工程原理》练习题提示第一章 流体流动 一、填空题1、50.44mmHg (真空度);149.8mmHg (表压)。
2、时间,流动系统内无质量积累,ρ1u 1A 1=ρ2u 2A 2。
3、1.6×10-4m 3/s4、总机械能,沿程阻力,局部阻力。
5、泵的特性曲线,管路特性曲线,工作点。
6、扬程,流量,转速。
7、管路特性曲线,效率点。
8、吸上真空度法,汽蚀余量法。
9、泵的特性曲线,管路特性曲线,最高效率点。
10.1/16,1/32,流体有粘性。
12、20)(2u gR ρρρζ-=13、扬程增大倍数为1倍,1.2倍。
14、用无因次数群代替变量,使实验与关联工作简化。
15、计量泵、齿轮泵、螺杆泵。
16、在叶轮入口处由离心力所产生的真空度不够大 , 不足以吸上液体;泵内灌液。
17、叶轮入口处的压力等于液体的饱和蒸汽压,使液体发生部分汽化。
18、减小吸入管路的阻力;增大供液池上方压力。
19、旁路调节、改变活塞冲程、活塞往复次数。
20、泵内灌液;关闭出口阀;出口阀。
21、一次方;二次方。
22、静压头。
23、点速度,平均速度。
二、选择题 1、D ;2、C3、某设备进出口的压力分别为220mmHg (真空度)及 1.6kgf/cm 2(表压),若当地大气压为760mmHg ,则该设备进出口压力差为( c )C 、1.86×105Pa4、关于流体流动的连续方程式:A 1u 1ρ1=A 2u 2ρ2,下列说法正确的是( A ) A 、它只适用于管内流体的稳定流动 B 、它只适用于不可压缩理想流体C 、它只适用于管内流体的不稳定流动D 、它是流体流动的普遍性方程,可适用于一切流体流动5、B ;6、D ;7、A ;8、D ;9、B ;10、C ;11、D ;12、C ;13、D ;14、D ;15.D。
三、问答题1.回答文氏管的工作原理和应用。
(P46) 四、计算题1、解:根据题意,设贮槽液面为1-1`面,管出口截面为2-2`面,列柏努方程:Z 1+g P ρ1+g u 221+H=Z 2+g P ρ2+gu222+∑f h液柱)绝压绝压m H s m dQu h u KPa P KPa P m Z m Z f (7.225.481.9284.181.91010022018)/(84.105.0436001345.4,0),(220)(100,20,22322212121=+⨯+⨯-+=∴=⨯⨯========∑ππ2、解:选择泵排出口液面为1-1`面及出口管液面为2-2`面, 由1-1`面2-2`面列柏努利方程:gZ 1+ρ1P +221u+We=gZ 2+ρ2P +222u +∑f L因为u 1=u 2=0,∑++-=fLP Z Z g P ρρ2121)(∑∑∑∑+=+=222221u u d l L L Lf f fζλ,代入数字可得∑=23.18f L)(10313.123.189851081.986.0381.9985541Pa P ⨯=⨯+⨯⨯+⨯⨯=∴3、解:根据题意,设高位槽液面为1-1`面,管出口截面为2-2`面,列柏努利方程:Z 1+g P ρ1+g u 221=Z 2+g P ρ2+gu222+∑hf)/(61.2,23181.92)231(25231,0,0,522222212121s m u u u u g u u h u P P m Z Z f =∴++⨯=++=+=====-∑)/(7.864)/(24.0106.1414.361.243322h m s m d u uA Q ==⨯⨯=⨯==∴π4(P78习题1)、解:根据题意,由柏努利方程,得:2920800,221222122u u u u P-=∴-=∆ρ 又21221221259,259)2012()(u u d d u u =∴===代入上式 )/(413.12s m u =∴)/(10599.1)012.0(414.3413.1434222222s m d u A u Q -⨯=⨯⨯=⨯==∴π5(P79习题11)、解:如图,由1-1`和2-2`列柏努利方程:Z 1+g P ρ1+g u 221+H=Z 2+g P ρ2+gu222+∑f h又因为Z 2-Z 1=2,P 1=P 2,u 1=0∑∑++=++∆=∴f f h guh g u Z H 2222222又42221039.1007.0124091.2027.0Re ),/(91.2027.04360064⨯=⨯⨯===⨯⨯==u du s m d Qu ρππ039.0,0074.0027.00002.0=∴==λεd291.2)26(291.2027.050039.0222321222⨯+⨯++⨯+⨯⨯=+=∴∑∑ζζζζζλu u d l L f代入数字可得结果为364.4(J/㎏)所以 H=2+)(58.3981.94.36481.9291.22m =+⨯6、解:列泵进口和出口间的能量方程Z 1+g P ρ1+g u 221+H=Z 2+g P ρ2+gu222+∑f hZ2-Z1=0.7m,u1=u2,p1=-140mmHg,p2=1.9atm,∑fh≈0则%6.60%100120023.223600/1281.91000%10023.2281.91000101325760/1401013259.17.0=⨯⨯⨯⨯=⨯==⨯⨯+⨯+=P P mH e η第二章 传热一、填空题 1、)ln()()(12211221t T t T t T t T -----;2、热传导,牛顿冷却,无因次准数;3、对流传热,热传导; 4、传热系数,传热面积,传热温差(对数平均温差)。
食工原理课后习题
食工原理课后习题第一章流体流动和输送
第四章传热
第五章以热量传递为特征的单元操作
食工原理PPT有答案的例题
第一章流体流动和输送
用
第五章 以热量传递为特征的单元操作
一单效蒸发器将2500kg/h 的NaOH 水溶液由10%浓缩到25%(均为质量百分数),已知加热蒸气压力为450kPa ,蒸发室内压力为101.3kPa,溶液的沸点为115℃,比热容为
3.9kJ/(kg ·℃),热损失为20kW 。
试计算以下两种情况下所需加热蒸汽消耗量和单位蒸汽消耗量。
(1)进料温度为25℃;(2)沸点进料。
解:
(1) 求水蒸发量W
应用式(4-1)
kg/h 1500)25.01.01(2500)1(10=-=-=x x F W
(2)求加热蒸汽消耗量
应用式(4-4)
r Q Wr t t FC D L
010')(++-=
由书附录查得450kPa 和115℃下饱和蒸汽的汽化潜热为2125和2219kJ/kg
则进料温度为25℃时的蒸汽消耗量为:
kg/h 1972212536002022191500)25115(9.32500=⨯+⨯+-⨯⨯=D
单位蒸汽消耗量由式(4-5a )计算,则 31
.1=W D
原料液温度为115℃时
kg/h 16002125360020221915002=⨯+⨯=D
单位蒸汽消耗量
07.12=W D
由以上计算结果可知,原料液的温度愈高,蒸发1 kg 水所消耗的加热蒸汽量愈少。
第八章 干燥与空气调节。
食品工艺原理课后思考题
答:1)对于恒率干燥期的干燥时间可用下式计算
式中:W1为恒率干燥的初始含水量;W2为恒率干燥结束时的含水量;v为恒率干燥速度。
2)对于降率干燥期的干燥时间可用下式来计算
式中:G为待干食品的重量;A为待干食品的蒸发面积;N 为降率干燥速度;W1为降率干燥阶段结束时的含湿量;W2为降率干燥开始时食品的含湿量。
储藏应注意:要求贮温控制在-18℃一下,或者更低,而且要求温度要稳定,减少波动,并且不与其他异味的食品混藏,最好采用专库储存。
8.食品在冻藏过程中容易发生哪些变化?如何对其进行控制?
答:1)冰晶的成长和重结晶:来不及转移就在原位置冻结,保持冻藏库温度稳定,避免储运温度波动。2)干耗:保持冻藏时足够的低温,减少温差,增大相对湿度,加强东藏品的密封包装,采取食品表面镀冰衣的方法。3)冻结烧:采用较低的冬藏温度,镀冰衣或密封包装。4)化学变化5)液汁流失
意义:由图中可以看出,在干燥的起始阶段,食品表面温度很快达到湿球温度。在整个恒率干燥期内,食品的表面均保持该温度不变,此时食品吸收的全部热量都消耗于水分的蒸发,从第一临界点开始,由于水分扩散的速度低于水分蒸发速度,食品吸收的热量不仅用于水分蒸发,而且是食品的温度升高。当食品含水量达到平衡含水量时,食品的温度等于加热空气的温度(干球温度)。
10.不同的干制品放在一起储藏时将会发生什么样的变化?这些变化会带来哪些影响?
11.你是否认为干燥技术是一种有发展前景的食品保藏技术?
第三章食品低温保藏
1.食品低温保藏的原理是什么?
答:借助人工制冷技术降低食品温度达到适当程度的低温并始终维持这样的低温来保藏食品,在这样的低温下能阻止或延缓食品的腐败变质。
F.寒冷收缩:
G.脂肪氧化;
(完整版)食品工艺学课后思考题1,2,36章答案
课后思考题第一章1食品有哪些功能和特性营养功能(第一功能)、感官功能(第二功能)、保健功能(新发展的功能,第三功能)安全性、保藏性、方便性2食品加工、工艺的概念食品加工:将食物(原料)经过劳动力、机器、能量及科学知识,把它们转变成半成品或可食用的产品(食品)的方法或过程工艺:食品工艺就是将原料加工成半成品或将原料和半成品加工成食品的过程和方法;加工过程和方法就是由加工操作和加工步骤组合起来的;整个过程是加工工艺流程3食品原料有哪些特点?1.有生命活动、2.季节性和地区性、3.复杂性、4.易腐性4食品的质量要素主要有哪些?质量的定义:食品好的程度,是构成食品特征及可接受性的要素,主要有:5常见食品的变质主要由哪些因素引起?如何控制?引起食品(原料)变质的原因:(1)微生物的作用:是腐败变质的主要原因(2)酶的作用:在活组织、垂死组织和死组织中的作用;酶促褐变(3)化学物理作用:热、冷、水分、氧气、光、pH、引起变色、褪色要使食品保持品质或达到保藏效果,有四大保藏途径:(1)运用无菌原理:杀死微生物:高温,辐射;灭酶:加热可以灭酶(2)抑制微生物:低温(冷冻)、干藏、腌制、烟熏、化学防腐剂、生物发酵、辐射抑制酶;能抑制微生物的方法一般不易抑制酶,如冷藏、干藏、辐射(3)利用发酵原理(生物化学保藏):利用代谢产物酸和抗生素或抑菌剂等,如豆腐乳,食醋,酸奶等(4)维持食品最低生命活动:降低呼吸作用、低温、气调;如水果6谈谈食品工艺学研究的内容和范围。
食品工艺学是根据技术上先进、经济上合理的原则,研究食品的原材料、半成品和成品的加工过程和方法的一门应用科学。
研究内容和范围(一)根据食物原料特性,研究食品的加工保藏(二)研究食品质量要素和加工对食品质量的影响(三)创造新型食品第二章上1水分活度的概念游离水和结合水可用水分子的逃逸趋势(逸度)来反映,我们把食品中水的逸度与纯水的逸度之比称为水分活度Aw。
2食品中水分含量和水分活度有什么关系?说明原因食品中水分含量(M)与水分活度之间的关系曲线称为该食品的吸附等温线。
课后习题答案 食品工程原理
【7-31】 1)R/Rmin=1.54 2)
η = 0.5053
D=50kmol/h→F=50/0.5053=98.96 kmol/h
【7-32】 T=140(℃)
N OG = 3.05
【7-17】 略 【7-18】
平衡蒸馏 ⎨
⎧ y D = 0.5 xw + 0.5 ⎩3 × 0.5 = 2 ⋅ yD + xw
⎧ xw = 0.25 ⎨ ⎩ yD = 0.625
【7-19】 以质量流量表示时:
D = 67.4kg / h,W = 2933kg / h.
以摩尔流量表示时:
【7-1】
氨的摩尔分数 x = 27.50% 氨的摩尔比 X = 37.93% 【7-2】
X = 1.06%
【7-3】 NA= 2.70 × 10 −7 kmol / s
【7-4】
Y2 = 0.0101
【7-5】
m = 0.940
【7-6】
m = 11.kmol / m 3
D = 1.70kmol / h,W = 161.9kmol / h.
【7-20】
q = 1, x F = x = 0.38
【7-21】 精馏线方程 yn +1 =
R 1 xn + xD R +1 R +1
yn +1 = 0.64 xn + 0.34
提馏线方程
y m +1 =
L' W xm − xw L'−W L'−W
y m +1 = 1.36 xm − 0.018
【7-22】 由平衡线方程、精馏线操作线方程、q 线方程用图解法(题 22 图)求出 Ne=7.4,最佳 加料板位置应在第 4 块理论板处。若进料改为泡点进料,则由图虚线所示,理论板将有所增 加,最佳加料板位置降低。这说明精馏总能量一定,进料能值越多,底部加入能量越低,分 离效率就越低,反之亦然。本题 R、D 不变,意味塔顶冷凝热量不变,若本题为塔釜投入热 量不变,对进料液进行预热,其结果总投入热量增加,则分离效果当然提高,因为精馏操作 得以使混合物分离,就是以消耗能量为代价的。 【7-23】 理论板数共为 22 块,加料板在第 18 块。 【7-24】 由精馏线操作线方程、q 线方程和平衡数据线,用图解法(题 24 图)求出 Ne=9.5,最佳 加料板位置应在第 7 块理论板处。 【7-25】 F= 788.57 kmol/h 【7-26】
食品工程原理答案-PPT
理量以新单位表示。
这类公式换算得原则就是:原来给出得公式就是成 立得,故应将新单位下得物理量(加“′”表示)还 原到公式所要求得单位后,将还原后得物理量代入 原公式,再变化。
此为“还原”法则。
例:总传热系数K得经验式为:
3.28 ft
ft
0.305 即为 ft 换为 m 的换算因数。
两个相同得物理量之比为纯数1,其数字部分即为 换算因数,但要将目标(要换算到得单位)单位得物 理量放在分子上,用此法不容易产生错误。
例:工程单位制中,基本物理量就是长度(m)、时间 (s)与力(kgf),而质量就是导出量,问其单位?将工 程制得质量换为SI制kg换算因数怎么写?
processes is unified and simplified、
工业与过程生产线按单元操作分割,以统一与简化 描述。
0、2、2 单元操作得特点
都就是物理操作; 都就是共有得操作; 原理相同,设备通用(不同过程中,设备得个数与排
列顺序当然可以不同)。
0、3 食品工程原理课程得两条主线
物理加工当然进行得就是物理操作,如粉碎、过滤、 蒸发、加热、冷却、干燥等。
对涉及生物、化学加工得食品加工过程而言,过程 得核心应当就是生物化学或化学反应过程与设备 (反应器)。
为了过程得以经济有效地进行,反应器中应保持某 些优惠条件,如适宜得压强、温度、浓度、界面积。
原料必须经过一系列得预处理,以除去杂质,达 到必要得纯度、温度、压强、接触面积等,这 些过程称为前处理。
食品工业中得物理过程或物理操作步骤,对食品工 程师、科研人员及管理人员而言,非常重要。
食品工业过程得这种特点同样出现在化学工业、 制药工业等生产过程中,说明这一些类型得生产过 程得处理原则可以就是相似得。
食品工程原理思考题与习题参考答案
思考题与习题参考答案绪论一、填空1、经济核算2、物料衡算、经济核算、能量核算、物系的平衡关系、传递速率3、液体输送、离心沉降、混合、热交换、蒸发、喷雾干燥二、简答1、在食品工程原理中,将这些用于食品生产工艺过程所共有的基本物理操作过程成为单元操作。
例如,奶粉的加工从原料乳的验收开始,需要经过预热杀菌、调配、真空浓缩、过滤、喷雾干燥等过程;再如,酱油的加工,也包含大豆的浸泡、加热、杀菌、过滤等工序,这两种产品的原料、产品形式、加工工艺都有较大的不同,但却包含了流体的输送、物质的分离、加热等相同的物理操作过程。
2、“三传理论”即动量传递、热量传递和质量传递。
(1)动量传递理论。
随着对单元操作的不断深入研究,人们认识到流体流动是一种动量传递现象,也就是流体在流动过程中,其内部发生动量传递。
所以凡是遵循流体流动基本规律的单元操作都可以用动量传递理论去研究。
(2)热量传递理论。
物体在加热或者冷却的过程中都伴随着热量的传递。
凡是遵循传热基本规律的单元操作都可以用热量传递的理论去研究。
(3)质量传递理论。
两相间物质的传递过程即为质量传递。
凡是遵循传质基本规律的单元操作都可以用质量传递的理论去研究。
例如,啤酒的灭菌(热量传递),麦芽的制备(动量传递,热量传递,质量传递)等。
三传理论是单元操作的理论基础,单元操作是三传理论具体应用。
3、单元操作中常用的基本概念有物料衡算、能量衡算、物系的平衡关系、传递速率和经济核算。
物料衡算遵循质量守恒定律,是指对于一个生产加工过程,输入的物料总量必定等于输出的物料总质量与积累物料质量之和。
能量衡算的依据是能量守恒定律,进入过程的热量等于离开的热量和热量损失之和。
平衡状态是自然界中广泛存在的现象。
平衡关系可用来判断过程能否进行,以及进行的方向和能达到的限度。
过程的传递速率是决定化工设备的重要因素,传递速率增大时,设备尺寸可以减小。
为生产定量的某种产品所需要的设备,根据设备的型式和材料的不同,可以有若干设计方案。
食工原理课后习题与答案
第一章1-1烟道气的组成约为N:75%, C0zl5%, 0别,HQ5% (体积百分数)。
试计算常压下400C。
时该混合气体的密度。
解:必二工廊=0.75x28+0.15x44+0.05x32+0.05x18二30.1/An=p/^n//?7^101.3xl0x30.1/(8.314xl03x673)=0.545kg/m31-2已知成都和拉萨两地的平均大气压强分别为0.095MPa和0.062MPa。
现有一果汁浓缩锅需保持锅内绝对压强为8.0kPa o问这一设备若置于成都和拉萨两地,表上读数分别应为多少?解:成都拉萨O二95・8二87kPa (真空度) 6二62・8二54kPa (真空度)1-3用如附图所示的U型管压差计测定吸附器内气体在A点处的压强以及通过吸附剂层的压强降。
在某气速下测得/?i为400mmHg, Rz为90mmHg, Rz为40mmHJ3,试求上述值。
解:G二斶加O0+砂hg°二0.04x1000x981+0.09x13600x981 二12399.8Pa(表)Q A二a+EQgg二12399.8+04x13600x9.81 二65766.2Pa (表)1-4如附图所示,倾斜微压差计由直径为。
的贮液器和直径为/的倾斜管组成。
若被测流体密度为 g空气密度为。
试导出用R表示的压强差计算式。
如倾角a为30。
时,若要忽略贮液器内的液面高度力的变化,而测量误差又不得超过1%时,试确定比值至少应为多少?解:由静力学方程二Qpgg二Esina(/zp)g二心/vp)g/2 (1) 若忽略贮液器内液面高度的变化,则斜管内液位为:R二R・h液柱长度:/?/ = /?i-/?/sina=/?i-2/7二R、4dg 二 AV(/vQg/2 二(AV2 -/7)(/%-p)p 又兀07?/4二兀夕只74 即/?二心力+2(/0] 所以Ap = -ff)g/\2 +4( d/Djy(2)相对误差为(△QjQj/AQO.OOl*解得:力公0.02237 即。
天津大学食工原理答案第六章
6-1 试估算固形物含量为30%的番茄酱在常压和720mmHg真空度下蒸发时的沸点升高,番茄酱的沸点升高数据可参考糖溶液,忽略静压引起的沸点升高,大气压强取760mmHg。
解: 绝压=760-720=40mmHg=5333 Pa在5.3kPa下水沸点为33.4℃→306.6K,潜热2416.1kJ/kg查糖液性质D0'=0.6℃∴D'=0.0162×0.6×306.62/2416.1=0.4℃6-2 上题中若加热管长度为4m,则沸点升高又为多少?计算时番茄酱的密度可近似取为1000kg/m3。
解:pm=p0+rgh/2=5333+1000×9.81×4/2=24953Pa 在25 kPa下,水沸点为63.3℃∴D"=63.3-33.4=29.9℃ D=D'+D"=30.3℃6-3 在单效真空蒸发器内,每小时将1500kg牛奶从浓度15%浓缩到50%。
已知进料的平均比热容为3.90kJ/(kg.K),温度80℃,加热蒸汽表压为1×105Pa,出料温度60℃,蒸发器传热系数为1160W/(m2.K),热损失可取为5%。
试求:(1)水分蒸发量和成品量;(2)加热蒸汽消耗量;(3)蒸发器传热面积。
解:(1)W=F(1-w0/w1)=1500(1-15/50)=1050kg/h产品量为:F-W=1500-1050=450kg/h(2)D=1.05×[Fcp0(t1-t0)+Wr']/r=1.05×[1500×3.9×(60-80)+1050×2355.1]/2204.6=1122kg/h 此处r'按60℃查,r按200kPa绝压查,且知T=120.2℃(3)S=Q/KDt=Dr/KDt=1122×2204.6×103/[3600×1160×(120.2-60)]=9.84m26-4 在某次试验研究中,桃浆以65kg/h的流量进入连续真空蒸发器内进行浓缩,进料温度为16℃,固溶物含量为10.9%,产品排出温度为40℃,固溶物含量为40%,二次蒸汽在间壁式冷凝器中冷凝,离开冷凝器的汽凝水温度为38℃。
中国农业大学食品学院食品工程原理课后习题及答案解析
X X* G (X c X *) ln c A Uc X2 X*
五 计算 1、相对湿度 0.252;水蒸气分压 7851.85Pa;露点 41.5℃;湿空气的比热容 1.10964KJ/Kg 2、湿度 0.0102Kg/kG;露点 14.5℃ 3、25 倍 4、(略) 5、(略) 6、干燥时间 26500s
更多资料下载:
才思教育考研考博全心全意更多资料下载:来自 2 d 0
2
G X 2 dX G X c dX A X c U A X2 U
式中 U——降速阶段的瞬时干燥速率,kg/m2·s。 连接临界点 C 与平衡含水量 E 的直线来代替降速阶段的干燥速率,该近似方法认为在降速干燥阶段, 干燥速率与物料中的自由水分成正比,即:
U
才思教育考研考博全心全意
中国农业大学食品学院食品工程原理课后习题及答案解析
四 简答 1、 流体的运动对传热过程有强烈影响。当边界层中的流动完全处于层流状态时,垂直于流动方向上的热 量传递虽然只能通过流体内部的导热,但流体的流动造成了沿流动方向的温度变化,使壁面处的温度梯度 增加,因而促进了传热。当边界层中的流动是湍流时,壁面附近的流动结构包括湍流区、过渡区和层流底 层。湍流区垂直于流动方向上的热量传递除了热传导外,主要依靠不同温度的微团之间剧烈混合,即依靠 对流传热。 2 热风干燥过程中,热风既是载热体也是载湿体。一方面热风提供给湿物料热量,使得水分加热蒸发; 另一方面由于湿物料中水分蒸汽压大于热空气中水分分压,使得物料中水分蒸发到热空气中,被热风带走。 使得物料干燥。 3 干燥包括预热阶段、恒速干燥阶段及降速干燥阶段。预热阶段空气热量主要用于物料的加热,水分蒸发 量较少,时间较短暂,通过减小物料颗粒来增强预热效果。恒速干燥阶段物料含水量迅速下降,干燥速度 最大,物料表面温度等于干燥介质的湿球温度,空气热量全部用于水分的汽化,空气显热等于水分的汽化 潜热,所去除的水分为非结合水分,物料内部水分扩散速度大于或等于水分表面汽化速度,干燥处于表面 汽化控制状态。可通过减小物料颗粒,增加空气的流动速度并使空气垂直进入物料内部,增加空气的相对 湿度等措施来强化干燥。降速干燥阶段干燥速度开始下降,物料表面温度大于空气的干球温度并逐渐上升。 空气热量除了用于水分的蒸发外,还要用于物料的升温,所除去的水分有结合水分和非结合水分,干燥开 始进入内部扩散控制状态,此阶段不宜盲目强化干燥条件,但可通过减小物料颗粒,使物料流动方向与空 气方向相反等措施来强化干燥速度。 4 根据物料与水分结合力的状况,可将物料中所含水分分为结合水分与非结合水分。结合水分包括物料细 胞壁内的水分、物料内毛细管中的水分及以结晶水的形态存在于固体物料之中的水分等。它是籍化学力或 物理化学力与物料相结合的,由于结合力强,其蒸汽压低于同温度下纯水的饱和蒸汽压,致使干燥过程的 传质推动力降低,故除去结合水分较困难。 非结合水分包括机械地附着于固体表面的水分,如物料表面的吸附水分、较大孔隙中的水分等。物料中非 结合水分与物料的结合力弱,其蒸汽压与同温度下纯水的饱和蒸汽压相同,干燥过程中除去非结合水分较 容易。物料的结合水分和非结合水分的划分只取决于物料本身的性质,而与干燥介质的状态无关 5 绝热增湿过程进行到空气被水汽所饱和,则空气的温度不再下降,而等于循环水的温度,称此温度为该 空气的绝热饱和温度。在湿空气中,将温度计的感温部分包以纱布,置于一定温度和湿度的湿空气中,经 一段时间达到稳定后,温度计所反映的温度称为是空气的湿球温度。绝热饱和温度与湿球温度是两个完全 不的概念。但是两者都是湿空气状态(t 和 H)的函数。特别是对空气-水气系统,两者在数值上近似相等, 对其他系统而言,不存在此关系。
食工原理课后习题答案第3-6章
第三章3-1试求粒度为50m的某谷物的粉粒在20℃和100℃的常压空气中的沉降速度。
并分析其计算结果。
已知该谷物的密度p=1480kg/m3。
-5Pa.s=1.205kg/m3解:(1)=1.81×10u t=(50×10-6)2×(1480-1.205)9.×81/(181×.81×10-5)=0.111m/s-6-5)=0.37<1Ret=0.111×50×10×1.205/(1.8110×(2)=2.19×10-5Pa.s=0.946kg/m3ut=(50×10-6)2×(1480-0.946)9.×81/(182×.19×10-5)=0.092m/s-6-5Ret=0.092×50×10×0.946/(2.1910×)=0.199<13-2密度为1850kg/m 3的微粒,在20℃的水中按斯托克斯定律沉降,问直径相差一倍的微粒,其沉降速度相差多少?2u t’=4u t解:u t’/u t=(d’/d)3的某球形豆制品颗粒在15℃水中的沉降速度为2.8mm/s,求此豆制品颗3-3已测得密度为1100kg/m粒的直径。
18u180.001150.00284解:2.4310mtd()g(11001000)9.81p-4Re t=2.43×10×0.0028×1000/0.00115=0.59<13的糖蜜的粘度。
该粘度计由一光滑钢球和玻璃筒组3-4用落球粘度计测定20℃时密度为1400kg/m3成,如附图所示。
试验测得密度为7900kg/m,直径为0.2mm的钢球在盛有此糖蜜的玻璃筒中的沉降速度为10.2mm/s,问此糖蜜的粘度为多少?2(p-)g/18ut=(2×10-4)2×(7900-1400)9×.81/(181×0.2×10-3)=0.0139Pa.s解:=d-4-3Re t=2×10×10.2×10×1400/0.0139=0.2055<13-5一矩形降尘室,长10m,宽5m,其中有20块隔板,隔板间的距离为0.1m,用以分离含尘气体中的微粒,微粒的密度是2500kg/m3,微粒中最小粒径为10m,气体的粘度为0.0218cP,密度为3。
食工原理课后习题答案第3-6章
第三章3-1 试求粒度为50μm 的某谷物的粉粒在20℃和100℃的常压空气中的沉降速度。
并分析其计算结果。
已知该谷物的密度ρp =1480kg/m 3。
解:(1)μ=1.81×10-5Pa .s ρ=1.205kg/m 3u t =(50×10-6)2×(1480-1.205)×9.81/(18×1.81×10-5)=0.111m/sRe t =0.111×50×10-6×1.205/(1.81×10-5)=0.37<1(2)μ=2.19×10-5Pa .s ρ=0.946kg/m 3u t =(50×10-6)2×(1480-0.946)×9.81/(18×2.19×10-5)=0.092m/sRe t =0.092×50×10-6×0.946/(2.19×10-5)=0.199<13-2 密度为1850 kg/m 3的微粒,在20℃的水中按斯托克斯定律沉降,问直径相差一倍的微粒,其沉降速度相差多少?解: u t ’/u t =(d ’/d )2 u t ’=4u t3-3 已测得密度为1100kg/m 3的某球形豆制品颗粒在15℃水中的沉降速度为2.8mm/s ,求此豆制品颗粒的直径。
解: m 1043.281.9)10001100(0028.000115.018)(184p t -⨯=⨯-⨯⨯=-=g u d ρρμRe t =2.43×10-4×0.0028×1000/0.00115=0.59<13-4 用落球粘度计测定20℃时密度为1400kg/m 3的糖蜜的粘度。
该粘度计由一光滑钢球和玻璃筒组成,如附图所示。
试验测得密度为7900 kg/m 3,直径为0.2mm 的钢球在盛有此糖蜜的玻璃筒中的沉降速度为10.2mm/s ,问此糖蜜的粘度为多少?解: μ=d 2(ρp -ρ)g /18u t =(2×10-4)2×(7900-1400)×9.81/(18×10.2×10-3)=0.0139Pa .sRe t =2×10-4×10.2×10-3×1400/0.0139=0.2055<13-5 一矩形降尘室,长10m ,宽5m ,其中有20块隔板,隔板间的距离为0.1m ,用以分离含尘气体中的微粒,微粒的密度是2500kg/m 3,微粒中最小粒径为10μm ,气体的粘度为0.0218cP ,密度为1.1kg/m 3。
慕课食工原理习题答案
慕课食工原理习题答案慕课食工原理习题答案近年来,随着互联网的飞速发展,慕课(即大规模开放在线课程)已经成为了一种受欢迎的学习方式。
而其中,慕课食工原理课程更是备受关注。
食工原理是一门关于食品加工和安全的学科,通过学习这门课程,我们可以了解到食品加工过程中的各种原理和技术,以及如何确保食品的安全性。
在学习过程中,我们难免会遇到一些习题,下面就让我们来一起探讨一些常见的慕课食工原理习题的答案。
1. 什么是食品加工?答:食品加工是指将原料经过一系列的物理、化学和生物变化,经过加工、制作和处理等过程,制成具有一定保质期和特定用途的食品的过程。
这个过程包括了原料的选择、清洗、切割、混合、加热、冷却、包装等环节。
2. 食品加工的目的是什么?答:食品加工的主要目的是提高食品的风味、质量和安全性。
通过加工,我们可以改变食品的口感、颜色、形状等特征,使得食品更加美味可口。
同时,加工还可以杀灭或抑制食品中的微生物和有害物质,保证食品的安全性。
此外,加工还可以延长食品的保质期,方便储存和运输。
3. 食品加工中的热处理有哪些方法?答:食品加工中的热处理主要包括杀菌、灭酶和煮熟等。
杀菌是通过高温将食品中的微生物杀灭,常见的方法有高温短时间灭菌、低温长时间灭菌等。
灭酶是通过加热将食品中的酶活性降低或破坏,以防止食品变质和品质下降。
煮熟是将食品加热至充分熟透的状态,确保食品安全和易消化。
4. 食品加工中的冷处理有哪些方法?答:食品加工中的冷处理主要包括冷藏和冷冻。
冷藏是将食品储存在低温环境下,通常在0-10摄氏度之间,以延长食品的保质期。
冷冻是将食品储存在极低温度下,通常在-18摄氏度以下,以保持食品的新鲜度和营养价值。
5. 食品加工中的脱水处理有哪些方法?答:食品加工中的脱水处理主要包括晒干、风干、真空脱水和冷冻干燥等。
晒干是将食品暴露在阳光下,利用太阳能将食品中的水分蒸发掉。
风干是将食品暴露在通风处,利用空气流动将食品中的水分蒸发掉。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章3-1 试求粒度为50m 的某谷物的粉粒在20℃和100℃的常压空气中的沉降速度。
并分析其计算结果。
已知该谷物的密度p =1480kg/m 3。
解:(1)=1.81×10-5Pa .s =1.205kg/m 3u t =(50×10-6)2×(1480-1.205)×9.81/(18×1.81×10-5)=0.111m/sRe t =0.111×50×10-6×1.205/(1.81×10-5)=0.37<1(2)=2.19×10-5Pa .s =0.946kg/m 3u t =(50×10-6)2×(1480-0.946)×9.81/(18×2.19×10-5)=0.092m/sRe t =0.092×50×10-6×0.946/(2.19×10-5)=0.199<13-2 密度为1850 kg/m 3的微粒,在20℃的水中按斯托克斯定律沉降,问直径相差一倍的微粒,其沉降速度相差多少?解: u t ’/u t =(d ’/d )2 u t ’=4u t3-3 已测得密度为1100kg/m 3的某球形豆制品颗粒在15℃水中的沉降速度为2.8mm/s ,求此豆制品颗粒的直径。
解: m 1043.281.9)10001100(0028.000115.018)(184p t -⨯=⨯-⨯⨯=-=g u d ρρμRe t =2.43×10-4×0.0028×1000/0.00115=0.59<13-4 用落球粘度计测定20℃时密度为1400kg/m 3的糖蜜的粘度。
该粘度计由一光滑钢球和玻璃筒组成,如附图所示。
试验测得密度为7900 kg/m 3,直径为0.2mm 的钢球在盛有此糖蜜的玻璃筒中的沉降速度为10.2mm/s ,问此糖蜜的粘度为多少?解: =d 2(p -)g /18u t =(2×10-4)2×(7900-1400)×9.81/(18×10.2×10-3)=0.0139Pa .sRe t =2×10-4×10.2×10-3×1400/0.0139=0.2055<13-5 一矩形降尘室,长10m ,宽5m ,其中有20块隔板,隔板间的距离为0.1m ,用以分离含尘气体中的微粒,微粒的密度是2500kg/m 3,微粒中最小粒径为10m ,气体的粘度为0.0218cP ,密度为1.1kg/m 3。
试求:(1)最小微粒的沉降速度;(2)若需将最小微粒沉降下来,气体的最大流速不能超过多少m/s ?(3)此降尘室能够处理的气体量为多少m 3/h ?解:(1)u tmin =(10×10-6)2×(2500-1.1)×9.81/(18×0.0218×10-3)=6.247×10-3m/sRe t =6.247×10-3×10×10-6×1.1/(0.0218×10-3)=0.00315<1(2)t t =0.1/u tmin =16s u =10/16=0.6247m/s(3)q v h =u tmin BLn =6.247×10-3×10×5×21×3600=23614m 3/h3-6 拟用长4m 、宽2m 的降尘室净化3000m 3/h 的常压空气,气温为25℃,空气中含有密度2000kg/m3的尘粒,欲要求净化后的空气中所含尘粒小于10m ,试确定降尘室内需设多少块隔板?解:u t =(10×10-6)2×(2000-1.185)×9.81/(18×1.835×10-5)=5.94×10-3m/sq v 1=5.94×10-3×4×2×3600=128m 3/h3000/128=23.4 即应有24层,需23层隔板。
3-7 有一旋风分离器分离气流中的颗粒,在正常操作时,其进口气速为20m/s ,由于突然事故,使处理气体量减少40%,问此旋风分离器能够分离出的最小颗粒将有何变化?解: q v ’=0.6q v u T ’=u T q v ’/q v =0.6u t =0.6×20=12m/sTs c π9u N B d ρμ= d c ’/d c =(u T /u T ’)1/2=(1/0.6)1/2=1.293-8 使用(B =D /4、A =D /2)标准型旋风分离器收集流化床锻烧器出口的碳酸钾粉尘,粉尘密度为2290kg/m 3,旋风分离器的直径D =650mm 。
在旋风分离器入口处,空气的温度为200℃,流量为3800m 3/h(200℃)时,求此设备能分离粉尘的临界直径d c (取N =5)。
解: u T =3800×8/(3600×0.652)=20m/sm 1027.7202290514.3465.0106.29π965T s c --⨯=⨯⨯⨯⨯⨯⨯⨯==u N B d ρμ3-9 在100℃的热空气中含砂粒之粒度分布(质量分率)为:粒径范围,m 10以下 10~20 20~30 30~40 40以上 质量分率,% 10 10 20 20 40已知砂粒的密度为2200kg/m 3,若此含尘气流在一降尘室中分离,其分离效率为60%;在另一旋风分离器中分离,其分离效率可达90%,现将流量降低50%,问新的情况下两种分离器的分离效率各为若干?设砂粒的沉降均符合斯托克斯定律。
解: 对降尘室,原临界粒径为30m 。
q v =u t BL q v ’=q v /2 u t ’=u t /2 d c ’/d c =(u t ’/u t )1/2 d c ’=d c /21/2=2.12×10-5m 分离效率增为80%对旋风分离器,原临界粒径为10m 。
d c ’/d c =(u t /u t ’)1/2 d c ’=d c ×21/2=14.1×10-5m 分离效率<90%3-10 某圆柱形吸附剂的尺寸为直径4mm ,高8mm 。
试分别求该吸附剂的等体积直径、等表面积当量直径、等比表面积当量直径以及球形度。
解: V p =0.785×0.0042×0.008=1.005×10-7m 3 d e =(6V p /)1/3=5.77×10-3mA p =0.785×0.0042×2+3.14×0.004×0.008=1.256×10-4m 2d A =(A p /)1/2=6.32×10-3md a =6V p /A p =6×1.005×10-7/(1.256×10-4)=4.8×10-3ma =6/d e =1040m 2/m 3 a p =1.256×10-3/(1.005×10-7)=1250m 2/m 3j A =1040/1250=0.833-11 某喷雾干燥制品的筛分数据如下表所示。
颗粒试样总量为0.5kg ,设颗粒为球形,试求该混合颗粒的分布函数曲线,频率函数曲线以及以等比表面积计的平均粒径。
序号 1 2 3 4 5 6 7 8 9 10筛孔尺寸/mm 0.4 0.315 0.25 0.18 0.154 0.125 0.09 0.071 0.056<0.045筛留量/kg 0.001 0.004 0.010 0.071 0.135 0.143 0.116 0.018 0.0020.000解: 附表序号 (I )筛分数据 (II )计算值筛孔尺寸mm 筛留量kg d p,i -1-d p,Id pm i /mm w i /% F i f i /mm w i /d pm i1 0.4 0.01 0.2 1.0002 0.315 0.004 0.085 0.3575 0.8 0.998 0.0224 0.002863 0.25 0.01 0.065 0.2825 2 0.99 0.0708 0.005654 0.18 0.071 0.07 0.215 14.2 0.97 0.6605 0.0305 5 0.154 0.135 0.026 0.167 27 0.828 1.6168 0.04509 6 0.125 0.143 0.029 0.1395 28.6 0.558 2.0502 0.04007 0.09 0.116 0.035 0.1075 23.2 0.272 2.1581 0.02494 80.071 0.018 0.019 0.0805 3.6 0.04 0.4472 0.00290 90.056 0.002 0.015 0.0635 0.4 0.004 0.0630 0.000254 10 0.000 0 0.056 0.028 0 0 00 以等比表面积计的平均粒径: d pm =0.141 mm S=7.089 S=0.15213-12 一固定床吸附器,床层由比表面积a =1250m 2/m 3的圆柱形吸附剂组成,床层的高度为1.5m ,空隙率为0.42。
当温度为150℃及压强为0.02MPa (表压)时,在每平方米吸附层的截面上每小时通过1800m 3(标准状况)的混合气体,试计算通过吸附层的流体压降。
已知150℃及0.12MPa (绝压)时该混合气体的密度为0.8kg/m 3,粘度为2.5×10-5Pa .s 。
解: m/s 647.03.1213.10127315027336001800⨯+⨯=u ]647.08.042.0)42.01(125029.0647.0105.242.0)42.01(125017.4[5.1])1(29.0)1(17.4[23532223322⨯⨯-⨯⨯+⨯⨯⨯-⨯⨯⨯=-+-=∆-u a u a L p ρεεμεε =2143Pa3-13 用活性炭固定床脱除某溶液的色度,溶液温度为20℃,密度为830kg/m 3,粘度为1.3×10-3Pa .s 。
使用的活性炭平均粒径为0.85mm ,床层直径为0.3m ,填充高度为0.6m ,空隙率为0.43。