二次函数中直角三角形存在性问题-初稿
(完整版)二次函数与三角形的存在性问题的解法
二次函数与三角形的存在性问题一、预备知识1、坐标系中或抛物线上有两个点为P (x1,y ),Q (x2,y )(1)线段对称轴是直线2x 21x x +=(2)AB 两点之间距离公式:221221)()(y y x x PQ -+-=中点公式:已知两点()()2211y ,x Q ,y ,x P ,则线段PQ 的中点M 为⎪⎭⎫ ⎝⎛++222121y y ,x x 。
2、两直线的解析式为11b x k y +=与 22b x k y +=如果这两天两直线互相垂直,则有121-=⋅k k3、平面内两直线之间的位置关系:两直线分别为:L1:y=k1x+b1 L2:y=k2x+b2(1)当k1=k2,b1≠b2 ,L1∥L2(2)当k1≠k2, ,L1与L2相交(3)K1×k2= -1时, L1与L2垂直二、三角形的存在性问题探究:三角形的存在性问题主要涉及到的是等腰三角形,等边三角形,直角三角形(一)三角形的性质和判定:1、等腰三角形性质:两腰相等,两底角相等,三线合一(中线、高线、角平分线)。
判定:两腰相等,两底角相等,三线合一(中线、高线、角平分线)的三角形是等腰三角形。
2、直角三角形性质:满足勾股定理的三边关系,斜边上的中线等于斜边的一半。
判定:有一个角是直角的三角形是直角三角形。
3、等腰直角三角形性质:具有等腰三角形和等边三角形的所以性质,两底角相等且等于45°。
判定:具有等腰三角形和等边三角形的所以性质的三角形是等腰直角三角形4、等边三角形性质:三边相等,三个角相等且等于60°,三线合一,具有等腰三角形的一切性质。
判定:三边相等,抛物线或坐标轴或对称轴上三个角相等,有一个角是60°的等腰三角形是等边三角形。
总结:(1)已知A 、B 两点,通过“两圆一线”可以找到所有满足条件的等腰三角形,要求的点(不与A 、B 点重合)即在两圆上以及两圆的公共弦上(2)已知A 、B 两点,通过“两线一圆”可以找到所有满足条件的直角三角形,要求的点(不与A 、B 点重合)即在圆上以及在两条与直径AB 垂直的直线上。
二次函数中三角形存在问题(一)
二次函数中三角形存在性问题(一)1.等腰三角形2.直角三角形例一:条件的所有点P的坐标。
(2)点P为抛物线对称轴上的动点,当△PBC为等腰三角形时,求点P的坐标。
6.二次函数)0(2≠++=a c bx ax y 的图象的一部分如图所示.已知它的顶点M 在第二象限,且经过点A (1,0)和点B (0,1).(1)试求a ,b 所满足的关系式;(2)若点C (-3,0),试确定二次函数表达式。
(3)是否存在实数a ,使得△ABC 为直角三角形?若存在,请求出a 的值;若不存在,请说明理由.课后作业1.如图,抛物线n x x y ++-=52经过点A (1,0),与y 轴交于点B(1)求抛物线的解析式;(2)P 是y 轴正半轴上一点,且△PAB 是以AB 为腰的等腰三角形,试求点P 的坐标.2.如图,在平面直角坐标中抛物线322+--=x x y 与x 轴的正半轴交于点A ,顶点为B ,点C 为AB 的中点,点D 在X 轴的负半轴上,且tanCDA=21。
(1)求C 、D 两点坐标;3.在平面直角坐标系中,△ABC是直角三角形,且∠BAC=90°,∠ACB=30°,点A的坐标为(0,3),B,C在x轴上,C在B的右侧。
(1)求点B和点C的坐标;(2)求经过A、B、C三点的抛物线的表达式;(3)设点M是(2)中抛物线的顶点,P、Q是抛物线上的两点,要使△MPQ为等边三角形,求点P、Q的坐标.4.如图,已知抛物线y=ax2+bx+c(a≠0)的顶点M在第一象限,抛物线与x轴相交于A、B两点(点A在点(1)求点M的坐标;(2)求抛物线y=ax2+bx+c的解析式;(3)在抛物线的对称轴上是否存在点P,使得△PAC为直角三角形?若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.。
二次函数三角形存在性问题-学生版
二次函数动点产生的等腰、直角以及等腰直角三角形 一、二次函数动点产生的等腰三角形【知识点】(1) 代数法:设点坐标,利用两点间距离公式表示出两条腰长度的平方,构造:;(2) 几何法:利用两线一圆分析点的存在情况,利用几何关系或公式法求解;方法:分类讨论:①当A 为顶点时,即AB=AC 时,以A 为圆心,AB 为半径画圆②当B 为顶点时,即BA=BC 时,以B 为圆心,BA 为半径画圆③当C 为顶点时,即CA=CB 时,作线段AB 的垂直平分线【例题讲解】★★☆例题1.如图,在平面直角坐标系中,已知点C (0,4),点A 、B 在x 轴上,并且OA =OC =4OB ,动点P 在过A 、B 、C 三点的抛物线上.(1)求抛物线的函数表达式;(2)在直线AC 上方的抛物线上,是否存在点P ,使得△PAC 的面积最大?若存在,求出P 点坐标及△PAC 面积的最大值;若不存在,请说明理由.(3)在x 轴上是否存在点Q ,使得△ACQ 是等腰三角形?若存在,请直接写出点Q 的坐标;若不存在,请说明理由.22AB AC★★☆练习1.如图1,已知抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(﹣3,0),与y 轴交于点C.(1)求抛物线的表达式;(2)如图1,若点E为第二象限抛物线上一动点,连接BE,CE,求四边形BOCE面积的最大值,并求此时E点的坐标;(3)如图2,在x轴上是否存在一点D使得△ACD为等腰三角形?若存在,请求出所有符合条件的点D 的坐标;若不存在,请说明理由.★★☆练习2.如图甲,直线y=﹣x+3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线y=x2+bx+c 与x轴的另一个交点为A,顶点为P.(1)求该抛物线的解析式;(2)在该抛物线的对称轴上是否存在点M,使以C,P,M为顶点的三角形为等腰三角形?若存在,请直接写出所符合条件的点M的坐标;若不存在,请说明理由;(3)当0<x<3时,在抛物线上求一点E,使△CBE的面积有最大值(图乙、丙供画图探究).二、二次函数动点产生的直角三角形【知识点】(1)利用勾股定理构造三边关系;(2)利用两直线垂直,斜率之积关系代数求解;(3)利用两线一圆几何方法求解;方法:分类讨论:当∠A=90︒时,过点A作线段AB的垂线当∠B=90︒时,过点B作线段AB的垂线当∠C=90︒时,以AB为直径作圆【例题讲解】★★☆例题1.在平面直角坐标系中,抛物线y=mx2﹣2x+n与x轴的两个交点分别为A(﹣3,0),B(1,0),C为顶点.(1)求m、n的值.(2)在y轴上是否存在点D,使得△ACD是以AC为斜边的直角三角形?若存在,求出点D的坐标;若不存在,说明理由.★★☆练习1.如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;(3)设点P为抛物线的对称轴x=﹣1上的一个动点,求使△BPC为直角三角形的点P的坐标.★★☆练习2.如图,在平面直角坐标系中,抛物线y=ax2+bx+4经过点A(4,0),B(﹣1,0),交y 轴于点C.(1)求抛物线的解析式;(2)点D 是直线AC 上一动点,过点D 作DE 垂直于y 轴于点E ,过点D 作DF ⊥x 轴,垂足为F ,连接EF ,当线段EF 的长度最短时,求出点D 的坐标;(3)在AC 上方的抛物线上是否存在点P ,使得△ACP 是直角三角形?若存在,求出所有符合条件的点P 的坐标;若不存在,说明理由.三、二次函数动点产生的等腰直角三角形【知识点】(1) 按照等腰直角三角形的边角特征分情况讨论;(2) 利用构建三垂直模型证明三角形全等的思路来证明等腰直角三角形【例题讲解】★★★例题1.如图,在等腰直角三角形ABC 中,90BAC ∠=︒,点A 在x 轴上,点B 在y 轴上,点(3,1)C ,二次函数21332y x bx =+-的图象经过点C . (1)求二次函数的解析式,并把解析式化成2()y a x h k =-+的形式;(2)把ABC ∆沿x 轴正方向平移,当点B 落在抛物线上时,求ABC ∆扫过区域的面积;(3)在抛物线上是否存在异于点C 的点P ,使ABP ∆是以AB 为直角边的等腰直角三角形?如果存在,请求出所有符合条件的点P 的坐标;如果不存在,请说明理由.★★★练习1的等腰直角三角板ABC 放在第二象限,且斜靠在两坐标轴上,直角顶点C 的坐标为(1,0)-,点B 在抛物线22y ax ax =+-上.(1)点A 的坐标为 (0,2) ,点B 的坐标为 ;(2)抛物线的解析式为 ;(3)设(2)中抛物线的顶点为D ,求DBC ∆的面积;(4)在抛物线上是否还存在点P (点B 除外),使ACP ∆仍然是以AC 为直角边的等腰直角三角形?若存在,请直接写出所有点P 的坐标;若不存在,请说明理由.★★★例题2.如图,抛物线2:L y ax bx c =++与x 轴交于A 、(3,0)B 两点(A 在B 的左侧),与y 轴交于点(0,3)C ,已知对称轴1x =.(1)求抛物线L 的解析式;(2)将抛物线L 向下平移h 个单位长度,使平移后所得抛物线的顶点落在OBC ∆内(包括OBC ∆的边界),求h 的取值范围;(3)设点P 是抛物线L 上任一点,点Q 在直线:3l x =-上,PBQ ∆能否成为以点P 为直角顶点的等腰直角三角形?若能,求出符合条件的点P 的坐标;若不能,请说明理由.★★★练习1.如图,抛物线212y x bx c =++与直线3:14l y x =-交于点(4,2)A 、(0,1)B -. (1)求抛物线的解析式;(2)点D 在直线l 下方的抛物线上,过点D 作//DE y 轴交l 于E 、作DF l ⊥于F ,设点D 的横坐标为t . ①用含t 的代数式表示DE 的长;②设Rt DEF ∆的周长为p ,求p 与t 的函数关系式,并求p 的最大值及此时点D 的坐标;(3)点M 在抛物线上,点N 在x 轴上,若BMN ∆是以M 为直角顶点的等腰直角三角形,请直接写出点M 的坐标.【课后练习】★★☆1.如图,已知抛物线y1=-x2+bx+4与x轴相交于A、B两点,与y轴相交于点C,若已知A点3的坐标为A(﹣2,0).(1)求抛物线的解析式;(2)求线段BC所在直线的解析式;(3)在抛物线的对称轴上是否存在点P,使△ACP为等腰三角形?若存在,求出符合条件的P点坐标;若不存在,请说明理由.★★☆2如图,在平面直角坐标系中,二次函数的图象交坐标轴于A(﹣1,0),B(4,0),C(0,﹣4)三点,点P是直线BC下方抛物线上一动点.(1)求这个二次函数的解析式;(2)是否存在点P,使△POC是以OC为底边的等腰三角形?若存在,求出P点坐标;若不存在,请说明理由;(3)动点P运动到什么位置时,△PBC面积最大,求出此时P点坐标和△PBC的最大面积.★★☆3.在平面直角坐标系中有Rt△AOB,O为原点,OB=1,OA=3,将此三角形绕点O顺时针旋转90°得到Rt△COD,抛物线y=﹣x2+bx+c过A,B,C三点.(1)求此抛物线的解析式及顶点P的坐标;(2)直线l:y=kx﹣k+3与抛物线交于M,N两点,若S△PMN=2,求k的值;(3)抛物线的对称轴上是否存在一点Q使得△DCQ为直角三角形.★★☆4.如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C,点D是该抛物线的顶点.(1)求抛物线的解析式和直线AC的解析式;(2)请在y轴上找一点M,使△BDM的周长最小,求出点M的坐标;(3)试探究:在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.★★☆5.如图,在平面直角坐标系中.直线3y x =-+与x 轴交于点B ,与y 轴交于点C ,抛物线2y ax bx c =++经过B ,C 两点,与x 轴负半轴交于点A ,连结AC ,(1,0)A -(1)求抛物线的解析式;(2)点(,)P m n 是抛物线上在第一象限内的一点,求四边形OCPB 面积S 关于m 的函数表达式及S 的最大值;(3)若M 为抛物线的顶点,点Q 在直线BC 上,点N 在直线BM 上,Q ,M ,N 三点构成以MN 为底边的等腰直角三角形,求点N 的坐标.★★☆6.在平面直角坐标系中,直线122y x =-与x 轴交于点B ,与y 轴交于点C ,二次函数212y x bx c =++的图象经过B ,C 两点,且与x 轴的负半轴交于点A .(1)直接写出:b 的值为 ;c 的值为 ;点A 的坐标为 ;(2)点M 是线段BC 上的一动点,动点D 在直线BC 下方的二次函数图象上.设点D 的横坐标为m . ①如图1,过点D 作DM BC ⊥于点M ,求线段DM 关于m 的函数关系式,并求线段DM 的最大值;②若CDM为等腰直角三角形,直接写出点M的坐标.2.【拔高练习】★★★1.练习4.(2017•潍坊)如图1,抛物线y=ax2+bx+c经过平行四边形ABCD的顶点A(0,3)、B(﹣1,0)、D(2,3),抛物线与x轴的另一交点为E.经过点E的直线l将平行四边形ABCD分割为面积相等的两部分,与抛物线交于另一点F.点P为直线l上方抛物线上一动点,设点P的横坐标为t.(1)求抛物线的解析式;(2)当t何值时,△PFE的面积最大?并求最大值的立方根;(3)是否存在点P使△PAE为直角三角形?若存在,求出t的值;若不存在,说明理由.★★★2.如图,在平面直角坐标系中,抛物线212y x bx c =++与x 轴交于A ,B 两点,点(3,0)B ,经过点A 的直线AC 与抛物线的另一交点为5(4,)2C ,与y 轴交点为D ,点P 是直线AC 下方的抛物线上的一个动点(不与点A ,C 重合).(1)求该抛物线的解析式.(2)过点P 作PE AC ⊥,垂足为点E ,作//PF y 轴交直线AC 于点F ,设点P 的横坐标为t ,线段EF 的长度为m ,求m 与t 的函数关系式.(3)点Q 在抛物线的对称轴上运动,当OPQ ∆是以OP 为直角边的等腰直角三角形时,请直接写出符合条件的点P 的坐标.。
二次函数背景下的直角三角形的存在性问题修订版
请说明理由。
y HP
C
A
OM
B
x
例3. 如图,抛物线y=ax2+bx+c经过A(-3,0)、C(0,4),点B在抛物线上, CB∥x轴,且AB平分∠CAO. (1)求抛物线的解析式; (2)抛物线的对称轴上是否存在点M,使△ABM是以AB为直角边的直角三 角形?如果存在,求出点M的坐标;如果不存在,说明理由. (3)线段AB上有一动点P,过点P作y轴的平行线,交抛物线于点Q,求线段 PQ的最大值;
(3)若点 Q 是 y 轴上一点,且 APQ 为直角三角形,求点 Q 的坐标。
y
P
O
C A
D
ቤተ መጻሕፍቲ ባይዱ
B
x
5.抛物线 y 1 x2 bx c 与 x 轴交于 A(-2,0),B(4,0)两点,与 y 轴交于点 C,顶 2
点为 P (1)求抛物线解析式; (2)动点 M,N 从点 O 同时出发,都以每秒 1 个单位长度的速度分别在线段 OB,OC 上向点 B, C 方向运动,过点 M 做 x 轴的垂线交 BC 于点 F,交抛物线于点 H ①当四边形 OMHN 为矩形时,求点 H 的坐标;
3:如图,已知直线 y=kx-6 与抛物线 y ax2 bx c 相交于 A,B 两点,且点 A(1,-4)为
抛物线的顶点,点 B 在 x 轴上。 (1)求抛物线的解析式;
(2)在(1)中抛物线的第二象限图像上是否存在一点 P,使 POB与POC 全等?若存在,
求出点 P 坐标,若不存在,请说明理由;
一、课前小测: 1.直角三角形的两边长分别是3和4,则第三边的长是
二次函数与三角形存在性问题
4二次函数与三角形存在性问题(2-3次课)(总17页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--二次函数与三角形存在性问题一、等腰三角形的存在性问题例1、如图,抛物线与x轴交于A、B两点,与y轴交于点C.在抛物线的对称轴上是否存在点P,使△PBC是等腰三角形若存在,请求出符合条件的P点坐标;若不存在,请说明理由。
巩固练习 1、如图,抛物线与轴交于、两点,与轴交于点,已知A(3,0),且M(1,38 )是抛物线上另一点。
连接,设点是轴上任一点,若以、、三点为顶点的三角形是等腰三角形,求点的坐标。
2、如图1,直线与轴、轴分别交于点、点,经过、两点的抛物线与轴的另一个交点为,顶点为。
(1)求该抛物线的解析式。
(2)在该抛物线的对称轴上是否存在点,使以、、为顶点的三角形为等腰三角形若存在,请直接写出所有符合条件的点的坐标;若不存在,请说明理由。
(3)当<x<3时,在抛物线上求一点,使△CBE的面积有最大值。
(图2、图3供画图探究)二、直角三角形存在性例2、如图所示,将一边长为3的正方形放置到平面直角坐标系中,其顶点A、B均落在坐标轴上,一抛物线过点A、B,且顶点为P(1,4)(1)求抛物线的解析式;(2)y轴上是否存在一点N,恰好使得△PNB为直角三角形若存在,直接写出满足条件的所有点N的坐标;若不存在,请说明理由.巩固练习1、如图,抛物线=-x2+2x+3与x轴交于B、E两点,与y轴交于A 点.点P是直线AE上方抛物线上一动点,设点P的横坐标为t,是否存在点P,使△PAE为直角三角形若存在,求出t的值;若不存在,说明理由2、如图,已知直线与抛物线相交于A,B两点,且点为抛物线的顶点,点B在x轴上.若点Q是y轴上一点,且为直角三角形,求点Q的坐标.三、等腰直角三角形存在性例3、在平面直角坐标系中,抛物线3-x与x轴交于A,B两点(A在=x2y2+-B的左侧),与y轴交于点C,顶点为D.(1)请直接写出点A,C,D的坐标;(2)如图(1),在x轴上找一点E,使得△CDE的周长最小,求点E的坐标;(3)(3)如图(2),F为直线AC上的动点,在抛物线上是否存在点P,使得△AFP为等腰直角三角形若存在,求出点P的坐标,若不存在,请说明理由.巩固练习1、如图,抛物线bx=2经过A(4,0),B(1,3)两点,点B、C关于抛物线的y+ax对称轴l对称,过点B作直线BH⊥x轴,交x轴于点H.(1)求抛物线的解析式;(2)若点M在直线BH上运动,点N在x轴上运动,是否存在这样的点M、N,使得以点M为直角顶点△CNM是等腰直角三角形若存在,请求出点M、N的坐标;若不存在,请说明理由.2、如图,已知直线3y与x轴、y轴分别交于A,B两点,抛物=x+-线c-+=2经过A,B两点,点P在线段OA上,从点O出发,向点A以bxxy+每秒1个单位的速度匀速运动;同时,点Q在线段AB上,从点A出发,向点B 以每秒2个单位的速度匀速运动,连接PQ,设运动时间为t秒.3、(1)求抛物线的解析式;4、(2)问:当t为何值时,△APQ为等腰直角三角形;四、全等三角形的存在性问题例4、如图所示,将一边长为3的正方形放置到平面直角坐标系中,其顶点A、B均落在坐标轴上,一抛物线过点A、B,且顶点为P(1,4)(1)求抛物线的解析式;(2)点M为抛物线上一点,恰使△MOA≌△MOB,求点M的坐标;巩固练习如图,已知直线与抛物线相交于A,B两点,且点为抛物线的顶点,点B在x轴上.(1)求抛物线的解析式;(2)在(1)中抛物线的第二象限图象上是否存在一点P,使与全等若存在,求出点P的坐标;若不存在,请说明理由;五、相似三角形的存在性问题例5、如图,直线与轴、轴分别相交于点、,经过、两点的抛物线与轴的另一个交点为,顶点为,且对称轴为直线2=x 。
专题06 二次函数中三角形存在性问题(原卷版)--2023 年中考数学压轴真题汇编
挑战2023年中考数学解答题压轴真题汇编专题06二次函数中三角形存在性问题一.相似三角形的存在性1.(2022•陕西)已知抛物线y=ax2+bx﹣4经过点A(﹣2,0),B(4,0),与y 轴的交点为C.(1)求该抛物线的函数表达式;(2)若点P是该抛物线上一点,且位于其对称轴l的右侧,过点P分别作l,x轴的垂线,垂足分别为M,N,连接MN.若△PMN和△OBC相似,求点P 的坐标.2.(2022•绵阳)如图,抛物线y=ax2+bx+c交x轴于A(﹣1,0),B两点,交y轴于点C(0,3),顶点D的横坐标为1.(1)求抛物线的解析式;(2)在y轴的负半轴上是否存在点P使∠APB+∠ACB=180°,若存在,求出点P的坐标,若不存在,请说明理由;(3)过点C作直线l与y轴垂直,与抛物线的另一个交点为E,连接AD,AE,DE,在直线l下方的抛物线上是否存在一点M,过点M作MF⊥l,垂足为F,使以M,F,E三点为顶点的三角形与△ADE相似?若存在,请求出M点的坐标,若不存在,请说明理由.3.(2022•恩施州)在平面直角坐标系中,O为坐标原点,抛物线y=﹣x2+c与y 轴交于点P(0,4).(1)直接写出抛物线的解析式.(2)如图,将抛物线y=﹣x2+c向左平移1个单位长度,记平移后的抛物线顶点为Q,平移后的抛物线与x轴交于A、B两点(点A在点B的右侧),与y轴交于点C.判断以B、C、Q三点为顶点的三角形是否为直角三角形,并说明理由.(3)直线BC与抛物线y=﹣x2+c交于M、N两点(点N在点M的右侧),请探究在x轴上是否存在点T,使得以B、N、T三点为顶点的三角形与△ABC 相似,若存在,请求出点T的坐标;若不存在,请说明理由.(4)若将抛物线y=﹣x2+c进行适当的平移,当平移后的抛物线与直线BC 最多只有一个公共点时,请直接写出抛物线y=﹣x2+c平移的最短距离并求出此时抛物线的顶点坐标.二.直角三角形的存在性4.(2022•广安)如图,在平面直角坐标系中,抛物线y=ax2+x+m(a≠0)的图象与x轴交于A、C两点,与y轴交于点B,其中点B坐标为(0,﹣4),点C坐标为(2,0).(1)求此抛物线的函数解析式.(2)点D是直线AB下方抛物线上一个动点,连接AD、BD,探究是否存在点D,使得△ABD的面积最大?若存在,请求出点D的坐标;若不存在,请说明理由.(3)点P为该抛物线对称轴上的动点,使得△PAB为直角三角形,请求出点P的坐标.5.(2022•辽宁)如图,抛物线y=ax2﹣3x+c与x轴交于A(﹣4,0),B两点,与y轴交于点C(0,4),点D为x轴上方抛物线上的动点,射线OD交直线AC于点E,将射线OD绕点O逆时针旋转45°得到射线OP,OP交直线AC 于点F,连接DF.(1)求抛物线的解析式;(2)当点D在第二象限且=时,求点D的坐标;(3)当△ODF为直角三角形时,请直接写出点D的坐标.三.等腰三角形的存在性6.(2022•百色)已知抛物线经过A(﹣1,0)、B(0,3)、C(3,0)三点,O 为坐标原点,抛物线交正方形OBDC的边BD于点E,点M为射线BD上一动点,连接OM,交BC于点F.(1)求抛物线的表达式;(2)求证:∠BOF=∠BDF;(3)是否存在点M,使△MDF为等腰三角形?若不存在,请说明理由;若存在,求ME的长.7.(2022•山西)综合与探究如图,二次函数y=﹣x2+x+4的图象与x轴交于A,B两点(点A在点B 的左侧),与y轴交于点C.点P是第一象限内二次函数图象上的一个动点,设点P的横坐标为m.过点P作直线PD⊥x轴于点D,作直线BC交PD于点E.(1)求A,B,C三点的坐标,并直接写出直线BC的函数表达式;(2)当△CEP是以PE为底边的等腰三角形时,求点P的坐标;(3)连接AC,过点P作直线l∥AC,交y轴于点F,连接DF.试探究:在点P运动的过程中,是否存在点P,使得CE=FD,若存在,请直接写出m 的值;若不存在,请说明理由.8.(2022•东营)如图,抛物线y=ax2+bx﹣3(a≠0)与x轴交于点A(﹣1,0),点B(3,0),与y轴交于点C.(1)求抛物线的表达式;(2)在对称轴上找一点Q,使△ACQ的周长最小,求点Q的坐标;(3)点P是抛物线对称轴上的一点,点M是对称轴左侧抛物线上的一点,当△PMB是以PB为腰的等腰直角三角形时,请直接写出所有点M的坐标.9.(2022•枣庄)如图①,已知抛物线L:y=x2+bx+c经过点A(0,3),B(1,0),过点A作AC∥x轴交抛物线于点C,∠AOB的平分线交线段AC于点E,点P是抛物线上的一个动点.(1)求抛物线的关系式;(2)若动点P在直线OE下方的抛物线上,连结PE、PO,当△OPE面积最大时,求出P点坐标;(3)将抛物线L向上平移h个单位长度,使平移后所得抛物线的顶点落在△OAE内(包括△OAE的边界),求h的取值范围;(4)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P,使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.10.(2023•澄城县一模)如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)、B,与y轴交于点C(0,3),直线l是抛物线的对称轴.(1)求抛物线的函数解析式;(2)在对称轴l上是否存在点M,使△MAC为等腰三角形,若存在,求出所有符合条件的点M的坐标;若不存在,请说明理由.11.(2023•碑林区校级一模)二次函数y=ax2+bx+2的图象交x轴于A(﹣1,0),B(4,0)两点,交y轴于点C,动点M从点A出发,以每秒2个单位长度的速度沿AB方向运动,过点M作MN⊥x轴交直线BC于点N,交抛物线于点D,连接AC,设运动的时间为t秒.(1)求二次函数y=ax2+bx+2的表达式;(2)在直线MN上存在一点P,当△PBC是以∠BPC为直角的等腰直角三角形时,求此时点D的坐标.12.(2023•东洲区模拟)抛物线y=ax2+bx+3经过A(﹣1,0),B(3,0)两点,与y轴正半轴交于点C.(1)求此抛物线解析式;(2)如图①,连接BC,点P为抛物线第一象限上一点,设点P的横坐标为m,△PBC的面积为S,求S与m的函数关系式,并求S最大时P点坐标;(3)如图②,连接AC,在抛物线的对称轴上是否存在点M,使△MAC为等腰三角形?若存在,请直接写出符合条件的点M的坐标;若不存在,请说明理由.13.(2023•三亚一模)如图,抛物线y=ax2+3x+c(a≠0)与x轴交于点A(﹣2,0)和点B,与y轴交于点C(0,8),顶点为D,连接AC,CD,DB,直线BC与抛物线的对称轴l交于点E.(1)求抛物线的解析式和直线BC的解析式;(2)求四边形ABDC的面积;=S△ABC时,(3)P是第一象限内抛物线上的动点,连接PB,PC,当S△PBC 求点P的坐标;(4)在抛物线的对称轴l上是否存在点M,使得△BEM为等腰三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.14.(2023•南海区一模)如图,在平面直角坐标系中,抛物线y=ax2+bx﹣3(a >0)与x轴交于A(﹣1,0)、B(3,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)点P为直线BC下方抛物线上的一动点,PM⊥BC于点M,PN∥y轴交BC于点N.求线段PM的最大值和此时点P的坐标;(3)点E为x轴上一动点,点Q为抛物线上一动点,是否存在以CQ为斜边的等腰直角三角形CEQ?若存在,请直接写出点E的坐标;若不存在,请说明理由.11。
数学人教版九年级上册二次函数图像中直角三角形的存在性问题
课题:二次函数图像中直角三角形的存在性问题一、教学目标1、掌握求二次函数表达式的方法。
2、掌握判断直角三角形可以从边和角两个角度入手。
3、掌握二次函数与直角三角形结合的动点问题的解决方法。
二、重、难点重点:线段的表示与分类讨论难点:分类讨论三、教学过程情境创设:存在性问题是中考中的热点问题,所涉知识点多,难度较大,也是学生比较荆手的问题,但它也是有解题方法可循的。
比如我们本节课将复习的直角三角形存在性问题,就可利用坐标系中两点的距离公式,正确得到所求三角形三边长的平方的代数式;根据勾股定理的逆定理得到方程,并解方程即可。
知识梳理:1、二次函数的表达式有哪些?一般式:对轴称为顶点坐标(,)项点式:对轴称为顶点坐标(,)交点(两根)式:对轴称为顶点坐标(,)(设计意图:让学生能根据所给条件选用恰当的表达式求二次函数解析式)2、直角三角形的判定方法有哪些?(设计意图:让学生知道判断一个三角形是直角三角形可从边和角两个角度入手,重点是对勾股定理逆定理的运用)3、已知点P(x,y),则点P到x轴的距离为,到y轴的距离为。
(设计意图:让学生知道点的坐标的实际意义)4、两点间的距离公式:用A,B两点的坐标来表示线段AB的长。
(设计意图:让学生知道用两点坐标来表示该两点的线段长)习题展示:oy B( x2,y2)A( x1,y1)x如图,已知抛物线y=-x 2+bx+c 与x 轴交于点A 、B (3,0),与y 轴交于点C (0,3),直线l 经过点B 、C 两点,抛物线的顶点为D 。
(1)求此抛物线和直线l 的解析式;(2)判断ΔBCD 的形状并说明理由;(3)如图,在抛物线的对称轴上求点P ,使ΔPBC 为直角三角形;思考题:如图,在对称轴右侧的抛物线上,是否存在点P ,使ΔPDC 为等腰三角形。
若存在,请求出符合条件点P 的坐标,若不存在,请说明理由;C B A O y xD CBDA yLO C B A O y xD 思路分析:将B (3,0),C (0,3)代入y=-x 2+bx+c 中,得关于b ,c 的二元一次方程组,解出b ,c 的值,从而得到抛物线的解析式;设y=kx+z,将B (3,0),C (0,3)代入y=kx+z ,得关于k ,z 的二元一次方程组,解出k ,z 的值,从而得到直线l 的解析式。
二次函数背景下直角三角形存在性问题
二次函数背景下直角三角形存在性问题
上一讲中,我们探讨了等腰三角形存在性问题,用到的方法是“两圆一线”这样的“几何法”,我们也介绍了“点、线、式”这样的“代数法”,“几何法”主要用来找出符合条件的点的位置,“代数法”主要用来求点的坐标,因为这种解法几乎完全脱离了图形,所以,也称之为“盲解忙算法”、“简单粗暴法”、“万能大法”。
我们今天要讲的“直角三角形存在性”内容,它与等腰三角形存在性问题是具有一定的联系性的,因为这两部分内容思路相通,方法接近。
它们的共同点主要在于考查学生的探寻能力和分类研究的推理能力,也是近几年中考的热点。
本讲内容涉及到的常用知识点有:
1. 勾股定理
2. 直角三角形斜边上的中线等于斜边的一半
3. K型图相似,因为几乎没有它解决不来的问题,所以,我们对它给与了足够的尊重,称之为“万能K”
4. 两点之间的距离公式
5. 圆的概念与性质
6. 还有一个需要补充的,就是斜率k。
二次函数中直角三角形存在性问题
二次函数中直角三角形存在性问题
解题方法
一、代数法:
二、几何法:
(1)先分三种情况进行构造:若已知边做直角边,过直角边的两端点作垂线,则第三个顶点在垂线上,若已知边为斜边,可取斜边为直径作圆,直角顶点在圆上
(2)计算:注意题目的几何背景,如有直接的相似则表示线段长度,进行相似求解,无直接相似则围绕顶点分别做坐标轴的平行线,构造一线三角模型进行相似求解。
专题训练
例1.如图,已知抛物线y =ax 2+bx +c (a ≠0)的对称轴为直线x =-1,且经过A (1,0),C (0,3)两点,与x 轴的另一个交点为B .设点P 为抛物线的对称轴x =-1上的一个动点,求使△BPC 为直角三角形的点P 的坐标.
代数法:
(1)根据条件用坐标表示三边或三边的平方
(2)以直角顶点分三种情况,根据勾股定理列方程,解方程
(3)根据题目条件及方程解确定坐标
例2.如图,在平面直角坐标系中,已知点A 的坐标是(4,0),并且OA=OC=4OB,动点P
在过A,B,C 三点的抛物线上.
(1)求抛物线的解析式;
(2)是否存在点P,使得△ACP 是以AC 为直角边的直角三角形?若存在,求出所有符合条件的点P 的坐标;若不存在,说明理由;几何法:
例3.如图,在平面直角坐标系中,直线123
y x =-
+交x 轴于点P ,交y 轴于点A ,抛物线212y x bx c =-++的图象过点(1,0)E -,并与直线相交于A 、B 两点.⑴求抛物线的解析式(关系式);
⑵过点A 作AC AB ⊥交x 轴于点C ,求点C 的坐标;
⑶除点C 外,在坐标轴上是否存在点M ,使得∆MAB 是直角三角形?若存在,请求出点M 的坐标,若不存在,请说明理由.。
二次函数中直角三角形存在性问题.doc
二次函数中直角三角形存在性问题1. 找点:在己知两定点,确定第三点构成直角三角形时,要么以两定点为直角顶点,要么以动点为直角顶点•以定点为直角顶点时,构造两条直线与已知直线垂直;以动点为直角顶点时,以已知线段为直 径构造圆找点2. 方法:以两定点为直角顶点时,两直线互相垂直,则k1*k2=-1以已知线段为斜边时,利用K 型图,构造双垂直模 型,最后利用相似求解,或者三条边分别表示Z 后,利用勾股定理求解例一:如图,抛物线y =加空一2加兀+3加 与x 轴交于A 、B 两点,与y 轴交于C 点.(1) 请求出抛物线顶点M 的坐标(用含m 的代数式表示),A 、B 两点的坐标;(2) 经探究可知,A BC M 与A ABC 的而积比不变,试求出这个比值;(1) 求该抛物线的解析式; (2) M 为第一象限内抛物线上一动点,点M 在何处时,△ ACM 的面积最大;(3) 在抛物线的对称轴上是否存在这样的点P,使得△ PAC 为直角三角形?若存在,请求出所有可能点P 的坐标; 若不存在,请说明理由.(3)是否存在使A BCM 为直角三角形的抛物线?若存在,请求出;如果不存在,请说明理由0), B(4, 0),与y 轴交于点C.练习:1.如图.C知抛物线y=ar±bx+c (a«)的顶点M在第一象限,抛物线bx轴相交FA、B两点(点A 住点B的左边),f jy轴交万点C, O为唯标原点,如果ZkABM是何角二角形,AB=2, OM= J5(1)求点M的坐标;(2)求抛物线y=ax2+bx+c的解析式;(3)在抛物线的对称轴匕是否存在点P,使W APAC为直角三角形?若存在.请求出所有符合条件的点P 的坐标:若不存在•请说明理由.2.如图,抛物线y =〒一2加兀(m>0)与x轴的另一个交点为A,过P(l, -m)作PM丄x轴于点M,交抛物线于点B.点B关于抛物线对称轴的对称点为C.(1)若m二2,求点A和点C的坐标;(2)令m>l,连接CA,若AACP为直角三角形,求m的值;(3)在坐标轴上是否存在点E,使得APEC是以P为直角顶点的等腰直角三角形?若存在,求出点E的坐标;若不存在,请说明理由.3.如图,抛物线y =衣+分+2与x轴交于点A(l, 0)和B(4, 0).(1)求抛物线的解析式;(2)若抛物线的对称轴交x轴于点E,点F是位于x轴上方对称轴上一点,FC〃x轴,与对称轴右侧的抛物线交于点C,且四边形OECF是平行四边形,求点C的坐标;(3)在(2)的条件下,抛物线的对称轴上是否存在点P,使AOCP是直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.4、在平面直角坐标系中,抛物线y = ++仗一1)兀一比与直线y二kx+1交于A, B两点,点A在点B的左侧.(1)如图1,当k二1吋,直接写出A, B两点的坐标;(2)在(1)的条件下,点P为抛物线上的一个动点,且在直线AB下方,试求岀AABP面积的最大值及此时点P 的坐标;(3)如图2,抛物线y =兀2+仗_1)兀一比(k>0)与x轴交于点C、D两点(点C在点D的左侧),在直线y二kx+1 使得Z0QC=90° ?若存在,请求出此吋k的值;若不存在,请说明理由.5.如图,直线y=x+2与抛物线y = ajc^-bx^6 (a#0)相交于A (2, 2)和B(4, m),点P是线段AB上异于A、B的动点,过点P作PC丄x轴于点D,交抛物线于点C.(1)求抛物线的解析式;(2)是否存在这样的P点,使线段PC的长有最大值,若存在,求出这个最大值;若不存在,请说明理由;(3)求厶PAC为直角三角形时点P的坐标.6、如图,抛物线y = ci^+bx+c经过A(-3, 0)、C(0, 4),点B在抛物线上,。
二次函数中直角三角形存在性问题的解法与计算技巧
二次函数中直角三角形存在性问题的解法与计算技巧
第一问比较简单,直接代入两点,列方程组即可解决!
第二问的①使用锐角三角形即可解决,也比较简单。
另外,也可以用三角形ABC与三角形QEC相似来做。
第二问的②是常见的直角三角形存在性问题,需要分三大类情况,由于D,Q两点是已知点。
所以当D或Q点作为直角顶点时,比较容易求出F点,参考答案把这里略写了,我说一下解题思路。
利用两垂直直线斜率乘积为-1来解即可,比如当∠FDQ=90°时,利用直线DQ 斜率与直线FD斜率乘积为-1即可算出直线FD斜率,进而求出直线FD斜率,然后结合D点就可以求出直线FD解析式,再联立直线FD 与二次函数即可求出F点。
至于第三种情况,本质上是利用勾股定理逆定理列一个二次方程,解出方程即可!总体来说,这种内问题主要是计算量比较大,需要计算能力较好。
中考二次函数与直角三角形有关的问题知识解读
二次函数与直角三角形有关的问题知识解读【专题说明】二次函数之直角三角形存在性问题,主要指的是在平面直角坐标系下,已知一条边(或两个顶点)的直角三角形存在,求第三个顶点的坐标的题型.主要考察学生对转化思想、方程思想、几何问题代数化的数形结合思想及分类讨论思想的灵活运用。
【解题思路】直角三角形的存在性问题1.找点:在已知两定点,确定第三点构成直角三角形时,要么以两定点为直角顶点,要么以动点为直角顶点.以定点为直角顶点时,构造两条直线与已知直线垂直;以动点为直角顶点时,以已知线段为直径构造圆找点2.方法:(1)以两定点为直角顶点时,两直线互相垂直,则k1*k2=-1(2)以已知线段为斜边时,利用K型图,构造双垂直模型,最后利用相似求解,或者三条边分别表示之后,利用勾股定理求解下面主要介绍2种常用方法:【方法1 几何法】“两线一圆”(1)若∠A 为直角,过点A 作AB 的垂线,与x 轴的交点即为所求点C;(2)若∠B 为直角,过点B 作AB 的垂线,与x 轴的交点即为所求点C;(3)若∠C 为直角,以AB 为直径作圆,与x 轴的交点即为所求点C.(直径所对的圆周角为直角)如何求得点坐标?以C2为例:构造三垂直.),坐标为(故代入得:坐标得、由,易证0213232222C C C BN AM B A N MB BN AM BN AMB ===∆≈∆()),坐标为(,,坐标为故或故又即代入得:设,,坐标得、由求法相同,如下:易证、040231a ,4a ,3ab ,3ab 1N a,31,4333333343C C C C C C C C C C b b M BN AM B A NBM N AMNB AM ==+=======∆≈∆【方法2 代数法】点-线-方程23m 20352235110,m 135-m 1-m 35-m 11-m 22222122111=+=+=+=+==,解得:)代入得方程(,,,)表示线段:();,()、,(),又坐标为()表示点:设(:不妨来求下)()()()(BC C C C A AB B A【典例分析】【方法1 勾股定理】【典例1】(2021秋•建华区期末)抛物线y=x2+bx+c经过A、B(1,0)、C(0,﹣3)三点.点D为抛物线的顶点,连接AD、AC、BC、DC.(1)求抛物线的解析式;(2)在y轴上是否存在一点E,使△ADE为直角三角形?若存在,请你直接写出点E的坐标;若不存在,请说明理由.【解答】解(1)∵抛物线y=x2+bx+c经过B(1,0)、C(0,﹣3),∴,解得,∴抛物线的解析式为:y=x2+2x﹣3.(4)在y轴上存在点E,使△ADE为直角三角形,理由如下:∵抛物线的解析式为y=x2+2x﹣3=(x+1)2﹣4,∴D(﹣1,﹣4),设E点坐标为(0,m),∴AE2=m2+9,DE2=m2+8m+17,AD2=20,当∠EAD=90°时,有AE2+AD2=DE2,∴m2+9+20=m2+8m+17,解得m=,∴此时点E的坐标为(0,);当∠ADE=90°时,DE2+AD2=AE2,m2+8m+17+20=m2+9,解得m=﹣,∴此时点E的坐标为(0,﹣);当∠AED=90°时,AE2+DE2=AD2,m2+9+m2+8m+17=20,解得m=﹣1或m=﹣3,∴此时点E的坐标为(0,﹣1)或(0,﹣3).【变式1-1】(2022•灞桥区校级模拟)如图,抛物线与x轴交于点A(1,0),B(3,0),与y轴交于点C(0,3).(1)求二次函数的表达式及顶点坐标;(2)连接BC,在抛物线的对称轴上是否存在一点E,使△BCE是直角三角形?若存在,请直接写出点E的坐标;若不存在,请说明理由.【解答】解:(1)设抛物线的解析式为y=a(x﹣1)(x﹣3),将点C(0,3)代入y=a(x﹣1)(x﹣3),∴3a=3,∴a=1,∴y=(x﹣1)(x﹣3)=x2﹣4x+3,∵y=x2﹣4x+3=(x﹣2)2﹣1,∴顶点为(2,﹣1);(2)存在一点E,使△BCE是直角三角形,理由如下:∵y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线的对称轴为直线x=2,设E(2,t),∵△BCE是直角三角形,∴BE⊥CE,∵B(3,0),C(0,3),∴BC=3,BE=,CE=,①当BC为斜边时,∴18=()2+()2,解得t=,∴E点坐标为(2,)或(2,);②当BE为斜边时,∴18+()2=()2,解得t=5,∴E点坐标为(2,5);③当CE为斜边时,∴18+()2=()2,解得t=﹣1,∴E点坐标为(2,﹣1);综上所述:E点坐标为(2,)或(2,)或(2,5)或(2,﹣1)【变式1-2】(2022•广安)如图,在平面直角坐标系中,抛物线y=ax2+x+m(a≠0)的图象与x轴交于A、C两点,与y轴交于点B,其中点B坐标为(0,﹣4),点C坐标为(2,0).(1)求此抛物线的函数解析式.(2)点P为该抛物线对称轴上的动点,使得△P AB为直角三角形,请求出点P的坐标.【解答】解:(1)∵抛物线y=ax2+x+m(a≠0)的图象经过点B(0,﹣4),点C(2,0),∴,解得,∴抛物线的解析式为y=x2+x﹣4;(2)如图2中,设抛物线的对称轴交x轴于点N,过点B作BM⊥抛物线的对称轴于点M.则N(﹣1.0).M(﹣1,﹣4);∵OA=OB=4,∠AOB=90°,∴∠OAB=∠OBA=45°,当∠P1AB=90°时,△ANP1是等腰直角三角形,∴AN=NP1=3,∴P1(﹣1,3),当∠ABP2=90°时,△BMP2是等腰直角三角形,可得P2(﹣1,﹣5),当∠APB=90°时,设P(﹣1,n),设AB的中点为J,连接PJ,则J(﹣2,﹣2),∴PJ=AB=2,∴12+(n+2)2=(2)2,解得n=﹣2或﹣﹣2,∴P3(﹣1,﹣2),P4(﹣1,﹣﹣2),综上所述,满足条件的点P的坐标为(﹣1,3)或(﹣1,﹣5)或(﹣1,﹣2)或(﹣1,﹣﹣2).【方法2 构造“K”字型利用相似作答】【典例2】(2022•碑林区校级四模)如图,在平面直角坐标系中,抛物线C1:y=ax2+bx+c 交x轴于点A(﹣5,0),B(﹣1,0),交y轴于点C(0,5).(1)求抛物线C1的表达式和顶点D的坐标.(2)将抛物线C1关于y轴对称的抛物线记作C2,点E为抛物线C2上一点若△DOE是以DO为直角边的直角三角形,求点E的坐标.【解答】解:(1)将点A(﹣5,0),B(﹣1,0),C(0,5)代入y=ax2+bx+c,∴,解得,∴y=x2+6x+5,∵y=x2+6x+5=(x+3)2﹣4,∴顶点D(﹣3,﹣4);(2)设抛物线C2上任意一点(x,y),则(x,y)关于y轴对称的点为(﹣x,y),∵点(﹣x,y)在抛物线C1上,∴抛物线记作C2的解析式为y=x2﹣6x+5,设E(t,t2﹣6t+5),过点D作DG⊥x轴交于点G,过点E作EH⊥x轴交于点H,∵∠DOE=90°,∴∠GOD+∠HOE=90°,∵∠GOD+∠GDO=90°,∴∠HOE=∠GDO,∴△GDO∽△HOE,∴=,∵DG=4,GO=3,HE=﹣t2+6t﹣5,OH=t,∴=,∴t=4或t=,∴E(4,﹣3)或E(,﹣).【变式2-1】(2022•济南)抛物线y=ax2+x﹣6与x轴交于A(t,0),B(8,0)两点,与y轴交于点C,直线y=kx﹣6经过点B.点P在抛物线上,设点P的横坐标为m.(1)求抛物线的表达式和t,k的值;(2)如图1,连接AC,AP,PC,若△APC是以CP为斜边的直角三角形,求点P的坐标;【解答】解:(1)将B(8,0)代入y=ax2+x﹣6,∴64a+22﹣6=0,∴a=﹣,∴y=﹣x2+x﹣6,当y=0时,﹣t2+t﹣6=0,解得t=3或t=8(舍),∴t=3,∵B(8,0)在直线y=kx﹣6上,∴8k﹣6=0,解得k=,∴y=x﹣6;(2)作PM⊥x轴交于M,∵P点横坐标为m,∴P(m,﹣m2+m﹣6),∴PM=m2﹣m+6,AM=m﹣3,在Rt△COA和Rt△AMP中,∵∠OAC+∠P AM=90°,∠APM+∠P AM=90°,∴∠OAC=∠APM,∴△COA∽△AMP,∴=,即OA•MA=CO•PM,3(m﹣3)=6(m2﹣m+6),解得m=3(舍)或m=10,∴P(10,﹣);【变式2-2】(2022•滨州)如图,在平面直角坐标系中,抛物线y=x2﹣2x﹣3与x轴相交于点A、B(点A在点B的左侧),与y轴相交于点C,连接AC、BC.(1)求线段AC的长;(2)若点M为该抛物线上的一个动点,当△BCM为直角三角形时,求点M的坐标.【解答】解:(1)针对于抛物线y=x2﹣2x﹣3,令x=0,则y=﹣3,∴C(0,﹣3);令y=0,则x2﹣2x﹣3=0,∴x=3或x=﹣1,∵点A在点B的左侧,∴A(﹣1,0),B(3,0),∴AC==;(2)由(1)知,B(3,0),C(0,﹣3),∴OB=OC=3,设M(m,m2﹣2m﹣3),∵△BCM为直角三角形,∴①当∠BCM=90°时,如图1,过点M作MH⊥y轴于H,则HM=m,∵OB=OC,∴∠OCB=∠OBC=45°,∴∠HCM=90°﹣∠OCB=45°,∴∠HMC=45°=∠HCM,∴CH=MH,∵CH=﹣3﹣(m2﹣2m﹣3)=﹣m2+2m,∴﹣m2+2m=m,∴m=0(不符合题意,舍去)或m=1,∴M(1,﹣4);②当∠CBM=90°时,过点M作M'H'⊥x轴,同①的方法得,M'(﹣2,5);③当∠BMC=90°时,如图2,Ⅰ、当点M在第四象限时,过点M作MD⊥y轴于D,过点B作BE⊥DM,交DM的延长线于E,∴∠CDM=∠E=90°,∴∠DCM+∠DMC=90°,∵∠DMC+∠EMB=90°,∴∠DCM=∠EMB,∴△CDM∽△MEB,∴,∵M(m,m2﹣2m﹣3),B(3,0),C(0,﹣3),∴DM=m,CD=﹣3﹣(m2﹣2m﹣3)=﹣m2+2m,ME=3﹣m,BE=﹣(m2﹣2m﹣3)=﹣m2+2m+3,∴,∴m=0(舍去)或m=3(点B的横坐标,不符合题意,舍去)或m=(不符合题意,舍去)或m=,∴M(,﹣),Ⅱ、当点M在第三象限时,M(,﹣),即满足条件的M的坐标为(1,﹣4)或(﹣2,5)或(,﹣),或(,﹣).。
二次函数与直角三角形的存在性问题
课题:二次函数中直角三角形的存在性问题教学目标:知识与技能1、 知道并会推导三垂直性质,能正确找出对应边,能准确写出三垂直中的对应边成比例.2、 准确掌握平面直角坐标系中三垂直性质使用条件和操作程序.过程与方法通过对平面直角坐标系中不同位置的直角三角形活动探究出构造三垂直性质应如何添加辅助线,并会利用三垂直性质解决二次函数中直角三角形的存在性问题.情感态度与价值观通过对解析几何产生的背景介绍及三垂直性质在二次函数中直角三角形存在性问题的应用感受数形结合思想的重要性及意义;通过对不确定直角顶点的直角三角形存在性问题的解决,感受分类思想在学习中的必要性.教学重点:探究如何构造三垂直模型,并会利用三垂直性质解决直角三角形的存在性问题.教学难点:探究使用三垂直性质的操作程序.教学过程:一、 情景设计讲述解析几何产生的背景,说明数形结合思想的重要性, 引出课题。
二、 预习思考),(1b x ),(2b x ),(1y a ),(2ya1、如图1,水平线上各点的___坐标相同,水平线上的两点间的距离等于_______________________________。
2、如图2,竖直线上各点的___坐标相同,竖直线上的两点间的距离等于_______________________________。
3、 如何设函数图像上的动点坐标?如何设二次函数对称轴上的动点坐标?教学要点1、 分组提问,调动学生积极性.2、 引导学生由图找答案,并用自己的语言叙述结论.3、 对学生的结论补充强调.三、 探索问题问题1:(1) 图3是什么模型?(2) 该模型的已知条件是什么?结论是什么?你可以证明你的结论吗?(3) 图3、图4的已知条件和结论的区别与联系是什么?教学要点1、问题1的设置是对本节课的应用知识点重点巩固,可齐声回答.2、教师分析:三垂直模型还可看作,已知一直角三角形,过其直角顶点在直角三角形的外部做一条直线,并过直角三角形的另外两个顶点引上述直线的垂线段.问题2:(1) 如果需要求一条线段的长,你希望在坐标系中是什么样的线段?(2) 如果平面直角坐标系中随意放置了一个直角三角形,过其直角顶点在其外部做一条什么方向的直线,能保证构成的三垂直模型中相似的两个直角三角形的四条直角边不是水平方向就是竖直方向?(3) 总结在平面直角坐标系中构造三垂直模型的操作步骤. 教学要点1、针对(1),能预料到学生的答案是竖直方向或水平方向,如果不是这个答案,再继续询问他们的结论的理由.2、对于(2),教师引导学生在平面直角坐标系中画出任意三角形,并让学生观察、尝试符合要求的直线.3、教师引导学生总结平面直角坐标系中构造三垂直模型操作步骤.4、教师课件展示详细操作步骤.(1)平面直角坐标系中构造三垂直模型的操作步骤.(2)过另外两个顶点向水平线或竖直线作垂线段(3)根据条件求出各点坐标及四条直角边长度(4)根据对应边相等或成比例,列出四条直角边之间的数量关系,进而求出未知数,求出动点坐标问题3:例、(2015本溪)如图,抛物线 ( ≠0)经过点A (2,0),点B (3,3)(1)求抛物线的解析式并直接写出它的对称轴;(2)点P 是抛物线对称轴上一点,当△ABP 是直角三角形时,请求出所有符合条件的点P 坐标.教学要点1、学生回答解决第(1)问的方法,学生完成(1)解答过程,教师巡视指导并讲评2、教师引导:(1)构造三垂直模型需要有一个直角,谁是Rt △ABP 的直角呢?(生:不知道)bx ax y +=2a(2)怎么办?(生:分类讨论)(3)分几类?是哪几类?(生:3类,分别是当∠ABP=90°,当∠APB=90°,∠BAP=90°)3、师生共同探究当∠ABP=90°时的情况解:如图,当∠ABP=90°时,过点P作PM⊥BC交BC的延长线于点M,设点P(1,a),则M(3,a),C(3,0)∴PM=3-1=2,MB=a-3,BC=3,AC=3-2=1∵∠MPB+∠MBP=90°,∠MBP+∠ABC=90°,∴∠MPB=∠ABC,又∵∠PMB=∠ACB=90°∴△PM B∽△BCA∴PM/MB=BC/AC,2/(a-3)=3/1解得:a=11/3∴点P(1,11/3)4、剩下两种情况,让学生小组讨论,并找两位学生上台分别讲解,主讲学生可以自己需要选择要不要带小帮手,之后师生共同点评总结.四、课堂小结通过本节课的学习,你有什么收获?五、课后作业除了利用三垂直性质解决二次函数中直角三角形的存在性问题,你还有其它的方法吗?并试用你想到的方法解决今天的例题.教学反思:本节课是二次函数中直角三角形的存在性问题,此类问题通常在河南中招卷中作为压轴题出现,一般是23题的第(2)问或第(3)问,其知识覆盖面较广,综合性较强,是数形结合思想及分类思想的典型题。
二次函数背景下的等腰三角形、直角三角形存在性问题(原卷版)-2023年中考数学重难点解题大招复习讲义
模型介绍一、如图,点A 坐标为(1,1),点B 坐标为(4,3),在x 轴上取点C 使得△ABC 是等腰三角形.【几何法】“两圆一线”得坐标(1)以点A 为圆心,AB 为半径作圆,与x 轴的交点即为满足条件的点C ,有AB =AC ;(2)以点B 为圆心,AB 为半径作圆,与x 轴的交点即为满足条件的点C ,有BA =BC ;(3)作AB 的垂直平分线,与x 轴的交点即为满足条件的点C ,有CA =CB .【注意】若有三点共线的情况,则需排除.作图并不难,问题是还需要把各个点坐标算出来,可通过勾股或者三角函数来求.34C C 、同理可求,下求5C .显然垂直平分线这个条件并不太适合这个题目,如果A 、B 均往下移一个单位,当点A 坐标为(1,0),点B 坐标为(4,2)时,可构造直角三角形勾股解:而对于本题的5C ,或许代数法更好用一些.【代数法】表示线段构相等(1)表示点:设点5C 坐标为(m ,0),又A 点坐标(1,1)、B 点坐标(4,3),(2)表示线段:()()225101AC m =-+-,()()225403BC m =-+-(3)分类讨论:根据55AC BC =()()22221143m m -+-+,(4)求解得答案:解得:236m =,故5C 坐标为23,06⎛⎫ ⎪⎝⎭.小结几何法:(1)“两圆一线”作出点;(2)利用勾股、相似、三角函数等求线段长,由线段长得点坐标.代数法:(1)表示出三个点坐标A 、B 、C ;(2)由点坐标表示出三条线段:AB 、AC 、BC ;(3)根据题意要求取①AB =AC 、②AB =BC 、③AC =BC ;(4)列出方程求解.问题总结:(1)两定一动:动点可在直线上、抛物线上;(2)一定两动:两动点必有关联,可表示线段长度列方程求解;(3)三动点:分析可能存在的特殊边、角,以此为突破口.二、【问题描述】如图,在平面直角坐标系中,点A 坐标为(1,1),点B 坐标为(5,3),在x 轴上找一点C 使得△ABC 是直角三角形,求点C 坐标.【几何法】两线一圆得坐标(1)若∠A 为直角,过点A 作AB 的垂线,与x 轴的交点即为所求点C ;(2)若∠B 为直角,过点B 作AB 的垂线,与x 轴的交点即为所求点C ;(3)若∠C 为直角,以AB 为直径作圆,与x 轴的交点即为所求点C .(直径所对的圆周角为直角)重点还是如何求得点坐标,12C C 、求法相同,以2C 为例:【构造三垂直】34C C 、求法相同,以3C 为例:构造三垂直步骤:第一步:过直角顶点作一条水平或竖直的直线;第二步:过另外两端点向该直线作垂线,即可得三垂直相似.例题精讲考点一:二次函数中的直角三角形存在性问题【例1】.如图,二次函数y=x2+bx+c的图象与x轴交于A、B两点,与y轴交于点C,且A (﹣1,0),对称轴为直线x=2.(1)求该抛物线的表达式;(2)直线l过点A与抛物线交于点P,当∠PAB=45°时,求点P的坐标;(3)在抛物线的对称轴上是否存在一点Q,使得△BCQ是直角三角形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.变式训练【变1-1】.如图,在平面直角坐标系中,抛物线y=ax2+bx+4经过点A(4,0),B(﹣1,0),交y轴于点C.(1)求抛物线的解析式;(2)点D是直线AC上一动点,过点D作DE垂直于y轴于点E,过点D作DF⊥x轴,垂足为F,连接EF,当线段EF的长度最短时,求出点D的坐标;(3)在AC上方的抛物线上是否存在点P,使得△ACP是直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由.考点二:二次函数中的等腰三角形存在性问题【例2】.如图,抛物线y=﹣x2+5x+n经过点A(1,0),与y轴交于点B.(1)求抛物线的解析式;(2)求抛物线的对称轴和顶点坐标.(3)P是y轴正半轴上一点,且△PAB是以AB为腰的等腰三角形,试求点P的坐标.变式训练【变2-1】.如图.已知二次函数y=﹣x2+bx+3的图象与x轴的一个交点为A(4,0),与y 轴交于点B.(1)求此二次函数关系式和点B的坐标;(2)在x轴的正半轴上是否存在点P.使得△PAB是以AB为底边的等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.【变2-2】.如图,抛物线y=ax2+4x+c经过A(﹣3,﹣4),B(0,﹣1)两点,点P是y 轴左侧且位于x轴下方抛物线上一动点,设其横坐标为m.(1)直接写出抛物线的解析式;(2)将线段AB绕点B顺时针旋转90°得线段BD(点D是点A的对应点),求点D的坐标,并判断点D是否在抛物线上;(3)过点P作PM⊥x轴交直线BD于点M,试探究是否存在点P,使△PBM是等腰三角形?若存在,求出点m的值;若不存在,说明理由.1.如图,在平面直角坐标系xOy中,已知抛物线y=ax2+bx+c与x轴交于A(﹣3,0),B (1,0)两点,与y轴交于点C(0,3),连接AC,点P为第二象限抛物线上的动点.(1)求a、b、c的值;(2)连接PA、PC、AC,求△PAC面积的最大值;(3)在抛物线的对称轴上是否存在一点Q,使得△QAC为直角三角形,若存在,请求出所有符合条件的点Q的坐标;若不存在,请说明理由.2.已知抛物线y=﹣x2﹣x的图象如图所示:(1)将该抛物线向上平移2个单位,分别交x轴于A、B两点,交y轴于点C,则平移后的解析式为.(2)判断△ABC的形状,并说明理由.(3)在抛物线对称轴上是否存在一点P,使得以A、C、P为顶点的三角形是等腰三角形?若存在,求出点P的坐标;若不存在,说明理由.3.如图,抛物线y=﹣x2+x+3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,顶点为D,抛物线的对称轴与x轴交于点E,连接AC,BD.(1)求点A,B,C,D的坐标;(2)点F为抛物线对称轴上的动点,且△BEF与△AOC相似,请直接写出符合条件的点F的坐标;(3)点P为抛物线上的动点,是否存在这样的点P,使△BDP是直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.4.如图,已知抛物线y=﹣x2+bx+c与x轴交于A,B两点,与y轴交于点C,其中A(﹣1,0),C(0,3).(1)求该抛物线的函数表达式;(2)抛物线与直线y=﹣x﹣1交于A、E两点,P是x轴上点B左侧一动点,当以P、B、C为顶点的三角形与△ABE相似时,求点P的坐标;(3)若F是直线BC上一动点,在抛物线上是否存在动点M,使△MBF为等腰直角三角形,若存在,请直接写出点M的坐标;否则说明理由.5.如图,抛物线y=ax2+bx﹣3(a≠0)与x轴交于A,B两点(点A在点B左侧),与y轴交于点C,且BO=OC=3AO.(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在点P,使△PBC是等腰三角形?若存在,请直接写出符合条件的点P坐标;若不存在,请说明理由.6.如图,在平面直角坐标系中,二次函数y=ax2+bx+c(a≠0)的图象交x轴于点A、B,交y轴于点C,其顶点为D,已知AB=4,∠ABC=45°,OA:OB=1:3.(1)求二次函数的表达式及其顶点D的坐标;(2)点M是线段BC上方抛物线上的一个动点,点N是线段BC上一点,当△MBC的面积最大时,求:①点M的坐标,说明理由;②MN+BN的最小值;(3)在二次函数的图象上是否存在点P,使得以点P、A、C为顶点的三角形为直角三角形?若存在,求出点P坐标;若不存在,请说明理由.7.如图,抛物线y=ax2+bx+4交x轴于A(﹣3,0),B(4,0)两点,与y轴交于点C,连接AC,BC.M为线段OB上的一个动点,过点M作PM⊥x轴,交抛物线于点P,交BC于点Q.(1)求抛物线的表达式;(2)试探究点M在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标;若不存在,请说明理由.8.如图,已知抛物线y=x2+bx+c经过A(﹣1,0)、B(3,0)两点,且与y轴相交于点C,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当点P到点A、点C的距离之和最短时,求点P的坐标;(3)点M也是直线l上的动点,且△MAC为直角三角形,请直接写出所有符合条件的点M的坐标.交于点N,其顶点为D.(1)求抛物线及直线AC的函数表达式;(2)在抛物线对称轴上是否存在一点M,使以A,N,M为顶点的三角形是直角三角形?若存在,请求出M点的坐标.若不存在,请说明理由.10.抛物线y=ax2+bx+c的图象与x轴交于A(﹣1,0)、B(3,0)两点,与y轴交于点C (0,﹣3),顶点为D.(1)求此抛物线的解析式.(2)求此抛物线顶点D的坐标和对称轴.(3)探究对称轴上是否存在一点P,使得以P、D、A为顶点的三角形是等腰三角形?若存在,请求出所有符合条件的P点的坐标,若不存在,请说明理由.的左侧),与y轴交于点C.(1)求抛物线的解析式;(2)若M为抛物线对称轴上一动点,使得△MBC为直角三角形,请求出点M的坐标.(3)如图1,P为直线BC上方的抛物线上一点,PD∥y轴交BC于D点,过点D作DE ⊥AC于E点.设m=PD+DE,求m的最大值及此时P点坐标.12.如图,抛物线y=﹣x2+bx+c与x轴交于点A和B(5,0),与y轴交于点C(0,5).(1)求抛物线的解析式;(2)抛物线的对称轴与x轴交于点M,与BC交于点F,点D是对称轴上一点,当点D 关于直线BC的对称点E在抛物线上时,求点E的坐标;(3)点P在抛物线的对称轴上,点Q在直线BC上方的抛物线上,是否存在以O,P,Q为顶点的三角形是等腰直角三角形,若存在,请直接写出点Q的坐标;若不存在,请说明理由.13.已知如图1,在以O为原点的平面直角坐标系中,抛物线y=x2+bx+c与x轴交于A,B两点,与y轴交于点C(0,﹣1),连接AC,AO=2CO,直线l过点G(0,t)且平行于x轴,t<﹣1.(1)求抛物线对应的二次函数的解析式;(2)若D(﹣4,m)为抛物线y=x2+bx+c上一定点,点D到直线l的距离记为d,当d=DO时,求t的值.(3)如图2,若E(﹣4,m)为上述抛物线上一点,在抛物线上是否存在点F,使得△BEF是直角三角形,若存在求出点F的坐标,若不存在说明理由.14.如图①,抛物线y=ax2+bx+c与x轴相交于O、A两点,直线y=﹣x+3与y轴交于B 点,与该抛物线交于A,D两点,已知点D横坐标为﹣1.(1)求这条抛物线的解析式;(2)如图①,在线段OA上有一动点H(不与O、A重合),过H作x轴的垂线分别交AB于P点,交抛物线于Q点,若x轴把△POQ分成两部分的面积之比为1:2,请求出H点的坐标;(3)如图②,在抛物线上是否存在点C,使△ABC为直角三角形?若存在,求出点C 的坐标;若不存在,请说明理由.15.如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,OA=OC=3,顶点为D.(1)求此函数的关系式;(2))在AC下方的抛物线上有一点N,过点N作直线l∥y轴,交AC与点M,当点N 坐标为多少时,线段MN的长度最大?最大是多少?(3)在对称轴上有一点K,在抛物线上有一点L,若使A,B,K,L为顶点形成平行四边形,求出K,L点的坐标.(4)在y轴上是否存在一点E,使△ADE为直角三角形,若存在,直接写出点E的坐标;若不存在,说明理由.16.如图1,已知抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(﹣3,0),与y轴交于点C(1)求抛物线的解析式;(2)设抛物线的对称轴与x轴交于点M,请问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由;(3)在抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由.17.如图,在等腰直角三角形ABC中,∠BAC=90°,点A在x轴上,点B在y轴上,点C(3,1),二次函数y=x2+bx﹣的图象经过点C.(1)求二次函数的解析式,并把解析式化成y=a(x﹣h)2+k的形式;(2)把△ABC沿x轴正方向平移,当点B落在抛物线上时,求△ABC扫过区域的面积;(3)在抛物线上是否存在异于点C的点P,使△ABP是以AB为直角边的等腰直角三角形?如果存在,请求出所有符合条件的点P的坐标;如果不存在,请说明理由.18.如图,已知抛物线y=ax2+bx+4(a≠0)与x轴交于点A(1,0)和B,与y轴交于点C,对称轴为直线x=.(1)求抛物线的解析式;(2)如图1,若点P是线段BC上的一个动点(不与点B,C重合),过点P作y轴的平行线交抛物线于点Q,连接OQ,当线段PQ长度最大时,判断四边形OCPQ的形状并说明理由;(3)点N坐标为(0,2),点M在抛物线上,且∠NBM=45°,直接写出点M坐标;(4)如图2,在(2)的条件下,D是OC的中点,过点Q的直线与抛物线交于点E,且∠DQE=2∠ODQ.在y轴上是否存在点F,使得△BEF为等腰三角形?若存在,求点F 的坐标;若不存在,请说明理由.19.如图,已知直线y=3x﹣3分别交x轴,y轴于A、B两点,抛物线y=x2+bx+c经过A、B两点,点C是抛物线与x轴的另一个交点(与A点不重合).(1)求抛物线的解析式;(2)在抛物线的对称轴上求一点P,使△ABP的周长最小,并求出最小周长和P点的坐标;(3)在抛物线的对称轴上,是否存在点M,使△ABM为等腰三角形?若不存在,请说明理由;若存在,求出点M的坐标.20.如图,已知直线y=3x+3与x轴交于点A,与y轴交于点B,过A,B两点的抛物线交x 轴于另一点C(3,0).(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在点P,使△ABP是等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,说明理由.(3)在抛物线上求一点Q,使得△ACQ为以AC为底边的等腰三角形,并写出Q点的坐标;(4)除(3)中所求的Q点外,在抛物线上是否还存在其它的点Q使得△ACQ为等腰三角形?若存在,请求出一共有几个满足条件的点Q(要求简要说明理由,但不证明);若不存在这样的点Q,请说明理由.21.如图,抛物线交x轴于A(﹣2,0),B(3,0)两点,与y轴交于点C(0,3),连接AC,BC.M为线段OB上的一个动点,过点M作PM⊥x轴,交抛物线于点P,交BC 于点Q.(1)求抛物线的表达式;(2)过点P作PN⊥BC,垂足为点N.设M点的坐标为M(m,0),请用含m的代数式表示线段PN的长,并求出当m为何值时PN有最大值,最大值是多少?(3)试探究点M在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标;若不存在,请说明理由.22.如图,抛物线y=ax2+x+c交x轴于A,B两点,交y轴于点C.直线y=﹣x﹣2经过点A,C.(1)求抛物线的解析式;(2)点P是抛物线上一动点,过点P作x轴的垂线,交直线AC于点M,设点P的横坐标为m.①当△PCM是直角三角形时,求点P的坐标;②作点B关于点C的对称点B',则平面内存在直线l,使点M,B,B′到该直线的距离都相等.当点P在y轴右侧的抛物线上,且与点B不重合时,请直接写出直线l:y=kx+b 的解析式.(k,b可用含m的式子表示)23.如图,直线y=x+3与x轴交于点A,与y轴交于点C,抛物线y=﹣x2﹣2x+3与x轴交于A,B两点,与y轴交于点C.(1)如图①,连接BC,在y轴上存在一点D,使得△BCD是以BC为底的等腰三角形,求点D的坐标;(2)如图②,在抛物线上是否存在点E,使△EAC是以AC为底的等腰三角形?若存在,求出点E的坐标;若不存在,请说明理由;(3)如图③,连接BC,在直线AC上是否存在点F,使△BCF是以BC为腰的等腰三角形?若存在,求出点F的坐标;若不存在,请说明理由;(4)如图④,若抛物线的顶点为H,连接AH,在x轴上是否存在一点K,使△AHK是等腰三角形?若存在,求出点K的坐标;若不存在,请说明理由;(5)如图⑤,在抛物线的对称轴上是否存在点G,使△ACG是等腰三角形?若存在,求出点G的坐标;若不存在,请说明理由.。
二次函数中直角三角形存在性问题 初稿
二次函数中直角三角形存在性问题1. 找点:在已知两定点,确定第三点构成直角三角形时,要么以两定点为直角顶点,要么以动点为直角顶点.以定点为直角顶点时,构造两条直线与已知直线垂直;以动点为直角顶点时,以已知线段为直径构造圆找点2. 方法:以两定点为直角顶点时,两直线互相垂直,则k1*k2=-1以已知线段为斜边时,利用K 型图,构造双垂直模型,最后利用相似求解,或者 三条边分别表示之后,利用勾股定理求解例一:如图,抛物线()2230y mx mx m m =-->与x 轴交于A B 、两点,与y 轴交于C 点. (1)请求出抛物线顶点M 的坐标(用含m 的代数式表示),A B 、两点的坐标;(2)经探究可知,BCM △与ABC △的面积比不变,试求出这个比值;(3)是否存在使BCM △为直角三角形的抛物线?若存在,请求出;如果不存在,请说明 理由.例二、如图,抛物线y=-x 2+mx+n 与x 轴分别交于点A (4,0),B (-2,0),与y 轴交于点C .(1)求该抛物线的解析式;(2)M 为第一象限内抛物线上一动点,点M 在何处时,△ACM 的面积最大;(3)在抛物线的对称轴上是否存在这样的点P ,使得△PAC 为直角三角形?若存在,请求出所有可能点P 的坐标;若不存在,请说明理由..22.如图,抛物线y=x 2-2mx (m >0)与x 轴的另一个交点为A ,过P(1,-m)作PM ⊥x 轴与点M ,交抛物线于点B .点B 关于抛物线对称轴的对称点为C .(1)若m=2,求点A 和点C 的坐标;(2)令m >1,连接CA ,若△ACP 为直角三角形,求m 的值;(3)在坐标轴上是否存在点E ,使得△PEC 是以P 为直角顶点的等腰直角三角形?若存在,求出点E 的坐标;若不存在,请说明理由.3. 如图,抛物线y=ax2+bx+2与x轴交于点A(1,0)和B(4,0).(1)求抛物线的解析式;(2)若抛物线的对称轴交x轴于点E,点F是位于x轴上方对称轴上一点,FC∥x轴,与对称轴右侧的抛物线交于点C,且四边形OECF是平行四边形,求点C的坐标;(3)在(2)的条件下,抛物线的对称轴上是否存在点P,使△OCP是直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.4、在平面直角坐标系中,抛物线y=x2+( k-1)x-k与直线y=kx+1交于A,B两点,点A在点B的左侧.(1)如图1,当k=1时,直接写出A,B两点的坐标;(2)在(1)的条件下,点P为抛物线上的一个动点,且在直线AB下方,试求出△ABP 面积的最大值及此时点P的坐标;(3)如图2,抛物线y=x2+( k-1)x-k(k>0)与x轴交于点C、D两点(点C在点D的左侧),在直线y=kx+1上是否存在唯一一点Q,使得∠OQC=90°?若存在,请求出此时k的值;若不存在,请说明理由.. 3. 4 5、如图,直线y=x+2与抛物线y=ax 2+bx+6(a≠0)相交于A (12,52)和B(4,m),点P 是线段AB 上异于A 、B 的动点,过点P 作PC ⊥x 轴于点D ,交抛物线于点C .(1)求抛物线的解析式;(2)是否存在这样的P 点,使线段PC 的长有最大值,若存在,求出这个最大值;若不存在,请说明理由;(3)求△PAC 为直角三角形时点P 的坐标.6、如图,抛物线y=ax 2+bx+c 经过A(-3,0)、C(0,4),点B 在抛物线上,CB ∥x 轴,且AB 平分∠CAO .(1)求抛物线的解析式;(2)线段AB 上有一动点P ,过点P 作y 轴的平行线,交抛物线于点Q ,求线段PQ 的最大值;(3)抛物线的对称轴上是否存在点M ,使△ABM 是以AB 为直角边的直角三角形?如果存在,求出点M 的坐标;如果不存在,说明理由.【下载本文档,可以自由复制内容或自由编辑修改内容,更多精彩文章,期待你的好评和关注,我将一如既往为您服务】。
二次函数 直角三角形存在性
(3)抛物线的对称轴上是否存在点 P,使△ACP是直角Байду номын сангаас角形? 若存在,求出所有点P的坐标; 若不存在,请说明理由. P1
E
P2
(3)抛物线的对称轴上是否存在点 P,使△ACP是直角三角形? 若存在,求出所有点P的坐标; 若不存在,请说明理由. P3
E
P4
存在抛物线y=x2+x-2,在平面直角坐标系中,现将 一块等腰直角三角板ABC放在第二象限,斜靠在两坐标 轴上,点C为 (-1,0) .如图所示,过点B作BD⊥x轴, 垂足为D,且B点横坐标为-3. (1)求证:△BDC≌△COA; (2)求BC所在直线的函数关系式; (3)抛物线的对称轴上是否存在点 P,使△ACP是直角三角形? 若存在,求出所有点P的坐标; 若不存在,请说明理由.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数中直角三角形存在性问题
1. 找点:在已知两定点,确定第三点构成直角三角形时,要么以两定点为直角顶点,要么
以动点为直角顶点.以定点为直角顶点时,构造两条直线与已知直线垂直;以动点为直角顶点时,以已知线段为直径构造圆找点
2. 方法:以两定点为直角顶点时,两直线互相垂直,则k1*k2=-1
以已知线段为斜边时,利用K 型图,构造双垂直模型,最后利用相似求解,或者 三条边分别表示之后,利用勾股定理求解
例一:如图,抛物线()2
230y mx mx m m =-->与x 轴交于A B 、两点,与y 轴交于C 点. (1)请求出抛物线顶点M 的坐标(用含m 的代数式表示),A B 、两点的坐标; ,
(2)经探究可知,BCM △与ABC △的面积比不变,试求出这个比值;
(3)是否存在使BCM △为直角三角形的抛物线若存在,请求出;如果不存在,请说明 理由.
"
例二、如图,抛物线y=-x2+mx+n与x轴分别交于点A(4,0),B(-2,0),与y轴交于点C.(1)求该抛物线的解析式;
(2)M为第一象限内抛物线上一动点,点M在何处时,△ACM的面积最大;
(3)在抛物线的对称轴上是否存在这样的点P,使得△PAC为直角三角形若存在,请求出所有可能点P的坐标;若不存在,请说明理由.
'
练习:
1. 如图,已知抛物线y=ax2+bx+c(a≠0)的顶点M在第一象限,抛物线与x轴相交于A、B两点(点A在点B的左边),与y轴交与点C,O为坐标原点,如果△ABM是直角三角形,AB=2,OM=5
(1)求点M的坐标;
(2)求抛物线y=ax2+bx+c的解析式;
(3)在抛物线的对称轴上是否存在点P,使得△PAC为直角三角形若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.
#
解:(1)
.
2.如图,抛物线y=x2-2mx (m>0)与x轴的另一个交点为A,过P(1,-m)作PM⊥x轴与点M,交抛物线于点B.点B关于抛物线对称轴的对称点为C.
(1)若m=2,求点A和点C的坐标;
(2)令m>1,连接CA,若△ACP为直角三角形,求m的值;
(3)在坐标轴上是否存在点E,使得△PEC是以P为直角顶点的等腰直角三角形若存在,求出点E的坐标;若不存在,请说明理由.
!
3. 如图,抛物线y=ax2+bx+2与x轴交于点A(1,0)和B(4,0).
(1)求抛物线的解析式;
(2)若抛物线的对称轴交x轴于点E,点F是位于x轴上方对称轴上一点,FC∥x轴,与对称轴右侧的抛物线交于点C,且四边形OECF是平行四边形,求点C的坐标;
(3)在(2)的条件下,抛物线的对称轴上是否存在点P,使△OCP
(
是直角三角形若存在,求出点P的坐标;若不存在,请说明理由.
-
4、在平面直角坐标系中,抛物线y=x2+( k-1)x-k与直线y=kx+1交于A,B两点,点A在点B的左侧.
…
(1)如图1,当k=1时,直接写出A,B两点的坐标;
(2)在(1)的条件下,点P为抛物线上的一个动点,且在直线AB下方,试求出△ABP面积的最大值及此时点P的坐标;
(3)如图2,抛物线y=x2+( k-1)x-k(k>0)与x轴交于点C、D两点(点C在点D的左侧),在直线y=kx+1上是否存在唯一一点Q,使得∠OQC=90°
若存在,请求出此时k的值;若不存在,请说明理由.
]
、
5、如图,直线y=x+2与抛物线y=ax 2+bx+6(a≠0)相交于A (12,52
)和B(4,m),点P 是线段AB 上异于A 、B 的动点,过点P 作PC⊥x 轴于点D ,交抛物线于点C .
(1)求抛物线的解析式;
(2)是否存在这样的P 点,使线段PC 的长有最大值,若存在,求出这个最大值;若不存在,请说明理由;
(3)求△PAC 为直角三角形时点P 的坐标.
~
6、如图,抛物线y=ax2+bx+c经过A(-3,0)、C(0,4),点B在抛物线上,CB∥x轴,且AB 平分∠CAO.
(1)求抛物线的解析式;
(2)线段AB上有一动点P,过点P作y轴的平行线,交抛物线于点Q,求线段PQ的最大值;
(3)抛物线的对称轴上是否存在点M,使△ABM是以AB为直角边的直角
三角形如果存在,求出点M的坐标;如果不存在,说明理由.。