成都外国语学校成都外国语学校七年级(上)数学期末(含完整答案)(含完整答案)
成都市外国语学校七年级上册数学期末试卷及答案-百度文库
成都市外国语学校七年级上册数学期末试卷及答案-百度文库一、选择题1.如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是( )A .垂线段最短B .经过一点有无数条直线C .两点之间,线段最短D .经过两点,有且仅有一条直线 2.4 =( ) A .1B .2C .3D .43.宁波港处于“一带一路”和长江经济带交汇点,地理位置得天独厚.全年货物吞吐量达9.2亿吨,晋升为全球首个“9亿吨”大港,并连续8年蝉联世界第一宝座.其中9.2亿用科学记数法表示正确的是( ) A .B .C .D .4.如图,已知,,A O B 在一条直线上,1∠是锐角,则1∠的余角是( )A .1212∠-∠B .132122∠-∠C .12()12∠-∠D .21∠-∠5.将方程3532x x --=去分母得( ) A .3352x x --= B .3352x x -+= C .6352x x -+= D .6352x x --=6.如图所示,数轴上A ,B 两点表示的数分别是2﹣1和2,则A ,B 两点之间的距离是( )A .2B .2﹣1C .2+1D .1 7.若多项式229x mx ++是完全平方式,则常数m 的值为()A .3B .-3C .±3D .+68.已知线段AB=8cm ,点C 是直线AB 上一点,BC =2cm ,若M 是AC 的中点,N 是BC 的中点,则线段MN 的长度是( ) A .6cm B .3cm C .3cm 或6cm D .4cm 9.已知单项式2x 3y 1+2m 与3x n +1y 3的和是单项式,则m ﹣n 的值是( ) A .3B .﹣3C .1D .﹣110.观察下列算式,用你所发现的规律得出22015的末位数字是( ) 21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…. A .2 B .4 C .6 D .8 11.如果a ﹣3b =2,那么2a ﹣6b 的值是( ) A .4B .﹣4C .1D .﹣112.下列式子中,是一元一次方程的是( ) A .3x+1=4x B .x+2>1 C .x 2-9=0 D .2x -3y=0 13.若a<b,则下列式子一定成立的是( ) A .a+c>b+cB .a-c<b-cC .ac<bcD .a b c c< 14.3的倒数是( ) A .3B .3-C .13D .13-15.下列计算正确的是( ) A .3a +2b =5ab B .4m 2 n -2mn 2=2mn C .-12x +7x =-5xD .5y 2-3y 2=2二、填空题16.从一个n 边形的同一个顶点出发,分别连结这个顶点与其余各顶点,若把这个多边形分割为6个三角形,则n 的值是___________.17.在数轴上,若A 点表示数﹣1,点B 表示数2,A 、B 两点之间的距离为 . 18.已知方程22x a ax +=+的解为3x =,则a 的值为__________. 19.根据下列图示的对话,则代数式2a +2b ﹣3c +2m 的值是_____.20.把四张形状大小完全相同的小长方形卡片(如图1)按两种不同的方式,不重叠地放在一个底面为长方形(一边长为4)的盒子底部(如图2、图3),盒子底面未被卡片覆盖的部分用阴影表示.已知阴影部分均为长方形,且图2与图3阴影部分周长之比为5:6,则盒子底部长方形的面积为_____.21.若关于x 的多项式2261x bx ax x -++-+的值与x 的取值无关,则-a b 的值是________22.某农村西瓜论个出售,每个西瓜以下面的方式定价:当一个a 斤重的西瓜卖A 元,一个b 斤重的西瓜卖B 元时,一个()a b +斤重的西瓜定价为 36ab A B ⎛++⎫⎪⎝⎭元,已知一个12斤重的西瓜卖21元,则一个18斤重的西瓜卖_____元.23.若1x =-是关于x 的方程220x a b -+=的解,则代数式241a b -+的值是___________. 24.分解因式: 22xyxy +=_ ___________25.将一个含有30°角的直角三角板如图所示放置.其中,含30°角的顶点落在直线a 上,含90°角的顶点落在直线b 上.若//221a b ∠=∠,;,则1∠=__________°.26.建筑工人在砌墙时,为了使砌的墙是直的,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的细线绳作参照线.这样做的依据是:____________________________; 27.若代数式x 2+3x ﹣5的值为2,则代数式2x 2+6x ﹣3的值为_____. 28.用“>”或“<”填空:13_____35;223-_____﹣3.29.规定:用{m }表示大于 m 的最小整数,例如{52}= 3,{4} = 5,{-1.5}= -1等;用[m ] 表示不大于 m 的最大整数,例如[72]= 3, [2]= 2,[-3.2]= -4,如果整数 x 满足关系式:3{x }+2[x ]=23,则 x =________________.30.已知关于x 的方程4mx x -=的解是1x =,则m 的值为______.三、压轴题31.已知AOD α∠=,OB 、OC 、OM 、ON 是AOD ∠内的射线.(1)如图1,当160α=︒,若OM 平分AOB ∠,ON 平分BOD ∠,求MON ∠的大小; (2)如图2,若OM 平分AOC ∠,ON 平分BOD ∠,20BOC ∠=︒,60MON ∠=︒,求α.32.综合与探究问题背景数学活动课上,老师将一副三角尺按图(1)所示位置摆放,分别作出∠AOC,∠BOD的平分线OM、ON,然后提出如下问题:求出∠MON的度数.特例探究“兴趣小组”的同学决定从特例入手探究老师提出的问题,他们将三角尺分别按图2、图3所示的方式摆放,OM和ON仍然是∠AOC和∠BOD的角平分线.其中,按图2方式摆放时,可以看成是ON、OD、OB在同一直线上.按图3方式摆放时,∠AOC和∠BOD相等.(1)请你帮助“兴趣小组”进行计算:图2中∠MON的度数为°.图3中∠MON的度数为°.发现感悟解决完图2,图3所示问题后,“兴趣小组”又对图1所示问题进行了讨论:小明:由于图1中∠AOC和∠BOD的和为90°,所以我们容易得到∠MOC和∠NOD的和,这样就能求出∠MON的度数.小华:设∠BOD为x°,我们就能用含x的式子分别表示出∠NOD和∠MOC度数,这样也能求出∠MON的度数.(2)请你根据他们的谈话内容,求出图1中∠MON的度数.类比拓展受到“兴趣小组”的启发,“智慧小组”将三角尺按图4所示方式摆放,分别作出∠AOC、∠BOD的平分线OM、ON,他们认为也能求出∠MON的度数.(3)你同意“智慧小组”的看法吗?若同意,求出∠MON的度数;若不同意,请说明理由.33.已知数轴上两点A、B,其中A表示的数为-2,B表示的数为2,若在数轴上存在一点C ,使得AC+BC=n ,则称点C 叫做点A 、B 的“n 节点”.例如图1所示:若点C 表示的数为0,有AC+BC=2+2=4,则称点C 为点A 、B 的“4节点”. 请根据上述规定回答下列问题:(1)若点C 为点A 、B 的“n 节点”,且点C 在数轴上表示的数为-4,求n 的值; (2)若点D 是数轴上点A 、B 的“5节点”,请你直接写出点D 表示的数为______; (3)若点E 在数轴上(不与A 、B 重合),满足BE=12AE ,且此时点E 为点A 、B 的“n 节点”,求n 的值.34.已知∠AOB 和∠AOC 是同一个平面内的两个角,OD 是∠BOC 的平分线. (1)若∠AOB=50°,∠AOC=70°,如图(1),图(2),求∠AOD 的度数;(2)若∠AOB=m 度,∠AOC=n 度,其中090090180m n m n <<,<<,< 且m n <,求∠AOD 的度数(结果用含m n 、的代数式表示),请画出图形,直接写出答案.35.我国著名数学家华罗庚曾经说过,“数形结合百般好,隔裂分家万事非.”数形结合的思想方法在数学中应用极为广泛.观察下列按照一定规律堆砌的钢管的横截面图:用含n 的式子表示第n 个图的钢管总数. (分析思路)图形规律中暗含数字规律,我们可以采用分步的方法,从图形排列中找规律;把图形看成几个部分的组合,并保持结构,找到每一部分对应的数字规律,进而找到整个图形对应的数字规律.如:要解决上面问题,我们不妨先从特例入手: (统一用S 表示钢管总数) (解决问题)(1)如图,如果把每个图形按照它的行来分割观察,你发现了这些钢管的堆砌规律了吗?像n=1、n=2的情形那样,在所给横线上,请用数学算式表达你发现的规律.S=1+2 S=2+3+4 _____________ ______________(2)其实,对同一个图形,我们的分析眼光可以是不同的.请你像(1)那样保持结构的、对每一个所给图形添加分割线,提供与(1)不同的分割方式;并在所给横线上,请用数学算式表达你发现的规律:_______ ____________ _______________ _______________ (3)用含n 的式子列式,并计算第n 个图的钢管总数.36.如图,12cm AB =,点C 是线段AB 上的一点,2BC AC =.动点P 从点A 出发,以3cm /s 的速度向右运动,到达点B 后立即返回,以3cm /s 的速度向左运动;动点Q 从点C 出发,以1cm/s 的速度向右运动. 设它们同时出发,运动时间为s t . 当点P 与点Q 第二次重合时,P Q 、两点停止运动. (1)求AC ,BC ;(2)当t 为何值时,AP PQ =; (3)当t 为何值时,P 与Q 第一次相遇; (4)当t 为何值时,1cm PQ =.37.如图,数轴上有A 、B 、C 三个点,它们表示的数分别是25-、10-、10.(1)填空:AB=,BC=;(2)现有动点M、N都从A点出发,点M以每秒2个单位长度的速度向右移动,当点M 移动到B点时,点N才从A点出发,并以每秒3个单位长度的速度向右移动,求点N移动多少时间,点N追上点M?(3)若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒3个单位长度和7个单位长度的速度向右运动.试探索:BC-AB的值是否随着时间的变化而改变?请说明理由.38.如图①,点O为直线AB上一点,过点O作射线OC,使∠AOC=120°,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图①中的三角板OMN摆放成如图②所示的位置,使一边OM在∠BOC的内部,当OM平分∠BOC时,∠BO N= ;(直接写出结果)(2)在(1)的条件下,作线段NO的延长线OP(如图③所示),试说明射线OP是∠AOC的平分线;(3)将图①中的三角板OMN摆放成如图④所示的位置,请探究∠NOC与∠AOM之间的数量关系.(直接写出结果,不须说明理由)【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【详解】用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,∴线段AB的长小于点A绕点C到B的长度,∴能正确解释这一现象的数学知识是两点之间,线段最短,故选C.【点睛】根据“用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小”得到线段AB的长小于点A绕点C到B的长度,从而确定答案.本题考查了线段的性质,能够正确的理解题意是解答本题的关键,属于基础知识,比较简单.2.B解析:B【解析】【分析】根据算术平方根的概念可得出答案.【详解】解:根据题意可得:4=2,故答案为:B.【点睛】本题考查算术平方根的概念,解题关键在于对其概念的理解.3.A解析:A【解析】因为科学记数法的表达形式为:,所以9.2亿用科学记数法表示为:,故选A.点睛:本题主要考查科学记数法的表达形式,解决本题的关键是要熟练掌握科学记数法的表达形式.4.C解析:C【解析】【分析】由图知:∠1和∠2互补,可得∠1+∠2=180°,即12(∠1+∠2)=90°①;而∠1的余角为90°-∠1②,可将①中的90°所表示的12(∠1+∠2)代入②中,即可求得结果.【详解】解:由图知:∠1+∠2=180°,∴12(∠1+∠2)=90°,∴90°-∠1=12(∠1+∠2)-∠1=12(∠2-∠1).故选:C.【点睛】此题综合考查余角与补角,难点在于将∠1+∠2=180°进行适当的变形,从而与∠1的余角产生联系.5.C解析:C【解析】【分析】方程两边都乘以2,再去括号即可得解. 【详解】3532x x --= 方程两边都乘以2得:6-(3x-5)=2x , 去括号得:6-3x+5=2x , 故选:C. 【点睛】本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项.6.D解析:D 【解析】 【分析】根据题意列出算式,计算即可得到结果. 【详解】解:∵A ,B ﹣1,∴A ,B ﹣1)=1; 故选:D . 【点睛】此题考查了实数与数轴,掌握数轴上点的特点,利用数轴,数形结合求出答案.7.C解析:C 【解析】 【分析】利用完全平方式的结构特征即可求出m 的值. 【详解】解:∵多项式2222923x mx x mx ++=++是完全平方式, ∴2m =±6, 解得:m =±3, 故选:C . 【点睛】此题考查了完全平方式,熟练掌握完全平方公式的结构特征是解本题的关键.8.D解析:D 【解析】 【分析】根据线段的和与差,可得MB 的长,根据线段中点的定义,即可得出答案. 【详解】当点C 在AB 的延长线上时,如图1,则MB=MC-BC , ∵M 是AC 的中点,N 是BC 的中点,AB=8cm ,∴MC=11()22AC AB BC =+,BN=12BC ,∴MN=MB+BN , =MC-BC+BN , =1()2AB BC +-BC+12BC ,=12AB , =4,同理,当点C 在线段AB 上时,如图2, 则MN=MC+NC=12AC+12BC=12AB=4, ,故选:D . 【点睛】本题考查了线段的和与差,线段中点的定义,掌握线段中点的定义是解题的关键.9.D解析:D 【解析】 【分析】根据同类项的概念,首先求出m 与n 的值,然后求出m n -的值. 【详解】 解:单项式3122mx y+与133n xy +的和是单项式,3122m x y +∴与133n x y +是同类项, 则13123n m +=⎧⎨+=⎩∴12m n =⎧⎨=⎩, 121m n ∴-=-=-故选:D .本题主要考查同类项,掌握同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,从而得出m,n的值是解题的关键.10.D解析:D【解析】【分析】【详解】解:∵21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,….2015÷4=503…3,∴22015的末位数字和23的末位数字相同,是8.故选D.【点睛】本题考查数字类的规律探索.11.A解析:A【解析】【分析】将a﹣3b=2整体代入即可求出所求的结果.【详解】解:当a﹣3b=2时,∴2a﹣6b=2(a﹣3b)=4,故选:A.【点睛】本题考查了代数式的求值,正确对代数式变形,利用添括号法则是关键.12.A解析:A【解析】A. 3x+1=4x是一元一次方程,故本选项正确;B. x+2>1是一元一次不等式,故本选项错误;C. x2−9=0是一元二次方程,故本选项错误;D. 2x−3y=0是二元一次方程,故本选项错误。
成都市外国语学校七年级上册数学期末试卷及答案-百度文库
成都市外国语学校七年级上册数学期末试卷及答案-百度文库一、选择题1.近年来,国家重视精准扶贫,收效显著.据统计约有65 000 000人脱贫,把65 000 000用科学记数法表示,正确的是( ) A .0.65×108B .6.5×107C .6.5×108D .65×1062.我国古代《易经》一书中记载了一种“结绳计数”的方法,一女子在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,下列图示中表示91颗的是( )A .B .C .D .3.下列数或式:3(2)-,61()3-,25- ,0,21m +在数轴上所对应的点一定在原点右边的个数是( ) A .1B .2C .3D .44.如图,C 为射线AB 上一点,AB =30,AC 比BC 的14多5,P ,Q 两点分别从A ,B 两点同时出发.分别以2单位/秒和1单位/秒的速度在射线AB 上沿AB 方向运动,运动时间为t 秒,M 为BP 的中点,N 为QM 的中点,以下结论:①BC =2AC ;②AB =4NQ ;③当PB =12BQ 时,t =12,其中正确结论的个数是( )A .0B .1C .2D .3 5.在0,1-, 2.5-,3这四个数中,最小的数是( )A .0B .1-C . 2.5-D .3 6.底面半径为r ,高为h 的圆柱的体积为2r h π,单项式2r h π的系数和次数分别是( ) A .π,3 B .π,2C .1,4D .1,37.已知线段 AB =10cm ,直线 AB 上有一点 C ,且 BC =4cm ,M 是线段 AC 的中点,则 AM的长( ) A .7cm B .3cmC .3cm 或 7cmD .7cm 或 9cm8.如图,OA ⊥OC ,OB ⊥OD ,①∠AOB=∠COD ;②∠BOC+∠AOD=180°;③∠AOB+∠COD=90°;④图中小于平角的角有6个;其中正确的结论有几个( )A .1个B .2个C .3个D .4个9.若x=﹣13,y=4,则代数式3x+y ﹣3xy 的值为( ) A .﹣7 B .﹣1 C .9 D .7 10.已知单项式2x 3y 1+2m 与3x n +1y 3的和是单项式,则m ﹣n 的值是( ) A .3B .﹣3C .1D .﹣111.观察下列算式,用你所发现的规律得出22015的末位数字是( ) 21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…. A .2B .4C .6D .812.某个数值转换器的原理如图所示:若开始输入x 的值是1,第1次输出的结果是4,第2次输出的结果是2,依次继续下去,则第2020次输出的结果是( )A .1010B .4C .2D .1二、填空题13.2019年11月11日是第11个“双十一”购物狂欢节,天猫“双十一”总成交额为2684亿,再创历史新高;其中,“2684亿”用科学记数法表示为__________.14.如图,是一个正方体的表面展开图,则原正方体中“国”字所在的面相对的面上标的字是_____.15.多项式2x 3﹣x 2y 2﹣1是_____次_____项式.16.某农村西瓜论个出售,每个西瓜以下面的方式定价:当一个a 斤重的西瓜卖A 元,一个b 斤重的西瓜卖B 元时,一个()a b +斤重的西瓜定价为 36ab A B ⎛++⎫⎪⎝⎭元,已知一个12斤重的西瓜卖21元,则一个18斤重的西瓜卖_____元. 17.分解因式: 22xyxy +=_ ___________18.如果向东走60m 记为60m +,那么向西走80m 应记为______m.19.如图,在数轴上点A ,B 表示的数分别是12,若点B ,C 到点A 的距离相等,则点C 所表示的数是___.20.已知A ,B ,C 是同一直线上的三个点,点O 为AB 的中点,AC 2BC =,若OC 6=,则线段AB 的长为______.21.据科学家估计,地球的年龄大约是4600000000年,将4600000000用科学记数法表示 为_________. 22.请先阅读,再计算: 因为:111122=-⨯,1112323=-⨯,1113434=-⨯,…,111910910=-⨯, 所以:1111122334910++++⨯⨯⨯⨯ 1111111122334910⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭11111111911223349101010=-+-+-++-=-= 则111110010110110210210320192020++++=⨯⨯⨯⨯_________.23.将520000用科学记数法表示为_____. 24.数字9 600 000用科学记数法表示为 .三、解答题25.先化简,再求值:﹣a 2b +(3ab 2﹣a 2b )﹣2(2ab 2﹣a 2b ),其中a =1,b =﹣2. 26.直线AB ,CD 交于点O ,将一个三角板的直角顶点放置于点O 处,使其两条直角边OE ,OF ,分别位于OC 的两侧.若OC 平分∠BOF ,OE 平分∠COB . (1)求∠BOE 的度数;(2)写出图中∠BOE 的补角,并说明理由.27.已知,若2(1)20a b ++-=,关于x 的方程2x+c=1的解为-1.求代数式22282(4)abc a b ab a b ---的值.28.甲乙两站相距450km ,一列慢车从甲站开出,每小时行驶65km ,一列快车从乙站开出,每小时行驶85km.(1)两车同时开出,相向而行,那么两车行驶多少小时相遇? (2)两车同时开出,同向而行,慢车在前,多少小时快车追上慢车?(3)快车先开30min ,两车相向而行,慢车行驶多少小时两车相遇?29.已知数轴上两点A B 、对应的数分别是6,8-,M N P 、、为数轴上三个动点,点M 从A 点出发速度为每秒2个单位,点N 从点B 出发速度为M 点的3倍,点P 从原点出发速度为每秒1个单位.()1若点M 向右运动,同时点N 向左运动,求多长时间点M 与点N 相距54个单位? ()2若点M N P 、、同时都向右运动,求多长时间点P 到点,M N 的距离相等?30.如图,将一条数轴在原点O 和点B 处各折一下,得到一条“折线数轴”,图中点A 表示﹣12,点B 表示12,点C 表示20,我们称点A 和点C 在数轴上相距32个长度单位,动点P 从点A 出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O 运动到点B 期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q 从点C 出发,以1单位/秒的速度沿着数轴的负方向运动,从点B 运动到点O 期间速度变为原来的两倍,之后也立刻恢复原速,设运动的时间为t 秒,问:(1)动点Q 从点C 运动至点A 需要 秒;(2)P 、Q 两点相遇时,求出t 的值及相遇点M 所对应的数是多少?(3)求当t 为何值时,A 、P 两点在数轴上相距的长度是C 、Q 两点在数轴上相距的长度的54倍(即P 点运动的路程=54Q 点运动的路程). 四、压轴题31.如图1,O 为直线AB 上一点,过点O 作射线OC ,∠AOC =30°,将一直角三角尺(∠M =30°)的直角顶点放在点O 处,一边ON 在射线OA 上,另一边OM 与OC 都在直线AB 的上方.(1)若将图1中的三角尺绕点O 以每秒5°的速度,沿顺时针方向旋转t 秒,当OM 恰好平分∠BOC 时,如图2. ①求t 值;②试说明此时ON 平分∠AOC ;(2)将图1中的三角尺绕点O 顺时针旋转,设∠AON =α,∠COM =β,当ON 在∠AOC 内部时,试求α与β的数量关系;(3)若将图1中的三角尺绕点O 以每秒5°的速度沿顺时针方向旋转的同时,射线OC 也绕点O 以每秒8°的速度沿顺时针方向旋转,如图3,那么经过多长时间,射线OC 第一次平分∠MON ?请说明理由.32.(阅读理解)若A,B,C为数轴上三点,若点C到A的距离是点C到B的距离的2倍,我们就称点C是(A,B)的优点.例如,如图①,点A表示的数为﹣1,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是(A,B)的优点;又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D就不是(A,B)的优点,但点D是(B,A)的优点.(知识运用)如图②,M、N为数轴上两点,点M所表示的数为﹣2,点N所表示的数为4.(1)数所表示的点是(M,N)的优点;(2)如图③,A、B为数轴上两点,点A所表示的数为﹣20,点B所表示的数为40.现有一只电子蚂蚁P从点B出发,以4个单位每秒的速度向左运动,到达点A停止.当t为何值时,P、A和B中恰有一个点为其余两点的优点?33.如图所示,已知数轴上A,B两点对应的数分别为-2,4,点P为数轴上一动点,其对应的数为x.(1)若点P到点A,B的距离相等,求点P对应的数x的值.(2)数轴上是否存在点P,使点P到点A,B的距离之和为8?若存在,请求出x的值;若不存在,说明理由.(3)点A,B分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P以5个单位长度/分的速度从O点向左运动.当遇到A时,点P立即以同样的速度向右运动,并不停地往返于点A与点B之间.当点A与点B重合时,点P经过的总路程是多少?【参考答案】***试卷处理标记,请不要删除一、选择题1.B【解析】分析:科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n 是负数. 详解:65 000 000=6.5×107. 故选B .点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.2.B解析:B 【解析】 【分析】由于从右到左依次排列的绳子上打结,满六进一,所以从右到左的数分别进行计算,然后把它们相加即可得出正确答案. 【详解】解:A 、5+3×6+1×6×6=59(颗),故本选项错误; B 、1+3×6+2×6×6=91(颗),故本选项正确; C 、2+3×6+1×6×6=56(颗),故本选项错误; D 、1+2×6+3×6×6=121(颗),故本选项错误; 故选:B . 【点睛】本题是以古代“结绳计数”为背景,按满六进一计数,运用了类比的方法,根据图中的数学列式计算;本题题型新颖,一方面让学生了解了古代的数学知识,另一方面也考查了学生的思维能力.3.B解析:B 【解析】 【分析】点在原点的右边,则这个数一定是正数,根据演要求判断几个数即可得到答案. 【详解】()32-=-8,613⎛⎫- ⎪⎝⎭=1719,25-=-25 ,0,21m +≥1 在原点右边的数有613⎛⎫- ⎪⎝⎭和 21m +≥1 故选B 【点睛】此题重点考察学生对数轴上的点的认识,抓住点在数轴的右边是解题的关键.解析:C 【解析】【分析】根据AC比BC的14多5可分别求出AC与BC的长度,然后分别求出当P与Q重合时,此时t=30s,当P到达B时,此时t=15s,最后分情况讨论点P与Q的位置.【详解】解:设BC=x,∴AC=14x+5∵AC+BC=AB∴x+14x+5=30,解得:x=20,∴BC=20,AC=10,∴BC=2AC,故①成立,∵AP=2t,BQ=t,当0≤t≤15时,此时点P在线段AB上,∴BP=AB﹣AP=30﹣2t,∵M是BP的中点∴MB=12BP=15﹣t∵QM=MB+BQ,∴QM=15,∵N为QM的中点,∴NQ=12QM=152,∴AB=4NQ,当15<t≤30时,此时点P在线段AB外,且点P在Q的左侧,∴AP=2t,BQ=t,∴BP=AP﹣AB=2t﹣30,∵M是BP的中点∴BM=12BP=t﹣15∵QM=BQ﹣BM=15,∵N为QM的中点,∴NQ=12QM=152,∴AB=4NQ,当t>30时,此时点P在Q的右侧,∴AP=2t,BQ=t,∴BP=AP﹣AB=2t﹣30,∵M是BP的中点∴BM=12BP=t﹣15∵QM=BQ﹣BM=15,∵N为QM的中点,∴NQ=12QM=152,∴AB=4NQ,综上所述,AB=4NQ,故②正确,当0<t≤15,PB=12BQ时,此时点P在线段AB上,∴AP=2t,BQ=t∴PB=AB﹣AP=30﹣2t,∴30﹣2t=12t,∴t=12,当15<t≤30,PB=12BQ时,此时点P在线段AB外,且点P在Q的左侧,∴AP=2t,BQ=t,∴PB=AP﹣AB=2t﹣30,∴2t﹣30=12t,t=20,当t>30时,此时点P在Q的右侧,∴AP=2t,BQ=t,∴PB=AP﹣AB=2t﹣30,∴2t﹣30=12t,t=20,不符合t>30,综上所述,当PB=12BQ时,t=12或20,故③错误;故选:C.【点睛】本题考查两点间的距离,解题的关键是求出P到达B点时的时间,以及点P与Q重合时的时间,涉及分类讨论的思想.5.C解析:C【解析】【分析】由题意先根据有理数的大小比较法则比较大小,再选出选项即可.【详解】-<1-<0<3,解:∵ 2.5-,∴最小的数是 2.5故选:C.【点睛】本题考查有理数的大小比较的应用,主要考查学生的比较能力,注意正数都大于0,负数都小于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小.6.A解析:A【解析】【分析】由题意根据单项式系数和次数的确定方法即可求出答案得到选项.【详解】π的系数和次数分别是π,3;解:单项式2r h故选:A.【点睛】本题考查单项式定义,解题的关键是理解单项式系数和次数的确定方法,本题属于基础题型.7.C解析:C【解析】【分析】应考虑到A、B、C三点之间的位置关系的多种可能,即点C在点A与B之间或点C在点B 的右侧两种情况进行分类讨论.【详解】①如图1所示,当点C在点A与B之间时,∵线段AB=10cm,BC=4cm,∴AC=10-4=6cm.∵M是线段AC的中点,∴AM=12AC=3cm,②如图2,当点C在点B的右侧时,∵BC=4cm,∴AC=14cmM是线段AC的中点,∴AM=12AC=7cm.综上所述,线段AM的长为3cm或7cm.故选C.【点睛】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.8.C解析:C【解析】【分析】根据垂直的定义和同角的余角相等分别计算后对各小题进行判断,由此即可求解.【详解】∵OA⊥OC,OB⊥OD,∴∠AOC=∠BOD=90°,∴∠AOB+∠BOC=∠COD+∠BOC=90°,∴∠AOB=∠COD,故①正确;∠BOC+∠AOD=90°﹣∠AOB+90°+∠AOB=180°,故②正确;∠AOB+∠COD不一定等于90°,故③错误;图中小于平角的角有∠AOB,∠AOC,∠AOD,∠BOC,∠BOD,∠COD一共6个,故④正确;综上所述,说法正确的是①②④.故选C.【点睛】本题考查了余角和补角,垂直的定义,是基础题,熟记概念与性质并准确识图,理清图中各角度之间的关系是解题的关键.9.D解析:D【解析】将x 与y 的值代入原式即可求出答案.【详解】当x=﹣13,y=4, ∴原式=﹣1+4+4=7故选D .【点睛】本题考查代数式求值,解题的关键是熟练运用有理数运算法则,本题属于基础题型.10.D解析:D【解析】【分析】根据同类项的概念,首先求出m 与n 的值,然后求出m n -的值.【详解】 解:单项式3122m x y +与133n x y +的和是单项式,3122m x y +∴与133n x y +是同类项,则13123n m +=⎧⎨+=⎩∴12m n =⎧⎨=⎩, 121m n ∴-=-=-故选:D .【点睛】本题主要考查同类项,掌握同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,从而得出m ,n 的值是解题的关键.11.D解析:D【解析】【分析】【详解】解:∵21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,….2015÷4=503…3,∴22015的末位数字和23的末位数字相同,是8.故选D .【点睛】本题考查数字类的规律探索.12.B【解析】【分析】根据题意和题目中的数值转换器可以写出前几次输出的结果,从而可以发现数字的变化规律,进而求得第2020次输出的结果.【详解】解:由题意可得,当x=1时,第一次输出的结果是4,第二次输出的结果是2,第三次输出的结果是1,第四次输出的结果是4,第五次输出的结果是2,第六次输出的结果是1,第七次输出的结果是4,第八次输出的结果是2,第九次输出的结果是1,第十次输出的结果是4,……,∵2020÷3=673…1,则第2020次输出的结果是4,故选:B.【点睛】本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化特点,求出相应的数字.二、填空题13.684×1011【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.解析:684×1011【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:将 2684 亿用科学记数法表示为:2.684×1011.故答案为:2.684×1011【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.伟【解析】【分析】根据在正方体的表面展开图中,相对的面之间一定相隔一个正方形即可解答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“伟”与“国”是相对面,“人”与解析:伟【解析】【分析】根据在正方体的表面展开图中,相对的面之间一定相隔一个正方形即可解答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“伟”与“国”是相对面,“人”与“中”是相对面,“的”与“梦”是相对面.故答案为:伟.【点睛】本题主要考查了正方体与展开图的面的关系,掌握相对的面之间一定相隔一个正方形是解答本题的关键.15.四三【解析】【分析】找到多项式中的单项式的最高次数即为多项式的最高次数,有几个单项式即为几项式.【详解】解:次数最高的项为﹣x2y2,次数为4,一共有3个项,所以多项式2解析:四三【分析】找到多项式中的单项式的最高次数即为多项式的最高次数,有几个单项式即为几项式.【详解】解:次数最高的项为﹣x 2y 2,次数为4,一共有3个项,所以多项式2x 3﹣x 2y 2﹣1是四次三项式.故答案为:四,三.【点睛】此题主要考查了多项式的定义.解题的关键是理解多项式的定义,用到的知识点为:多项式的次数由组成多项式的单项式的最高次数决定;组成多项式的单项式叫做多项式的项,有几项就是几项式.16.33【解析】【分析】根据题意中的对应关系,由斤重的西瓜卖元,列方程求出6斤重的西瓜的定价;再根据“一个斤重的西瓜定价为元”可得出(12+6)斤重西瓜的定价.【详解】解:设6斤重的西瓜卖x 元解析:33【解析】【分析】根据题意中的对应关系,由12斤重的西瓜卖21元,列方程求出6斤重的西瓜的定价;再根据“一个()a b +斤重的西瓜定价为 36ab A B ⎛++⎫ ⎪⎝⎭元”可得出(12+6)斤重西瓜的定价. 【详解】解:设6斤重的西瓜卖x 元,则(6+6)斤重的西瓜的定价为:363(21)6x x x =+++元, 又12斤重的西瓜卖21元,∴2x+1=21,解得x=10.故6斤重的西瓜卖10元.又18=6+12,∴(6+12)斤重的西瓜定价为:6121021=3336⨯++(元). 故答案为:33.【点睛】本题主要考查求代数式的值以及一元一次方程的应用,关键是理解题意,找出等量关系. 17.【解析】原式提取公因式xy ,即可得到结果.【详解】解:原式=xy (2y +1),故答案为:xy (2y +1)【点睛】此题考查了因式分解−提公因式法,熟练掌握提取公因式的方法是解本解析:xy(2y 1)+【解析】【分析】原式提取公因式xy ,即可得到结果.【详解】解:原式=xy (2y +1),故答案为:xy (2y +1)【点睛】此题考查了因式分解−提公因式法,熟练掌握提取公因式的方法是解本题的关键.18.-80【解析】【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】解:如果向东走60m 记为,那么向西走80m 应记为.故答案为.【点睛】本题考查正数和负数解析:-80【解析】【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】解:如果向东走60m 记为60m +,那么向西走80m 应记为80m -.故答案为80-.【点睛】本题考查正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.19.2+【分析】先求出点A、B之间的距离,再根据点B、C到点A的距离相等,即可解答.【详解】∵数轴上点A,B表示的数分别是1,–,∴AB=1–(–)=1+,则点C表示的数为1+1+解析:2+2【解析】【分析】先求出点A、B之间的距离,再根据点B、C到点A的距离相等,即可解答.【详解】∵数轴上点A,B表示的数分别是1,–2,∴AB=1–(–2)=1+2,则点C表示的数为1+1+2=2+2,故答案为2【点睛】本题考查了数与数轴的对应关系,解决本题的关键是明确两点之间的距离公式,也利用了数形结合的思想.20.4或36【解析】【分析】分点C在线段AB上,若点C在点B右侧两种情况讨论,由线段中点的定义和线段和差关系可求AB的长.【详解】解:,设,,若点C在线段AB上,则,点O为AB的中点,解析:4或36【解析】【分析】分点C在线段AB上,若点C在点B右侧两种情况讨论,由线段中点的定义和线段和差关系可求AB 的长.【详解】解:AC 2BC =,∴设BC x =,AC 2x =,若点C 在线段AB 上,则AB AC BC 3x =+=,点O 为AB 的中点,3AO BO x 2∴==,x CO BO BC 6x 12AB 312362∴=-==∴=∴=⨯= 若点C 在点B 右侧,则AB BC x ==,点O 为AB 的中点,x AO BO 2∴==,3CO OB BC x 6x 4AB 42∴=+==∴=∴= 故答案为4或36【点睛】 本题考查两点间的距离,线段中点的定义,利用分类讨论思想解决问题是本题的关键. 21.6×【解析】试题解析:科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.由于4 600 000 000有10位,所以可以确定n=10-1=9.所以,4 600 000 0解析:6×910【解析】试题解析:科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.由于4 600 000 000有10位,所以可以确定n=10-1=9.所以,4 600 000 000=4.6×109.故答案为4.6×109.22.【解析】【分析】根据给出的例子找出规律,然后依据规律列出式子解决即可.【详解】解:故答案为【点睛】本题考查了规律计算,解决本题的关键是正确理解题意,能够根据题意找到式子间存在的 解析:242525【解析】【分析】根据给出的例子找出规律,然后依据规律列出式子解决即可.【详解】 解:111110010110110210210320192020++++⨯⨯⨯⨯ 1111111110010110110210210320192020⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 1111111110010110110210210320192020-+-+-++-= 9610100242525== 故答案为242525【点睛】本题考查了规律计算,解决本题的关键是正确理解题意,能够根据题意找到式子间存在的规律,利用规律将所求算式进行化简计算. 23.2×105【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数解析:2×105【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:将520000用科学记数法表示为5.2×105.故答案为:5.2×105.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.24.6×106【解析】试题分析:根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.在确定n 的值时,看该数是大于或等于1还是解析:6×106【解析】试题分析:根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.在确定n的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,-n 为它第一个有效数字前0的个数(含小数点前的1个0).9 600 000一共7位,从而9 600 000=9.6×106.三、解答题25.-4.【解析】【分析】首先根据整式的加减运算法则将原式化简,再代入求值.注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.【详解】解:原式=﹣a2b+3ab2﹣a2b﹣4ab2+2a2b=(﹣1﹣1+2)a2b+(3﹣4)ab2=﹣ab2,当a=1,b=﹣2时,原式=﹣1×(﹣2)2=﹣4.【点睛】考查整式的化简求值,解题关键是先化简,再代入求值.注意运算顺序及符号的处理.26.(1)30°;(2)∠BOE的补角有∠AOE和∠DOE.【解析】【分析】(1)根据OC平分∠BOF,OE平分∠COB.可得∠BOE=∠EOC=12∠BOC,∠BOC=∠COF,进而得出,∠EOF=3∠BOE=90°,求出∠BOE;(2)根据平角和互补的意义,通过图形中可得∠BOE+∠AOE=180°,再根据等量代换得出∠BOE+∠DOE=180°,进而得出∠BOE的补角.【详解】解:(1)∵OC平分∠BOF,OE平分∠COB.∴∠BOE =∠EOC =12∠BOC ,∠BOC =∠COF , ∴∠COF =2∠BOE ,∴∠EOF =3∠BOE =90°,∴∠BOE =30°,(2)∵∠BOE +∠AOE =180°∴∠BOE 的补角为∠AOE ;∵∠EOC +∠DOE =180°,∠BOE =∠EOC , ∴∠BOE +∠DOE =180°,∴∠BOE 的补角为∠DOE ;答:∠BOE 的补角有∠AOE 和∠DOE ;【点睛】考查角平分线的意义、互补、邻补角的意义等知识,等量代换和列方程是解决问题常用的方法.27.-34.【解析】【分析】根据非负数之和为0,则每个非负数都为0,解出a ,b 的值,然后将x=-1代入方程求出c 的值,最后将代数式化简,代入数据求值.【详解】解:因为2(1)|2|0++-=a b ,(a+1)2 ≥0,|2|0-≥b所以a+1=0,b-2=0解得:a=-1,b=2因为关于x 的方程2x+c=1的解为-1所以2×(-1)+c=1 ,解得c=3因为8abc -2a 2b -(4ab 2-a 2b)=8abc-2a 2b-4ab 2+a 2b=8abc-a 2b-4ab 2把a=-1,b=2,c=3代入代数式8abc-a 2b-4ab 2中,得8×(-1)×2×3-(-1)2×2-4×(-1)×22=-48-2-(-16)=-34.【点睛】本题考查非负数的性质,一元一次方程的解,以及代数式化简求值,熟记非负数的性质求出a 、b 的值是解题的关键.28.(1)两车行驶3小时相遇;(2)行驶22.5小时快车追上慢车;(3)慢车行驶16360小时两车相遇.【解析】【分析】(1)设两车行驶t 1小时相遇,根据相遇时两车行驶路程之和为450km 建立方程求解; (2)设t 2小时快车追上慢车,快车比慢车多行驶450km 建立方程求解;(3)设慢车行驶t 3小时两车相遇,根据两车行驶路程之和为450km 建立方程求解.【详解】解:(1)设两车行驶t 1小时相遇,依题意得65t 1+85t 1=450解得:t 1=3因此,那么两车行驶3小时相遇.(2)设t 2小时快车追上慢车,依题意得 85t 2-65t 2=450解得:t 2=22.5因此,行驶22.5小时快车追上慢车(3)设慢车行驶t 3小时两车相遇,依题意得30分钟=0.5小时85×0.5+85t 3+65t 3=450解得:t 3=16360因此,慢车行驶16360小时两车相遇. 【点睛】 本题考查了一元一次方程的应用,熟练掌握行程问题中的等量关系是解题的关键.29.(1)5秒;(2)72秒或13秒 【解析】【分析】(1)设经过x 秒点M 与点N 相距54个单位,由点M 从A 点出发速度为每秒2个单位,点N 从点B 出发速度为M 点的3倍,得出2x+6x+14=54求出即可;(2)首先设经过t 秒点P 到点M ,N 的距离相等,得出(2t+6)-t=(6t-8)-t 或(2t+6)-t=t-(6t-8),进而求出即可.【详解】解:(1)设经过x 秒点M 与点N 相距54个单位.依题意可列方程为:2x+6x+14=54,解方程,得x=5.∴经过5秒点M 与点N 相距54个单位.(2)设经过t 秒点P 到点M ,N 的距离相等.(2t+6)-t=(6t-8)-t 或(2t+6)-t=t-(6t-8),t+6=5t-8或t+6=8-5t72t =或13t =∴经过72秒或13秒点P到点,M N的距离相等【点睛】此题主要考查了数轴、一元一次方程的应用,根据已知点运动速度得出以及距离之间的关系得出等式是解题关键.30.(1)26秒;(2)t的值是10,相遇点M所对应的数是8;(3)26【解析】【分析】(1)由时间=路程÷速度即可解答;(2)根据相遇时,P,Q所用时间相等的等量关系,列方程、解方程即可解答;(3)A、P两点在数轴上相距的长度是C、Q两点在数轴上相距的长度的54倍需分两直角边分别情况讨论,并根据P点运动的路程=54Q点运动的等量关系,列方程、解方程即可解答。
2020-2021成都市外国语学校初一数学上期末试卷(附答案)
2020-2021成都市外国语学校初一数学上期末试卷(附答案)一、选择题1.若x 是3-的相反数,5y =,则x y +的值为( )A .8-B .2C .8或2-D .8-或22.实数a b ,在数轴上对应点的位置如图所示,则必有( )A .0a b +>B .0a b -<C .0ab >D .0a b< 3.方程834x ax -=-的解是3x =,则a 的值是( ).A .1B .1-C .3-D .34.中国华为麒麟985处理器是采用7纳米制程工艺的手机芯片,在指甲盖大小的尺寸上塞进了120亿个晶体管,是世界上最先进的具有人工智能的手机处理器,将120亿个用科学记数法表示为( )A .91.210⨯个B .91210⨯个C .101.210⨯个D .111.210⨯个 5.如果水库的水位高于正常水位5m 时,记作+5m ,那么低于正常水位3m 时,应记作( )A .+3mB .﹣3mC .+13mD .﹣5m6.下列方程变形中,正确的是( )A .方程3221x x -=+,移项,得3212x x -=-+B .方程()3251x x -=--,去括号,得3251x x -=--C .方程2332t =,系数化为1,得1t = D .方程110.20.5x x --=,整理得36x = 7.有理数a ,b 在数轴上的位置如图所示,则下列代数式值是负数的是( )A .+a bB .ab -C .-a bD .a b -+8.两根木条,一根长20cm ,另一根长24cm ,将它们一端重合且放在同一条直线上,此时两根木条的中点之间的距离为( )A .2cmB .4cmC .2cm 或22cmD .4cm 或44cm9.如图,将一副三角板叠放在一起,使直角的顶点重合于O ,则∠AOC+∠DOB=( )A.90°B.180°C.160°D.120°10.如图,已知线段AB的长度为a,CD的长度为b,则图中所有线段的长度和为( )A.3a+b B.3a-b C.a+3b D.2a+2b11.已知x=y,则下面变形错误的是()A.x+a=y+a B.x-a=y-a C.2x=2y D.x y a a =12.若a=2,|b|=5,则a+b=( )A.-3 B.7 C.-7 D.-3或7二、填空题13.若关于x的一元一次方程12018x-2=3x+k的解为x=-5,则关于y的一元一次方程12018(2y+1)-5=6y+k的解y=________.14.小颖按如图所示的程序输入一个正数x,最后输出的结果为131.则满足条件的x值为________.15.已知:﹣a=2,|b|=6,且a>b,则a+b=_____.16.某市有一天的最高气温为2℃,最低气温为﹣8℃,则这天的最高气温比最低气温高________.17.小强在解方程时,不小心把一个数字用墨水污染成了x=1﹣•5x-,他翻阅了答案知道这个方程的解为x=1,于是他判断●应该是_______.18.已知多项式kx2+4x﹣x2﹣5是关于x的一次多项式,则k=_____.19.如图是一个正方体的表面沿着某些棱剪开后展成的一个平面图形,若这个正方体的每两个相对面上的数字的和都相等,则这个正方体的六个面上的数字的总和为________.20.一件衣服售价为200元,六折销售,仍可获利20%,则这件衣服的进价是_____元.三、解答题21.已知:点C在直线AB上,AC=8cm,BC=6cm,点M、N分别是AC、BC的中点,求线段MN的长.22.《孙子算经》中记载:“今有三人共车,二车空二人共车,九人步,问人与车各何?”译文大意为:令有若干人乘车,每三人乘一辆车,最终剩余2辆车;若每2人共乘一辆车,最终剩余9个人无车可乘,问有多少人,多少辆车?请解答上述问题.23.计算题:(1)8+(﹣3)2×(﹣2)﹣(﹣3)(2)﹣12﹣24×(123634-+-) 24.计算:(1)223(3)3(2)|4|-÷-+⨯-+- (2)1515158124292929⎛⎫⎛⎫⎛⎫-⨯-+⨯--⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭25.解方程:32x -﹣415x +=1.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据相反数的意义可求得x 的值,根据绝对值的意义可求得y 的值,然后再代入x+y 中进行计算即可得答案.【详解】∵x 是3-的相反数,y 5=,∴x=3,y=±5, 当x=3,y=5时,x+y=8,当x=3,y=-5时,x+y=-2,故选C.【点睛】本题考查了相反数、绝对值以及有理数的加法运算,熟练掌握相关知识并运用分类思想是解题的关键.2.D解析:D【解析】【分析】【详解】解:由数轴上a ,b 两点的位置可知0<a <1,a <﹣1.根据异号的两个数相加,取绝对值较大的加数的符号,知a+b <0,故选项A 错;数轴上右边的数总比左边的数大,所以a ﹣b >0,故选项B 错误;因为a ,b 异号,所以ab <0,故选项C 错误;因为a ,b 异号,所以b a<0,故选项D 正确. 故选:D . 3.A解析:A【解析】【分析】把3x =代入方程834x ax -=-,得出一个关于a 的方程,求出方程的解即可.【详解】把3x =代入方程834x ax -=-得:8-9=3a-4解得:a=1故选:A .【点睛】本题考查了解一元一次方程和一元二次方程的解,能够得出关于a 的一元一次方程是解此题的关键.4.C解析:C【解析】【分析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10>时,n 是正数;当原数的绝对值1<时,n 是负数.【详解】120亿个用科学记数法可表示为:101.210⨯个.故选C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.5.B解析:B【解析】【分析】根据正数和负数表示相反意义的量,可得答案.【详解】水库的水位高于正常水位2m 时,记作+2m ,那么低于正常水位3m 时,应记作-3m , 故选B .【点睛】本题考查了正数和负数,确定相反意义的量是解题关键.6.D解析:D【解析】【分析】根据解方程的步骤逐一对选项进行分析即可.【详解】A . 方程3221x x -=+,移项,得3212x x -=+,故A 选项错误;B . 方程()3251x x -=--,去括号,得325+5-=-x x ,故B 选项错误;C . 方程2332t =,系数化为1,得94t =,故C 选项错误; D . 方程110.20.5x x --=,去分母得()5121--=x x ,去括号,移项,合并同类项得:36x =,故D 选项正确.故选:D【点睛】本题主要考查解一元一次方程,掌握解一元一次方程的步骤是解题的关键.7.C解析:C【解析】【分析】根据a ,b 在数轴的位置,即可得出a ,b 的符号,进而得出选项中的符号.【详解】根据数轴可知-1<a <0,1<b <2,∴A .+a b >0,故此选项是正数,不符合要求,故此选项错误;B .ab ->0,故此选项是正数,不符合要求,故此选项错误;C .-a b <0,故此选项不是正数,符合要求,故此选项正确;D .a b -+>0,故此选项是正数,不符合要求,故此选项错误.故选:C .【点睛】此题考查有理数的大小比较以及数轴性质,根据已知得出a ,b 取值范围是解题关键.8.C解析:C【解析】分两种情况:①如图所示,∵木条AB=20cm,CD=24cm,E、F分别是AB、BD的中点,∴BE=12AB=12×20=10cm,CF=12CD=12×24=12cm,∴EF=EB+CF=10+12=22cm.故两根木条中点间距离是22cm.②如图所示,∵木条AB=20cm,CD=24cm,E、F分别是AB、BD的中点,∴BE=12AB=12×20=10cm,CF=12CD=12×24=12cm,∴EF=CF-EB=12-10=2cm.故两根木条中点间距离是2cm.故选C.点睛:根据题意画出图形,由于将木条的一端重合,顺次放在同一条直线上,有两种情况,根据线段中点的定义分别求出两根木条中点间距离.9.B解析:B【解析】【分析】本题考查了角度的计算问题,因为本题中∠AOC始终在变化,因此可以采用“设而不求”的解题技巧进行求解.【详解】解:设∠AOD=x,∠AOC=90︒+x,∠BOD=90︒-x,所以∠AOC+∠BOD=90︒+x+90︒-x=180︒.故选B.【点睛】在本题中要注意∠AOC始终在变化,因此可以采用“设而不求”的解题技巧进行求解. 10.A解析:A【解析】【分析】依据线段AB长度为a,可得AB=AC+CD+DB=a,依据CD长度为b,可得AD+CB=a+b,进而得出所有线段的长度和.【详解】∵线段AB长度为a,∴AB=AC+CD+DB=a,又∵CD长度为b,∴AD+CB=a+b,∴图中所有线段的长度和为:AB+AC+CD+DB+AD+CB=a+a+a+b=3a+b,故选A.【点睛】本题考查了比较线段的长度和有关计算,主要考查学生能否求出线段的长度和知道如何数图形中的线段.11.D解析:D【解析】解:A.B、C的变形均符合等式的基本性质,D项a不能为0,不一定成立.故选D.12.D解析:D【解析】【分析】根据|b|=5,求出b=±5,再把a与b的值代入进行计算,即可得出答案.【详解】∵|b|=5,∴b=±5,∴a+b=2+5=7或a+b=2-5=-3;故选D.【点睛】此题考查了有理数的加法运算和绝对值的意义,解题的关键是根据绝对值的意义求出b的值.二、填空题13.-3【解析】【分析】先把x=-5代入x-2=3x+k求出k的值再把k代入(2y+1)-5=6y+k解方程求出y值即可【详解】∵关于x的一元一次方程x-2=3x+k的解为x=-5∴-2=-15+k解得解析:-3【解析】【分析】先把x=-5代入12018x-2=3x+k求出k的值,再把k代入12018(2y+1)-5=6y+k,解方程求出y值即可.【详解】∵关于x的一元一次方程12018x-2=3x+k的解为x=-5,∴52018-2=-15+k,解得k=122013 2018,∴12018(2y+1)-5=6y+1220132018,解得y=-3.故答案为-3【点睛】本题考查了一元一次方程的解及解一元一次方程,使等式两边成立的未知数的值叫做方程的解,熟练掌握一元一次方程的解法是解题关键.14.265【解析】【分析】根据经过一次输入结果得131经过两次输入结果得131…分别求满足条件的正数x的值【详解】若经过一次输入结果得131则5x+1=13 1解得x=26;若经过二次输入结果得131则5解析:26,5,4 5【解析】【分析】根据经过一次输入结果得131,经过两次输入结果得131,…,分别求满足条件的正数x的值.【详解】若经过一次输入结果得131,则5x+1=131,解得x=26;若经过二次输入结果得131,则5(5x+1)+1=131,解得x=5;若经过三次输入结果得131,则5[5(5x+1)+1]+1=131,解得x=45;若经过四次输入结果得131,则5{5[5(5x+1)+1]+1}+1=131,解得x=−125(负数,舍去);故满足条件的正数x值为:26,5,45.【点睛】本题考查了代数式求值,解一元一次方程.解题的关键是根据所输入的次数,列方程求正数x的值.15.-8【解析】【分析】根据相反数的定义绝对值的性质可得ab的值根据有理数的加法可得答案【详解】∵﹣a=2|b|=6且a>b∴a=﹣2b=-6∴a+b=﹣2+(-6)=-8故答案为:-8【点睛】本题考查解析:-8.【解析】【分析】根据相反数的定义,绝对值的性质,可得a、b的值,根据有理数的加法,可得答案.【详解】∵﹣a=2,|b|=6,且a>b,∴a=﹣2,b=-6,∴a+b=﹣2+(-6)=-8,故答案为:-8.【点睛】本题考查了相反数的定义,绝对值的性质,有理数的加法运算法则,注意一个正数的绝对值有2个数.16.10℃【解析】【分析】用最高温度减去最低温度然后根据减去一个数等于加上这个数的相反数进行计算即可得解【详解】2-(-8)=2+8=10(℃)故答案为10℃【点睛】本题考查了有理数的减法掌握减去一个数解析:10℃【解析】【分析】用最高温度减去最低温度,然后根据减去一个数等于加上这个数的相反数进行计算即可得解.【详解】2-(-8),=2+8,=10(℃).故答案为10℃.【点睛】本题考查了有理数的减法,掌握减去一个数等于加上这个数的相反数是解题的关键.17.1【解析】【分析】●用a表示把x=1代入方程得到一个关于a的方程解方程求得a的值【详解】●用a表示把x=1代入方程得1=1﹣解得:a=1故答案为:1【点睛】本题考查了方程的解的定义方程的解就是能使方解析:1【解析】【分析】●用a表示,把x=1代入方程得到一个关于a的方程,解方程求得a的值.【详解】●用a 表示,把x =1代入方程得1=1﹣15a -,解得:a =1. 故答案为:1.【点睛】 本题考查了方程的解的定义,方程的解就是能使方程左右两边相等的未知数的值,理解定义是关键.18.【解析】【分析】根据多项式的次数的定义来解题要先找到题中的等量关系然后列出方程求解【详解】多项式kx2+4x ﹣x2﹣5是关于的一次多项式多项式不含x2项即k -1=0k =1故k 的值是1【点睛】本题考査解析:【解析】【分析】根据多项式的次数的定义来解题.要先找到题中的等量关系,然后列出方程求解.【详解】多项式kx 2+4x ﹣x 2﹣5是关于的一次多项式,∴多项式不含x 2项,即k -1=0,k =1. 故k 的值是1.【点睛】本题考査了以下概念:(1)组成多项式的每个单项式叫做多项式的项;(2)多项式中次数最高项的次数叫做多项式的次数.19.36【解析】【分析】根据题意和展开图求出x 和A 的值然后计算数字综合即可解决【详解】解:∵正方体的每两个相对面上的数字的和都相等∴∴x=2A=14∴数字总和为:9+3+6+6+14-2=36故答案为3解析:36【解析】【分析】根据题意和展开图,求出x 和A 的值,然后计算数字综合即可解决.【详解】解:∵正方体的每两个相对面上的数字的和都相等 ∴()934322x x x A +=++=+- ∴x=2,A=14∴数字总和为:9+3+6+6+14-2=36,故答案为36.【点睛】 本题考查了正方体的展开图和一元一次方程,解决本题的关键是正确理解题意,能够找到正方体展开图中相对的面20.100【解析】【分析】设进价是x 元则(1+20)x =200×06解方程可得【详解】解:设进价是x 元则(1+20)x =200×06解得:x =100则这件衬衣的进价是100元故答案为100【点睛】考核知【解析】【分析】设进价是x元,则(1+20%)x=200×0.6,解方程可得.【详解】解:设进价是x元,则(1+20%)x=200×0.6,解得:x=100.则这件衬衣的进价是100元.故答案为100.【点睛】考核知识点:一元一次方程的应用.三、解答题21.7cm或1cm【解析】【分析】分类讨论:点C在线段AB上,点C在线段AB的延长线上,根据线段中点的性质,可得MC、NC的长,根据线段的和差,可得答案.【详解】当点C在线段AB上时,如图1,由点M、N分别是AC、BC的中点,得MC=12AC=12×8cm=4cm,CN=12BC=12×6cm=3cm,由线段的和差,得MN=MC+CN=4cm+3cm=7cm;当点C在线段AB的延长线上时,如图2,由点M、N分别是AC、BC的中点,得MC=12AC=12×8cm=4cm,CN=12BC=12×6cm=3cm.由线段的和差,得MN=MC﹣CN=4cm﹣3cm=1cm;即线段MN的长是7cm或1cm.【点睛】本题考查了两点间的距离,利用了线段中点的性质,线段的和差,分类讨论是解题关键,以防遗漏.22.有39人,15辆车【分析】找准等量关系:人数是定值,列一元一次方程可解此题.【详解】解:设有x 辆车,则有3(x ﹣2)人,根据题意得:2x +9=3(x ﹣2)解的:x =153(x ﹣2)=39答:有39人,15辆车.【点睛】本题运用了列一元一次方程解应用题的知识点,找准等量关系是解此题的关键.23.(1)﹣7;(2)5.【解析】【分析】(1)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值;(2)原式先计算乘方运算,再利用乘法分配律计算,最后算加减运算即可求出值.【详解】(1)原式=8+9×(﹣2)+3 =8﹣18+3=﹣10+3=﹣7;(2)原式=﹣1﹣24×(16-)﹣2423⨯-24×(34-) =﹣1+4﹣16+18=3﹣16+18=﹣13+18=5.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.24.(1)-3(2)0【解析】【分析】(1)先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果; (2)逆运用乘法分配律进行计算即可得解.【详解】解:(1)原式=()99324-÷+⨯-+-=164--+=-3.(2)原式= ()15812429⎛⎫-⨯-+- ⎪⎝⎭, = 15029⎛⎫-⨯ ⎪⎝⎭=0.【点睛】题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 25.x =-9.【解析】【分析】按去分母、去括号、移项、合并同类项、系数化为1的步骤进行求解即可得.【详解】5(x-3)-2(4x+1)=10,5x-15-8x-2=10,5x-8x=10+2+15,-3x=27x=-9.【点睛】本题考查了解一元一次方程,熟练掌握解一元一次方程的一般步骤是解题的关键.。
2020-2021学年成都实验外国语学校七年级上学期期末数学试卷(附答案解析)
2020-2021学年成都实验外国语学校七年级上学期期末数学试卷一、选择题(本大题共10小题,共30.0分) 1.下列几种说法中,正确的是( )A. 有理数的绝对值一定比0大B. 有理数的相反数一定比0小C. 互为倒数的两个数的积为1D. 两个互为相反的数(0除外)的商是02.某市去年完成了城市绿化面积93100000m 2,将“93100000”用科学记数法可表示( )A. 931×105B. 93.1×105C. 9.31×107D. 9.31×1063.有一种圆柱体茶叶筒如图所示,则它的主视图是( )A.B.C.D.4. 计算:(x +4)(x −2)的结果是( )A. x 2+2x +8B. x 2−2x −8C. x 2−2x +8D. x 2+2x −85.有理数a 在数轴上对应的点如图所示,则a ,−a ,−1的大小关系是( ) A. −1<−a <aB. −1<a <−aC. −a <−1<aD. −a <a <−16.已知关于x 、y 的方程组{x +y =1−ax −y =3a +5,则下列结论中正确的是( )①当a =1时,方程组的解也是方程x +y =2的解; ②当x =y 时,a =−53;③不论a 取什么实数,2x +y 的值始终不变;xy,则z的最小值为−1④若z=−12A. ①②④B. ①②③C. ②③D. ②③④7. 下列调查中,调查方式选择合理的是()A. 为了了解一批袋装食品是否含有防腐剂,选择全面调查B. 为了了解神舟飞船的设备零件的质量情况,选择抽样调查C. 为了了解某公园全年的游客流量,选择抽样调查D. 为了检测某城市的空气质量,选择全面调查8. 在一个20米×30米的大厅内进行舞蹈表演,四周摆放座位作为观众台,且观众台的宽度相等,要使中间表演场的面积为200平方米,设观众台的宽度为x米,则可列方程()A. (20−x)(30−x)=200B. 20×2x+30×3x=20×30−200C. (20−2x)(30−2x)=200D. x(30−2x)=2009. 如图,该平面展开图按虚线折叠成正方体后,相对面上两个数之和为8,则x+y的值是()A. 7B. 8C. 9D. 1010. 如图,已知OA⊥OB,直线CD经过顶点O,若∠BOD:∠AOC=5:2,则∠BOC=()A. 28°B. 30°C. 32°D. 35°二、填空题(本大题共9小题,共36.0分)11. 已知√1−3a和|8b−3|互为相反数,求3ab−27的值为______ .x2y n是同类项,则n m=______.12. 已知7x m y3和−1213. 已知线段AB 的长度为8,线段AB 的中点是C ,AC 的中点是D ,BD 的中点是E ,则AE = ______ . 14. 一等腰三角形的周长为20,一腰的中线分周长为两部分,其中一部分比另一部分长2,则这个三角形的腰长为____________.15. 已知x 、y 、z 满足:x <y ,x +y =0,xyz >0,|y|>|z|,则化简|x +z|−|y +z|的结果为______. 16. 如图,点M ,N ,P 是线段AB 的四等分点,则BM 是AM 的______ 倍. 17. 三个数a 、b 、c 在数轴上的位置如图所示,那么bc|bc|−|c−a|a−c+a+b|a+b|的值为______.18. 按规律填数:12,−25,310,−417,______ ,…19. 已知x =−3是方程(2m +1)x −3=0的解,则m = ______ .三、解答题(本大题共9小题,共84.0分)20. 计算(1)−2.47×0.75+0.47×34−6×0.75(2)−14+(−2)÷(−13)−|−9|21. (1)解方程组:{2(x −1)−y =11x+12−y 3=−12(2)解分式方程:3x−2+12=x4+2x22. 计算(1)(−2)2×(1−34)(2)−3−32+32÷13×3(3)(−5a 3)−a 3−(−7a 3)(4)3(x −y)−2(x +y)−4(x −y)+4(x +y)+3(x −y)23. 某车间有28名工人,生产一种螺栓和螺帽,平均每人每小时能生产螺栓12个或螺帽18个,两个螺栓要配三个螺帽,应分配多少人生产螺栓,多少人生产螺帽,才能使生产的螺栓和螺帽刚好配套?24. 长春地铁一号线于2017年6月30日正式开通.运营公司根据乘车距离制定了不同的票价类别(见对照表).为了解乘客的乘车距离,运营公司随机选取了一部分经常需要乘车的市民进行了调查统计,绘制了两幅不完整的统计图.请你根据图表中提供的信息解答以下问题:(1)本次抽样调查的人数是______人.(2)补全条形统计图.(3)运营公司估计这条地铁专线通车后每天的客流量约为10万人,请你估算运营公司的日营业额.票价类别与乘车距离对照表类别乘车距离d(公里)票价A0<d≤72B7<d≤133C13<d≤194D19<d≤275E27<d≤35625. 已知点A,B,C在数轴上对应的数分别是a,b,c,其中a,c满足(a+20)2+|c−36|=0,a,b互为相反数(如图1).(1)求a,b,c的值;(2)如图1,若点A,B,C分别同时以每秒4个单位长度,1个单位长度和m(m<4)个单位长度向左运AC 动,假设经过t秒后,点A与点B之间的距离表示为AB,点A与点C之间距离表示为AC.若AB−32的值始终保持不变,求m的值.(3)如图2,将数轴在原点O和点B处各折一下,得到一条“折线数轴”(图中A,C两点在“折线数轴”上的距离为56个单位长度),动点P从点A出发,以每秒4个单位长度的速度沿“折线数轴”的正方向运动,从点O运动到点B期间速度均为原来的一半,之后立刻恢复;同时,动点Q从点C出发仍以(2)中的每秒m个单位长度沿着“折线数轴”的负方向运动从点B运动到点O期间,速度均为原来的2倍,之后立刻恢复.设运动时间为t秒,请直接写出当t为何值时,P,O两点在“折线数轴”上的距离与Q,B两点在“折线数轴”的距离相等.26. 计算与化简:①−20−(−14)+(−18)−13②4×(−3)2−5×(−2)3−6;③(34+712−76)×(−60)④−14−(1−12)÷3×|3−(−3)2|⑤x2+5y−4x2−3y−1⑥7a+3(a−3b)−2(b−a)27. 为加强中小学生安全和禁毒教育,岳西县某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从书店一次性购买若干本生活常识类和法制类书籍(每本生活常识类书籍的价格相同,每本法制类书籍的价格相同)放在图书角供学生阅读.已知购买1本生活常识类书籍和1本法制类书籍共需70元;生活常识类书籍单价是法制类书籍单价的2倍还多10元(1)生活常识类书籍和法制类书籍的单价各是多少元?(2)学校根据实际情况,计划用于购买生活常识类书籍和法制类书籍两种书籍的总费用为400元,请问学校有哪几种购买方案?(温馨提示:两种书籍都要购买哦.)28. 已知点A,B在数轴上表示的数分别为a,b,且|a+6|+(b−18)2=0(规定:数轴上A,B两点之间的距离记为AB).(1)求b−a的值.(2)数轴上是否存在点C,使得CA=3CB?若存在,请求出点C所表示的数;若不存在,请说明理由.(3)动点P从点A出发,以每秒1个单位长度的速度沿数轴向右匀速运动,动点Q从点B出发,以每秒2个单位长度的速度沿数轴向左匀速运动,且P比Q先运动2秒.问点Q运动多少秒时,P,Q相距4个单位长度?参考答案及解析1.答案:C解析:解:A.有理数的绝对值不一定比0大,也可能等于0,错误;B.有理数的相反数不一定比0小,0的相反数还是0,错误;C.互为倒数的两个数的积为1,正确;D.两个互为相反的数(0除外)的商应该是−1,错误;故选:C.有理数的绝对值都是非负数,依据相反数,绝对值以及倒数的概念进行判断即可.本题主要考查了相反数,绝对值以及倒数的概念,解题时注意:绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数.2.答案:C解析:解:93100000=9.31×107,故选:C.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要确定a的值以及n的值.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要确定a的值以及n的值.3.答案:D解析:此题主要考查了三视图的知识,主视图是从物体的正面看得到的视图.找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.解:主视图是从正面看,茶叶盒可以看作是一个圆柱体,圆柱从正面看是长方形.故选:D.4.答案:D解析:解:(x+4)(x−2)=x2−2x+4x−8=x2+2x−8,故选:D.根据整式的运算法则即可求出答案.本题考查整式的运算,解题的关键熟练运用整式的运算法则,本题属于基础题型.5.答案:B解析:解:∵根据数轴可知:−1<a <0, ∴−a >0, ∴−1<a <−a , 故选:B .根据数轴得出−1<a <0,求出−a >0,再比较即可.本题考查了数轴和实数的大小比较,能根据数轴得出−1<a <0是解此题的关键,注意:在数轴上表示的数,右边的数总比左边的数大.6.答案:D解析:本题考查二元一次方程组的解;熟练掌握二元一次方程组的解法,是解题的关键. ①当a =1时,原方程组为{x +y =0 ①x −y =8 ②,用加减消元法求得方程组的解为{x =4y =−4,再将所得解代入x +y =2中进行运算即可;②求解方程组得x =3+a ,y =−2a −2,由题意即可求a ; ③方程组的解为{x =3+ay =−2a −2,将解代入2x +y 中计算即可;④z =−12xy ,则有z =−12(3+a)(−2a −2)=a 2+4a +3=(a +2)2−1. 解:①当a =1时,原方程组为{x +y =0 ①x −y =8 ②,①+②,得x =4, 将x =4代入①,得y =−4, ∴原方程组的解为{x =4y =−4,将所得解代入x +y =2中,不能使等式成立, ∴方程组的解不是方程x +y =2的解; 故①错误;②{x +y =1−a ①x −y =3a +5 ②,将①+②,得x =3+a ,将x =3+a 代入①,得y =−2a −2, ∵x =y ,∴3+a =−2a −2,∴a =−53; 故②正确;③由②可得方程组的解为{x =3+ay =−2a −2, ∴2x +y =6+2a −2a −2=4,∴不论a 取什么实数,2x +y 的值始终不变; 故③正确;④z =−12xy ,则有z =−12(3+a)(−2a −2)=a 2+4a +3=(a +2)2−1, 当a =−2时,z 有最小值−1; 故④正确; 故选:D .7.答案:C解析:解:A 、为了了解一批袋装食品是否含有防腐剂,选择抽样调查,故此选项错误; B 、为了了解神舟飞船的设备零件的质量情况,选择全面调查,故此选项错误; C 、为了了解某公园全年的游客流量,选择抽样调查,正确; D 、为了检测某城市的空气质量,选择抽样调查,故此选项错误; 故选:C .直接利用全面调查以及抽样调查的定义分析得出答案.此题主要考查了全面调查以及抽样调查,正确把握相关意义是解题关键.8.答案:C解析:解:根据题意得,摆放座位后中间表演场的长和宽就应该分别为(20−2x)和(30−2x), 所以方程为(20−2x)(30−2x)=200. 故选:C .如果设观众台的宽度为x 米,摆放座位后中间表演场的长和宽就应该分别为(20−2x)和(30−2x),根据题意可列出方程.正确找到关键描述语,正确找到等量关系是解决问题的关键.9.答案:D解析:解:∵“4”与“y ”是对面,“x ”与“2”是对面, ∴x =6,y =4. ∴x +y =10.故选:D .先确定出x 、y 的对面数字,然后求得x 、y 的值,最后相加即可.本题主要考查的是正方体相对两个面上的文字,找出正方体的对面是解题的关键.10.答案:B解析:解:设∠BOD =5x°,∠AOC =2x°, ∵OA ⊥OB , ∴∠AOB =90°, ∴∠BOC =(90−2x)°, ∵∠BOD +∠BOC =180°, ∴90−2x +5x =180, 解得:x =30, ∴∠BOC =30°, 故选:B .设∠BOD =5x°,∠AOC =2x°,求出∠BOC =(90−2x)°,根据∠BOD +∠BOC =180°得出方程90−2x +5x =180,求出x 即可.本题考查了垂线,对顶角、邻补角的应用,能根据已知条件得出关于x 的方程是解此题的关键.11.答案:−2138解析:本题考查了相反数,绝对值和算术平方根的非负性,代数式求值.根据相反数的概念结合绝对值和算术平方根的非负性求出a 与b 的值,然后将a 与b 代入原式求值即可. 解:由题意可知:√1−3a +|8b −3|=0, ∴1−3a =0,8b −3=0, ∴a =13,b =38,∴原式=3×13×38−27=−2138.故答案为−2138.12.答案:9解析:解:根据题意得:m =2,n =3,∴n m =32=9.故答案为:9根据同类项的定义(所含字母相同,相同字母的指数相同)可得:m =2,n =3,再代入n m 求解即可.本题主要考查了同类项的定义.注意所含字母相同,相同字母的指数相同是同类项.13.答案:5解析:解:∵C 是AB 的中点,∴AC =BC =12AB =12×8=4cm , ∵D 是AC 的中点,∴AD =CD =12AC =12×4=2cm ,∵BD =BC +CD =4+3=6cm ,∵E 是BD 的中点,∴DE =12BD =12×6=3cm .∴AE =AD +DE =2+3=5cm .故答案是:5.根据中点的定义求得CD 的长,BD 的长,则DE 的长度可以求得,然后根据中点的定义求得AE =AD +DE .本题考查了两点之间的距离的计算,正确理解中点的定义是关键.14.答案:223cm 或6cm解析:解:设腰长为x ,底长为y ,当腰比底长时有{x −y =22x +y =20解得{x =223y =163; 当底比腰长时有{y −x =22x +y =20解得{x =6y =8. ∵0<223<6+6=12,0<6<223+223=443∴这两种情况都构成三角形.故填:223cm或6cm.15.答案:−2z解析:试题分析:根据题意确定出z与x都为负数,y为正数,判断得到x+z与y+z的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.∵x<y,x+y=0,xyz>0,|y|>|z|,∴x+z<0,y+z>0,则原式=−x−z−y−z=−(x+y)−2z=−2z.故答案为:−2z.16.答案:3解析:解:∵点M,N,P是线段AB的四等分点,∴AM=MN=NP=BP,∴BM=BP+PN+MN=AM+AM+AM=3AM.故答案为:3.根据已知得出AM=MN=NP=BP,代入BM=BP+PN+MN即可得出答案.本题考查了求两点间的距离的应用,主要考查学生的推理能力.17.答案:−1解析:解:由数轴可知:b<c<0<a,|b|>|a|>|c|,则bc>0,c−a<0,a+b<0,则bc|bc|−|c−a|a−c+a+b|a+b|=1−1−1=−1.故答案为:−1.根据数轴点的位置得出bc>0,c−a<0,a+b<0,再去掉绝对值符号即可.本题考查了数轴、绝对值的应用,解此题的关键是能根据数轴去掉绝对值符号,题目比较好,难度不是很大.18.答案:526解析:解:∵第n个数的分子是n,分母是n2+1,∴第五个数是526.故答案为:526.首先观察符号规律:第奇数个数是正数,第偶数个数是负数;且第n个数的分子是n,分母是对应的分子的平方加1,即n2+1,所以可直接写出第五个数.本题考查了数字的变化类,此类题应先找符号的规律,再分别找分子和分母的规律,先找到易找的规律,然后观察另一个和它是否有关系.19.答案:−1解析:根据方程解的定义,将方程的解代入方程可得关于字母系数m的一元一次方程,从而可求出m的值.已知条件中涉及到方程的解,把方程的解代入原方程,转化为关于字母系数的方程进行求解.可把它叫做“有解就代入”.解:把x=−3代入方程,得:−3×(2m+1)−3=0,解得:m=−1.故答案为:−1.20.答案:解:(1)−2.47×0.75+0.47×34−6×0.75=(−2.47+0.47−6)×0.75=−8×0.75=−6(2)−14+(−2)÷(−13)−|−9|=−1+6−9=−4解析:(1)应用乘法分配律,求出算式的值是多少即可.(2)首先计算乘方,然后计算除法,最后从左向右依次计算,求出算式的值是多少即可.此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.21.答案:解:(1){2x−y=13 ①3x−2y=−6 ②,①×2−②得,x=32,把x=32代入①得,64−y=13,∴y =51,∴方程组的解为{x =32y =51; (2)方程的两边同乘2(x +2)(x −2),得6(x +2)+(x +2)(x −2)=x(x −2),解得x =−1.检验:当x =−1时,2(x +2)(x −2)≠0.所以原方程的解为x =−1.解析:(1)方程组变形后,利用加减消元法求出解即可;(2)先把分式方程化为整式方程求出x 的值,再代入最简公分母进行检验即可.此题考查了解分式方程,解一元二次方程组,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.22.答案:解:(1)原式=4×14=1;(2)原式=−3−9+9×3×3,=−12+81,=69;(3)原式=−5a 3−a 3+7a 3=a 3;(4)原式=3(x −y)−4(x −y)+3(x −y)−2(x +y)+4(x +y),=2(x −y)+2(x +y),=2x −2y +2x +2y ,=4x .解析:(1)先算乘方和括号里的减法,再算乘法即可;(2)先算乘方,后算乘除,最后计算加减即可;(3)首先去括号,再合并同类项即可;(4)首先确定同类项,然后再合并,合并后再去括号即可.此题主要考查了有理数的混合运算和整式的加减,关键是注意计算顺序,找准同类项. 23.答案:解:设应分配x 人生产螺栓,则(28−x)人生产螺帽,才能使生产的螺栓和螺帽刚好配套,依题意有:12x :18(28−x)=2:3,解得x =14,28−x=28−14=14.答:应分配14人生产螺栓,14人生产螺帽,才能使生产的螺栓和螺帽刚好配套.解析:可设应分配x人生产螺栓,则(28−先)人生产螺帽,才能使生产的螺栓和螺帽刚好配套,根据等量关系:两个螺栓要配三个螺帽,路程方程求解即可.考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.24.答案:2000解析:解:(1)本次抽样调查的人数是:520÷26%=2000(人),故答案为:2000;(2)B类的人数是:2000×35%=700(人),E类的人数有:2000−520−700−460−220=100(人),补图如下:(3)根据题意得:520×2+700×3+460×4+220×5+100×6×10=33.4(万元),2000答:运营公司的日营业额约为33.4万元.(1)用A类的人数除以所占的百分比求出本次抽样调查的总人数;(2)用总人数乘以B类的人数所占的百分比求出B类的人数,再用总人数减去其它乘车距离的人数,求出E类的人数,从而补全统计图;(3)根据平均数的计算公式直接计算即可.本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.25.答案:解:∵(a+20)2+|c−36|=0;(a+20)2≥0;|c−36|≥0;∴a+20=0,c−36=0;解得a=−20;c=36;又∵a ,b 互为相反数;∴b =20;综上所述:a =−20,b =20,c =36.(2)经过t 秒后,L A =4t ,L B =t ,L C =mt(m <4);∴AB =ab −L A +L B =40−3t ;AC =ac −L A +L C =56−(4−m)t ;AB −32AC =40−3t −32[56−(4−m)t ];整理得32m =3;解得m =2.(3)P ,O 两点在“折线数轴”上的距离与Q ,B 两点在“折线数轴”的距离相等有四种情况.由题得:P 在AO 上运动的速度V PAO =4;在OB 上运动的速度V POB =2;在BC 上运动的速度V PBC =4; Q 在CB 上运动的速度V QCB =2;在BO 上运动的速度V QBO =4;在OA 上运动的速度V QOA =2; ①P 在AO ,Q 在OB 上运动时;∴PO =20−4t ; OB =16−2t ;PO =QB ;∴t =2;②P 在OB ,Q 在CB 上运动时;PO =(t −204)⋅2;QB =16−2t ;∴t =6.5;③P 在OB ,Q 在OB 上运动时;PO =(t −204)⋅2;QB =(t −162)⋅4;PO =QB ;∴t =11;④P 在BC ,Q 在OA 上运动时;PO =OB +[t −(204+202)]⋅4=20+4×(t −15); QB =BO +[t −(162+204)]⋅2=20+2(t −13); PO =QB ;∴t=17.综上所述,当t=2或6.5或11或17时,P,O两点在“折线数轴”上的距离与Q,B两点在“折线数轴”的距离相等.解析:(1)令a+20=0、c−36=0可分别求a和c的值;由a和b互为相反数可求出b的值;AC列式计算即可;(2)分别用含有t的式子表示出AB、AC的长度,再根据AB−32(3)P,O两点在“折线数轴”上的距离与Q,B两点在“折线数轴”的距离相等有四种情况,分别进行分类讨论即可.本题重点考查如何表示线段的长度,根据题目要求正确列出方程求解是解题的关键,另外还要注意运动过程中速度的变化.26.答案:解:(1)原式=−20+14−18−13=−37(2)原式=4×9−5×(−8)−6=70(3)原式=−45−35+70=−10÷3×6=−2(4)原式=−1−12(5)原式=−3x2+2y−2(6)原式=7a+3a−9b−2b+2a=12a−11b解析:①−④根据有理数的运算法则即可求出答案.⑤−⑥根据整式的运算法则即可求出答案.本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.27.答案:解:(1)设一本法制类书籍的单价是x元,则一本生活常识类书籍单价是(2x+10)元,依题意有x+2x+10=70,解得x=20,2x+10=40+10=50.答:一本法制类书籍的单价是20元,一本生活常识类书籍单价是50元;(2)设可买生活常识类书籍m本,则买法制类书籍n本,依题意有20m+50n=400,2m+5n=40,当n=2时,m=15;当n=4时,m=10;当n=6时,m=5.故学校有3种购买方案:①买生活常识类书籍15本,买法制类书籍2本;②买生活常识类书籍10本,买法制类书籍4本;③买生活常识类书籍5本,买法制类书籍6本.解析:(1)设一本法制类书籍的单价是x元,则一本生活常识类书籍单价是(2x+10)元,等量关系:1本生活常识类书籍的花费+1本法制类书籍的花费=70元,据此列方程求解即可;(2)设可买生活常识类书籍m本,则买法制类书籍n本,根据购买生活常识类书籍和法制类书籍两种书籍的总费用为400元建立方程求出其正整数解即可.本题考查了列一元一次方程组解实际问题的运用,列二元一次方程解实际问题的运用,解答本题时找到建立方程的等量关系是解答本题的关键.28.答案:解:(1)∵|a+6|+(b−18)2=0,∴a+6=0,b−18=0,∴a=−6,b=18,∴b−a=18−(−6)=24;(2)①当点C在点A,B之间时,CA+CB=AB,CA=3CB,∴3CB+CB=24,解得,CB=6,点C在点B的左边,点B所表示的数是18,则点C所表示的数是12,②当点C在点B的右边时,CA−CB=AB,CA=3CB,∴3CB−CB=24,解得,CB=12,点C在点B的右边,点B所表示的数是18,则点C所表示的数是30,则当点C所表示的数是12或30时,可以使得CA=3CB;(3)2秒后,点P所表示的数为:−6+1×2=−4,①若动点P,Q还未相遇,设点Q运动t秒时,P,Q相距4个单位长度.t+2t=18−(−4)−4,解得,t=6,②若动点P,Q相遇后,设点Q运动x秒时,P,Q相距4个单位长度.x+2x=18−(−4)+4,解得,x=26,3∴当点Q运动了6或26秒时,P,Q相距4个单位长度.3解析:(1)根据非负数的性质求出a,b,根据有理数的减法法则计算;(2)分点C在点A,B之间和点C在点B的右边两种情况,列式计算即可;(3)分点P,Q还未相遇,点P,Q相遇后两种情况,列出一元一次方程,解方程即可.本题考查的是数轴,非负数的性质,一元一次方程的应用,掌握非负数的性质,一元一次方程的应用是解题的关键.。
最新成都外国语学校数学七年级期末试卷(含答案)
最新成都外国语学校数学七期末试卷(含答案)第Ⅰ卷选择题(共30分)一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1. 门头沟区定位为生态涵养区之后,环境发生巨大变化,吸引了全国各地的旅游爱好者,据门头沟旅游局统计,2014年十一黄金周期间,门头沟区接待游客超过29万人,实现旅游收入32 000 000元. 将32 000 000用科学记数法表示应为()A.3.2*10^7 B.32*10^6 C.3.2*10000000 D.32*10000002.-1/2的相反数等于()A.-1/2 B.2 C.1/2 D.-23.过度包装既浪费资源又污染环境.据测算,如果全国每年减少10%的过度包装纸用量,那么可减排二氧化碳3120000吨,把书3120000用科学记数法表示为A.3.12×105B.3.12×106C.31.2×105D.0.312×1074.对于用科学记数法表示的数4.70×104,下列说法正确的是( )A.精确到百位,原数是47000B.精确到百位,原数是4700C.精确到百分位,原数是47000D.精确到百分位,原数是4700005.在下列代数式中,次数为3的单项式是………………………………………………………()A.xy2B.x3+y3C.23D.3xy6.在代数式13ab、3xy、a+1、3ax2y2、1-y、4x、x2+xy+y2中,单项式有……()A.3个B.4个C.5个D.6个7.如图,AB∥CD,AC⊥BC,图中与∠CAB互余的角有…………………………( ) A.1个B.2个C.3个D.4个8.一根绳子弯曲成如图1的形状,用剪刀像图2那样沿虚线a把绳子剪断时,绳子被剪为5段;当用剪刀像图3那样沿虚线b(b∥a)把绳子再剪一次时,绳子就被剪为9段.若用剪刀在虚线a,b之间把绳子再剪(n-2)次(剪开的方向与a 平行),这样一共剪n次时绳子的段数是( )A.4n+1 B.4n+2 C.4n+3 D.4n+59、下列各数中互为相反数的有().A、+(-5.2)与-5.2;B、+(+5.2)与-5.2;C、-(-5.2)与5.2;D、5.2与1/5.210.下列说法正确的是()A. 正数和负数统称有理数B. 正整数和负整数统称为整数C. 小数3.14不是分数D. 整数和分数统称为有理数第Ⅱ卷非选择题(共90分)二、填空题(本大题共5个小题,每小题3分,共15分)11. 化简-9/3的结果是 .12.“m与n的平方差”用式子表示为.13.已知P是数轴上表示-2的点,把P点向左移动3个单位长度后表示的数是.14.如图,边长为(m+3)的正方形纸片剪出一个边长为m的正方形之后,剩余部分又剪拼成一个长方形(不重叠无缝隙),若拼成的长方形一边长为3,则另一边长是(用含m 的代数式表示).15.一个机器人从数轴原点出发,沿数轴正方向,以每前进3步后退2步,不断往返的程序运动.设该机器人每秒钟前进或后退1步,并且每步的距离为1个单位长,x n表示第n秒时机器人在数轴上的位置所对应的数.则下列结论:(1)x3=3;(2)x8=4;(3)x105<x104;(4)x2013<x2014中,正确结论的个数是_______________.三、解答题(本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤)16. (1) (-28)÷(―6+4)+(―1)×5 (2) -14-[2―(―3)2]+(-1)4(3)、 33+(-32)+7-(-3) (4)、-|-32|÷3×(-)-(-2)317.计算:① 8+(-10)―(―5)+(-2); ② 31+(-34)-(-16)+54③ (12-59+712)×(-36) ④ (-1)2013+(-5)×[(-2)3+2]-(-4)2÷(-12)18.应用题已知代数式A =2x 2+3xy +2y -1,B =x 2-xy +x -12 (1)求 A 2B ;(2)若A 2B的值与x的取值无关,求y的值.19.你能在3,4,5,6,7,8,9,10的前面添加“+”或“—”号,使它们的和为0吗?若能,请写出三个式子;若不能,请说明理由.20.甲、乙两家体育用品商店出售同样的乒乓球拍和乒乓球,乒乓球拍每副定价20元,乒乓球每盒定价5元.现两家商店搞促销活动,甲店的优惠办法是:每买一副乒乓球拍赠一盒乒乓球;乙店的优惠办法是:全部商品按定价的9折出售.某班需购买乒乓球拍4副,乒乓球若干盒(不少于4盒).(1)当购买乒乓球的盒数为x盒时,在甲店购买需付款元;在乙店购买需付款元.(用含x的代数式表示)(2)当购买乒乓球盒数为10盒时,去哪家商店购买较合算?请说明理由.21、“*”是规定的一种运算法则:a*b=a2-b.①求5*(-1)的值;②若3*x=2,求x的值;③若(-4)*x=2-x, 求x的值.(5分)22. 仔细观察下面的日历,回答下列问题:⑴在日历中,用正方形框圈出四个日期(如图)。
2022-2023学年四川省成都外国语学校七年级(上)期末数学试卷+答案解析(附后)
2022-2023学年四川省成都外国语学校七年级(上)期末数学试卷1. 有理数的绝对值为( )A. B. C. 2022 D.2. 若气温上升记作,则气温下降记作( )A. B. C. D.3. 中国华为麒麟9000处理器是采用5纳米制程工艺的手机芯片,在的尺寸上塞进了153亿个晶体管,是世界上最先进的具有人工智能的手机处理,153亿用科学记数法表示为( )A. B. C. D.4. 单项式的系数和次数分别是( )A. ,5B. ,6C. ,6D. ,75. 一个正方体的平面展开图如图所示,将它折成正方体后,与汉字“美”相对的面上的汉字是( )A. 建B. 好C. 家D. 园6. 下列四个图形中,能用,、三种方法表示同一角的图形是( )A. B.C. D.7. 如图,点E在BC的延长线上,下列条件不能判定的是( )A.B.C.D.8. 如图,将三个三角板直角顶点重叠在一起,公共的直角顶点为点B,若,,那么的度数为( )A. B. C. D.9. 如果,则______.10. 已知的余角比的2倍少,则______度.11. 已知,则的值等于______.12. 如图,,,D是AC的中点,DC的长是______.13. 如图,把一张长方形纸条ABCD沿EF折叠,若,则______ .14. ;15. 如图,是由6个大小相同的小立方体块搭建的几何体,其中每个小正方体的棱长为1厘米.请按要求在方格内分别画出从这个几何体的三个不同方向看到的形状图.直接写出这个几何体的表面积包括底部:______;16.先化简,再求值:,其中,17. 有理数a、b、c在数轴上的位置如图:判断正负,用“>”或“<”填空:______0,______0,______0;化简:18. 如图,点B ,C 在线段AD 的异侧,点E,F 分别是线段AB ,CD 上的点,已知,求证:;若,求证:;在的条件下,若,求的度数.19. 用“⊗”定义新运算:对于任意实数a,b,都有例如,那么______ .20. 计算:______,______.21. 用小立方块搭一个几何体,如图是从正面和上面看到的几何体的形状图,最少需要______个小立方块,最多需要______个小立方块.22. 我校的上午第一节课的下课时间是8:40,此时时针与分针的夹角是______23. 如图所示,将形状、大小完全相同的“”和线段按照一定规律摆成下列图形.第1幅图形中“”的个数为,第2幅图形中“”的个数为,第3幅图形中“”的个数为,…,以此类推,则的值为______.24. 已知关于x的整式A、B,其中,若当中不含x的二次项和一次项时,求的值.25. 如图所示,点C在线段AB上,点M,N分别是AC,BC的中点.若,,求MN的长;若,其他条件不变,你能猜想出MN的长度吗?并说明理由;若点C是线段AB延长线上一点,且满足,其他条件不变,请画出图形,并直接写出MN的长度.26. 探究题已知O为直线AD上的一点,以O为顶点作,射线OF平分如图1,若,则______,______;若将绕点O旋转至图2的位置,射线OF仍然平分,请写出与之间的数量关系,并说明理由;若将绕点O旋转至图3的位置,射线OF仍然平分,求的度数.答案和解析1.【答案】C【解析】解:的绝对值是故选:直接利用绝对值的性质分析得出答案.此题主要考查了绝对值,正确掌握绝对值的性质是解题关键.2.【答案】C【解析】解:因为温度上升记作,所以温度下降记作故选:根据上升与下降表示的是一对意义相反的量进行表示即可.此题考查了利用正负数表示一对意义相反的量,关键是能明确意义相反的量及正负数的定义.3.【答案】C【解析】解:153亿故选:用科学记数法表示较大的数时,一般形式为,其中,n为整数.本题考查了科学记数法,科学记数法的表示形式为的形式,其中,n为整数.确定n的值时,要看把原来的数,变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值时,n是正数;当原数的绝对值时,n是负数,确定a与n的值是解题的关键.4.【答案】C【解析】解:根据单项式系数、次数的定义,单项式的系数和次数分别是,故选:根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.注意是数字,应作为系数.5.【答案】D【解析】解:根据正方体表面展开图的“相间、Z端是对面”可知,“美”与“园”是对面,故选:根据正方体的表面展开图的特征进行判断即可.本题考查正方体相对两个面上的文字,掌握正方体表面展开图的特征是正确解答的前提.6.【答案】B【解析】解:A、图中的不能用表示,故本选项错误;B、图中、、表示同一个角,故本选项正确;C、图中的不能用表示,故本选项错误;D、图中的不能用表示,故本选项错误;故选:根据角的表示方法和图形进行判断即可.本题考查了角的表示方法的应用,角可以用一个大写字母表示,也可以用三个大写字母表示.其中顶点字母要写在中间,唯有在顶点处只有一个角的情况,才可用顶点处的一个字母来记这个角,否则分不清这个字母究竟表示哪个角.7.【答案】C【解析】解:A、根据内错角相等,两直线平行可判定,故此选项不合题意;B、根据同位角相等,两直线平行可判定,故此选项不合题意;C、根据内错角相等,两直线平行可判定,无法判定,故此选项符合题意;D、根据同旁内角互补,两直线平行可判定,故此选项不合题意;故选:根据平行线的判定定理“同位角相等,两直线平行”、“内错角相等,两直线平行”、“同旁内角互补,两直线平行”分别进行分析.此题主要考查了平行线的判定,关键是掌握平行线的判定定理.8.【答案】A【解析】解:,,,,,,故选:根据,求出,再根据,求出,最后根据进行计算即可.此题考查了角的计算,关键是根据已知条件求出角的度数,要能根据图形找出角之间的关系.9.【答案】【解析】解:根据题意得,,,解得,,所以,故答案为:根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.本题考查了非负数的性质.解题的关键是掌握非负数的性质:几个非负数的和为0时,这几个非负数都为10.【答案】35【解析】解:由题意,得,故答案为:先根据题意列出关于的方程,求解即可.本题考查了余角和补角,理解题意列出关于的方程是解决本题的关键.11.【答案】8【解析】解:,故答案为:将变形为即可计算出答案.本题考查代数式的性质,解题的关键是熟练掌握整体法求解.12.【答案】【解析】解:因为,,所以,因为D是AC的中点,所以故答案为:由,,求出AC的长,再由D是AC的中点,即可求出DC的长.本题考查求线段的长,关键是掌握线段中点的定义.13.【答案】【解析】【分析】根据长方形性质得出平行线,根据平行线的性质求出,根据折叠求出,即可求出答案.本题考查了平行线的性质,折叠性质,矩形的性质的应用,注意:平行线的性质有①两直线平行,内错角相等,②两直线平行,同位角相等,③两直线平行,同旁内角互补.【解答】解:四边形ABCD是长方形,,,沿EF折叠D到,,,故答案为:14.【答案】解:;【解析】根据乘法分配律计算即可;先算乘方,再算乘除法,最后算加减法即可.本题考查有理数的混合运算,熟练掌握运算法则和运算顺序是解答本题的关键.15.【答案】26【解析】解:如图所示,这个几何体的表面积,故答案为:根据从不同方向看到的结果画出图形即;根据几何体的特征表面积的计算方法求解即可.本题考查作图-从不同方向看几何体,几何体的表面积等知识,良好的空间想象能力是解答本题的关键,属于中考常考题型.16.【答案】解:原式,当,时,原式【解析】先利用去括号的法则去掉括号后,合并同类项,再将x,y值代入运算即可.本题主要考查了整式的加减与化简求值,正确利用去括号的法则运算是解题的关键.17.【答案】解:由图可知,,,且,所以,,,;【解析】解:由图可知,,,且,所以,,,;故答案为:<,<,>;见答案.【分析】根据数轴判断出a、b、c的正负情况,然后分别判断即可;去掉绝对值号,然后合并同类项即可.本题考查了绝对值的性质,数轴,熟记性质并准确识图观察出a、b、c的正负情况是解题的关键.18.【答案】证明:,,,,;证明:,,,,;解:,,,,,,,,【解析】根据对顶角相等结合已知条件得出,根据内错角相等两直线平行即可证得结论;根据对顶角相等结合已知得出,证得,即可得解;根据平行线的性质和已知得出,最后根据平行线的性质即可求得此题考查了平行线的判定与性质,熟记“内错角相等,两直线平行”、“同旁内角互补,两直线平行”及“两直线平行,同旁内角互补”是解题的关键.19.【答案】【解析】解:故答案为:首先根据运算的规定转化为正常的运算,然后计算即可求解.此题考查有理数的混合运算,定义新运算题型.直接把对应的数字代入所给的式子可求出所要的结果.解题关键是对号入座不要找错对应关系.20.【答案】【解析】解:;;故答案为:;根据度分秒的进制,进行计算即可解答.本题考查了度分秒的换算,熟练掌握度分秒的进制是解题的关键.21.【答案】9 13【解析】解:搭这样的几何体最少需要个小正方体,最多需要个小正方体;故答案为:9,易得这个几何体共有3层,由俯视图可得第一层正方体的个数,由主视图可得第二层和第三层最少或最多的正方体的个数,相加即可;此题主要考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.22.【答案】20【解析】解:由题意得:,此时时针与分针的夹角是,故答案为:根据时针一分钟转,进行计算即可解答.本题考查了钟面角,熟练掌握时钟上一大格是,时针一分钟转是解题的关键.23.【答案】【解析】【分析】此题考查图形的变化规律,找出图形之间的联系,找出规律解决问题.首先根据图形中“●”的个数得出数字变化规律,进而求出即可.【解答】解:,,,,…,;故答案为:24.【答案】解:,,中不含x的二次项和一次项,,,解得:,,所以,即的值为【解析】本题考查整式的加减运算,掌握合并同类项法则系数相加,字母和字母的指数不变和去括号的运算法则括号前面是“+”号,去掉“+”号和括号,括号里的各项不变号;括号前面是“-”号,去掉“-”号和括号,括号里的各项都变号是解题的关键.首先将已知整式代入中,再通过去括号,合并同类项进行化简,然后分别令二次项和一次项系数为零,得到方程求出m和n的值,从而代入求值.25.【答案】解:点M,N分别是AC,BC的中点,,,,,,的长为5cm;的长度为,理由:点M,N分别是AC,BC的中点,,,,,的长度为;如图:MN的长度为,理由:点M,N分别是AC,BC的中点,,,,,的长度为【解析】本题考查了线段的和差计算,线段中点的定义,以及线段上两点间的距离,熟练掌握双中点线段的模型是解题的关键.根据线段中点的定义可得,,然后再利用线段的和差关系进行计算即可解答;仿照的思路,进行计算即可解答;根据题意先画出图形,再利用线段中点的定义可得,,然后再利用线段的和差关系进行计算即可解答.26.【答案】,【解析】解:,,,,又射线OF平分,,;故答案为:,;;理由如下:平分,,,,,,,即;,,平分,,利用角的加减,角平分线定义计算;由图②,可以得到各个角之间的关系,从而可以得到和之间的数量关系;由图③和已知条件可以建立各个角之间的关系,从而可以得到的度数.本题考查了角平分线的定义以及角的计算,解题的关键是找出各个角之间的关系,利用数形结合的思想找出所求问题需要的条件.。
成都市外国语学校七年级上册数学期末试卷及答案-百度文库
成都市外国语学校七年级上册数学期末试卷及答案-百度文库一、选择题1.一个由5个相同的小正方体组成的立体图形如图所示,则从正面看到的平面图形是( )A .B .C .D .2.有理数a ,b 在数轴上的对应点的位置如图所示,则下列各式成立的是( )A .a >bB .﹣ab <0C .|a |<|b |D .a <﹣b3.宁波港处于“一带一路”和长江经济带交汇点,地理位置得天独厚.全年货物吞吐量达9.2亿吨,晋升为全球首个“9亿吨”大港,并连续8年蝉联世界第一宝座.其中9.2亿用科学记数法表示正确的是( ) A .B .C .D .4.-2的倒数是( ) A .-2B .12-C .12D .25.在0,1-, 2.5-,3这四个数中,最小的数是( ) A .0B .1-C . 2.5-D .36.如图是小明制作的一张数字卡片,在此卡片上可以用一个正方形圈出44⨯个位置的16个数(如1,2,3,4,8,9,10,11,15,16,17,18,22,23,24,25).若用这样的正方形圈出这张数字卡片上的16个数,则圈出的16个数的和不可能为下列数中的( )A .208B .480C .496D .592 7.下列选项中,运算正确的是( ) A .532x x -= B .2ab ab ab -= C .23a a a -+=-D .235a b ab +=8.某班30位同学,在绿色护植活动中共种树72棵,已知女生每人种2棵,男生每人种3棵,设女生有x 人,则可列方程( ) A .23(30)72x x +-= B .32(30)72x x +-= C .23(72)30x x +-= D .32(72)30x x +-= 9.若多项式229x mx ++是完全平方式,则常数m 的值为() A .3B .-3C .±3D .+610.在下边图形中,不是如图立体图形的视图是( )A .B .C .D .11.观察下列算式,用你所发现的规律得出22015的末位数字是( ) 21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…. A .2B .4C .6D .812.下列方程的变形正确的有( ) A .360x -=,变形为36x =B .533x x +=-,变形为42x =C .2123x -=,变形为232x -= D .21x =,变形为2x =13.某服装店销售某新款羽绒服,标价为300元,若按标价的八折销售,仍可款利60元.设这款服装的进价为x 元,根据题意可列方程为( ) A .300-0.2x =60 B .300-0.8x =60C .300×0.2-x =60D .300×0.8-x =6014.将方程212134x x -+=-去分母,得( ) A .4(21)3(2)x x -=+ B .4(21)12(2)x x -=-+C .(21)63(2)x x -=-+D .4(21)123(2)x x -=-+15.如图,已知点C 在线段AB 上,点M 、N 分别是AC 、BC 的中点,且AB =8cm ,则MN的长度为( )cm .A .2B .3C .4D .6二、填空题16.下面每个正方形中的五个数之间都有相同的规律,根据这种规律,则第4个正方形中间数字m 为________,第n 个正方形的中间数字为______.(用含n 的代数式表示)…………17.已知单项式245225n m xy x y ++与是同类项,则m n =______.18.已知a ,m ,n 均为有理数,且满足5,3a m n a -=-=,那么m n -的值为 ______________.19.单项式22ab -的系数是________.20.52.42°=_____°___′___″.21.小明妈妈想检测小明学习“列方程解应用题”的效果,给了小明37个苹果,要小明把它们分成4堆. 要求分后,如果再把第一堆增加一倍,第二堆增加2个,第三堆减少三个,第四堆减少一半后,这4堆苹果的个数相同,那么这四堆苹果中个数最多的一堆为_____个.22.“横看成岭侧成峰,远近高低各不同,不识庐山真面目,只缘身在此山中.”这是宋代诗人苏轼的著名诗句(《题西林壁》).其“横看成岭侧成峰”中所含的数学道理是_____.23.中国古代数学著作《孙子算经》中有个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这道题的意思是:今有若干人乘车,每三人乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问有多少人,多少辆车?如果我们设有x辆车,则可列方程_____.24.按照下面的程序计算:如果输入x的值是正整数,输出结果是166,那么满足条件的x的值为___________.25.如果m﹣n=5,那么﹣3m+3n﹣5的值是_____.26.|﹣12|=_____.27.已知一个角的补角是它余角的3倍,则这个角的度数为_____.28.一个由小立方块搭成的几何体,从正面、左面、上面看到的形状图如图所示, 这个几何体是由_________个小立方块搭成的.29.中国始有历法大约在四千年前每页显示一日信息的叫日历,每页显示一个月信息的叫月历,每页显示全年信息的叫年历如图是2019年1月份的月历,用一个方框圈出任意22的4个数,设方框左上角第一个数是x,则这四个数的和为______(用含x的式子表示)30.线段AB=2cm,延长AB至点C,使BC=2AB,则AC=_____________cm.三、压轴题31.综合与探究问题背景数学活动课上,老师将一副三角尺按图(1)所示位置摆放,分别作出∠AOC,∠BOD的平分线OM、ON,然后提出如下问题:求出∠MON的度数.特例探究“兴趣小组”的同学决定从特例入手探究老师提出的问题,他们将三角尺分别按图2、图3所示的方式摆放,OM和ON仍然是∠AOC和∠BOD的角平分线.其中,按图2方式摆放时,可以看成是ON、OD、OB在同一直线上.按图3方式摆放时,∠AOC和∠BOD相等.(1)请你帮助“兴趣小组”进行计算:图2中∠MON的度数为°.图3中∠MON的度数为°.发现感悟解决完图2,图3所示问题后,“兴趣小组”又对图1所示问题进行了讨论:小明:由于图1中∠AOC和∠BOD的和为90°,所以我们容易得到∠MOC和∠NOD的和,这样就能求出∠MON的度数.小华:设∠BOD为x°,我们就能用含x的式子分别表示出∠NOD和∠MOC度数,这样也能求出∠MON的度数.(2)请你根据他们的谈话内容,求出图1中∠MON的度数.类比拓展受到“兴趣小组”的启发,“智慧小组”将三角尺按图4所示方式摆放,分别作出∠AOC、∠BOD的平分线OM、ON,他们认为也能求出∠MON的度数.(3)你同意“智慧小组”的看法吗?若同意,求出∠MON的度数;若不同意,请说明理由.32.如图1,已知面积为12的长方形ABCD,一边AB在数轴上。
成都市外国语学校七年级上册数学期末试卷及答案-百度文库
成都市外国语学校七年级上册数学期末试卷及答案-百度文库一、选择题1.地球与月球的平均距离为384 000km,将384 000这个数用科学记数法表示为()A.3.84×103B.3.84×104C.3.84×105D.3.84×1062.如图,一副三角尺按不同的位置摆放,摆放位置中∠α与∠β不相等...的图形是()A.B.C.D.3.一个角是这个角的余角的2倍,则这个角的度数是()A.30B.45︒C.60︒D.75︒4.如图,数轴的单位长度为1,点A、B表示的数互为相反数,若数轴上有一点C到点B 的距离为2个单位,则点C表示的数是()A.-1或2 B.-1或5 C.1或2 D.1或55.已知2a﹣b=3,则代数式3b﹣6a+5的值为( )A.﹣4 B.﹣5 C.﹣6 D.﹣76.若x=﹣13,y=4,则代数式3x+y﹣3xy的值为()A.﹣7 B.﹣1 C.9 D.77.下列四个数中最小的数是()A.﹣1 B.0 C.2 D.﹣(﹣1)8.如图是由下列哪个立体图形展开得到的?()A.圆柱B.三棱锥C.三棱柱D.四棱柱9.﹣3的相反数是()A .13-B .13C .3-D .310.若a<b,则下列式子一定成立的是( ) A .a+c>b+cB .a-c<b-cC .ac<bcD .a b c c< 11.如果+5米表示一个物体向东运动5米,那么-3米表示( ). A .向西走3米B .向北走3米C .向东走3米D .向南走3米12.某中学进行义务劳动,去甲处劳动的有30人,去乙处劳动的有24人,从乙处调一部分人到甲处,使甲处人数是乙处人数的2倍,若设应从乙处调x 人到甲处,则所列方程是( )A .2(30+x )=24﹣xB .2(30﹣x )=24+xC .30﹣x =2(24+x )D .30+x =2(24﹣x )二、填空题13.=38A ∠︒,则A ∠的补角的度数为______. 14.单项式﹣22πa b的系数是_____,次数是_____.15.如图,是七(2)班全体学生的体有测试情况扇形统计图.若达到优秀的有25人,则不合格的学生有____人.16.已知A ,B ,C 是同一直线上的三个点,点O 为AB 的中点,AC 2BC =,若OC 6=,则线段AB 的长为______.17.下列是由一些火柴搭成的图案:图①用了5根火柴,图②用了9根火柴,图③用了13根火柴,按照这种方式摆下去,摆第n 个图案用_____根火柴棒.18.若a-b=-7,c+d=2013,则(b+c)-(a-d)的值是______. 19.若α与β互为补角,且α=50°,则β的度数是_____.20.一个几何体的主视图、俯视图和左视图都是大小相同的正方形,则该几何体是___.21.观察“田”字中各数之间的关系:则c的值为____________________.22.为了了解我市2019年10000名考生的数学中考成绩,从中抽取了200名考生成绩进行统计.在这个问题中,下列说法:①这10000名考生的数学中考成绩的全体是总体:②每个考生是个体;③从中抽取的200名考生的数学中考成绩是总体的一个样本:④样本容量是200.其中说法正确的有(填序号)______23.若4a+9与3a+5互为相反数,则a的值为_____.24.线段AB=2cm,延长AB至点C,使BC=2AB,则AC=_____________cm.三、压轴题25.如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角板(其中∠P=30°)的直角顶点放在点O处,一边OQ在射线OA上,另一边OP与OC都在直线AB的上方.将图1中的三角板绕点O以每秒3°的速度沿顺时针方向旋转一周.(1)如图2,经过t秒后,OP恰好平分∠BOC.①求t的值;②此时OQ是否平分∠AOC?请说明理由;(2)若在三角板转动的同时,射线OC也绕O点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC平分∠POQ?请说明理由;(3)在(2)问的基础上,经过多少秒OC平分∠POB?(直接写出结果).26.已知∠AOB=110°,∠COD=40°,OE平分∠AOC,OF平分∠BOD.(1)如图1,当OB、OC重合时,求∠AOE﹣∠BOF的值;(2)如图2,当∠COD从图1所示位置绕点O以每秒3°的速度顺时针旋转t秒(0<t<10),在旋转过程中∠AOE﹣∠BOF的值是否会因t的变化而变化?若不发生变化,请求出该定值;若发生变化,请说明理由.(3)在(2)的条件下,当∠COF=14°时,t=秒.27.如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=22,动点P从A点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)出数轴上点B表示的数;点P表示的数(用含t的代数式表示)(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P、Q同时出发,问多少秒时P、Q之间的距离恰好等于2?(3)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?(4)若M为AP的中点,N为BP的中点,在点P运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN的长.28.如图,P是定长线段AB上一点,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上)(1)若C、D运动到任一时刻时,总有PD=2AC,请说明P点在线段AB上的位置:(2)在(1)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求PQAB的值.(3)在(1)的条件下,若C、D运动5秒后,恰好有1CD AB2,此时C点停止运动,D点继续运动(D点在线段PB上),M、N分别是CD、PD的中点,下列结论:①PM﹣PN的值不变;②MNAB的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.29.在数轴上,图中点A表示-36,点B表示44,动点P、Q分别从A、B两点同时出发,相向而行,动点P、Q的运动速度比之是3∶2(速度单位:1个单位长度/秒).12秒后,动点P到达原点O,动点Q到达点C,设运动的时间为t(t>0)秒.(1)求OC的长;(2)经过t秒钟,P、Q两点之间相距5个单位长度,求t的值;(3)若动点P到达B点后,以原速度立即返回,当P点运动至原点时,动点Q是否到达A点,若到达,求提前到达了多少时间,若未能到达,说明理由.30.点A在数轴上对应的数为﹣3,点B对应的数为2.(1)如图1点C在数轴上对应的数为x,且x是方程2x+1=12x﹣5的解,在数轴上是否存在点P使PA+PB=12BC+AB?若存在,求出点P对应的数;若不存在,说明理由;(2)如图2,若P点是B点右侧一点,PA的中点为M,N为PB的三等分点且靠近于P点,当P在B的右侧运动时,有两个结论:①PM﹣34BN的值不变;②13PM24BN的值不变,其中只有一个结论正确,请判断正确的结论,并求出其值31.如图,数轴上有A、B两点,且AB=12,点P从B点出发沿数轴以3个单位长度/s的速度向左运动,到达A点后立即按原速折返,回到B点后点P停止运动,点M始终为线段BP的中点(1)若AP=2时,PM=____;(2)若点A表示的数是-5,点P运动3秒时,在数轴上有一点F满足FM=2PM,请求出点F 表示的数;(3)若点P从B点出发时,点Q同时从A点出发沿数轴以2.5个单位长度/s的速度一直..向右运动,当点Q的运动时间为多少时,满足QM=2PM.32.如图,A、B、P是数轴上的三个点,P是AB的中点,A、B所对应的数值分别为-20和40.(1)试求P点对应的数值;若点A、B对应的数值分别是a和b,试用a、b的代数式表示P点在数轴上所对应的数值;(2)若A、B、P三点同时一起在数轴上做匀速直线运动,A、B两点相向而行,P点在动点A和B之间做触点折返运动(即P点在运动过程中触碰到A、B任意一点就改变运动方向,向相反方向运动,速度不变,触点时间忽略不计),直至A、B两点相遇,停止运动.如果A、B、P运动的速度分别是1个单位长度/s,2个单位长度/s,3个单位长度/s,设运动时间为t.①求整个运动过程中,P点所运动的路程.②若P点用最短的时间首次碰到A点,且与B点未碰到,试写出该过程中,P点经过t秒钟后,在数轴上对应的数值(用含t的式子表示);③在②的条件下,是否存在时间t,使P点刚好在A、B两点间距离的中点上,如果存在,请求出t值,如果不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】试题分析:384 000=3.84×105.故选C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.C解析:C【解析】【分析】根据余角与补角的性质进行一一判断可得答案..【详解】解:A,根据角的和差关系可得∠α=∠β=45o;B,根据同角的余角相等可得∠α=∠β;C,由图可得∠α不一定与∠β相等;D,根据等角的补角相等可得∠α=∠β.故选C.【点睛】本题主要考查角度的计算及余角、补角的性质,其中等角的余角相等,等角的补角相等. 3.C解析:C【解析】【分析】设这个角为α,先表示出这个角的余角为(90°-α),再列方程求解.【详解】解:根据题意列方程的:2(90°-α)=α,解得:α=60°.故选:C.【点睛】本题考查余角的概念,关键是先表示出这个角的余角为(90°-α).4.D解析:D【解析】【分析】如图,根据点A、B表示的数互为相反数可确定原点,即可得出点B表示的数,根据两点间的距离公式即可得答案.【详解】如图,设点C表示的数为m,∵点A、B表示的数互为相反数,∴AB的中点O为原点,∴点B表示的数为3,∵点C到点B的距离为2个单位,=2,∴3m∴3-m=±2,解得:m=1或m=5,∴m的值为1或5,故选:D.【点睛】本题考查了数轴,熟练掌握数轴上两点间的距离公式是解题关键.5.A解析:A【解析】【分析】由已知可得3b﹣6a+5=-3(2a﹣b)+5,把2a﹣b=3代入即可.【详解】3b﹣6a+5=-3(2a﹣b)+5=-9+5=-4.故选:A【点睛】利用乘法分配律,将代数式变形.6.D解析:D【解析】【分析】将x与y的值代入原式即可求出答案.【详解】当x=﹣13,y=4,∴原式=﹣1+4+4=7故选D.【点睛】本题考查代数式求值,解题的关键是熟练运用有理数运算法则,本题属于基础题型.7.A解析:A【解析】【分析】首先根据有理数大小比较的方法,把所给的四个数从大到小排列即可.【详解】解:﹣(﹣1)=1,∴﹣1<0<﹣(﹣1)<2,故选:A.【点睛】此题主要考查了有理数大小比较的方法,要熟练掌握正数都大于0,负数都小于0,正数大于一切负数.两个负数比较大小,绝对值大的反而小.8.C解析:C【解析】【分析】三棱柱的侧面展开图是长方形,底面是三角形.【详解】解:由图可得,该展开图是由三棱柱得到的,故选:C.【点睛】此题主要考查了几何体展开图,熟记常见几何体的平面展开图的特征,是解决此类问题的关键.9.D解析:D【解析】【分析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0.【详解】根据相反数的定义可得:-3的相反数是3.故选D.【点睛】本题考查相反数,题目简单,熟记定义是关键.10.B解析:B【解析】【分析】根据不等式的基本性质逐一进行分析判断即可.【详解】A.由a<b,两边同时加上c,可得 a+c<b+c,故A选项错误,不符合题意;B. 由a<b,两边同时减去c,得a-c<b-c,故B选项正确,符合题意;C. 由a<b,当c>0时,ac<bc,当c<0时,ac<bc,当c=0时,ac=bc,故C选项错误,不符合题意;D.由 a<b,当a>0,c≠0时,a bc c<,当a<0时,a bc c>,故D选项错误,故选B.【点睛】本题考查了不等式的基本性质,熟练掌握不等式的基本性质是解题的关键.11.A解析:A【解析】∵+5米表示一个物体向东运动5米,∴-3米表示向西走3米,故选A.12.D解析:D【解析】【分析】设应从乙处调x人到甲处,根据调配完后甲处人数是乙处人数的2倍,即可得出关于x的一元一次方程,此题得解.【详解】设应从乙处调x人到甲处,依题意,得:30+x=2(24﹣x).故选:D.【点睛】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解答本题的关键.二、填空题13.【解析】 【分析】根据两个角互补的定义对其进行求解. 【详解】 解: ,的补角的度数为:, 故答案为:. 【点睛】本题考查互补的含义,解题关键就是用180度直接减去即可. 解析:142︒【解析】 【分析】根据两个角互补的定义对其进行求解. 【详解】 解:38A ∠=,∴A ∠的补角的度数为:18038142-=,故答案为:142︒. 【点睛】本题考查互补的含义,解题关键就是用180度直接减去即可.14.﹣; 3. 【解析】 【分析】根据单项式的次数、系数的定义解答. 【详解】解:单项式﹣的系数是﹣,次数是2+1=3, 故答案是:﹣;3. 【点睛】本题考查了单项式系数、次数的定义解析:﹣2π; 3. 【解析】 【分析】根据单项式的次数、系数的定义解答.【详解】 解:单项式﹣22πa b 的系数是﹣2π,次数是2+1=3, 故答案是:﹣2π;3. 【点睛】本题考查了单项式系数、次数的定义.确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键. 15.5【解析】【分析】根据达到优秀的人数和所占百分比求出总人数,然后用总人数乘以不合格所占的百分比即可.【详解】解:∵学生总人数=25÷50%=50(人),∴不合格的学生人数=50×(1-5解析:5【解析】【分析】根据达到优秀的人数和所占百分比求出总人数,然后用总人数乘以不合格所占的百分比即可.【详解】解:∵学生总人数=25÷50%=50(人),∴不合格的学生人数=50×(1-50%-40%)=5(人),故答案为:5.【点睛】本题考查了扇形统计图,熟知扇形统计图中各数据所表示的意义是解题关键.16.4或36【解析】【分析】分点C 在线段AB 上,若点C 在点B 右侧两种情况讨论,由线段中点的定义和线段和差关系可求AB 的长.【详解】解:,设,,若点C 在线段AB 上,则,点O 为AB 的中点,解析:4或36【解析】【分析】分点C 在线段AB 上,若点C 在点B 右侧两种情况讨论,由线段中点的定义和线段和差关系可求AB 的长.【详解】解:AC 2BC =,∴设BC x =,AC 2x =,若点C 在线段AB 上,则AB AC BC 3x =+=,点O 为AB 的中点,3AO BO x 2∴==,x CO BO BC 6x 12AB 312362∴=-==∴=∴=⨯= 若点C 在点B 右侧,则AB BC x ==,点O 为AB 的中点,x AO BO 2∴==,3CO OB BC x 6x 4AB 42∴=+==∴=∴= 故答案为4或36【点睛】 本题考查两点间的距离,线段中点的定义,利用分类讨论思想解决问题是本题的关键.17.(4n+1)【解析】【分析】由已知图形得出每增加一个五边形就多4根火柴棒,据此可得答案.【详解】∵图①中火柴数量为5=1+4×1,图②中火柴数量为9=1+4×2,图③中火柴数量为13=解析:(4n +1)【解析】【分析】由已知图形得出每增加一个五边形就多4根火柴棒,据此可得答案.【详解】∵图①中火柴数量为5=1+4×1,图②中火柴数量为9=1+4×2,图③中火柴数量为13=1+4×3,……∴摆第n 个图案需要火柴棒(4n+1)根,故答案为(4n+1).【点睛】本题主要考查图形的变化规律,解题的关键是根据已知图形得出每增加一个五边形就多4根火柴棒.18.2020【解析】【分析】把所求代数式变换得b+c-a+d=(b-a)+(c+d),把已知数值代入计算即可.【详解】代数式变换,可得(b+c)-(a-d) =(b-a)+(c+d),由已知解析:2020【解析】【分析】把所求代数式变换得b+c-a+d=(b-a)+(c+d),把已知数值代入计算即可.【详解】代数式变换,可得(b+c)-(a-d) =(b-a)+(c+d),由已知,a-b=-7,c+d=2013,∴原式=7+2013=2020,故答案为:2020.【点睛】本题考查了整式加法交换律和结合律的运算,整体代换思想的应用,掌握整式加法运算律的应用是解题的关键.19.130°.【解析】【分析】若两个角的和等于,则这两个角互补,依此计算即可.【详解】解:与互为补角,,.故答案为:.【点睛】此题考查了补角的定义.补角:如果两个角的和等于(平角),解析:130°.【解析】【分析】若两个角的和等于180︒,则这两个角互补,依此计算即可.【详解】解:α与β互为补角,180αβ∴+=︒,180********βα∴=︒-=︒-︒=︒.故答案为:130︒.【点睛】此题考查了补角的定义.补角:如果两个角的和等于180︒(平角),就说这两个角互为补角.即其中一个角是另一个角的补角.20.正方体.【解析】【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【详解】解:正方体的主视图、左视图、俯视图都是大小相同的正方形,故答案为正方体.【点睛】考解析:正方体.【解析】【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【详解】解:正方体的主视图、左视图、俯视图都是大小相同的正方形,故答案为正方体.【点睛】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.21.【解析】【分析】依次观察每个“田”中相同位置的数字,即可找到数字变化规律,再观察同一个“田”中各个位置的数字数量关系即可.【详解】解:经过观察每个“田”左上角数字依此是1,3,5,7等奇数解析:270【解析】【分析】依次观察每个“田”中相同位置的数字,即可找到数字变化规律,再观察同一个“田”中各个位置的数字数量关系即可.【详解】解:经过观察每个“田”左上角数字依此是1,3,5,7等奇数,此位置数为15时,恰好是第8个奇数,即此“田”字为第8个.观察每个“田”字左下角数据,可以发现,规律是2,22,23,24等,则第8数为a=28.观察右下角的数字可得右下角的数字正好是左上角和左下角两个数字的和,所以b=15+a=271,右上角的数字正好是右下角数字减1,所以c=b-1=270.故答案为:270.【点睛】本题以探究数字规律为背景,考查学生的数感.解题时注意把同等位置的数字变化规律,用代数式表示出来。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学期末检测题
A卷(100分)
一、选择题(共20分,每小题2分)
1、已知两个有理数的积为正数,则这两个有理数的符号为…………()
A.都是正数
B.都是负数
C.一正一负
D. 选项.都有可能3.已知-26,则3(x-2y)2-5(x-2y)+6的值是().
A.84 B.144 C.72 D.360
4、若方程x
=的解为5,则a等于()
ax3
5+
A. 80
B. 4
C. 16
D. 2
5.用小立方块搭成的几何体的一个视图为 ,这一定( )
A.是左视图
B.是主视图
C.是俯视图
D.不是俯视图
6.如图中四个图形折叠后所得正方体与所给正方体的各个面上颜
色一致的是( )
7.下列四句话中,正确的个数有().
①过两点有且只有一条直线
②在同一平面内两条不同的直线有且只有一
个公共点
③过直线外一点,有且只有一条直线与已知直线平行
④两条直线同时与第三条直线平行,那么这两条直线平行
A .1
B .2
C .3
D .4 8.已知,⊥,∠:∠2:3,则∠的度数为( ).
A .30°
B .150°
C .30°或150°
D .不同于上述答案
9.某种细菌在培养过程中,细菌每半小时分裂一次(由一个分裂为两个),经过两小时,这种细菌由1个可分裂繁殖成( )
A.8个;
B.16个;
C.4个;
D.32个
10.一个口袋内装有大小和形状都相同的一个红球和一个黄球, 那么“从中任意摸出一个球,得到黄球”这个事件是( )
A.必然事件
B.不确定事件;
C.不可能事件
D.无法判断是哪类事件
二、填空题(共30分,每小题3分)
1、圆柱的侧面面展开图是 ;圆锥的侧面展开图是 。
2、 的倒数为-8,平方等于9的数为 。
3、_______;a ,02)3(b 2==-++则 如果b a 4.用度、分、秒表示48.26°. 5.∠450
,∠300
,则∠0
.
6.代数式
3457
ab c 的系数是,次数是.
7.若-5x 4与2x 25
是同类项,则. 8、当2-时,二次三项式422++mx x 的值等于18,那么当2时,该代数式的
值等于.
9、.我国人均水源占有量为2400立方米,则13亿中国人水源占有总量为立方米.(用科学记数法表示)
10、若4 2=-=+x y x ,
,则.
三、计算下列各题(共24分,每小题4分)
1、156(3)3
-+÷-⨯;; 2、)]4()2[(3032---÷-
3、[].)3(5)]3
15.
01(2[2--⨯⨯+-; 4、)2()12
19141(36-÷--⨯-
5、如图,直线、、相交于点O ,⊥,平分∠,∠︒28,求∠的度数.
6.如图5,已知40,C 是的中点,D 为上的一点,E 为的中点,6,求的长.
四、化简与求值(共10分,每小题5分)
G O
F
E
D
C
B
A
1.b a ab b a ab ab b a 222222]2
3)3
5(54[3--+--
2.52
-{2x 2
y -[32
-(42
-22
)]},其中2,-1.
五、解方程:共(10分,每小题5分)
1、2(x+1)5(x+1)=136
- 2、4x 1.55x 0.8 1.2x
0.50.20.1
----=
六、列方程解应用题(共6分)
小张和父亲预定搭乘家门口的公共汽车赶往火车,去家乡看望爷爷。
在行
驶了一半路程时,小张向司机询问到达火车站的时间,司机估计继续乘公共汽车到火车站时火车将正好开出,根据司机的建议,小张和父亲随即下车改乘出租车,车速提高了一倍,结果赶在火车开车前15分钟到达火车站。
已知公共汽车的平均速度是30千米/时,问小张家到火车站有多远?
B 卷(50分)
一填空题(共15分,每小题3分) 1.
如果1是方程x x m 2)(3
1
2=--
的解,那么关于y 的方程2)3(--y m =
)52(-y m 的解是 .
2.把一块表面涂着红漆的大积木(正方体).切成27块大小一样的小积木,•那么这些小积木中,一面涂漆的有块.
3.一辆汽车在a 秒内行驶6
m 米,按此速度它在2分钟内可行驶
4、 已知3b,
a a 3
b
c ,2a 2b c
+++-则的值为______ 5.如图,把正方形对折,折痕为.把顶点D 折到上的一点P 上,折痕 为,再把顶点A 折到上的同一点,折痕为,则∠的度数是 度. 二、解答下列各题(共15分,每小题5分)
1..表示数a 、b 、c 、d
的点在数轴上的位置,如图所示: 化简││-│2c │-•││+│d │.
2.
如果437,并且3219,求142b 的值.
三(共6分)已知8x 2y -62-3,72-25x 2
y ,若-30, 求 )]3()42(2
1
[4A B B C B A -++---
四(共6分)、学期结束前,学校想知道学生对这学期食品公司提供的营养
午餐的满意程度,特向全体学生(600人)做问卷调查,其结果如下: (1)作出反映调查结果的条形统计图.
(2)计算每一种反馈意见所占总人数的比率并作出扇形统计图.
(3
35332,3xy x xy y
x y x xy y
-+=+-+-、已知
求代数式的值d
c b a
五(共8分)、某商场为了提高彩电销售人员的积极性,制定了新的工资分配方案.方案规定:每位销售人员的工资总额=基本工资+奖励工资.每位销售人员的月销售额定为10000元,在销售定额内,得基本工资200元;超过销售定额,超过部分的销售额按表1所示的相应比例作为奖励工资. (1)已知销售员甲本月分为领到的工资总额为800元,请问甲本月的销售额为多少元?
(2)若销售员乙本月共销售A、B两种型号的彩电21台,得到工资1300元,且A型彩电的销售价为每台1000元,B型彩电的销售价为每台1500元,问乙本月的销售额为多少元?乙本月销售A型彩电多少台?
表1
成外2012级试题参考答案
一. 1 3 4 5 6 7 8 9 10
二.1.长方形扇形21/8;±3 3.9 4.48°15′36″ 5.15°或75°6. 5/7;8 7. 2 3 8.6 9. 2.12×104 10. -6或2 三.1. -17 2. -17/3 3.9/4 410/3 5.∠59°6. 8㎝
四. 1.31/3a25/22 2.62-2x220
五. 1.5 2. 1
六.解.设乘坐出租车的时间为x分钟,则:
1/2(15); 15; 2(15×1)=30千米
B卷
一. 1. 0 2. 6 3.20 4.15/7 6.60°
二. 1<02c<0<0<0则,原式()-[-(2c)]-[-()]
2. 71/17;55/17; 14252
3. 2(),则原式7/5
三.30;3C;33()
3()272-25x22(8x262-3)=19²-11x²4
所以19/3²-11/3x²4/3
四.解:(1)非常满意占150/600×10025%,满意占200/600
×10034%,
有点满意占50/600×1008%,有点不满意占50/60×1008%,不
满意占110/600×10018%,非常不满意占40/600×1007%;
(2)非常有影响.从收集到的数据看,
反馈意见偏向满意的为400人,占总人数的2/3,所以,
这家食品公司的午餐还是得到了大部分学生的首肯,但是,数
据同时也表明有1/3的学生对这家食品公司表示了不同程度的
不满意,所以,如果继续选择此公司,那么应该要求它进一步
改善服务,要是以前做过这样的调查,那么可以将此结果与以
前的作比较,然后综合考虑价格等其他因素,作最后的决定.五.解:
(1)当销售额为15000元时,工资总额=200+5000×5450元;当销售额为20000元时,工资总额=200+5000×55000×8850元.因此450<800<850,设销售员甲该月的销售额为x元,则200+5000×5(15000)×8800,解得:19375元,故销售员甲该月的销售额为19375元.
(2)设销售员乙未交个人所得税前的工资总额为a元,由题意得:(800)×51275,解得:1300.所以超过20000元部分的销售额为(1300-850)÷104500,∴销售员乙的销售总额=20000+4500=24500.设A型彩电销售x台,则B型彩电销售了(21)台,由题意得:10001500(21)=24500,解得:14.故销售员乙本月销售A型彩电14台。