河北省衡水中学2019-2020学年度高三年级下学期一调考试数学理科及参考答案
2019-2020学年衡水中学高三下学期第一次月考理科数学答案
n 2n1
,
Tn
1 20
2 21
n 2n1
1 2
Tn
1 21
2 22
n 2n
两式相减得:
1 2
Tn
1 20
1 21
1 2n1
n 2n
2
n2 2n
Tn
4
n2 2n1
··························································9
分
代入 Tn 2n1 n 50 得 2n n 26 0 ·····································10 分
1 3
,求得
a
4或
1,可得
P(4, 4)
或
P(1,
1), 4
2
当
P(4, 4)
时,
|
PM
|
5
,|
PA |
55 2
,
| PF | | PA |
| PM | | PA |
5 55
25 5
;
2
5
当
P(1, 1) 时,| PM 4
|
5 4
,| PA |
55 4
| PF | ,| PA |
| PM | | PA |
16. 5 5
16【解析】抛物线 x2 4 y 的焦点 F (0,1) ,准线方程为 y 1 ,
过点 P 作 PM 垂直于准线, M 为垂足,则由抛物线定义可得 | PF || PM | ,
当
M
与
A 重合时,
| PF | | PA |
| |
PM PM
| |
河北省衡水中学2019届高三下学期一调考试理科数学试题(解析版)
河北省衡水中学2019届高三下学期一调考试数学(理科)一、选择题:本题共12小题.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则()A. B. C. D.【答案】D【解析】【分析】解一元二次不等式求得A,解指数不等式求得B,再根据两个集合的交集的定义求得.【详解】因为集合,,所以,故选D.【点睛】该题考查的是有关集合的运算,属于简单题目.2.已知,是虚数单位,若,则()A. B. 2 C. D. 5【答案】C【解析】【分析】根据复数相等的充要条件,构造关于的方程组,解得的值,进而可得答案.【详解】因为,结合,所以有,解得,所以,故选C.【点睛】该题考查的是有关复数的模的问题,涉及到的知识点有复数相等的条件,属于简单题目.3.给出下列四个结论:①命题“,”的否定是“,”;②命题“若,则且”的否定是“若,则”;③命题“若,则或”的否命题是“若,则或”;④若“是假命题,是真命题”,则命题,一真一假.其中正确结论的个数为()A. 1B. 2C. 3D. 4【答案】B【解析】【分析】①写出命题“,”的否定,可判断①的正误;②写出命题“若,则且”的否定,可判断②的正误;写出命题“若,则或”的否命题,可判断③的正误;④结合复合命题的真值表,可判断④的正误,从而求得结果.【详解】①命题“,”的否定是:“,”,所以①正确;②命题“若,则且”的否定是“若,则或”,所以②不正确;③命题“若,则或”的否命题是“若,则且”,所以③不正确;④“是假命题,是真命题”,则命题,一真一假,所以④正确;故正确命题的个数为2,故选B.【点睛】该题考查的是有关判断正确命题的个数的问题,涉及到的知识点有命题的否定,否命题,复合命题真值表,属于简单题目.4.函数的图像大致是()A. B.C. D.【答案】A【解析】【分析】观察函数解析式,通过函数的定义域,特殊点以及当时,函数值的变化趋势,从而将不满足条件的选项排除,从而得到正确的结果.【详解】因为函数的定义域为R,故排除B,因为,所以排除C,当时,因为指数函数比对数函数增长速度要快,所以当时,有,所以排除D,故选A.【点睛】该题是一道判断函数图象的题目,总体方法是对函数解析式进行分析,注意从函数的定义域、图象所过的特殊点以及对应区间上函数图象的变化趋势,来选出正确的结果,注意对不正确的选项进行排除.5.已知图①②③中的多边形均为正多边形,,分别是所在边的中点,双曲线均以图中,为焦点.设图①②③中双曲线的离心率分别为,,,则()A. B.C. D.【答案】D【解析】【分析】分别根据正三角形、正方形、正六边形的性质,将用表示,然后利用双曲线的定义,求得,的等量关系,分别求出图示①②③中的双曲线的离心率,然后再判断的大小关系.【详解】图①中,;图③中,设正六边形的一个在双曲线右支上的顶点为,则,则;图②中,,,故选D.【点睛】本题主要考查双曲线的定义及离心率,属于难题.离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,从而求出;②构造的齐次式,求出;③采用离心率的定义以及圆锥曲线的定义来求解;④根据圆锥曲线的统一定义求解.6.执行如图所示的程序框图,则输出的结果是()A. 2018B. -1010C. 1009D. -1009【答案】C【解析】【分析】根据程序框图,它的作用是求的值,根据结合律进行求解,可得结果. 【详解】该程序框图的作用是求的值,而,故选C.【点睛】该题主要考查程序框图,用结合律进行求和,属于简单题目.7.已知某几何体的三视图如图所示,图中小方格的边长为1,则该几何体的表面积为()A. 65B.C.D. 60【答案】D【解析】【分析】由已知的三视图还原几何体为三棱柱截去三棱锥得到的,根据图中数据,计算表面积.【详解】由三视图可知,该几何体为如下图所示的多面体,它是由直三棱柱截去三棱锥所剩的几何体,其中,所以其表面积为,故选D.【点睛】该题考查的是有关几何体的表面积的问题,涉及到的知识点有根据三视图还原几何体,椎体的表面积,属于简单题目.8.五个人围坐在一张圆桌旁,每个人面前放着完全相同的硬币,所有人同时翻转自己的硬币.若硬币正面朝上,则这个人站起来;若硬币正面朝下,则这个人继续坐着.那么没有相邻的两个人站起来的概率为()A. B. C. D.【答案】C【解析】五个人的编号为由题意,所有事件共有种,没有相邻的两个人站起来的基本事件有,再加上没有人站起来的可能有种,共种情况,所以没有相邻的两个人站起来的概率为故答案选9.在中,角,,所对的边分别为,,,若,则()A. B. C. D.【答案】C【解析】在中,,由正弦定理得,,由余弦定理得,,,,,故选C.10.已知抛物线的焦点为,,是抛物线上的两个动点,若,则的最大值为()A. B. C. D.【答案】B【解析】【分析】利用余弦定理,结合基本不等式,即可求出的最大值.【详解】因为,,所以,在中,由余弦定理得:,又,所以,所以,所以的最大值为,故选B.【点睛】该题考查的是有关解三角形的问题,涉及到的知识点有余弦定理,基本不等式,在解题的过程中,对题的条件进行正确转化是解题的关键,属于中档题目.11.已知当时,,则以下判断正确的是()A. B. C. D.【答案】C【解析】记,为偶函数且在上单调递减,由,得到即∴,即故选:C12.若存在一个实数,使得成立,则称为函数的一个不动点.设函数(,为自然对数的底数),定义在上的连续函数满足,且当时,.若存在,且为函数的一个不动点,则实数的取值范围为()A. B. C. D.【答案】B【解析】∵f(﹣x)+f(x)=x2∴令F(x)=f(x)﹣,∴f(x)﹣=﹣f(﹣x)+x2∴F(x)=﹣F(﹣x),即F(x)为奇函数,∵F′(x)=f′(x)﹣x,且当x0时,f′(x)<x,∴F′(x)<0对x<0恒成立,∵F(x)为奇函数,∴F(x)在R上单调递减,∵f(x)+≥f(1﹣x)+x,∴f(x)+﹣≥f(1﹣x)+x﹣,即F(x)≥F(1﹣x),∴x≤1﹣x,x0≤,∵为函数的一个不动点∴g(x0)=x0,即h(x)= =0在(﹣∞,]有解.∵h′(x)=e x-,∴h(x)在R上单调递减.∴h (x)min=h()=﹣a即可,∴a≥.故选:B点睛:已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.二、填空题:本题共4小题.13.抛物线的准线方程为________.【答案】【解析】由抛物线的标准方程为x2=y,得抛物线是焦点在y轴正半轴的抛物线,2P=1,∴其准线方程是y=,。
河北省衡水中学2019-2020学年度高三年级下学期一调考试数学理科及参考答案
2019-2020学年度高三年级下学期一调考试数学(理科)试卷命题人:审核人:第Ⅰ卷(选择题共60分)一、选择题(本大题共12小题,每题5分,共60分,下列每小题所给选项只有一项符合题意,请将正确答案的序号填涂在答题卡上)1.已知全集U R ,集合22Ay y xx R ,,集合lg 1Bx yx ,则阴影部分所示集合为()A .12,B .12,C .(12], D .[12),2. 复数3a izai(其中a R ,为虚数单位),若复数z 的共轭复数的虚部为12,则复数z 在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限3.若2πa ,ab a ,aaca,则,,a b c 的大小关系为A .c b a B.b c a C.b a cD .a b c4.函数x exf xcos )112(图象的大致形状是A .B .C .D .5.吸烟有害健康,小明为了帮助爸爸戒烟,在爸爸包里放一个小盒子,里面随机摆放三支香烟和三支跟香烟外形完全一样的“戒烟口香糖”,并且和爸爸约定,每次想吸烟时,从盒子里任取一支,若取到口香糖则吃一支口香糖,不吸烟;若取到香烟,则吸一支烟,不吃口香糖,假设每次香烟和口香糖被取到的可能性相同,则“口香糖吃完时还剩2支香烟”的概率为()A .15B .815C .35D.3206.已知△ABC 外接圆的圆心为O ,若AB=3,AC=5,则AO BC u u u r u u u r的值是()A .2B .4C .8D .167.给出下列五个命题:①若为真命题,则为真命题;②命题“,有”的否定为“,有”;③“平面向量与的夹角为钝角”的充分不必要条件是“”;④在锐角三角形中,必有;⑤为等差数列,若,则其中正确命题的个数为()A .0B .1C .2D .38.已知定义在(0,)上的函数()f x ,恒为正数的()f x 符合()()2()f x f x f x ,则(1)(2)f f 的取值范围为()A .(,2)e e B .211(,)2e eC .(3,e e )D .211(,)e e9.已知点(0,2)A ,抛物线C :24yx 的焦点为F ,射线FA 与抛物线C 相交于点M ,与其准线相交于点N ,则:FM MN()A .2:5B .1:2C .1:5D .1:310.定义12n np p p L为n 个正数1p 、2p 、…、n p 的“均倒数”,若已知正整数列n a 的前n 项的“均倒数”为121n ,又14n na b ,则12231011111b b b b b b ()A .1011B .112C .111D .111211.对于任意的实数[1,e]x,总存在三个不同的实数[1,5]y,使得21ln 0yy xe ax x 成立,则实数a 的取值范围是( ) A .24251(,]eeeB .4253[,)e eC .425(0,]eD .24253[,)eee12.如图,在正方体1111ABCD A B C D ﹣中,1A H 平面11AB D ,垂足为H ,给出下面结论:①直线1A H 与该正方体各棱所成角相等;②直线1A H 与该正方体各面所成角相等;③过直线1A H 的平面截该正方体所得截面为平行四边形;④垂直于直线1A H 的平面截该正方体,所得截面可能为五边形,其中正确结论的序号为()A .①③B .②④C .①②④D .①②③第Ⅱ卷(共90分)二、填空题:(本大题共4小题,每题5分,共20分)13.有一个底面圆的半径为1,高为2的圆柱,点分别为这个圆柱上底面和下底面的圆心,在这个圆柱内随机取一点P ,则点P 到点的距离都大于1的概率为___.14.在数列{a n }中,若函数f (x )=sin 2x +22cos 2x 的最大值是a 1,且a n =(a n+1﹣a n ﹣2)n ﹣2n 2,则a n =_____.15.秦九韶是我国南宋著名数学家,在他的著作数书九章》中有已知三边求三角形面积的方法:“以小斜幂并大斜幂减中斜幂余半之,自乘于上以小斜幂乘大斜幂减上,余四约之为实一为从隅,开平方得积”如果把以上这段文字写成公式就是2222221[()]42ac bSa c ,共中a 、b 、c 是△ABC 的内角A ,B ,C 的对边。
精品解析:【全国百强校】河北省衡水中学2019届高三下学期一调考试理科数学试题(解析版)
河北省衡水中学2019届高三下学期一调考试数学(理科)一、选择题:本题共12小题.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则()A. B. C. D.【答案】D【解析】【分析】解一元二次不等式求得A,解指数不等式求得B,再根据两个集合的交集的定义求得.【详解】因为集合,,所以,故选D.【点睛】该题考查的是有关集合的运算,属于简单题目.2.已知,是虚数单位,若,则()A. B. 2 C. D. 5【答案】C【解析】【分析】根据复数相等的充要条件,构造关于的方程组,解得的值,进而可得答案.【详解】因为,结合,所以有,解得,所以,故选C.【点睛】该题考查的是有关复数的模的问题,涉及到的知识点有复数相等的条件,属于简单题目.3.给出下列四个结论:①命题“,”的否定是“,”;②命题“若,则且”的否定是“若,则”;③命题“若,则或”的否命题是“若,则或”;④若“是假命题,是真命题”,则命题,一真一假.其中正确结论的个数为()A. 1B. 2C. 3D. 4【答案】B【解析】【分析】①写出命题“,”的否定,可判断①的正误;②写出命题“若,则且”的否定,可判断②的正误;写出命题“若,则或”的否命题,可判断③的正误;④结合复合命题的真值表,可判断④的正误,从而求得结果.【详解】①命题“,”的否定是:“,”,所以①正确;②命题“若,则且”的否定是“若,则或”,所以②不正确;③命题“若,则或”的否命题是“若,则且”,所以③不正确;④“是假命题,是真命题”,则命题,一真一假,所以④正确;故正确命题的个数为2,故选B.【点睛】该题考查的是有关判断正确命题的个数的问题,涉及到的知识点有命题的否定,否命题,复合命题真值表,属于简单题目.4.函数的图像大致是()A. B.C. D.【答案】A【解析】【分析】观察函数解析式,通过函数的定义域,特殊点以及当时,函数值的变化趋势,将不满足条件的选项排除,从而得到正确的结果.【详解】因为函数的定义域为R,故排除B,因为,所以排除C,当时,因为指数函数比对数函数增长速度要快,所以当时,有,所以排除D,故选A.【点睛】该题是一道判断函数图象的题目,总体方法是对函数解析式进行分析,注意从函数的定义域、图象所过的特殊点以及对应区间上函数图象的变化趋势,来选出正确的结果,注意对不正确的选项进行排除.5.已知图①②③中的多边形均为正多边形,,分别是所在边的中点,双曲线均以图中,为焦点.设图①②③中双曲线的离心率分别为,,,则()A. B.C. D.【答案】D【解析】【分析】分别根据正三角形、正方形、正六边形的性质,将用表示,然后利用双曲线的定义,求得,的等量关系,分别求出图示①②③中的双曲线的离心率,然后再判断的大小关系.【详解】图①中,;图③中,设正六边形的一个在双曲线右支上的顶点为,则,则;图②中,,,故选D.【点睛】本题主要考查双曲线的定义及离心率,属于难题.离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,从而求出;②构造的齐次式,求出;③采用离心率的定义以及圆锥曲线的定义来求解;④根据圆锥曲线的统一定义求解.6.执行如图所示的程序框图,则输出的结果是()A. 2018B. -1010C. 1009D. -1009【答案】C【解析】【分析】根据程序框图,它的作用是求的值,根据结合律进行求解,可得结果. 【详解】该程序框图的作用是求的值,而,故选C.【点睛】该题主要考查程序框图,用结合律进行求和,属于简单题目.7.已知某几何体的三视图如图所示,图中小方格的边长为1,则该几何体的表面积为()A. 65B.C.D. 60【答案】D【解析】【分析】由已知的三视图还原几何体为三棱柱截去三棱锥得到的,根据图中数据,计算表面积.【详解】由三视图可知,该几何体为如下图所示的多面体,它是由直三棱柱截去三棱锥所剩的几何体,其中,所以其表面积为,故选D.【点睛】该题考查的是有关几何体的表面积的问题,涉及到的知识点有根据三视图还原几何体,锥体的表面积,属于简单题目.8.五个人围坐在一张圆桌旁,每个人面前放着完全相同的硬币,所有人同时翻转自己的硬币.若硬币正面朝上,则这个人站起来;若硬币正面朝下,则这个人继续坐着.那么没有相邻的两个人站起来的概率为()A. B. C. D.【答案】C【解析】五个人的编号为由题意,所有事件共有种,没有相邻的两个人站起来的基本事件有,再加上没有人站起来的可能有种,共种情况,所以没有相邻的两个人站起来的概率为故答案选9.在中,角,,所对的边分别为,,,若,则()A. B. C. D.【答案】C【解析】在中,,由正弦定理得,,由余弦定理得,,,,,故选C.10.已知抛物线的焦点为,,是抛物线上的两个动点,若,则的最大值为()A. B. C. D.【答案】B【解析】【分析】利用余弦定理,结合基本不等式,即可求出的最大值.【详解】因为,,所以,在中,由余弦定理得:,又,所以,所以,所以的最大值为,故选B.【点睛】该题考查的是有关解三角形的问题,涉及到的知识点有余弦定理,基本不等式,在解题的过程中,对题的条件进行正确转化是解题的关键,属于中档题目.11.已知当时,,则以下判断正确的是()A. B. C. D.【答案】C【解析】记,为偶函数且在上单调递减,由,得到即∴,即故选:C12.若存在一个实数,使得成立,则称为函数的一个不动点.设函数(,为自然对数的底数),定义在上的连续函数满足,且当时,.若存在,且为函数的一个不动点,则实数的取值范围为()A. B. C. D.【答案】B【解析】∵f(﹣x)+f(x)=x2∴令F(x)=f(x)﹣,∴f(x)﹣=﹣f(﹣x)+x2∴F(x)=﹣F(﹣x),即F(x)为奇函数,∵F′(x)=f′(x)﹣x,且当x0时,f′(x)<x,∴F′(x)<0对x<0恒成立,∵F(x)为奇函数,∴F(x)在R上单调递减,∵f(x)+≥f(1﹣x)+x,∴f(x)+﹣≥f(1﹣x)+x﹣,即F(x)≥F(1﹣x),∴x≤1﹣x,x0≤,∵为函数的一个不动点∴g(x0)=x0,即h(x)= =0在(﹣∞,]有解.∵h′(x)=e x-,∴h(x)在R上单调递减.∴h(x)min=h()=﹣a即可,∴a≥.故选:B点睛:已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.二、填空题:本题共4小题.13.抛物线的准线方程为________.【答案】【解析】由抛物线的标准方程为x2=y,得抛物线是焦点在y轴正半轴的抛物线,2P=1,∴其准线方程是y=,。
衡水中学2019~2020学年高三年级下学期其中考试 · 理数试卷及答案
x
高三数学理科试题第5页(共8页)
高三数学理科·
6页(共8页)
请考生在第(22)、 (23)题中任选一题做答, 如果多做, 则按所做的第 一题计分, 做答时请
写清题亏。
22. (10分)选修4-4: 坐标系与参数方程
x= 1-t2
在平面直角坐标系xOy中, C正
I +t2 (t为参数),以坐标原点为极点,x轴的正 轴为
10
5
C. 一3
o.3-
10
5
6.有六名同学参加演讲比赛,编号分别为1, 2. 3, 4. 5, 6, 比 结果设特等奖一名,A, R,
, D四名同学对于谁获得特等奖进行预测
A说:不是1号就是2号获得特等奖;
A. f(x)是偶函数 . B. /(x)在[一冗, 01 上恰有一 个零点
C. /(x)是周期函数
2
<a<-25
@a::::1,-2<b<O
@a=1,一一9 <b<-2或b=O
4
@4个极小值点 ®1个极小值点 (7)6个零点
@4个零点
三、解答题: (本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤。)
试研究,一个三角形能否同时具有以下两个性质; (1)三边是连续的三个自然数;
(2)最大角是最小角的2倍
A. (-1,0]
8. (-1,0)
C. (---00,l)
D. (---oo,-1)
2.iz =-l+i (其中i是虚数单位),则复数z的共辄复数在复平面内对应的点位于
A. 第 一象限
B. 第二象限
C. 第三象限
D. 第四象限
J. 已知a=沪,心1 )-21 ,c =2log, 2则a. b, c的大小关系为
2019—2020学年度衡水中学高三下期中理科数学答案
理科数学期中答案 一、选择题1. 【解析】由题得{|0}A x x =<,{|11}B x x =-<<,根据并集的定义知:{|1}A B x x ⋃=<,故选:C .2.【解析】由i 1i z =-+,得()()21i i 1i 1i i iz -+--+===+-,1z i =-∴复数z 的共轭复数在复平面内对应的点的坐标为()1,1-,位于第四象限,故选D. 3.【解析】, 2.12.1212422b -⎛⎫⎝⎭=>==⎪,5552log 2log 4log 51c ==<=,∴c a b <<.故选:B.4.【解析】5.【解析】6.【解析】因为C ,D 互相否定,故C ,D 中一人猜对,假设D 对,则B 也对与题干矛盾,故D 错,猜对者一定是C ,于是B 一定猜错,A 也错,则获得特等奖的是:3号同学.故选:C.7.【解析】由题可知,程序框图的运行结果为31,当1S =时,9i =;当1910S =+=时,8i =; 当19818S =++=时,7i =;当198725S =+++=时,6i =;当1987631S =++++=时,5i =.此时输出31S =.故选:C.8. 【解析】设“衰分比”为q ,甲获得的奖金为1a , 则()()()23111111168780a a q a q a q +-+-+-=.()211136200a a q +-=,解得10.1,20000q a ==,故()31114580a q -=.故选:B .9.【解析】对于A ,函数()cos |sin |f x x x =-,定义域为R ,且满足()cos()|sin()|cos |sin |()f x x x x x f x -=---=-=,所以()f x 为定义域R 上的偶函数,A 正确;对于B ,[,0]x π∈-时,sin 0x …,()cos |sin |cos sin 24f x x x x x x π⎛⎫=-=+=+ ⎪⎝⎭,且3,444x πππ⎡⎤+∈-⎢⎥⎣⎦,()f x 在[],0π-上恰有一个零点是4π-,B 正确; 对于C ,根据正弦、余弦函数的周期性知,函数()f x 是最小正周期为2π的周期函数,C 正确;对于D ,[,0]x π∈-时,()24f x x π⎛⎫=+ ⎪⎝⎭,且3,444x πππ⎡⎤+∈-⎢⎥⎣⎦,()f x 在[],0π-上先减后增,D 错误.故选D .10. 【解析】由题意设()()()323,2g x x x h x m x -+=+()g x ∴在()(),0,2,-∞+∞递减,在()0,2上递增,且()()()32030,22324g g g ===-+⋅=Q 存在唯一的正整数0x,使得()00f x >,即()()00g x h x >∴由图得02x =,则()()()()02211m g h g h ⎧>⎪>⎨⎪≤⎩,即044133m m m>⎧⎪>⎨⎪-+≤⎩,解得21,3m m ≤<∴的取值范围是2,13⎡⎫⎪⎢⎣⎭,故选C. 11.【解析】由2123(2)02c e e c -++=r u r u u r r g 推出2212122(2)312244e e e e c ⎛⎫++-=-+= ⎪ ⎪⎝⎭u r u u r u r u u rr ,所以122122e e c +-=u r u u r r ,如 图,c r 终点的轨迹是以12为半径的圆,设12OA e OB e ==u u u r u r u u u r u u r ,,1OC c OD te ==u u u r r u u u r u r ,,所以1||c te -r u r 表示 CD 的距离,显然当CD OA ⊥时最小,M 的最大值为圆心到OA 的距离加半径,即max 1sin 602M =︒+g 1232+=故选:A12.二、填空题 1314.当1n =时,2111112a S +===;当2n ≥时,()()2211122n n n n n n n a S S n --+-+=-=-=. 11a =适合n a n =,所以,对任意的n *∈N ,n a n =.()()()()211211111111n n n n nn n n n a a n b a n n +++⎛⎫-=-+ ⎪++⎝=-=⋅⎭Q ,因此,()()11111111122311nn n T n n n -⎛⎫⎛⎫⎛⎫=-+++-+-+=-+ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭L . 故答案为:20202021-. 15.16. ①⑥、②⑤、③⑦、④⑧均可三、解答题 17.18解:(1)作//MP AB 交BC 于点P ,//NQ AB 交BE 于点Q ,连接PQ ,依题意可得//MP NQ ,且MP NQ =,即MNQP 是平行四边形.MN PQ ∴=由已知,CM BN a ==,1CB AB BE ===,∴11AC BF CP BQ ===即CP BQ ==∴MN PQ ===a =<<由(1)MN =所以,当2a =时,2MN = 即M ,N 分别移动到AC ,BF 的中点时, MN(2)取MN 的中点G ,连接AG 、BG ,AM AN =Q ,BM BN =,AG MN ∴⊥,BG MN ⊥, AGB ∴∠即为二面角α的平面角.又AG BG =,所以由余弦定理有2211cos 3α+-==-. 19.解;(Ⅰ)由||4AB =,且B 在圆上,由抛物线的和圆的对称性可得(2,1)B , 代入抛物线可得42p =,解得2p =,∴抛物线E 的方程为24x y =;(Ⅱ)设1(C x ,211)4x ,2(D x ,221)4x ,由24x y =,可得214y x =, 12y x ∴'=, 则1l 的方程为:211111()42y x x x x -=-,即2111124y x x x =-,①,同理2l 的方程为:2221124y x x x =-,②, 联立①②解得121()2x x x =+,1214y x x =,又CD 与圆225x y +=切于点0(P x ,0)y ,易得CD 方程为005x x y y +=,其中0x ,0y 满足2205x y +=,0[1y ∈, 联立20045x y x x y y ⎧=⎪⎨+=⎪⎩,化简得2004200y x x x +-=,01204x x x y ∴+=-,12020x x y =-, 设(,)M x y ,则012021()2x x x x y =+=-,120154y x x y ==-,002(x M y ∴-,05)y -, ∴点M 到直线005CDx x y y +=距离为200210|55|210x y d ----+==易知d 关于0y单调递减,dmax ==即点M到直线CD.20.解:(1)令,得x=1,当0<x<1时,f'(x)<0,函数f(x)单调递减;当x>1时,f'(x)>0,函数f(x)单调递增,所以f(x)的极小值为f(1)=﹣1<0,又,∴f(x)在区间(0,1)上存在一个零点x1,此时k=0;∵f(3)=3﹣ln3﹣2=1﹣ln3<0,f(4)=4﹣ln4﹣2=2﹣2ln2=2(1﹣ln2)>0,∴f(x)在区间(3,4)上存在一个零点x2,此时k=3.综上,k的值为0或3;(2)当x=1时,不等式为g(1)=1>0.显然恒成立,此时m∈R;当0<x<1时,不等式可化为,令,则,由(1)可知,函数f(x)在(0,1)上单调递减,且存在一个零点x1,此时f(x1)=x1﹣lnx1﹣2=0,即lnx1=x1﹣2,当0<x<x1时,f(x)>0,即g'(x)>0,函数g(x)单调递增;当x1<x<1时,f(x)<0,即g'(x)<0,函数g(x)单调递减.∴g(x)有极大值即最大值为,于是m>x1.当x>1时,不等式可化为,由(2)可知,函数f(x)在(3,4)上单调递增,且存在一个零点x2,同理可得m<x2.综上可知x1<m<x2.又∵x1∈(0,1),x2∈(3,4),∴正整数m的取值集合为{1,2,3}.21。
衡水中学2019届高三数学下学期一调考试试题 理(含解析)
河北省衡水中学2019届高三下学期一调考试数学(理科)一、选择题:本题共12小题。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1。
已知集合,,则()A。
B. C. D。
【答案】D【解析】【分析】解一元二次不等式求得A,解指数不等式求得B,再根据两个集合的交集的定义求得。
【详解】因为集合,,所以,故选D.【点睛】该题考查的是有关集合的运算,属于简单题目.2.已知,是虚数单位,若,则( )A。
B. 2 C. D。
5【答案】C【解析】【分析】根据复数相等的充要条件,构造关于的方程组,解得的值,进而可得答案。
【详解】因为,结合,所以有,解得,所以,故选C.【点睛】该题考查的是有关复数的模的问题,涉及到的知识点有复数相等的条件,属于简单题目。
3。
给出下列四个结论:①命题“,”的否定是“,”;②命题“若,则且"的否定是“若,则”;③命题“若,则或”的否命题是“若,则或”;④若“是假命题,是真命题”,则命题,一真一假.其中正确结论的个数为( )A. 1B. 2C. 3D. 4【答案】B【解析】【分析】①写出命题“,”的否定,可判断①的正误;②写出命题“若,则且”的否定,可判断②的正误;写出命题“若,则或”的否命题,可判断③的正误;④结合复合命题的真值表,可判断④的正误,从而求得结果。
【详解】①命题“,”的否定是:“,",所以①正确;②命题“若,则且"的否定是“若,则或",所以②不正确;③命题“若,则或”的否命题是“若,则且”,所以③不正确;④“是假命题,是真命题”,则命题,一真一假,所以④正确;故正确命题的个数为2,故选B.【点睛】该题考查的是有关判断正确命题的个数的问题,涉及到的知识点有命题的否定,否命题,复合命题真值表,属于简单题目. 4.函数的图像大致是( )A。
B。
C. D。
【答案】A【解析】【分析】观察函数解析式,通过函数的定义域,特殊点以及当时,函数值的变化趋势,将不满足条件的选项排除,从而得到正确的结果.【详解】因为函数的定义域为R,故排除B,因为,所以排除C,当时,因为指数函数比对数函数增长速度要快,所以当时,有,所以排除D,故选A.【点睛】该题是一道判断函数图象的题目,总体方法是对函数解析式进行分析,注意从函数的定义域、图象所过的特殊点以及对应区间上函数图象的变化趋势,来选出正确的结果,注意对不正确的选项进行排除。
河北衡水中学2019-2020学年全国高三第一次摸底联考理科数学
河北衡水中学2019-2020学年全国高三第一次摸底联考理科数学一 选择题(每小题5分,共60分)1.复数 在复平面内对应的点位于A. 第一象限B. 第二象限C. 第三象限D. 第四象限 2.已知全集U=R , 则 A. B. C. 或 D. 或3.某地某所高中2018年的高考考生人数是2015年高考考生人数的1.5倍,为了更好地对比该校考生的升学情况,统计了该校2015年和2018年的高考情况,得到如下柱状图:2015年高考数据统计 2018年高考数据统计 则下列结论正确的是A. 与2015年相比,2018年一本达线人数减少B. 与2015年相比,2018年二本达线人数增加了0.5倍C. 与2015年相比,2018年艺体达线人数相同D. 与2015年相比,2018年不上线的人数有所增加4.已知等差数列 的公差为2,前 项和为 ,且 ,则 的值为 A. 11 B. 12 C. 13 D. 145.已知 是定义在 上的奇函数,若 时, ,则 时, A. B. C. D.6.已知椭圆和直线,若过 的左焦点和下顶点的直线与平行,则椭圆 的离心率为A.B.C.D.7.如图,在平行四边形 中,对角线 与 交于点 ,且,则A. B.C. D.8.某几何体的三视图如图所示,则此几何体A. 有四个两两全等的面B. 有两对相互全等的面C. 只有一对相互全等的面D. 所有面均不全等9.赵爽是我国古代数学家、天文学家,大约在公元222年,赵爽为《周碑算经》一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(以弦为边长得到的正方形是由4个全等的直角三角形再加上中间的一个小正方形组成的).类比“赵爽弦图”,可类似地构造如图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设,若在大等边三角形中随机取一点,则此点取自小等边亚角形的概率是A. B. C. D.10.已知函数(为自然对数的底数),若关于的方程有两个不相等的实根,则的取值范围是A. B. C. D.11.已知双曲线的左、右焦点分别为 , ,过 作圆 的切线,交双曲线右支于点 ,若 ,则双曲线的渐近线方程为A. B. C. D.12.如图,在正方体 中,点 , 分别为棱 , 的中点,点 为上底面的中心,过 , , 三点的平面把正方体分为两部分,其中含 的部分为 ,不含 的部分为 ,连结 和 的任一点 ,设 与平面 所成角为 ,则 的最大值为A. B.C. D.二 填空题(每小题5分,共20分)13.设x ,y 满足约束条件⎩⎨⎧x +y -7≤0,x -3y +1≤0,3x -y -5≥0,则z =2x -y 的最大值为_______.14若两个等差数列{a n }和{b n }的前n 项和分别是S n ,T n ,已知=,则___ ___ . 15.已知,且,则的最小值等于_______.16.如图,在中,,点在线段上,且,,则的面积的最大值为__________.三 解答题(共70分)17.(10分) 命题:函数的定义域为;命题:函数在上单调递减,若命题为真,为假,求实数的取值范围.ABC △sin 2ABC ∠=D AC 2AD DC=BD =ABC△p ()()21f x lg x ax =++R q ()221f x x ax =--(]1,-∞-"p q"∨"p q"∧a18.(12分)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a (sin A ﹣sin B )=(c ﹣b )(sin C +sin B ) (Ⅰ)求角C ;(Ⅱ)若c =,△ABC 的面积为 ,求△ABC 的周长.19.(12分)数列满足. (1)求证:数列是等差数列,并求出的通项公式;(2)若,求数列的前n 项和.20(12分)在四棱锥中,都为等腰直角三角形,,为的中点.(Ⅰ)求证:平面;(Ⅱ)若是边长为2的等边三角形,,求三棱锥的体积.21.(12分)已知数列{a n }的前n 项和为S n ,且满足S n +n=2a n (n ∈N *). (1)证明:数列{a n +1}为等比数列,并求数列{a n }的通项公式; (2)若b n =(2n+1)a n +2n+1,数列{b n }的前n 项和为T n ,求满足不等式>2 010的n 的最小值.22.(12分)已知函数f (x )=2ln x+ax-(a ∈R )在x=2处的切线经过点(-4,ln 2). (1)讨论函数f (x )的单调性;(2)若不等式>mx-1恒成立,求实数m 的取值范围.7233{}n a 11()n a a n N ++==∈{}2n a {}n a 12n n n b a a +=+{}n b河北衡水中学2019-2020学年全国高三第一次摸底联考理科数学1.复数 在复平面内对应的点位于A. 第一象限B. 第二象限C. 第三象限D. 第四象限 【答案】D2.已知全集U=R , 则 A. B. C. 或 D. 或 【答案】C3.某地某所高中2018年的高考考生人数是2015年高考考生人数的1.5倍,为了更好地对比该校考生的升学情况,统计了该校2015年和2018年的高考情况,得到如下柱状图:2015年高考数据统计 2018年高考数据统计 则下列结论正确的是A. 与2015年相比,2018年一本达线人数减少B. 与2015年相比,2018年二本达线人数增加了0.5倍C. 与2015年相比,2018年艺体达线人数相同D. 与2015年相比,2018年不上线的人数有所增加 【答案】D4.已知等差数列 的公差为2,前 项和为 ,且 ,则 的值为 A. 11 B. 12 C. 13 D. 14 【答案】C5.已知 是定义在 上的奇函数,若 时, ,则 时, A. B. C. D. 【答案】B6.已知椭圆和直线,若过 的左焦点和下顶点的直线与平行,则椭圆 的离心率为A. B. C. D.【答案】A7.如图,在平行四边形中,对角线与交于点,且,则A. B.C. D.【答案】C8.某几何体的三视图如图所示,则此几何体A. 有四个两两全等的面B. 有两对相互全等的面C. 只有一对相互全等的面D. 所有面均不全等【答案】B9.赵爽是我国古代数学家、天文学家,大约在公元222年,赵爽为《周碑算经》一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(以弦为边长得到的正方形是由4个全等的直角三角形再加上中间的一个小正方形组成的).类比“赵爽弦图”,可类似地构造如图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设,若在大等边三角形中随机取一点,则此点取自小等边亚角形的概率是A. B. C.D.【答案】A10.已知函数(为自然对数的底数),若关于 的方程 有两个不相等的实根,则的取值范围是A. B. C. D. 【答案】C11.已知双曲线的左、右焦点分别为 , ,过 作圆 的切线,交双曲线右支于点 ,若 ,则双曲线的渐近线方程为 A. B. C. D. 【答案】A12.如图,在正方体 中,点 , 分别为棱 , 的中点,点 为上底面的中心,过 , , 三点的平面把正方体分为两部分,其中含 的部分为 ,不含 的部分为 ,连结 和 的任一点 ,设 与平面 所成角为 ,则 的最大值为A. B.C. D.【答案】B二填空题13.___8____. 14._4 . 15.16.17.3218.解:(Ⅰ)由已知a (sinA ﹣sinB )=(c ﹣b )(sinC+sinB ) 由正弦定理,得a (a ﹣b )=(c ﹣b )(c+b ),即a 2+b 2﹣c 2=ab . 所以cosC==,又C ∈(0,π),所以C=.(Ⅱ)由(Ⅰ)知a 2+b 2﹣c 2=ab .所以(a+b )2﹣3ab=c 2=7, 又S=sinC=ab=,所以ab=6,所以(a+b )2=7+3ab=25,即a+b=5.所以△ABC 周长为a+b+c=5+.19.2021 (1)证明 当n=1时,2a 1=a 1+1,∴a 1=1.∵2a n =S n +n ,n ∈N *,∴2a n-1=S n-1+n-1,n ≥2, 两式相减,得a n =2a n-1+1,n ≥2, 即a n +1=2(a n-1+1),n ≥2,∴数列{a n +1}为以2为首项,2为公比的等比数列, ∴a n +1=2n ,∴a n =2n -1,n ∈N *.(2)解 b n =(2n+1)a n +2n+1=(2n+1)·2n ,∴T n =3×2+5×22+…+(2n+1)·2n , ∴2T n =3×22+5×23+…+(2n+1)·2n+1,两式相减可得-T n =3×2+2×22+2×23+…+2·2n -(2n+1)·2n+1,∴T n =(2n-1)·2n+1+2,∴>2010可化为2n+1>2010.22解(1)f'(x )=+a+,令x=2,则f'(2)=1+a+f'(2),∴a=-1, 因切点为(2,2ln2+2a-2f'(2)),则y-(2ln2+2a-2f'(2))=f'(2)(x-2),代入(-4,2ln2),得2ln2-2ln2-2a+2f'(2)=-6f'(2),∴f'(2)=-,∴f'(x)=-1-≤0, ∴f(x)在(0,+∞)单调递减.(2)>mx-1恒成立,即>m,令φ(x)=2ln x+,由(1)可知φ(x)在(0,+∞)单调递减,∵φ(1)=0,∴x∈(0,1),φ(x)>0,x∈(1,+∞),φ(x)<0,∴φ(x)在(0,+∞)恒大于0,∴m≤0.。
2020届河北省衡水中学高三下学期一调考试数学理科试题(解析word版)
2019-2020学年度高三年级下学期一调考试数学(理科)试卷一、选择题(本大题共12小题,每题5分,共60分,下列每小题所给选项只有一项符合题意,请将正确答案的序号填涂在答题卡上)1. 已知全集U =R ,集合{}2|2A y y x x R ==+∈,,集合(){}lg 1B x y x ==-,则阴影部分所示集合为A. []12,B. ()12,C. (12],D. [12),【答案】B 【解析】【详解】试题分析:由函数,得到,由函数,得到,即,;全集,则.所以B 选项是正确的.考点:集合的运算.【易错点晴】集合的三要素是:确定性、互异性和无序性.研究一个集合,我们首先要看清楚它的研究对象,是实数还是点的坐标还是其它的一些元素,这是很关键的一步.第二步常常是解一元二次不等式,我们首先用十字相乘法分解因式,求得不等式的解集.在解分式不等式的过程中,要注意分母不能为零.元素与集合之间是属于和不属于的关系,集合与集合间有包含关系. 在求交集时注意区间端点的取舍. 熟练画数轴来解交集、并集和补集的题目. 2. 复数3a iz a i+=+-(其中a R ∈,i 为虚数单位),若复数z 的共轭复数的虚部为12-,则复数z 在复平面内对应的点位于 A. 第一象限 B. 第二象限C. 第三象限D. 第四象限【答案】A 【解析】【分析】先化简复数z ,再求得其共轭复数,令其虚部为12-,解得2a =,代入求解即可. 【详解】由题意得()()()()()331313331010a i i a i a ia z a a i i i ++++-=+=+=+--+, ∴()31311010a ia z +-=-,又复数z 的共轭复数的虚部为12-, ∴31102a +=,解得2a =. ∴5122z i =+,∴复数z 在复平面内对应的点位于第一象限. 故选A.【点睛】本题考查了复数的乘法运算,考查了复数的基本概念及复数的几何意义,属于基础题. 3. 若2,,aa a ab ac a π-===,则,,a b c 的大小关系为A. c b a >>B. b c a >>C. b a c >>D. a b c >>【答案】B 【解析】【详解】分析:首先确定a 的范围,然后结合指数函数的单调性整理计算即可求得最终结果. 详解:由题意可知:()2210,1a ππ-==∈,即1a <函数()xf x a =单调递减,则1a a a >,即a a a >,由于a a a >,结合函数的单调性可得:aa a a a <,即bc >,由于01a <<,故1a a <,结合函数的单调性可得:1aa a a >,即c a >,综上可得:,,a b c 的大小关系为b c a >> . 本题选择B 选项.点睛:对于指数幂的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幂的底数或指数不相同,不能直接利用函数的单调性进行比较.这就必须掌握一些特殊方法.在进行指数幂的大小比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据指数函数的单调性进行判断.对于不同底而同指数的指数幂的大小的比较,利用图象法求解,既快捷,又准确. 4. 函数()21cos 1xf x x e ⎛⎫=-⎪+⎝⎭图象的大致形状是( )A. B. C. D.【答案】B 【解析】 【分析】利用奇偶性可排除A 、C ;再由(1)f 的正负可排除D.【详解】()21e 1cos cos 1e 1e x x x f x x x -⎛⎫=-= ⎪++⎝⎭,()1e cos()1e x xf x x ----=-=+e 1cos e 1x x x -+ ()f x =-,故()f x 为奇函数,排除选项A 、C ;又1e(1)cos101ef -=<+,排除D ,选B. 故选:B.【点睛】本题考查根据解析式选择图象问题,在做这类题时,一般要结合函数的奇偶性、单调性、对称性以及特殊点函数值来判断,是一道基础题.5. 吸烟有害健康,小明为了帮助爸爸戒烟,在爸爸包里放一个小盒子,里面随机摆放三支香烟和三支跟香烟外形完全一样的“戒烟口香糖”,并且和爸爸约定,每次想吸烟时,从盒子里任取一支,若取到口香糖则吃一支口香糖,不吸烟;若取到香烟,则吸一支烟,不吃口香糖,假设每次香烟和口香糖被取到的可能性相同,则“口香糖吃完时还剩2支香烟”的概率为( ) A. 15B. 815C.35D.320【答案】D 【解析】【分析】“口香糖吃完时还剩2支香烟”即第四次取到的是口香糖且前三次有两次口香糖一次香烟,根据古典概型计算出其概率即可.【详解】由题:“口香糖吃完时还剩2支香烟”说明:第四次取到的是口香糖,前三次中恰有两次口香糖一次香烟,记香烟为123,,A A A ,口香糖为123,,B B B ,进行四次取物, 基本事件总数:6543360⨯⨯⨯=种事件“口香糖吃完时还剩2支香烟”前四次取物顺序分为以下三种情况: 烟、糖、糖、糖:332118⨯⨯⨯=种 糖、烟、糖、糖: 332118⨯⨯⨯=种 糖、糖、烟、糖:323118⨯⨯⨯=种 包含的基本事件个数为:54, 所以,其概率为54336020= 故选:D【点睛】此题考查古典概型,解题关键在于弄清基本事件总数,和某一事件包含的基本事件个数,其本质在于计数原理的应用.6. 已知△ABC 外接圆的圆心为O ,若AB=3,AC=5,则AO BC ⋅的值是( ) A. 2 B. 4C. 8D. 16【答案】C 【解析】【分析】可画出图形,并将O 和AC 中点D 相连,O 和AB 的中点E 相连,从而得到,ODAC OE AB ,根据数量积的计算公式及条件可得出259·,?22AO AC AO AB ==,而()AO BC AO AC AB ⋅=⋅-,即可得出AO BC ⋅的值.【详解】如图,取AC 中点D,AB 中点E,并连接OD,OE, 则,ODAC OE AB ;∴ 2212519·,?2222AO AC AC AO AB AB ==== ∴ ()259822AO BC AO AC AB AO AC AO AB ⋅=⋅-=⋅-⋅=-= 故选C.【点睛】解题的关键是要熟练的运用数量积的公式cos a b a b θ⋅=以及三角形法则.7. 给出下列五个命题:①若p q ∨为真命题,则p q ∧为真命题;②命题“0x ∀>,有1x e ≥”的否定为“00x ∃≤,有01x e <”; ③“平面向量a 与b 的夹角为钝角”的充分不必要条件是“•0a b <”; ④在锐角三角形ABC 中,必有sin sin cos cos A B A B +>+;⑤{}n a 为等差数列,若()*,,,m n p q a a a a m n p q N +=+∈,则m n p q +=+其中正确命题的个数为 A. 1 B. 2C. 3D. 4【答案】A 【解析】【分析】根据或命题与且命题的性质判断①;根据全称命题否定的定义判断②;根据“ •0a b <,夹角有可能为π判断③;由2A B π+>,利用正弦函数的单调性判断④;根据特例法判断⑤.【详解】对于①,若p q ∨为真命题,则p 与 q 中至少有一个为真命题, p q ∧ 不一定为真命题,故错误.对于②,命题“:0p x ∀>,有1x e ≥”,则p ⌝为00x ∃>,有01x e < ,故错误. 对于③, 若 •0a b < 平面向量a ,b 的夹角为可能为π,故错误. 对于④,在锐角三角形ABC 中,必有02A B π<+<,即,22A B B A ππ>->-,所以sin cos sin cos A B B A ,>>,所以sin sin cos cos A B A B +>+,故正确;对于⑤,在等差数列{}n a 中,若,n a t t =为常数,则1234a a a a +=+满足,()*,,,m n p q a a a a m n p q N +=+∈,但是1234+=+不成立,即m n p q +=+ 不成立,故错误,故选A.【点睛】本题通过对多个命题真假的判断,综合考查逻辑联接词的应用、全称命题的否定、向量的数量积、正弦函数的单调性以及等差数列的性质,属于中档题.这种题型综合性较强,也是高考的命题热点,同学们往往因为某一处知识点掌握不好而导致“全盘皆输”,因此做这类题目更要细心、多读题,尽量挖掘出题目中的隐含条件,另外,要注意从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题. 8. 已知定义在()0,∞+上的函数()f x ,恒为正数的()f x 符合()()()'2f x f x f x <<,则()()1:2f f 的取值范围为 A. (),2e e B. 11,2e e ⎛⎫⎪⎝⎭C. ()3,e eD. 211,e e ⎛⎫⎪⎝⎭【答案】D 【解析】 【详解】令()()()()2,xxf x f xg xh x ee==,则()()()2'2'0xf x f x h x e-=<,()()()''0xf x f xg x e-=>,()()()()12,12g g h h ∴,()()()()()()22421212111,,2f f f f f e e e e e f e∴∴<<,选D . 【方法点睛】利用导数研究函数的单调性、构造函数比较大小,属于难题.联系已知条件和结论,构造辅助函数是高中数学中一种常用的方法,解题中若遇到有关不等式、方程及最值之类问题,设法建立起目标函数,并确定变量的限制条件,通过研究函数的单调性、最值等问题,常可使问题变得明了,准确构造出符合题意的函数是解题的关键;解这类不等式的关键点也是难点就是构造合适的函数,构造函数时往往从两方面着手:①根据导函数的“形状”变换不等式“形状”;②若是选择题,可根据选项的共性归纳构造恰当的函数.9. 已知点A (2,0),抛物线C :24x y =的焦点F .射线FA 与抛物线C 相交于点M ,与其准线相交于点N ,则:FM MN =( )A. 2B. 1:2C. D. 1:3【答案】C 【解析】【详解】抛物线C :x 2=4y 的焦点为F (0,1),定点A (2,0), ∴抛物线C 的准线方程为y=-1.设准线与y 轴的交点P ,则FM :MN =FP :FN , 又F (0,1),A (2,0), ∴直线FA 为:x +2y-2=0, 当y=-1时,x=4,即N (4,-1),FP FN ∴==, :FM MN=1:10. 定义12nn p p p +++为n 个正数1p 、2p 、…、n p 的“均倒数”,若已知正整数列{}n a 的前n 项的“均倒数”为121n +,又14n n a b +=,则12231011111b b b b b b ++⋅⋅⋅+=( ) A.111 B.112C.1011D.1112【答案】C 【解析】【分析】由已知得()1221n n a a a n n S +++=+=,求出n S 后,利用当2n ≥时,1n n n a S S -=-即可求得通项n a ,最后利用裂项法即可求和. 【详解】由已知得12121nn a a n a =++++, ∴()1221n n a a a n n S +++=+=,当2n ≥时,141n n n a S S n -=-=-,验证知 当1n =时也成立,14n n a b n +∴==, 11111n n b b n n +∴=-⋅+,12231011111111111110122334101111b b b b b b ⎛⎫⎛⎫⎛⎫⎛⎫++⋅⋅⋅+=-+-+-+-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭∴故选:C【点睛】本题是数列中的新定义,考查了n S 与n a 的关系、裂项求和,属于中档题. 11. 对于任意的实数[1,e]x ∈,总存在三个不同的实数[1,5]y ∈-,使得21ln 0yy xeax x ---=成立,则实数a 的取值范围是 A. 24251(,]e e e- B. 4253[,)e eC. 425(0,]eD. 24253[,)e e e- 【答案】B 【解析】【分析】原方程化为21ln yx y e a x -=+,令()[]ln ,1,xf x a x e x=+∈,令()[]21,1,5y g y y e y -=∈-,可得()1,f x a a e ⎡⎤∈+⎢⎥⎣⎦,利用导数研究函数()g y 的单调性,利用数形结合可得41254,,a a e e e ⎡⎤⎡⎤+⊆⎢⎥⎢⎥⎣⎦⎣⎦,得到关于a 不等式组,解出即可.【详解】0x ≠,∴原式可化为21ln y xy e a x-=+, 令()[]ln ,1,x f x a x e x =+∈时()()1ln '0,xf x f x x -=≥递增, 故()1,f x a a e⎡⎤∈+⎢⎥⎣⎦,令()[]21,1,5yg y y e y -=∈-,故()()1211'22yy y g y y ey e y y e ---=⋅-=-,故()g y 在()1,0-上递减,在()0,2上递增,在()2,5上递减,而()()()()244251,00,2,5g e g g g e e-====, 要使总存在三个不同的实数[]1,5y ∈-,使得21ln 0y y xe ax x ---=成立,即41254,,a a e e e ⎡⎤⎡⎤+⊆⎢⎥⎢⎥⎣⎦⎣⎦,故42514a e a e e ⎧≥⎪⎪⎨⎪+<⎪⎩,故4253a e e ≤<,实数a 的取值范围是4253,e e ⎡⎫⎪⎢⎣⎭,故选B.【点睛】本题考查了函数单调性、最值问题,考查导数的应用以及转化思想,是一道综合题. 转化与划归思想解决高中数学问题的一种重要思想方法,运用这种方法的关键是将题设条件研究透,这样才能快速找准突破点.以便将问题转化为我们所熟悉的知识领域,进而顺利解答,希望同学们能够熟练掌握并应用于解题当中.解答本题的关键是将问题转化为41254,,a a e e e⎡⎤⎡⎤+⊆⎢⎥⎢⎥⎣⎦⎣⎦.12. 如图,在正方体1111ABCDA B C D ﹣中,1A H ⊥平面11AB D ,垂足为H ,给出下面结论: ①直线1A H 与该正方体各棱所成角相等; ②直线1A H 与该正方体各面所成角相等;③过直线1A H 的平面截该正方体所得截面为平行四边形; ④垂直于直线1A H 的平面截该正方体,所得截面可能为五边形, 其中正确结论的序号为( )A. ①③B. ②④C. ①②④D. ①②③【答案】D 【解析】【分析】由A 1C ⊥平面AB 1D 1,直线A 1H 与直线A 1C 重合,结合线线角和线面角的定义,可判断①②;由四边形A 1ACC 1为矩形,可判断③;由垂直于直线A 1H 的平面与平面AB 1D 1平行,可判断④.【详解】如图,在正方体ABCD ﹣A 1B 1C 1D 1中,A 1H ⊥平面AB 1D 1,垂足为H , 连接A 1C ,可得A 1C ⊥AB 1,A 1C ⊥AD 1,即有A 1C ⊥平面AB 1D 1, 直线A 1H 与直线A 1C 重合,直线A 1H 与该正方体各棱所成角相等,均为2直线A 1H 与该正方体各面所成角相等,均为arctan2,故②正确; 过直线A 1H 的平面截该正方体所得截面为A 1ACC 1为平行四边形,故③正确; 垂直于直线A 1H 的平面与平面AB 1D 1平行,截该正方体, 所得截面为三角形或六边形,不可能为五边形.故④错误. 故选D .【点睛】本题考查线线角和线面角的求法,以及正方体的截面的形状,考查数形结合思想和空间想象能力,属于中档题.二、填空题:(本大题共4小题,每题5分,共20分)13. 有一个底面圆的半径为1,高为2的圆柱,点12,O O 分别为这个圆柱上底面和下底面的圆心,在这个圆柱内随机取一点P ,则点P 到点12,O O 的距离都大于1的概率为___. 【答案】13【解析】【详解】到点12,O O 距离为1的点是半径为1的球面,所以所求概率为431=1-23=1V P V ππ=-球柱14. 在数列{a n }中,若函数f (x )=sin 2x2x 的最大值是a 1,且a n =(a n +1﹣a n ﹣2)n ﹣2n 2,则a n =_____. 【答案】a n =2n 2+n 【解析】【分析】()sin 23sin(2)f x x x x ϕ=+=+,可得13a =.由已知条件推出121n na a n n+-=+,然后求解数列的通项公式.【详解】解:()sin 23sin(2)f x x x x ϕ=+=+, 当222x k πϕπ+=+,k Z ∈,()f x 取得最大值3,13a ∴=.21(2)2n n n a a a n n +=---,21(1)22n n na n a n n +∴=+++,121n na a n n+-=+, n a n ⎧⎫∴⎨⎬⎩⎭是以131a =为首项,2为公差的等差数列,()321na n n∴=+- 2[32(1)]2n a n n n n ∴=+-=+, 故答案为:22n n +.【点睛】本题考查了数列递推关系、三角函数求值、法则求积,考查了推理能力与计算能力,属于中档题. 15. 秦九韶是我国南宋著名数学家,在他的著作数书九章》中有已知三边求三角形面积的方法:“以小斜幂并大斜幂减中斜幂余半之,自乘于上以小斜幂乘大斜幂减上,余四约之为实一为从隅,开平方得积”如果把以上这段文字写成公式就是S =,共中a 、b 、c 是△ABC 的内角A ,B ,C 的对边.若sin 2sin cos C A B =,且2b ,2,2c 成等差数列,则ABC 面积S 的最大值为____【解析】【分析】运用正弦定理和余弦定理可得a b =,再由等差数列中项性质可得2224a b c ==-,代入三角形的面积公式,配方,结合二次函数的最值求法,可得所求最大值.【详解】sin 2sin cos C A B =,∴2cos c a B =,因此2222,2a c b c a a b ac+-=⨯=∵2b ,2,2c 成等差数列,∴224b c +=,因此S ===,当285c =,即c =时,S 取得最大值12=,即ABC 面积S . 【点睛】本题考查三角形的正弦定理、余弦定理和面积公式,以及等差数列中项性质,转化为求二次函数的最值是解题的关键,属于中档题.16. 过曲线22122:1(0,0)x y C a b a b-=>>的左焦点1F 作曲线2222:C x y a +=的切线,设切点为M ,延长1F M 交曲线23:2(0)C y px p =>于点N ,其中1,C 3C 有一个共同的焦点,若10MF MN +=,则曲线1C 的离心率为________.【答案】51+ 【解析】 【分析】设双曲线的右焦点为2F ,根据曲线1C 与3C 有一个共同的焦点,得到抛物线方程, 再根据O 为12F F 的中点,M 为1F N 的中点,利用中位线定理,可得,2//OM NF ,22NF a =,21NF NF ⊥, 12NF b =.设(),N x y ,根据抛物线的定义可得2,2x c a x a c +=∴=-,过1F 点作x 轴的垂线,点(),N x y 到该垂线的距离为2a ,然后在1ANF ∆中,利用勾股定理求解. 【详解】如图所示:设双曲线的右焦点为2F ,则2F 的坐标为(),0c , 因为曲线1C 与3C 有一个共同的焦点, 所以24y cx =,因为O 为12F F 的中点,M 为1F N 的中点, 所以OM 为12NF F ∆的中位线, 所以2//OM NF , 因OM a =,所以22NF a =又21NF NF ⊥,22,FF c = 所以12NF b =.设(),N x y ,则由抛物线定义可得2,2x c a x a c +=∴=-,过1F 点作x 轴的垂线,点(),N x y 到该垂线的距离为2NA a =,在1ANF ∆中,由勾股定理即得22244y a b +=, 即()()2224244c a c a c a-+=-,即210e e --=, 解得51e +=. 故答案为:51+ 【点睛】本题主要考查双曲线和抛物线的几何性质,还考查了数形结合的思想和运算求解的能力,属于中档题.三、解答题:(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.)17. 如图,在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,已知4c =,2b =,2cos c C b =,D ,E 分别为线段BC 上的点,且BD CD =,BAE CAE ∠=∠.(1)求线段AD 的长; (2)求ADE ∆的面积. 【答案】(1)6AD =215【解析】【详解】试题分析:(I )在△ABC 中,利用余弦定理计算BC ,再在△ACD 中利用余弦定理计算AD ; (II )根据角平分线性质得到2ABE ACE S AB S AC ∆∆==,又ABE ACE S BE S EC ∆∆=,所以2BE EC =,所以1433CE BC ==,42233DE =-=,再利用正弦形式的面积公式即可得到结果. 试题解析:(1)因为4c =,2b =,所以1cos 24b Cc ==.由余弦定理得22224161 cos244a b c aCab a+-+-===,所以4a=,即4BC=,在ACD∆中,2CD=,2AC=,所以2222cos6AD AC CD AC CD ACD=+-⋅⋅∠=,所以6AD=.(2)因为AE是BAC∠的平分线,所以1sin221sin2ABEACEAB AE BAES ABS ACAC AE CAE∆∆⋅⋅∠===⋅⋅∠,又ABEACES BES EC∆∆=,所以2BEEC=,所以1433CE BC==,42233DE=-=,又因为1cos4C=,所以215sin1cosC C=-=,所以115sin2ADES DE AC C∆=⨯⨯⨯=.18. 如图,在四棱锥P ABCD-中,底面ABCD是边长为2的菱形,60,90DAB ADP∠=︒∠=︒,平面ADP⊥平面ABCD,点F为棱PD的中点.(Ⅰ)在棱AB上是否存在一点E,使得AF平面PCE,并说明理由;(Ⅱ)当二面角D FC B--的余弦值为24时,求直线PB与平面ABCD所成的角.【答案】(1)见解析(2)60︒【解析】【分析】(Ⅰ)取PC 的中点Q ,连结EQ 、FQ ,得到故//AE FQ 且AE FQ =,进而得到//AF EQ ,利用线面平行的判定定理,即可证得//AF 平面PEC .(Ⅱ)以D 为坐标原点建立如图空间直角坐标系,设FD a =,求得平面FBC 的法向量为m ,和平面DFC 的法向量n ,利用向量的夹角公式,求得3a=,进而得到PBD ∠为直线PB 与平面ABCD 所成的角,即可求解.【详解】(Ⅰ)在棱AB 上存在点E ,使得//AF 平面PCE ,点E 为棱AB 的中点. 理由如下:取PC 的中点Q ,连结EQ 、FQ ,由题意,//FQ DC 且12FQ CD =, //AE CD 且12AE CD =,故//AE FQ 且AE FQ =.所以,四边形AEQF 为平行四边形.所以,//AF EQ ,又EQ ⊥平面PEC ,AF ⊥平面PEC ,所以,//AF 平面PEC . (Ⅱ)由题意知ABD ∆为正三角形,所以ED AB ⊥,亦即ED CD ⊥,又90ADP ∠=︒,所以PD AD ⊥,且平面ADP ⊥平面ABCD ,平面ADP ⋂平面ABCD AD =, 所以PD ⊥平面ABCD ,故以D 为坐标原点建立如图空间直角坐标系,设FD a =,则由题意知()0,0,0D ,()0,0,F a ,()0,2,0C ,)3,1,0B,()0,2,FC a =-,()3,1,0CB =-,设平面FBC 的法向量为(),,m x y z =,则由00m FC m CB ⎧⋅=⎨⋅=⎩得2030y az x y -=⎧⎪⎨-=⎪⎩,令1x =,则3y =23z =所以取231,3,m ⎛= ⎝⎭,显然可取平面DFC 的法向量()1,0,0n =,由题意:22cos ,41213m n a ==++,所以3a =. 由于PD ⊥平面ABCD ,所以PB 在平面ABCD 内的射影为BD ,所以PBD ∠为直线PB 与平面ABCD 所成的角, 易知在Rt PBD ∆中,tan 3PDPBD a BD∠===,从而60PBD ∠=︒, 所以直线PB 与平面ABCD 所成的角为60︒.【点睛】本题考查了立体几何中的面面垂直的判定和直线与平面所成角的求解问题,意在考查学生的空间想象能力和逻辑推理能力;解答本题关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,通过严密推理,明确角的构成,着重考查了分析问题和解答问题的能力.19. 如图,A 为椭圆22142x y +=的左顶点,过A 的直线l 交抛物线()220y px p =>于B 、C 两点,C 是AB 的中点.(1)求证:点C 的横坐标是定值,并求出该定值;(2)若直线m 过C 点,且倾斜角和直线l 的倾斜角互补,交椭圆于M 、N 两点,求p 的值,使得BMN ∆的面积最大.【答案】(1)证明见解析,定值1. (2) 928p = 【解析】【分析】(1)由题意可求()2,0A -,设()11,B x y 、()22,C x y ,l :2x my =-,联立直线与抛物线,利用C 是AB 的中点得122y y =,计算可得点C 的横坐标是定值;(2)由题意设直线m 的方程为213pm x m y ⎛⎫=--+ ⎪⎝⎭,联立方程,利用C 是AB 的中点,可得BMN AMN S S ∆∆=,根据三角形的面积公式以及基本不等式可求BMN ∆的面积最大值,由取等条件解得p 的值.【详解】(1)()2,0A -,过A 的直线l 和抛物线交于两点,所以l 的斜率存在且不为0,设l :2x my =-,其中m 是斜率的倒数,设()11,B x y 、()22,C x y ,满足222x my y px=-⎧⎨=⎩,即2240y pmy p -+=,0∆>且121224y y pm y y p+=⎧⎨=⎩,因为C 是AB 中点,所以122y y =,所以223pm y =,292m p =,所以222222133pm p x m m =⋅-=-=,即C 点的横坐标为定值1. (2)直线m 的倾斜角和直线l 的倾斜角互补,所以m 的斜率和l 的斜率互为相反数.设直线m 为213pm x m y ⎛⎫=--+ ⎪⎝⎭,即4x my =-+,联列方程224240x my x y =-+⎧⎨+-=⎩得()2228120m y my +-+=, ()()222848216960m m m ∆=-+=->,所以26m >;且12212282122m y y m y y m ⎧+=⎪⎪+⎨⎪=⎪+⎩,∵点C 是AB 中点,∴BMN AMN S S ∆∆=, 设()2,0A -到MN的距离d =12MN y =-,12132AMNS MN d y y ∆=⋅⋅=-=26t m =-,AMN S ∆==≤=当且仅当8t =,214m =时取到, 所以9142p =,928p =. 法二:因为B 点在抛物线()220y px p =>上,不妨设2,2t B t p ⎛⎫⎪⎝⎭,又C 是AB 中点,则24,42t p t C p ⎛⎫- ⎪⎝⎭,代入抛物线方程得:224224t t p p p -⎛⎫=⋅ ⎪⎝⎭,得:28t p =,∴8414C p p x p -==为定值. (2)∵直线l 的斜率()02126tt k -==--,直线m 斜率'6t k =-, ∴直线m 的方程:()126t t y x -=--,即64x y t =-+,令6m t=代入椭圆方程整理得: ()2228120my my +-+=,设()11,B x y 、()22,C x y ,下同法一.【点睛】本题考查直线的方程和抛物线方程联立,注意运用椭圆的顶点坐标,运用韦达定理以及点到直线的距离公式,考查三角形的面积的最值求法,化简整理的运算能力,属于中档题.20. 某共享单车经营企业欲向甲市投放单车,为制定适宜的经营策略,该企业首先在已投放单车的乙市进行单车使用情况调查.调查过程分随机问卷、整理分析及开座谈会三个阶段.在随机问卷阶段,A,B两个调查小组分赴全市不同区域发放问卷并及时收回;在整理分析阶段,两个调查小组从所获取的有效问卷中,针对15至45岁的人群,按比例随机抽取了300份,进行了数据统计,具体情况如下表:(1)先用分层抽样的方法从上述300人中按“年龄是否达到35岁”抽出一个容量为60人的样本,再用分层抽样的方法将“年龄达到35岁”的被抽个体数分配到“经常使用单车”和“偶尔使用单车”中去.①求这60人中“年龄达到35岁且偶尔使用单车”的人数;②为听取对发展共享单车的建议,调查组专门组织所抽取的“年龄达到35岁且偶尔使用单车”的人员召开座谈会.会后共有3份礼品赠送给其中3人,每人1份(其余人员仅赠送骑行优惠券).已知参加座谈会的人员中有且只有4人来自A组,求A组这4人中得到礼品的人数X的分布列和数学期望;(2)从统计数据可直观得出“是否经常使用共享单车与年龄(记作m岁)有关”的结论.在用独立性检验的方法说明该结论成立时,为使犯错误的概率尽可能小,年龄m应取25还是35?请通过比较2K的观测值的大小加以说明.参考公式:22()()()()()n ad bcKa b c d a c b d-=++++,其中n a b c d=+++.【答案】(1) ①9人②见解析;(2) 25m=【解析】【分析】(1)①根据分层抽样要求,先求从300人中抽取60人,其中“年龄达到35岁”的人数60 100300⋅,再求“年龄达到35岁” 中偶尔使用单车的人数45 20100⋅;②确定随机变量X的取值,计算X各个取值的概率,得分布列及数学期望.(2)对年龄m 是否达到35,m 是否达到25对数据重新整理(2⨯2联表),根据公式计算相应的2K ,比较大小确定.【详解】(1)①从300人中抽取60人,其中“年龄达到35岁”的有6010020300⨯=人,再将这20人用分层抽样法按“是否经常使用单车”进行名额划分,其中“年龄达到35岁且偶尔使用单车”的人数为45209100⨯=. ②A 组这4人中得到礼品的人数X 的可能取值为0,1,2,3,相应概率为:()35395042C P X C ===,()12453910121C C P X C ===, ()2145395214C C P X C ===,()34391321C P X C ===. 故其分布列为∴()5105140123422114213E X =⨯+⨯+⨯+⨯=. (2)按“年龄是否达到35岁”对数据进行整理,得到如下列联表:35m =时,由(1)中的列联表,可求得2K 的观测值()22130012545755530015002520010018012020010018012016k ⨯⨯-⨯⨯===⨯⨯⨯⨯⨯⨯.25m =时,按“年龄是否达到25岁”对数据进行整理,得到如下列联表:可求得2K 的观测值()22230067871133330021004920010018012020010018012016k ⨯⨯-⨯⨯===⨯⨯⨯⨯⨯⨯. ∴21k k >,欲使犯错误的概率尽可能小,需取25m =.【点睛】本题考查分层抽样和独立性检验,随机变量的分布列及数学期望,考查统计知识理解掌握水平、对数据的处理能力及分析推理解决实际问题的能力.21. 已知函数2()1xf x e ax bx =---,其中,a b R ∈, 2.71828e =为自然对数的底数.(Ⅰ)设()g x 是函数()f x 的导函数,求函数()g x 在区间[0,1]上的最小值; (Ⅱ)若(1)0f =,函数()f x 在区间(0,1)内有零点,求a 的取值范围【答案】(Ⅰ)当12a ≤时, ()(0)1g x g b ≥=-;当 122e a <≤时, ()22ln(2)g x a a a b ≥--; 当2ea >时, ()2g x e a b ≥--.(Ⅱ) a 的范围为()2,1e -. 【解析】【详解】试题分析:(Ⅰ)易得()2,()2x x g x e ax b g x e a -='=--,再对分a 情况确定()g x 的单调区间,根据()g x 在[0,1]上的单调性即可得()g x 在[0,1]上的最小值.(Ⅱ)设0x 为()f x 在区间(0,1)内的一个零点,注意到(0)0,(1)0f f ==.联系到函数的图象可知,导函数()g x 在区间0(0,)x 内存在零点1x ,()g x 在区间0(),1x 内存在零点2x ,即()g x 在区间(0,1)内至少有两个零点. 由(Ⅰ)可知,当12a ≤及2ea ≥时,()g x 在(0,1)内都不可能有两个零点.所以122ea <<.此时,()g x 在[0,ln 2]a 上单调递减,在[ln 2,1]a 上单调递增,因此12(0,ln(2)],(ln(2),1)x a x a ∈∈,且必有(0)10,(1)20gb g e a b =->=-->.由(1)10f e a b =---=得:1b e a =--,代入这两个不等式即可得a 的取值范围.试题解答:(Ⅰ)()2,()2x x g x e ax b g x e a -='=--①当0a ≤时,()20xg x e a -'=>,所以()(0)1g x g b ≥=-. ②当0a >时,由()20x g x e a -'=>得2,ln(2)x e a x a >>. 若12a >,则ln(2)0a >;若2e a >,则ln(2)1a >. 所以当102a <≤时,()g x 在[0,1]上单调递增,所以()(0)1g x gb ≥=-. 当122e a <≤时,()g x 在[0,ln 2]a 上单调递减,在[ln 2,1]a 上单调递增,所以()(ln 2)22ln 2g x g a a a a b ≥=--. 当2e a >时,()g x 在[0,1]上单调递减,所以()(1)2g x g e a b ≥=--. (Ⅱ)设0x 为()f x 在区间(0,1)内的一个零点,则由0(0)()0f f x ==可知,()f x 在区间0(0,)x 上不可能单调递增,也不可能单调递减.则()g x 不可能恒为正,也不可能恒为负.故()g x 在区间0(0,)x 内存在零点1x .同理()g x 在区间0(),1x 内存在零点2x .所以()g x 在区间(0,1)内至少有两个零点.由(Ⅰ)知,当12a ≤时,()g x 在[0,1]上单调递增,故()g x 在(0,1)内至多有一个零点. 当2e a ≥时,()g x 在[0,1]上单调递减,故()g x 在(0,1)内至多有一个零点. 所以122e a <<. 此时,()g x 在[0,ln 2]a 上单调递减,在[ln 2,1]a 上单调递增,因此12(0,ln(2)],(ln(2),1)x a x a ∈∈,必有(0)10,(1)20g b g e a b =->=-->.由(1)10f e a b =---=得:12a b e +=-<,有(0)120,(1)210g b a e g e a b a =-=-+>=--=->.解得21e a -<<.当21e a -<<时,()g x 在区间[0,1]内有最小值(ln(2))g a .若(ln(2))0g a ≥,则()0([0,1])g x x ≥∈,从而()f x 在区间[0,1]上单调递增,这与(0)(1)0f f ==矛盾,所以(ln(2))0g a <.又(0)20,(1)10g a e g a =-+>=->,故此时()g x 在(0,ln(2))a 和(ln(2),1)a 内各只有一个零点1x 和2x .由此可知()f x 在1[0,]x 上单调递增,在1(,x 2)x 上单调递减,在2[,1]x 上单调递增.所以1()(0)0f x f >=,2()(1)0f x f <=,故()f x 在1(,x 2)x 内有零点.综上可知,a 的取值范围是(2,1)e -.【考点定位】导数的应用及函数的零点.(二)选考题,满分共10分,请考生在22,23题中任选一题作答,如果多做,则按所做的第一题计分.答时用2B 铅笔在答题卡上把所选题目的题号涂黑22. 选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,直线1l 过原点且倾斜角为02παα⎛⎫< ⎪⎝⎭.以坐标原点O 为极点,x 轴正半轴为极轴建立坐标系,曲线2C 的极坐标方程为2cos ρθ=.在平面直角坐标系xOy 中,曲线2C 与曲线1C 关于直线y x =对称.(Ⅰ)求曲线2C 的极坐标方程;(Ⅱ)若直线2l 过原点且倾斜角为3πα+,设直线1l 与曲线1C 相交于O ,A 两点,直线2l 与曲线2C 相交于O ,B 两点,当α变化时,求AOB 面积的最大值.【答案】(Ⅰ) 2sin ρθ= 34【解析】【分析】(Ⅰ)法一:将1C 化为直角坐标方程,根据对称关系用2C 上的点表示出1C 上点的坐标,代入1C 方程得到2C 的直角坐标方程,再化为极坐标方程;法二:将y x =化为极坐标方程,根据对称关系将1C 上的点用2C 上的点坐标表示出来,代入1C 极坐标方程即可得到结果;(Ⅱ)利用1l 和2l 的极坐标方程与12,C C 的极坐标方程经,A B 坐标用α表示,将所求面积表示为与α有关的三角函数解析式,通过三角函数值域求解方法求出所求最值.【详解】(Ⅰ)法一:由题可知,1C 的直角坐标方程为:2220x y x +-=,设曲线2C 上任意一点(),x y 关于直线y x =对称点为()00,x y ,所以00x y y x =⎧⎨=⎩ 又因为2200020x y x +-=,即2220x y y +-=,所以曲线2C 的极坐标方程为:2sin ρθ=法二:由题可知,y x =的极坐标方程为:4πθ=()R ρ∈, 设曲线2C 上一点(),ρθ关于4πθ= ()R ρ∈的对称点为()00,ρθ, 所以0024ρρθθπ=⎧⎪⎨+=⎪⎩ 又因为002cos ρθ=,即2cos 2sin 2πρθθ⎛⎫=-= ⎪⎝⎭, 所以曲线2C 的极坐标方程为:2sin ρθ=(Ⅱ)直线1l 的极坐标方程为:θα=,直线2l 的极坐标方程为:3πθα=+设()11,A ρθ,(),B ρθ22 所以2cos θαρθ=⎧⎨=⎩解得12cos ρα=,32sin πθαρθ⎧=+⎪⎨⎪=⎩解得22sin 3πρα⎛⎫=+ ⎪⎝⎭1211sin sin sin 2332AOB S ππρρααααα∆⎛⎫⎛⎫∴=⋅=⋅+=⋅+ ⎪ ⎪ ⎪⎝⎭⎝⎭223πααα⎛⎫=+=++ ⎪⎝⎭因为:02πα≤<,所以42333πππα≤+< 当232ππα+=即12πα=时,sin 213πα⎛⎫+= ⎪⎝⎭,AOB S ∆+34【点睛】本题考查轨迹方程的求解、三角形面积最值问题的求解,涉及到三角函数的化简、求值问题.求解面积的关键是能够明确极坐标中ρ的几何意义,从而将问题转化为三角函数最值的求解.23. 已知函数()121f x ax x =++-(1)当1a =时,求不等式()3f x >的解集;(2)若02a <<,且对任意x ∈R ,3()2f x a ≥恒成立,求a 的最小值. 【答案】(1)(,1)(1,)-∞-+∞;(2)1.【解析】 【分析】(1) 当1a =时,求出分段函数()3,112,1213,2x x f x x x x x ⎧⎪-<-⎪⎪=-+-≤≤⎨⎪⎪>⎪⎩,然后可以选择数形结合求解或选择解不等式组;(2)当02a <<时,化简分段函数得()()()()12,,11 12122,,212,2a x x a f x ax x a x x a a x x ⎧-+<-⎪⎪⎪=++-=-+-≤≤⎨⎪⎪+>⎪⎩可以得到函数()f x 在1,a ⎛⎫-∞- ⎪⎝⎭上单调递减,在11,2a ⎡⎤-⎢⎥⎣⎦上单调递减,在1,2⎛⎫+∞ ⎪⎝⎭上单调递增,然后利用最值分析法,即可求出参数a 的最小值.【详解】(1)当1a =时,()121f x x x =++-,即()3,112,1213,2x x f x x x x x ⎧⎪-<-⎪⎪=-+-≤≤⎨⎪⎪>⎪⎩, 解法一:作函数()121f x x x =++-的图象,它与直线3y =的交点为()()1,3,1,3A B -,所以,()3f x >的解集的解集为()(),11,-∞-⋃+∞.解法2:原不等式()3f x >等价于133x x <-⎧⎨->⎩ 或11223x x ⎧-≤≤⎪⎨⎪-+>⎩ 或1233x x ⎧>⎪⎨⎪>⎩, 解得:1x <-或无解或1x >,所以,()3f x >的解集为()(),11,-∞-⋃+∞.(2)1102,,20,202a a a a <<∴-+-<. 则()()()()12,,1112122,,212,2a x x a f x ax x a x x a a x x ⎧-+<-⎪⎪⎪=++-=-+-≤≤⎨⎪⎪+>⎪⎩ 所以函数()f x 在1,a ⎛⎫-∞- ⎪⎝⎭上单调递减,在11,2a ⎡⎤-⎢⎥⎣⎦上单调递减,在1,2⎛⎫+∞ ⎪⎝⎭上单调递增. 所以当12x =时,()f x 取得最小值,()min 1122a f x f ⎛⎫==+ ⎪⎝⎭. 因为对x R ∀∈,()32f x a ≥恒成立,所以()min 3122a f x a=+≥. 又因为0a >, 所以2230a a +-≥,解得1a ≥ (3a ≤-不合题意).所以a 的最小值为1.【点睛】本题第一问考查通过利用绝对值不等式的关系转化成分段函数进行求解的题目,求解的过程既可用数形结合,也可以用不等式组求解,属于简单题;第二问考查含参绝对值不等式求解参数的最值问题,因为本题的参数不容易分离,所以,选择最值分析法进行讨论求解,难度属于中等.。
【解析版】河北省衡水中学2019届高三下学期一调考试理科数学试卷
【分析】
D. 4[来*@&#源^:中教网]
①写出命题“
,
”的否定,可判断①的正误;②写出命题“若
,
则 且 ”的否定,可判断②的正误;写出命题“若
,则 或 ”的否命
题,可判断③的正误;④结合复合命题的真值表,可判断④的正误,从而求得结果.
【详解】①命题“
,
”的否定是:“
,
”,所以①正确;
②命题“若
,则 且 ”的否定是“若
【分析】
解一元二次不等式求得 A,解指数不等式求得 B,再根据两个集合的交集的定义求得 .
【详解】因为集合
,[w@ww.zzste p.#%co m*&]
,
所以
,
故选 D.
【点睛】该题考查的是有关集合的运算,属于简单题目.
2.已知
,是虚数单位,若
,则
()
A.
B. 2
C.
D. 5
【答案】C
【解析】
【分析】
K12 高考数学模拟
河北省衡水中学 2019 届高三下学期一调考试
数学(理科)
一、选择题:本题共 12 小题.在每小题给出的四个选项中,只有一项是符合题
目要求的.[来源:&中%国教育#出版*~网]
1.已知集合
,
,则
()
A.
B.
C.
D.
[w& ww.z*z ste %^p.c om ~]
【答案】D
【解析】
行求解,可得结果. 【详解】该程序框图的作用是求
的值,
而
,
故选 C.
【点睛】该题主要考查程序框图,用结合律进行求和,属于简单题目.[来@源:中国教育*出#%版&网]
2019-2020学年衡中高三下学期理数答案
(2)∵a,b,c 均为正实数,
∴ •≤
= ,当且仅当 a+1=2,即 a=1 时取等号,
同理可得 • ≤ , • ≤ ,
相加可得 (
+
+
≤
=6,
∴
+
+
≤3 ,当且仅当 a=b=c=1 时取等号
附加:2.(1)由正弦定理得,
sin
AB BCA
sin
BC BAC
,即
sin
2 BCA
3 1,
4
解得 sin BCA 6 . 12
由 B1C BC1, DC BC1,可得 B1C 平面 A1B1CD ,即 B1C 平面 A1DM ,
所以存在点 M ,使得平面 A1DM 平面 BC1D ,所以①正确;
由 BD / /B1D1, A1D / /B1C ,
利用平面与平面平行的判定,可得证得平面 A1BD / / 平面 B1D1C ,
当
时, 在 和
上单调递减, 在
上单调递增
,又
,有
在
上单调递增,
,
令
,
令
,
单调递增
由
,求得
当
时, 单调递减,
在 上单调递增故
故
,
,
由零点存在性定理知 在区间
有一个根,设为:
又
,得
,
, 是 的另一个零点
故当
时, 存在三个不同的零点 , ,
22.【解答】解:(1)由
,得 (ρcosθ﹣ρsinθ)=﹣2 ,
假设存在过 的直线满足题设条件,并设该直线的方程为
由相切可知
,所以
即
,解得
2019-2020学年人教A版河北省衡水中学高三第二学期第一次调研(理科)数学试卷 含解析
2019-2020学年高三第二学期一调数学试卷(理科)一、选择题1.已知全集U=R,集合A={y|y=x2+2,x∈R},集合B={x|y=lg(x﹣1)},则阴影部分所示集合为()A.[1,2]B.(1,2)C.(1,2]D.[1,2)2.已知复数(a∈R,i为虚数单位),若复数z的共轭复数的虚部为,则复数z在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.若a=π﹣2,b=a a,,则a,b,c的大小关系为()A.c>b>a B.b>c>a C.b>a>c D.a>b>c4.函数(其中e为自然对数的底数)图象的大致形状是()A.B.C.D.5.吸烟有害健康,小明为了帮助爸爸戒烟,在爸爸包里放一个小盒子,里面随机摆放三支香烟和三支跟香烟外形完全一样的“戒烟口香糖”,并且和爸爸约定,每次想吸烟时,从盒子里任取一支,若取到口香糖则吃一支口香糖,不吸烟;若取到香烟,则吸一支烟,不吃口香糖,假设每次香烟和口香糖被取到的可能性相同,则“口香糖吃完时还剩2支香烟”的概率为()A.B.C.D.6.已知△ABC外接圆的圆心为O,若AB=3,AC=5,则的值是()A.2B.4C.8D.167.给出下列五个命题:①若p∨q为真命题,则p∧q为真命题;②命题“∀x>0,有e x≥1”的否定为“∃x0≤0,有<1”;③“平面向量与的夹角为钝角”的充分不必要条件是“”;④在锐角△ABC中,必有sin A+sin B>cos A+cos B;⑤{a n}为等差数列,若a m+a n=a p+a q(m,n,p,q∈N*),则m+n=p+q其中正确命题的个数为()A.1B.2C.3D.48.已知定义在(0,+∞)上的函数f(x),恒为正数的f(x)符合f(x)<f′(x)<2f (x),则的取值范围为()A.(e,2e)B.C.(e,e3)D.9.已知点A(0,2),抛物线C:y2=4x的焦点为F,射线FA与抛物线C相交于点M,与其准线相交于点N,则|FM|:|MN|=()A.2:B.1:2C.1:D.1:310.定义为n个正数p1,p2,…p n的“均倒数”.若已知数列{a n}的前n 项的“均倒数”为,又,则=()A.B.C.D.11.对于任意的实数x∈[1,e],总存在三个不同的实数y∈[﹣1,5],使得y2xe1﹣y﹣ax﹣lnx =0成立,则实数a的取值范围是()A.(]B.[)C.(0,]D.[)12.如图,在正方体ABCD﹣A1B1C1D1中,A1H⊥平面AB1D1,垂足为H,给出下面结论:①直线A1H与该正方体各棱所成角相等;②直线A1H与该正方体各面所成角相等;③过直线A1H的平面截该正方体所得截面为平行四边形;④垂直于直线A1H的平面截该正方体,所得截面可能为五边形,其中正确结论的序号为()A.①③B.②④C.①②④D.①②③二、填空题(共4小题,每小题5分,满分20分)13.有一个底面圆的半径为1,高为2的圆柱,点O1,O2分别为这个圆柱上底面和下底面的圆心,在这个圆柱内随机取一点P,则点P到点O1,O2的距离都大于1的概率为.14.在数列{a n}中,若函数f(x)=sin2x+2cos2x的最大值是a1,且a n=(a n+1﹣a n﹣2)n﹣2n2,则a n=.15.秦九韶是我国南宋著名数学家,在他的著作数书九章》中有已知三边求三角形面积的方法:“以小斜幂并大斜幂减中斜幂余半之,自乘于上以小斜幂乘大斜幂减上,余四约之为实一为从隅,开平方得积”如果把以上这段文字写成公式就是,共中a、b、c是△ABC的内角A,B,C的对边.若sin C=2sin A cos B,且b2,2,c2成等差数列,则△ABC面积S的最大值为16.过曲线的左焦点F1作曲线的切线,设切点为M,延长F1M交曲线于点N,其中C1,C3有一个共同的焦点,若,则曲线C1的离心率为.三、解答题:(共5小题,共70分,解答应写出文字说明,证明过程或演算步骤.)17.如图,在△ABC中,内角A,B,C的对边分别为a,b,c,已知c=4,b=2,2c cos C =b,D,E分别为线段BC上的点,且BD=CD,∠BAE=∠CAE.(1)求线段AD的长;(2)求△ADE的面积.18.如图,在四棱锥P﹣ABCD中,底面ABCD是边长为2的菱形,∠DAB=60°,∠ADP =90°,平面ADP⊥平面ABCD,点F为棱PD的中点.(Ⅰ)在棱AB上是否存在一点E,使得AF∥平面PCE,并说明理由;(Ⅱ)当二面角D﹣FC﹣B的余弦值为时,求直线PB与平面ABCD所成的角.19.如图,A为椭圆的左顶点,过A的直线交抛物线y2=2px(p>0)于B、C 两点,C是AB的中点.(1)求证:点C的横坐标是定值,并求出该定值;(2)若直线m过C点,且倾斜角和直线的倾斜角互补,交椭圆于M、N两点,求p的值,使得△BMN的面积最大.20.某共享单车经营企业欲向甲市投放单车,为制定适宜的经营策略,该企业首先在已投放单车的乙市进行单车使用情况调查.调查过程分随机问卷、整理分析及开座谈会三个阶段.在随机问卷阶段,A,B两个调查小组分赴全市不同区域发放问卷并及时收回;在整理分析阶段,两个调查小组从所获取的有效问卷中,针对15至45岁的人群,按比例随机抽取了300份,进行了数据统计,具体情况如表:组别年龄A组统计结果B组统计结果经常使用单车偶尔使用单车经常使用单车偶尔使用单车[15,25)27人13人40人20人[25,35)23人17人35人25人[35,45)20人20人35人25人(1)先用分层抽样的方法从上述300人中按“年龄是否达到35岁”抽出一个容量为60人的样本,再用分层抽样的方法将“年龄达到35岁”的被抽个体数分配到“经常使用单车”和“偶尔使用单车”中去.①求这60人中“年龄达到35岁且偶尔使用单车”的人数;②为听取对发展共享单车的建议,调查组专门组织所抽取的“年龄达到35岁且偶尔使用单车”的人员召开座谈会,会后共有3份礼品赠送给其中3人,每人1份(其余人员仅赠送骑行优惠券).已知参加座谈会的人员中有且只有4人来自A组,求A组这4人中得到礼品的人数X的分布列和数学期望;(2)从统计数据可直观得出“是否经常使用共享单车与年龄(记作m岁)有关”的结论.在用独立性检验的方法说明该结论成立时,为使犯错误的概率尽可能小,年龄m应取25还是35?请通过比较K2的观测值的大小加以说明.参考公式:K2=,其中n=a+b+c+d.21.已知函数f(x)=e x﹣ax2﹣bx﹣1,其中a,b∈R,e=2.71828…为自然对数的底数.(1)设g(x)是函数f(x)的导函数,求函数g(x)在区间[0,1]上的最小值;(2)若f(1)=0,函数f(x)在区间(0,1)内有零点,求a的取值范围.(二)选考题,满分共10分,请考生在22.23题中任选一题作答,如果多做,则按所做的第一题计分.答时用2B铅笔在答题卡上把所选题目的题号涂黑[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy中,直线l1过原点且倾斜角为α(0).以坐标原点O为极点,x轴正半轴为极轴建立坐标系,曲线C1的极坐标方程为ρ=2cosθ.在平面直角坐标系xOy中,曲线C2与曲线C1关于直线y=x对称.(Ⅰ)求曲线C2的极坐标方程;(Ⅱ)若直线l2过原点且倾斜角为,设直线l1与曲线C1相交于O,A两点,直线l2与曲线C2相交于O,B两点,当α变化时,求△AOB面积的最大值.[选修4--5:不等式选讲]23.已知函数f(x)=|ax+1|+|2x﹣1|.(1)当a=1时,求不等式f(x)>3的解集;(2)若0<a<2,且对任意x∈R,恒成立,求a的最小值.参考答案一、选择题(共12小题,每题5分,共60分,下列每小题所给选项只有一项符合题意,请将正确答案的序号填涂在答题卡上)1.已知全集U=R,集合A={y|y=x2+2,x∈R},集合B={x|y=lg(x﹣1)},则阴影部分所示集合为()A.[1,2]B.(1,2)C.(1,2]D.[1,2)解:集合A={y|y=x2+2,x∈R}=[2,+∞),集合B={x|y=lg(x﹣1)}=(1,+∞),图形阴影部分为∁U A∩B=(1,2),故选:B.2.已知复数(a∈R,i为虚数单位),若复数z的共轭复数的虚部为,则复数z在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限解:∵=,∴的虚部为﹣,由﹣=﹣,得a=2.∴复数z在复平面内对应的点的坐标为(,),位于第一象限.故选:A.3.若a=π﹣2,b=a a,,则a,b,c的大小关系为()A.c>b>a B.b>c>a C.b>a>c D.a>b>c解:由题意0<a<1,故a<a a,故a a>,即b>c,而c=>a=π﹣2,故选:B.4.函数(其中e为自然对数的底数)图象的大致形状是()A.B.C.D.解:f(x)=(﹣1)cos x=cos x,f(﹣x)=cos(﹣x)=cos x=﹣f(x).∴f(x)为奇函数,图象关于原点对称,排除A,C;当0<x<时,e x>1,cos x>0,∴f(x)=cos x<0,故选:B.5.吸烟有害健康,小明为了帮助爸爸戒烟,在爸爸包里放一个小盒子,里面随机摆放三支香烟和三支跟香烟外形完全一样的“戒烟口香糖”,并且和爸爸约定,每次想吸烟时,从盒子里任取一支,若取到口香糖则吃一支口香糖,不吸烟;若取到香烟,则吸一支烟,不吃口香糖,假设每次香烟和口香糖被取到的可能性相同,则“口香糖吃完时还剩2支香烟”的概率为()A.B.C.D.解:在爸爸包里放一个小盒子,里面随机摆放三支香烟和三支跟香烟外形完全一样的“戒烟口香糖”,每次想吸烟时,从盒子里任取一支,若取到口香糖则吃一支口香糖,不吸烟;若取到香烟,则吸一支烟,不吃口香糖,假设每次香烟和口香糖被取到的可能性相同,则“口香糖吃完时还剩2支香烟”的概率为:P==.故选:D.6.已知△ABC外接圆的圆心为O,若AB=3,AC=5,则的值是()A.2B.4C.8D.16解:如图,取AC中点D,AB中点E,并连接OD,OE,则:OD⊥AC,OE⊥AB;∴,;∴===8.故选:C.7.给出下列五个命题:①若p∨q为真命题,则p∧q为真命题;②命题“∀x>0,有e x≥1”的否定为“∃x0≤0,有<1”;③“平面向量与的夹角为钝角”的充分不必要条件是“”;④在锐角△ABC中,必有sin A+sin B>cos A+cos B;⑤{a n}为等差数列,若a m+a n=a p+a q(m,n,p,q∈N*),则m+n=p+q其中正确命题的个数为()A.1B.2C.3D.4解:①若p∨q为真命题的条件是p、q至少有一个是真命题,而p∧q为真命题的条件为p、q两个都是真命题,所以当p、q一个真一个假时,p∧q为假命题,所以①不正确;②命题“∀x>0,有e x≥1”的否定为“∃x0>0,有<1”;因此②不正确;③“平面向量与的夹角为钝角”⇒“”;反之不成立,平面向量与的夹角可能为平角.∴“平面向量与的夹角为钝角”的必要不充分条件是“”;因此不正确.④因为在锐角三角形中,∴π>A+B>,有>A>﹣B>0,所以有sin A>sin(﹣B)=cos B,即sin A>cos B,同理sin B>cos A,故sin A+sin B>cos A+cos B,所以④正确;⑤若等差数列{a n}为常数列,则m+n=p+q不一定成立,∴命题不正确.综上可得:只有④正确.故选:A.8.已知定义在(0,+∞)上的函数f(x),恒为正数的f(x)符合f(x)<f′(x)<2f (x),则的取值范围为()A.(e,2e)B.C.(e,e3)D.解:令g(x)=,x∈(0,+∞),∵∀x∈(0,+∞),f(x)<f′(x),∴g′(x)==>0,∴g(x)=在区间(0,+∞)上单调递增,∴g(1)=<=g(2),∴<①;再令h(x)=,x∈(0,+∞),∵∀x∈(0,+∞),f′(x)<2f(x)恒成立,∴h′(x)==<0,∴函数h(x)在x∈(0,+∞)上单调递减,∴h(1)=>=h(2),∴>②,综上①②可得:<<.故选:D.9.已知点A(0,2),抛物线C:y2=4x的焦点为F,射线FA与抛物线C相交于点M,与其准线相交于点N,则|FM|:|MN|=()A.2:B.1:2C.1:D.1:3解:∵抛物线C:y2=4x的焦点为F(1,0),点A坐标为(0,2),∴抛物线的准线方程为l:x=﹣1,直线AF的斜率为k=﹣2,过M作MP⊥l于P,根据抛物线物定义得|FM|=|PM|,∵Rt△MPN中,tan∠NMP=﹣k=2,∴=2,可得|PN|=2|PM|,得|MN|==|PM|,因此可得|FM|:|MN|=|PM|:|MN|=1:.故选:C.10.定义为n个正数p1,p2,…p n的“均倒数”.若已知数列{a n}的前n 项的“均倒数”为,又,则=()A.B.C.D.解:由已知得,∴a1+a2+…+a n=n(2n+1)=S n当n≥2时,a n=S n﹣S n﹣1=4n﹣1,验证知当n=1时也成立,∴a n=4n﹣1,∴,∴∴=+()+…+()=1﹣=.故选:C.11.对于任意的实数x∈[1,e],总存在三个不同的实数y∈[﹣1,5],使得y2xe1﹣y﹣ax﹣lnx =0成立,则实数a的取值范围是()A.(]B.[)C.(0,]D.[)解:y2xe1﹣y﹣ax﹣lnx=0可化为:,设g(y)=(﹣1≤y≤5),则g′(y)=,即函数g(y)在(﹣1,0),(2,5)为减函数,在(0,2)为增函数,又g(﹣1)=e2,g(2)=,g(5)=,设f(x)=a+(x∈[1,e]),f′(x)=,即函数f(x)在[1,e]为增函数,所以a≤f(x)≤a,对于任意的实数x∈[1,e],总存在三个不同的实数y∈[﹣1,5],使得y2xe1﹣y﹣ax﹣lnx=0成立,即对于任意的实数x∈[1,e],总存在三个不同的实数y∈[﹣1,5],使得成立,即a+∈[,)对于任意的实数x∈[1,e]恒成立,即,即,故选:B.12.如图,在正方体ABCD﹣A1B1C1D1中,A1H⊥平面AB1D1,垂足为H,给出下面结论:①直线A1H与该正方体各棱所成角相等;②直线A1H与该正方体各面所成角相等;③过直线A1H的平面截该正方体所得截面为平行四边形;④垂直于直线A1H的平面截该正方体,所得截面可能为五边形,其中正确结论的序号为()A.①③B.②④C.①②④D.①②③解:如图,在正方体ABCD﹣A1B1C1D1中,A1H⊥平面AB1D1,垂足为H,连接A1C,可得A1C⊥AB1,A1C⊥AD1,即有A1C⊥平面AB1D1,直线A1H与直线A1C重合,直线A1H与该正方体各棱所成角相等,均为arctan,故①正确;直线A1H与该正方体各面所成角相等,均为arctan,故②正确;过直线A1H的平面截该正方体所得截面为A1ACC1为平行四边形,故③正确;垂直于直线A1H的平面与平面AB1D1平行,截该正方体,所得截面为三角形或六边形,不可能为五边形.故④错误.故选:D.二、填空题(共4小题,每小题5分,满分20分)13.有一个底面圆的半径为1,高为2的圆柱,点O1,O2分别为这个圆柱上底面和下底面的圆心,在这个圆柱内随机取一点P,则点P到点O1,O2的距离都大于1的概率为.解:∵到点O1的距离等于1的点构成一个半个球面,到点O2的距离等于1的点构成一个半个球面,两个半球构成一个整球,如图,点P到点O1,O2的距离都大于1的概率为:P===1﹣=;故答案为:14.在数列{a n}中,若函数f(x)=sin2x+2cos2x的最大值是a1,且a n=(a n+1﹣a n﹣2)n﹣2n2,则a n=2n2+n.解:f(x)=sin2x+2cos2x=3sin(2x+φ),当2x+φ=2kπ+,k∈Z,f(x)取得最大值3,∴a1=3.a n=(a n+1﹣a n﹣2)n﹣2n2,∴na n+1=(n+1)a n+2n2+2n,﹣=2,∴a n=n[3+2(n﹣1)]=2n2+n,故答案为:2n2+n.15.秦九韶是我国南宋著名数学家,在他的著作数书九章》中有已知三边求三角形面积的方法:“以小斜幂并大斜幂减中斜幂余半之,自乘于上以小斜幂乘大斜幂减上,余四约之为实一为从隅,开平方得积”如果把以上这段文字写成公式就是,共中a、b、c是△ABC的内角A,B,C的对边.若sin C=2sin A cos B,且b2,2,c2成等差数列,则△ABC面积S的最大值为解:sin C=2sin A cos B,∴c=2a cos B.因此c=2a•,∵b2,2,c2成等差数列∴b2+c2=4,即有a2=b2=4﹣c2,因此S===,当c2=即c=时,S取得最大值×=,即△ABC面积S的最大值为,故答案为:.16.过曲线的左焦点F1作曲线的切线,设切点为M,延长F1M交曲线于点N,其中C1,C3有一个共同的焦点,若,则曲线C1的离心率为.解:设双曲线的右焦点为F,则F的坐标为(c,0),∵曲线C1与C3有一个共同的焦点,∴y2=4cx,∵,∴=,则M为F1N的中点,∵O为F1F的中点,M为F1N的中点,∴OM为△NF1F的中位线,∴OM∥PF,∵|OM|=a,∴|NF|=2a又NF⊥NF1,|F1F|=2c,∴|NF1|=2b,设N(x,y),则由抛物线的定义可得x+c=2a,∴x=2a﹣c过点F1作x轴的垂线,点N到该垂线的距离为2a.由勾股定理y2+4a2=4b2,即4c(2a﹣c)+4a2=4(c2﹣a2),得e2﹣e﹣1=0,∴e=.故答案为:.三、解答题:(共5小题,共70分,解答应写出文字说明,证明过程或演算步骤.)17.如图,在△ABC中,内角A,B,C的对边分别为a,b,c,已知c=4,b=2,2c cos C =b,D,E分别为线段BC上的点,且BD=CD,∠BAE=∠CAE.(1)求线段AD的长;(2)求△ADE的面积.解:(1)根据题意,b=2,c=4,2c cos C=b,则cos C==;又由cos C===,解可得a=4,即BC=4,则CD=2,在△ACD中,由余弦定理得:AD2=AC2+CD2﹣2AC•CD cos C=6,则AD=;(2)根据题意,AE平分∠BAC,则==,变形可得:CE=BC=,cos C=,则sin C==,S△ADE=S△ACD﹣S△ACE=×2×2×﹣×2××=.18.如图,在四棱锥P﹣ABCD中,底面ABCD是边长为2的菱形,∠DAB=60°,∠ADP =90°,平面ADP⊥平面ABCD,点F为棱PD的中点.(Ⅰ)在棱AB上是否存在一点E,使得AF∥平面PCE,并说明理由;(Ⅱ)当二面角D﹣FC﹣B的余弦值为时,求直线PB与平面ABCD所成的角.解:(Ⅰ)在棱AB上存在点E,使得AF∥平面PCE,点E为棱AB的中点.理由如下:取PC的中点Q,连结EQ、FQ,由题意,FQ∥DC且FQ=CD,AE∥CD且AE=CD,故AE∥FQ且AE=FQ.所以,四边形AEQF为平行四边形.3分所以,AF∥EQ,又EQ⊂平面PEC,AFα平面PEC,所以,AF∥平面PEC.5分(Ⅱ)由题意知△ABD为正三角形,所以ED⊥AB,亦即ED⊥CD,又∠ADP=90°,所以PD⊥AD,且平面ADP⊥平面ABCD,平面ADP∩平面ABCD=AD,所以PD⊥平面ABCD,故以D为坐标原点建立如图空间直角坐标系,7分设FD=a,则由题意知D(0,0,0),F(0,0,a),C(0,2,0),B(,1,0),=(0,2,﹣a),=(),设平面FBC的法向量为=(x,y,z),则由,令x=1,则y=,z=,所以取=(1,,),平面DFC的法向量=(1,0,0),l因为二面角D﹣FC﹣B的余弦值为,所以由题意:|cos<>|===,解得a=.10分由于PD⊥平面ABCD,所以PB在平面ABCD内的射影为BD,所以∠PBD为直线PB与平面ABCD所成的角,由题意知在Rt△PBD中,tan∠PBD==a=,从而∠PBD=60°,所以直线PB与平面ABCD所成的角为60°.12分19.如图,A为椭圆的左顶点,过A的直线交抛物线y2=2px(p>0)于B、C 两点,C是AB的中点.(1)求证:点C的横坐标是定值,并求出该定值;(2)若直线m过C点,且倾斜角和直线的倾斜角互补,交椭圆于M、N两点,求p的值,使得△BMN的面积最大.解:(1)由题意可知A(﹣2,0),设B(x1,y1),C(x2,y2),∵过A的直线l交抛物线于两点,∴直线l的斜率存在且不为0,设l:x=my﹣2,联立方程,消去x得,y2﹣2pmy+4p=0,∴y1+y2=2pm,y1y2=4p,∵点C是AB的中点,∴y1=2y2,∴,,∴4p=,∴,∴2pm2=9,∴x2=my2﹣2=﹣2=1,∴点C的横坐标为定值1;(2)直线m的倾斜角和直线l的倾斜角互补,所以直线m的斜率和直线l的斜率互为相反数,又点C(1,),所以设直线m的方程为:x=﹣m(y﹣)+1,即x=﹣my+4,设M(x1,y2),N(x2,y2),联立方程,消去x得,(m2+2)y2﹣8my+12=0,∴△=(8m)2﹣48(m2+2)=16m2﹣96>0,解得m2>6,∴,,∴|MN|===4,∵点C是AB的中点,∴S△BMN=S△AMN,设点A(﹣2,0)到直线MN的距离为d,则d ==,∴S△BMN=S△AMN ==4×=12,令t=m2﹣6,∴S△BMN=12=12≤12=,当且仅当t =,即t=8,m2=14时,等号成立,∴2p×14=9,∴p =.20.某共享单车经营企业欲向甲市投放单车,为制定适宜的经营策略,该企业首先在已投放单车的乙市进行单车使用情况调查.调查过程分随机问卷、整理分析及开座谈会三个阶段.在随机问卷阶段,A,B两个调查小组分赴全市不同区域发放问卷并及时收回;在整理分析阶段,两个调查小组从所获取的有效问卷中,针对15至45岁的人群,按比例随机抽取了300份,进行了数据统计,具体情况如表:组别年龄A组统计结果B组统计结果经常使用单车偶尔使用单车经常使用单车偶尔使用单车[15,25)27人13人40人20人[25,35)23人17人35人25人[35,45)20人20人35人25人(1)先用分层抽样的方法从上述300人中按“年龄是否达到35岁”抽出一个容量为60人的样本,再用分层抽样的方法将“年龄达到35岁”的被抽个体数分配到“经常使用单车”和“偶尔使用单车”中去.①求这60人中“年龄达到35岁且偶尔使用单车”的人数;②为听取对发展共享单车的建议,调查组专门组织所抽取的“年龄达到35岁且偶尔使用单车”的人员召开座谈会,会后共有3份礼品赠送给其中3人,每人1份(其余人员仅赠送骑行优惠券).已知参加座谈会的人员中有且只有4人来自A组,求A组这4人中得到礼品的人数X的分布列和数学期望;(2)从统计数据可直观得出“是否经常使用共享单车与年龄(记作m岁)有关”的结论.在用独立性检验的方法说明该结论成立时,为使犯错误的概率尽可能小,年龄m应取25还是35?请通过比较K2的观测值的大小加以说明.参考公式:K2=,其中n=a+b+c+d.解:(1)①由分层抽样性质得:从300人中抽取60人,其中“年龄达到35岁“的人数为:100×=20人,”年龄达到35岁”中偶而使用单车的人数为:=9人.②A组这4人中得到礼品的人数X的可能取值为0,1,2,3,P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==,∴X的分布列为:X0123P∴E(X)==.(2)按“年龄是否达到35岁”对数据进行整理,得到如下列联表:经常使用单车偶尔使用单车合计未达到35岁12575200达到35岁5545100合计180120300m=35时,K2的观测值:k1===.m=25时,按“年龄是否达到25岁”对数据进行整理,得到如下列联表:经常使用单车偶尔使用单车合计未达到25岁6733100达到25岁11387200合计180120300 m=25时,K2的观测值:k2==,k2>k1,欲使犯错误的概率尽量小,需取m=25.21.已知函数f(x)=e x﹣ax2﹣bx﹣1,其中a,b∈R,e=2.71828…为自然对数的底数.(1)设g(x)是函数f(x)的导函数,求函数g(x)在区间[0,1]上的最小值;(2)若f(1)=0,函数f(x)在区间(0,1)内有零点,求a的取值范围.解:∵f(x)=e x﹣ax2﹣bx﹣1,∴g(x)=f′(x)=e x﹣2ax﹣b,又g′(x)=e x﹣2a,x∈[0,1],∴1≤e x≤e,∴①当时,则2a≤1,g′(x)=e x﹣2a≥0,∴函数g(x)在区间[0,1]上单调递增,g(x)min=g(0)=1﹣b;②当,则1<2a<e,∴当0<x<ln(2a)时,g′(x)=e x﹣2a<0,当ln(2a)<x<1时,g′(x)=e x ﹣2a>0,∴函数g(x)在区间[0,ln(2a)]上单调递减,在区间[ln(2a),1]上单调递增,g(x)min=g[ln(2a)]=2a﹣2aln(2a)﹣b;③当时,则2a≥e,g′(x)=e x﹣2a≤0,∴函数g(x)在区间[0,1]上单调递减,g(x)min=g(1)=e﹣2a﹣b,综上:函数g(x)在区间[0,1]上的最小值为;(2)由f(1)=0,⇒e﹣a﹣b﹣1=0⇒b=e﹣a﹣1,又f(0)=0,若函数f(x)在区间(0,1)内有零点,则函数f(x)在区间(0,1)内至少有三个单调区间,由(1)知当a≤或a≥时,函数g(x)在区间[0,1]上单调,不可能满足“函数f (x)在区间(0,1)内至少有三个单调区间”这一要求.若,则g min(x)=2a﹣2aln(2a)﹣b=3a﹣2aln(2a)﹣e+1令h(x)=(1<x<e)则=,∴.由>0⇒x <∴h(x)在区间(1,)上单调递增,在区间(,e)上单调递减,==<0,即g min(x)<0 恒成立,∴函数f(x)在区间(0,1)内至少有三个单调区间⇔⇒,又,所以e﹣2<a<1,综上得:e﹣2<a<1.另解:由g(0)>0,g(1)>0 解出e﹣2<a<1,再证明此时f(x)min<0 由于f(x)最小时,f'(x)=g(x)=e x﹣2ax﹣b=0,故有e x=2ax+b且f(1)=0知e﹣1=a+b,则f(x)min=2ax+b﹣ax2﹣(e﹣1﹣a)x﹣1=﹣ax2+(3a+1﹣e)x+e﹣a﹣2,开口向下,最大值(5a2﹣(2e+2)a+e2﹣2e),分母为正,只需看分子正负,分子<5﹣(2e+2)+e2﹣2e(a=1时取最大)=e2﹣4e+3<0,故f(x)min<0,故e﹣2<a<1.(二)选考题,满分共10分,请考生在22.23题中任选一题作答,如果多做,则按所做的第一题计分.答时用2B铅笔在答题卡上把所选题目的题号涂黑[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy中,直线l1过原点且倾斜角为α(0).以坐标原点O为极点,x轴正半轴为极轴建立坐标系,曲线C1的极坐标方程为ρ=2cosθ.在平面直角坐标系xOy中,曲线C2与曲线C1关于直线y=x对称.(Ⅰ)求曲线C2的极坐标方程;(Ⅱ)若直线l2过原点且倾斜角为,设直线l1与曲线C1相交于O,A两点,直线l2与曲线C2相交于O,B两点,当α变化时,求△AOB面积的最大值.解:(Ⅰ)由题可知,C1的直角坐标方程为:x2+y2﹣2x=0,设曲线C2上任意一点(x,y)关于直线y=x对称点为(x0,y0),∴,又∵,即x2+y2﹣2y=0,∴曲线C2的极坐标方程为:ρ=2sinθ;(Ⅱ)直线l1的极坐标方程为:θ=α,直线l2的极坐标方程为:.设A(ρ1,θ1),B(ρ2,θ2).∴,解得ρ1=2cosα,,解得.∴==.∵0≤α<,∴<.当,即时,sin()=1,S△AOB取得最大值为:.[选修4--5:不等式选讲]23.已知函数f(x)=|ax+1|+|2x﹣1|.(1)当a=1时,求不等式f(x)>3的解集;(2)若0<a<2,且对任意x∈R,恒成立,求a的最小值.解:(1)当a=1时,f(x)=|x+1|+|2x﹣1|,即;解法一:作函数f(x)=|x+1|+|2x﹣1|的图象,它与直线y=3的交点为A(﹣1,3),B (1,3),如图所示;所以,f(x)>3的解集为(﹣∞,﹣1)∪(1,+∞);解法二:原不等式f(x)>3等价于或或,解得:x<﹣1或无解或x>1,所以,f(x)>3的解集为(﹣∞,﹣1)∪(1,+∞);(2)由0<a<2,得﹣<,a+2>0,且a﹣2<0;所以f(x)=|ax+1|+|2x﹣1|=,所以函数f(x)在上单调递减,在上单调递减,在上单调递增;所以当时,f(x)取得最小值,且;因为对∀x∈R,恒成立,所以;又因为a>0,所以a2+2a﹣3≥0,解得a≥1(a≤﹣3不合题意),所以a的最小值为1.。
(完整word)河北衡水中学2019高三第一次调研考试--数学(理)
河北衡水中学2019高三第一次调研考试--数学(理)高三年级数学试卷 〔理科〕本试卷分第一卷〔选择题〕和第二卷 (非选择题)两部分。
第一卷共2页,第二卷共2页。
共150分。
考试时间120分钟。
第一卷〔选择题共60分〕5分,共60分。
每题所给选项只有一项符合题意,请将正确答案的选 项填涂在答题卡上〕1.集合 M{x|x 1 22x 3 0},N {x |x a},假设 M 范围是〔〕件 5. _2(1 cosx) dx ()2[3,) B 、(3,) C 、(1] D 、(2.f(x)在R 上是奇函数,且N ,那么实数a 的取值1)【一】选择题〔每题f (xf (Q) 4) f (xx)当x (0,2)时,f (x) 2x 2,则f (7)()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条A. ( ,4]B.[4, )C.[ 4,4]D.( 4,4] 8.有下面四个判断:其中正确的个数是()A.-2B.23、函数f (x)C.-98log 2 x (x 1 x 2(xD.98 °),那么不等式 0)f (x ) 0的解集为〔〕A. {x | 0 x1} B {x|1 x 0} C. {x | 1 x1} D. {x | x 1}4.“a 0”是“方程ax 22x 10至少有一个负根”的〔〕A.B. 2C.2 D.A 、[0 , 1〕B 、( pC [1 ,+◎D (,1]7、函数2f(x) log °.5(xax 3a)在[2,)单调递减,那么a 的取值范围()⑤abc 4 ; ® abc 4其中正确结论的序号是() A.①③⑤B.①④⑥C.②③⑤D.②④⑥设0 a 1,函数f(x) log a (a 2x 2a x 2),那么使f (x) 0的取值范围是〔〕A. (, log a 3) B. (log a 3, ) C. (0, )D. ( ,0)12.函数sin x (0 x 1),假设a,b,c 互不相等,且f(a) f(b) f(c),那么 f (x)log 2010 x (x 1)a b c 的取值范围是()函数为f/(x),f/(x)的导函数为f 〃(x),那么有f 〃(Xo)0。
河北省衡水中学2019届高三下学期一调考试理科数学试卷附答案解析
河北省衡水中学2019届高三下学期一调考试数学(理科)一、选择题:本题共12小题.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则()A. B. C. D.【答案】D【解析】【分析】解一元二次不等式求得A,解指数不等式求得B,再根据两个集合的交集的定义求得.【详解】因为集合,,所以,故选D.【点睛】该题考查的是有关集合的运算,属于简单题目.2.已知,是虚数单位,若,则()A. B. 2 C. D. 5【答案】C【解析】【分析】根据复数相等的充要条件,构造关于的方程组,解得的值,进而可得答案.【详解】因为,结合,所以有,解得,所以,故选C.【点睛】该题考查的是有关复数的模的问题,涉及到的知识点有复数相等的条件,属于简单题目.3.给出下列四个结论:①命题“,”的否定是“,”;②命题“若,则且”的否定是“若,则”;③命题“若,则或”的否命题是“若,则或”;④若“是假命题,是真命题”,则命题,一真一假.其中正确结论的个数为()A. 1B. 2C. 3D. 4【答案】B【解析】【分析】①写出命题“,”的否定,可判断①的正误;②写出命题“若,则且”的否定,可判断②的正误;写出命题“若,则或”的否命题,可判断③的正误;④结合复合命题的真值表,可判断④的正误,从而求得结果.【详解】①命题“,”的否定是:“,”,所以①正确;②命题“若,则且”的否定是“若,则或”,所以②不正确;③命题“若,则或”的否命题是“若,则且”,所以③不正确;④“是假命题,是真命题”,则命题,一真一假,所以④正确;故正确命题的个数为2,故选B.【点睛】该题考查的是有关判断正确命题的个数的问题,涉及到的知识点有命题的否定,否命题,复合命题真值表,属于简单题目.4.函数的图像大致是()A. B.C. D.【答案】A【解析】【分析】观察函数解析式,通过函数的定义域,特殊点以及当时,函数值的变化趋势,将不满足条件的选项排除,从而得到正确的结果.【详解】因为函数的定义域为R,故排除B,因为,所以排除C,当时,因为指数函数比对数函数增长速度要快,所以当时,有,所以排除D,故选A.【点睛】该题是一道判断函数图象的题目,总体方法是对函数解析式进行分析,注意从函数的定义域、图象所过的特殊点以及对应区间上函数图象的变化趋势,来选出正确的结果,注意对不正确的选项进行排除.5.已知图①②③中的多边形均为正多边形,,分别是所在边的中点,双曲线均以图中,为焦点.设图①②③中双曲线的离心率分别为,,,则()A. B.C. D.【答案】D【解析】【分析】分别根据正三角形、正方形、正六边形的性质,将用表示,然后利用双曲线的定义,求得,的等量关系,分别求出图示①②③中的双曲线的离心率,然后再判断的大小关系.【详解】图①中,;图③中,设正六边形的一个在双曲线右支上的顶点为,则,则;图②中,,,故选D.【点睛】本题主要考查双曲线的定义及离心率,属于难题.离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,从而求出;②构造的齐次式,求出;③采用离心率的定义以及圆锥曲线的定义来求解;④根据圆锥曲线的统一定义求解.6.执行如图所示的程序框图,则输出的结果是()A. 2018B. -1010C. 1009D. -1009【答案】C【解析】【分析】根据程序框图,它的作用是求的值,根据结合律进行求解,可得结果. 【详解】该程序框图的作用是求的值,而,故选C.【点睛】该题主要考查程序框图,用结合律进行求和,属于简单题目.7.已知某几何体的三视图如图所示,图中小方格的边长为1,则该几何体的表面积为()A. 65B.C.D. 60【答案】D【解析】【分析】由已知的三视图还原几何体为三棱柱截去三棱锥得到的,根据图中数据,计算表面积.【详解】由三视图可知,该几何体为如下图所示的多面体,它是由直三棱柱截去三棱锥所剩的几何体,其中,所以其表面积为,故选D.【点睛】该题考查的是有关几何体的表面积的问题,涉及到的知识点有根据三视图还原几何体,锥体的表面积,属于简单题目.8.五个人围坐在一张圆桌旁,每个人面前放着完全相同的硬币,所有人同时翻转自己的硬币.若硬币正面朝上,则这个人站起来;若硬币正面朝下,则这个人继续坐着.那么没有相邻的两个人站起来的概率为()A. B. C. D.【答案】C【解析】五个人的编号为由题意,所有事件共有种,没有相邻的两个人站起来的基本事件有,再加上没有人站起来的可能有种,共种情况,所以没有相邻的两个人站起来的概率为故答案选9.在中,角,,所对的边分别为,,,若,则()A. B. C. D.【答案】C【解析】在中,,由正弦定理得,,由余弦定理得,,,,,故选C.10.已知抛物线的焦点为,,是抛物线上的两个动点,若,则的最大值为()A. B. C. D.【答案】B【解析】【分析】利用余弦定理,结合基本不等式,即可求出的最大值.【详解】因为,,所以,在中,由余弦定理得:,又,所以,所以,所以的最大值为,故选B.【点睛】该题考查的是有关解三角形的问题,涉及到的知识点有余弦定理,基本不等式,在解题的过程中,对题的条件进行正确转化是解题的关键,属于中档题目.11.已知当时,,则以下判断正确的是()A. B. C. D.【答案】C【解析】记,为偶函数且在上单调递减,由,得到即∴,即故选:C12.若存在一个实数,使得成立,则称为函数的一个不动点.设函数(,为自然对数的底数),定义在上的连续函数满足,且当时,.若存在,且为函数的一个不动点,则实数的取值范围为()A. B. C. D.【答案】B【解析】∵f(﹣x)+f(x)=x2∴令F(x)=f(x)﹣,∴f(x)﹣=﹣f(﹣x)+x2∴F(x)=﹣F(﹣x),即F(x)为奇函数,∵F′(x)=f′(x)﹣x,且当x0时,f′(x)<x,∴F′(x)<0对x<0恒成立,∵F(x)为奇函数,∴F(x)在R上单调递减,∵f(x)+≥f(1﹣x)+x,∴f(x)+﹣≥f(1﹣x)+x﹣,即F(x)≥F(1﹣x),∴x≤1﹣x,x0≤,∵为函数的一个不动点∴g(x0)=x0,即h(x)= =0在(﹣∞,]有解.∵h′(x)=e x-,∴h(x)在R上单调递减.∴h (x)min=h()=﹣a即可,∴a≥.故选:B点睛:已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.二、填空题:本题共4小题.13.抛物线的准线方程为________.【答案】【解析】由抛物线的标准方程为x2=y,得抛物线是焦点在y轴正半轴的抛物线,2P=1,∴其准线方程是y=,。
2019年河北省衡水市高三下学期一调考试数学(理)试题及答案
高考数学精品复习资料2019.520xx ~20xx 学年度下学期一调考试 高三年级数学(理科)试卷本试卷分为第I 卷(选择题)和第II 卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题:(本题共12个小题,每小题5分,共60分,在四个选项中,只有一项是符合要求的)1、集合P={3,4,5},Q={6,7},定义},|),{(*Q b P a b a Q P ∈∈=,则Q P *的子集个数为( )A .7B .12C .32D .642、已知20<<a ,复数z 的实部为a ,虚部为1,则||z 的取值范围是( ) A .(1,5) B .(1,3) C .)5,1( D .)3,1(3、在第29届北京奥运会上,中国健儿取得了51金、21银、28铜的好成绩,稳居金牌榜榜首,由此许多人认为中国进入了世界体育强国之列,也有许多人持反对意见,有网友为此进行了调查,在参加调查的2548名男性中有1560名持反对意见,2452名女性中有1200名持反对意见,在运用这些数据说明性别对判断“中国进入了世界体育强国之列”是否有关系时,用什么方法最有说服力( )A .平均数与方差B .回归直线方程C .独立性检验D .概率4、若函数,,cos 3sin )(R x x x x f ∈+=ωω又0)(,2)(=-=βαf f ,且βα-的最小值为43π的正数ω为( ) A.31 B.32 C.34 D.23 5、定义在R 上的连续函数f (x )满足f (-x )=-f (x +4),当x >2时,f (x )单调递增,如果x 1+x 2<4,且(x 1-2)(x 2-2)<0,则f (x 1)+f (x 2)的值 ( )A .恒小于0B .恒大于0C .可能为0D .可正可负 6、如图给出的是计算11112462014+++⋅⋅⋅的值的程序框图,其中判断框内应填入的是( ) A.2014i ≤ B.2014i > C.1007i ≤D.1007i >7、一个几何体的三视图如右图所示,则该几何体的体积为( )A. B.C.6 D8、 设向量a,b,c 满足060,,21,1=---=⋅==c b c a b a b a ,则c 的最大值等于( ) A .2 B .3 C .2 D .19、过x 轴正半轴上一点0(,0)M x ,作圆22:(1C x y +-=的两条切线,切点分别为,A B ,若||AB ≥则0x 的最小值为( )A .1BC .2D .310、过双曲线22221(0,0)x y a b a b-=>>左焦点1F ,倾斜角为30︒的直线交双曲线右支于点P ,若线段1PF 的中点在y 轴上,则此双曲线的离心率为( )C.311、点(,)P x y 是曲线1:(0)C y x x=>上的一个动点,曲线C 在点P 处的切线与x 轴、y 轴分别交于,A B 两点,点O 是坐标原点. 给出三个命题:①PA PB =;②OAB ∆的周长有最小值4+③曲线C 上存在两点,M N ,使得OMN ∆为等腰直角三角形.其中真命题的个数是( )A.1B.2C.3D.012、设12,F F 分别是椭圆22221(0)x y a b a b +=>>的左右焦点,若在其右准线上存在点P ,使12PF F ∆为等腰三角形,则椭圆的离心率的取值范围是( )A. B.(0,2C. D .⎪⎪⎭⎫⎝⎛122,20xx ~20xx 学年度下学期一调考试 高三年级数学(理科)试卷第Ⅱ卷 非选择题 (共90分)二、填空题(本题共4个小题,每小题5分,共20分. 把每小题的答案填在答题纸的相应位置)13、在△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边,三边a 、b 、c 成等差数列,且B=4π,则cosA -cosC 的值为 .14、如果把四个面都是直角三角形的四面体称为“三节棍体”,那么从长方体八个顶点中任取四个顶点,则这四个顶点是“三节棍体”的四个顶点的概率为 .15、在矩形ABCD 中,AB=4,BC=3,沿AC 将矩形ABCD 折成一个直二面角B-AC-D ,则四面体ABCD 的外接球的体积为 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A. 10 11
1
B.
12
C. 1 11
D. 11 12
11.对于任意的实数 x [1,e] ,总存在三个不同的实数 y [ 1,5] ,使得 y2xe1 y ax ln x 0 成
立,则实数 a 的取值范围是 ( )
A.
(
25 e4
, e2
1] e
B.
[
25 e4
,
3) e
C.
(0,
25 e4
]
D.
,则
其中正确命题的个数为(
)
A. 0
B. 1
C. 2
D.3
8.已知定义在 (0,
f (1)
) 上的函数 f ( x) ,恒为正数的 f ( x) 符合 f (x) f ( x) 2 f ( x) ,则
的
f (2)
取值范围为( )
A. (e,2 e)
11
B.
(
2e2
,
) e
C. ( e,e3 )
11
D.
[
25 e4
,
e2
3) e
12.如图,在正方体 ABCD ﹣A1B1C1D1中, A1H 平面 AB1D1 ,垂足为 H,给出下面结论:
①直线 A1H 与该正方体各棱所成角相等;
②直线 A1H 与该正方体各面所成角相等;
③过直线 A1H 的平面截该正方体所得截面为平行四边形;
④垂直于直线 A1H 的平面截该正方体,所得截面可能为五边形,
(e2
,
) e
9.已知点 A(0, 2) ,抛物线 C : y2 4x 的焦点为 F ,射线 FA 与抛物线 C 相交于点 M ,与其准
线相交于点 N ,则 FM : MN ( )
A. 2 : 5
高三理科数学下一调 1 / 8
B. 1: 2
C. 1: 5
D. 1: 3
n
10. 定义
p1 p2 L
为 n 个正数 pn
三支跟香烟外形完全一样的“戒烟口香糖”, 并且和爸爸约定, 每次想吸烟时, 从盒子里任取一支, 若取到口香糖则吃一支口香糖,不吸烟;若取到香烟,则吸一支烟,不吃口香糖,假设每次香烟和
口香糖被取到的可能性相同,则“口香糖吃完时还剩
2 支香烟”的概率为(
A. 1 5
B
.8
15
6.已知△ ABC 外接圆的圆心为
20.某共享单车经营企业欲向甲市投放单车, 为制定适宜的经营策略, 该企业首先在已投放单车的
B x y lg x 1 ,则阴影部分所示集合为(
)
A. 1 ,2 B . 1 ,2
C. (1 ,2] D . [1 ,2)
2. 复数 z a a i ( 其中 a 3i
复平面内对应的点位于 ( )
R ,为虚数单位 ) ,若复数 z 的共轭复数的虚部为
1
,则复数
z在
2
A.第一象限
B.第二象限
C.第三象限
其中正确结论的序号为(
)
这个圆柱内随机取一点 P,则点 P 到点
的距离都大于 1 的概率为 ___.
14.在数列 { an} 中,若函数 f ( x)= sin 2x+2 2 cos2x 的最大值是 a1,且 an=( an+1﹣ an﹣ 2) n﹣
2n2,则 an= _____. 15.秦九韶是我国南宋著名数学家, 在他的著作数书九章》 中有已知三边求三角形面积的方法 : “以 小斜幂并大斜幂减中斜幂余半之, 自乘于上以小斜幂乘大斜幂减上, 余四约之为实一为从隅, 开平
y2 b2
1(a
0,b
0) 的左焦点 F1 作曲线 C2 : x2
y2
a 2 的切线,设切点为
M , 延长 F1M 交曲线 C3 : y 2 2 px( p uuuur uuuur r MF1 MN 0, 则曲线 C1 的离心率为
0) 于点 N , 其中 C1, C3 有一个共同的焦点,若
.
A.①③
D.第四象限
3.若 a π2, b a a , c a aa ,则 a , b , c 的大小关系为
A. c b a B . b c a
C
.b a c
4.函数 f x
(
2
x
1) cos x 图象的大致形状是
1e
D. a b c
A.
B.
C.
D.
5.吸烟有害健康,小明为了帮助爸爸戒烟,在爸爸包里放一个小盒子,里面随机摆放三支香烟和
方得积”如果把以上这段文字写成公式就是
S
1 [ a2c2Βιβλιοθήκη a2 (c2b2 ) 2 ] ,共中 a、b、c 是 △ABC
4
2
的内角 A,B,C的对边。若 sin C 2sin A cosB,且 b2 , 2, c2 成等差数列,则 △ABC 面积 S
的最大值为 ____
16.
过曲线
x2 C1 : a 2
C
.3
D
.3
5
20
uuur uuur O,若 AB=3, AC=5,则 AO BC 的值是(
) )
A. 2
B. 4
C. 8
D.16
7.给出下列五个命题:
①若
为真命题,则
为真命题;
②命题“
,有
”的否定为“
,有
”;
③“平面向量 与 的夹角为钝角”的充分不必要条件是“
”;
④在锐角三角形
中,必有
;
⑤ 为等差数列,若
2019-2020 学年度高三年级下学期一调考试
数学(理科)试卷
第Ⅰ卷( 选择题 共 60 分)
命题人:
审核人:
一、 选 择题(本大题共 12 小题,每题 5 分,共 60 分 , 下列每小题所给选项只有一项符合题意,请
将正确答案的序号填涂在答题卡上)
1.已 知全 集 U R,集 合 A
2
y y x 2 ,x R , 集 合
D , E 分别为线段 BC 上的点,且 BD CD , BAE CAE .
( 1)求证:点 C 的横坐标是定值,并求出该定值; ( 2)若直线 m 过 C 点,且倾斜角和直线的倾斜角 互补,交椭圆于 M 、 N 两点,求 p 的值,使得
BMN 的面积最大 .
( 1)求线段 AD 的长; ( 2)求 ADE 的面积.
p1 、 p2 、…、
pn 的“均倒数”,若已知正整数列
n 项的“均倒数”为
1
,又 bn
2n 1
an 1
1
,则
4
b1b2
1 b2b3
1
()
b10 b11
an 的前
第Ⅱ卷(共 90 分)
二 、填空题:(本大题共 4小题,每题 5分,共 20分)
13. 有一个底面圆的半径为 1,高为 2 的圆柱, 点
分别为这个圆柱上底面和下底面的圆心, 在
B.②④
C.①②④
D.①②③
高三理科数学下一调 2 / 8
三、解答题: (本大题共 6 小题,共 70 分,解答应写出文字说明,证明过程或演算步骤。 )
x2 19.如图, A 为椭圆
4
y2 1 的左顶点, 过 A 的直线交抛物线 y2 2
2 px p 0 于 B 、C 两点,
17.如图,在 ABC 中,内角 A ,B ,C 的对边分别为 a ,b ,c ,已知 c 4 ,b 2 ,2c cosC b , C 是 AB 的中点 .